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Abstract (F~1) and one for going to some descendant node (EF), and
two “horizontal” modalities for going to some following
We prove that it is decidable whether a regular unranked sibling (F,) or some preceding sibling KF—‘).
tree language is definable FO, (<p, <v). BYyFO(<p, <v We provide a decidable characterization of£Qy,, <y
) we refer to the two variable fragment of first order logic ), or equivalently EF+F' (F,, F,, '), over unranked ordered
built from the descendant and following sibling predicates trees. Note that for ank, FO,(<y, <y) can express the fact
In terms of expressive power it corresponds to a fragment ofthat a tree has rank hence our result also apply for ranked
the navigational core of XPath that contains modalities for trees.
going up to some ancestor, down to some descendant, leftto oy characterizations are expressed in term of closure
some preceding sibling, and right to some following sihling properties corresponding partly to identities in the sgnta
We also investigate definability in some other fragments tic forest algebra of the language as defined by Beigk
of XPath. and Walukiewicz [8], and partly via closure under a satu-
ration mechanism. A forest algebra is essentially a pair of
monoids, the “horizontal” monoid for forest types and the
1 Introduction “vertical” monoid for context types together with an action
of contexts over types. It was introduced in [8] and was
used successfully for obtaining decidable charactednati

Stand the expreseive power of frstorder ogic e (rees, 1 (e classes of tree languages definable in EF-+EX [7),
EF+F [3], BC-Z1 (<y) [B], Aa(<y) [4].

We say that a class of regular tree languages has a decid- ) )
Over words, the induced logicsAs (<), FOy(<) and

able characterization if the following problem is decidabl 1 )
given as input a finite tree automaton, decide if the recog- EF*F *» have exactly the same expressive power [10, 14].
But over trees this is no longer the case. For instance

nized language belongs to the class in question. Usually a e o _ )
decision algorithm requires a solid understanding of the ex EF*F " IS closed under bisimulation while the other two
pressive power of the corresponding class and is therefore®® Not. While demdablle charactenzgtlons were obtained
useful in any context where a precise boundary of this ex- for A;(<y) and E',:H:_ [_3’ 4], the |mport.ant 'case of
pressive power is crucial. The main open problem in this FO2(<n, <v) was still missing and is solved in this paper.
area is to find a decidable characterization of the tree lan- Over words, a regular language is definable in, O
guages definable in FQ(), the first-order logic using a bi-  iff its syntactic monoid belongs to a variety of monoids
nary predicate<y for the ancestor relation. known asDA, a decidable property [14]. Not surprisingly

In this paper we work with unranked ordered trees and OUr first set of identities require that the horizontal and ve
by FO(<p, <v) we actually refer to the logic that has two tical monoids of the syntactic forest algebra belon®#a
binary predicates, one for the descendant relation, one for Our extra property is more complex and mixes at the
the following sibling relation. same time the vertical and horizontal behavior o, 9,

We investigate an important fragment of FQ( <y), ,<v). We call it closure under saturatiomnd we do not
its two variable restriction denoted FQ<y,, <y). This is know yet whether it is implied by the previous identities or
a robust formalism that, in term of expressive power, has not.
an equivalent counterpart in temporal logic. This tempo- It is immediate from the word case that being defin-
ral counterpart can be seen as the fragment of the nav-able in FQ (<, <y) implies that the vertical and horizontal
igational core of XPath that does not use the successomonoids of the syntactic forest algebra belon@#. That
axis [11]. More precisely, it corresponds to the temporal closure under saturation is also necessary is proved via a
logic EF+F ! (Fy,, F}jl) that navigates in the tree using two classical, but tedious, Ehrenfeucht-iSs2 game argument.
“vertical” modalities, one for going to some ancestor node The main difficulty is to show that the closure conditions are



sufficient. In order to do so, as it is standard when dealing Organization of the paper. We first provide the neces-
with FO, (<y,, <v) (see e.g. [3, 4, 14]), we introduce Green- sary definitions and state our characterization in Section 2
like relations for comparing elements of the syntactic alge We give the proof that our characterization forfQy,, <v)

bra. However, in our case, we parametrize these relationss sufficient in Section 3. In Section 4 we show how the
with a set of forbidden patterns: the contexts authorized fo proof can be adapted for handling several other horizontal
going from one type to another type cannot use any of thenavigation modalities. We only briefly discuss the complex-
forbidden pattern. We are then able to perform an induction ity of our characterization and provide additional remanks
using this set of forbidden patterns, thus refining compari- Section 5. Due to lack of space some proofs are omitted or
son relations more and more until they become trivial. only sketched.

Our proof has many similarities with the one of
Bojanczyk that provides a decidable characterization forthe 2 Preliminaries
logic EF+F ! [3] and we reuse several ideas developed this

paper. However it departs from it in many essential ways. Trees and forests. We work with finite unranked ordered

First Qf all the clo§ure under bisimulation of EF+Fwas trees and forests whose nodes are labeled using a finite al
used in an essential way in order to compute a SUbalgeEbraphabet. More formally ifA is a finite alphabet then our

and pberform mggfl'iogs on theh5|zehof _the al?ebrz_i_ More- trees and forests are generated by the following rules: For
over, because oes not have horizontal navigation, o, « 4 4 is a tree, furthermore if € A ands is a forest

Bojanczyk was able to isolate certain labels and then Pe™thena(s) is a tree, ift1, - - - , ¢, are trees them -+ - - - + ¢
form an induction on the size of the alphabet. Itis the com- .. - torest A set (’)f fo;ests’ is called a forest language

bination_of the induction on the size of the alphabet and We use standard terminology for forests defining nodes,
on the size of the algebra that gave an elegant proof of the

: " . ) ancestors, descendant, following and preceding sibliAgs.
cor_rectness of the_|dent|t|es for EF¥Fgiven in _[?f]' Ou_r context is a forest with a designated leaf that has no label
logic FO,(<p, <v) IS no longer closeq unde_r bisimulation and no sibling and which is calletie portof the context.
and we were not able to perfor_m an |ndu_ct|0n on th_e alge— This definition is not standard as usually contexts are de-
.br.a' Moreover becguse our logic has horizontal navigation, e without the sibling restriction for ports but it is im-
itis no longer possible to isolate the label of a node from portant here to work with this non-standard definition. A
the labels of its siblings, hence it is no longer possible to contextc can be composed with another contexor with
perform an induction on the alphabet. In order to OVercome . ¢t in the obvious way. The corresponding notations
these problems our proof replace the inductions used in [3]

. . i . are respectivelyc’ andcs.
by an induction on the set Of. forb!dden patterns. This make If = is a node of a forest then tlseibtree ofr is the tree
the two proofs technically fairly different.

} ) ~ rooted atz. Thesubforest atc is the forests consisting of
It turns out that our proof technique applies for vari- gl the subtrees of all the children of

ous horizontal modalities. In the final section of the pa-
per we show how to adapt the characterization obtained
for FO,(<y, <y) in order to obtain decidable character-
izations for EF+F ' (Xp, Fy, X, ', F 1), EF+F'(S) and
EF+F (S, ), where X, X, Sand S are horizontal nav-
igational modalities moving respectively to the next sigli
previous sibling, an arbitrary sibling or an arbitrary difnt
sibling.

Logic. Each forest is viewed as a relational structure
whose domain is its set of nodes. The signature contains
a unary predicaté&, for each symbot of A plus a binary
predicate for the ancestor relatien, and a binary predi-
cate for the following sibling relatiory,. By FOy (<y, <v)

we denote the two variable restriction of first order logic
over the relational signature as described above. In terms
of expressive power, FQ<y,, <y) is equivalent to the tem-
poral logic EF+F ' (Fy, F, ') that we describe below [11].
EF+F ' (Fy, F, ') is essentially the restriction of the navi-
gational core of XPath without theHILD, PARENT, NEXT-
SIBLING andPREVIOUSSIBLING predicates. It is defined
using the following grammar:

Related work Our characterization is essentially given
using forest algebras. There exist several other formalism
that were used for providing characterizations of logical
fragments of MSO (see e.g. [2, 13, 15, 9]). Itis not clear
however how to use these formalisms forfQy, <y).

There exists decidable characterizations of E_F+EX and o A|eVe|leAg|—p|ERp | Flo | Fue | F}:hp
A, (<y) over ranked trees [12]. But, as these logics cannot
express the fact that a tree is binary, these charactenizati  We use the classical semantics for this logic which defines
are different over ranked trees than over unranked trees. Asvhen a formula holds at a nodeof a forests. In particular,
mentioned above, we don't have this problem with,F&, EFp holds atz if there is a strict descendant afwhere
, <v)- ¢ holds, F 1y holds atz if there is a strict ancestor af



where ¢ holds, Ry holds atx if ¢ holds at some strict
following sibling of =, and so on... Each closed formula
¢ of EF+F ! (R, Fy ') or of FO,(<y, <y) defines a forest
languageL,,: Those forestss wherey holds at the root
of the first tree ofs. Note that FQ(<p, <v) is expressive

We give a brief summary of the definition of forest alge-
bras and of their important properties. More details can be
found in [8]. A forest algebra consists of a p&#, V") of
finite semigroups, subject to some additional requirements
which we describe below. We write the operatiorirmul-

enough to test whether a forest is a tree. Hence any resultiplicatively and the operation i/ additively, although/?

concerning forest languages definable ibF9,, <y) also
applies for tree languages definable infQy,, <y).

We aim at providing a decidable characterization of reg-

ular forest languages definable in @y, <y). We shall
mostly use formulas from Fd<y, <y). However, the
EF+F '(Fn, F, ') point of view will be useful when con-

is not assumed to be commutative.

We require thal” acts on the left off. That is, there
is a map(h,v) — vh € H such thatw(vh) = (wv)h for
all h € H andv,w € V. We further require that for every
g € H andv € V, V contains element® + g) and(g + v)
such that(v + g)h = vh + g, (g + v)h = g + vh for all

sidering other horizontal modalities as in Section 4 or when h € H. Thefree forest algebradenoted byA%, is the pair
making comparisons with the decision algorithm obtained of semigroupg H 4, V4) whereH 4 is the set of forests over

for EF+F 1 in[3].

Antichain Composition Principle. We shall make use
of the following composition lemma, essentially taken
from [3]. We reuse notations from [3].

A formula of FG(<y, <y) with one free variable is
calledantichainif in every forest, the set of nodes where

the alphabetd andV4 the set of contexts, together with the
natural actions.

A morphisma : (Hy,V;) — (Hs, V3) of forest algebras
is actually a paif~, §) of semigroup morphisms : H; —
H,, § : Vi — V4 such thaty(vh) = d(v)y(h) forall h €
H, v € V. However, we will abuse notation slightly and
denote both component maps by We say that a forest
algebra(H, V') recognizes forest languagé if there is a

it holds forms an antichain, i.e. a set (not necessarily MaxX-morphisma : A2 — (H,V) and a subseX of H such that

imal) of nodes pairwise incomparable with respect to the ; _ a~(X)

descendant relation. This is a semantic property,

. We also say that the morphismrecognizes

and mayy, t js easy to show that a forest language is regular if and

not be apparent just by looking at the syntax of the formula. oy it it is recognized by a finite forest algebra. Moreover,

We fix (i) an antichain formulap, (ii) disjoint tree lan-
guagesLy,---, L, and (iii) leaves of labek,--- ,a,.
Given a forests, we define the forests[(Lq, )
a1, ,(Ln,p) — ay] as follows. For each node of s
such thats, z = ¢(z), we determine the uniquesuch the
tree languagd.; contains the subtree af If such ani ex-
ists, we remove the subtree of(including x), and replace
z by a leaf labeled withy;. Sincey is antichain, this can
be done simultaneously for all Note that the formulg
may also depend on ancestorsepfvhile the languages;
only talk about the subtree af A simple argument, similar
to the one given in [3] for EF+F, omitted in this abstract,
shows:

—

Lemma 2.1 [Antichain Composition Lemma] Letyp,
Li,---,L, anday,---,a, be as above. I, ---,L,
and K are languages definable iRO(<y, <y), then so
is{t|t[(L1,¢) — a1, -, (Ln,p) — an] € K}.

Forest algebras. Forest algebraswere introduced by

given a tree automaton, a minimal forest algebra, alsoctalle
syntactic forest algebraecognizing the same language can
be computed.

Given any finite semigroup, there is (folklore) a num-
berw(S) (denoted by whenS is understood from the con-
text) such that for each elemendf S, z* is an idempotent:
¥ = ¥z, Therefore for any forest algeb(&/, V') and
any element. € V andg € H we will write ©* andwg for
the corresponding idempotents.

Horizontal behavior. As mentioned in the introduction
we will constantly be working with sequences of sibling
nodes. For technical reasons, we also include the label of
a subtree if this one is a leaf. We now make this notion
more precise. We assume fixed a languagecognized by

a forest algebréH, V') via the morphisn.

A multicontext is defined as for context but has several
ports. Thearity of a multicontext is the number of its ports.
A multicontext is said to behallowif each of its trees is
either a single lead;, a single node with a port belowO)

Bojanczyk and Walukiewicz as an algebraic formalism for or, a tree of the fornb(a) whereb is a node and. a leaf.
studying regular forest languages [8]. We work with the Given a multicontext of arity n and a sequenc€ of n
following variant of forest algebra: the hole of each con- forests,c[T] denotes the forest obtained after placing each
text has no sibling and we work with semigroups instead of tree inT" at the corresponding port ef A multicontextc
monoids. These restrictions are necessary as, without themoccursin a forestt if t = Ac[T’] for some contextA and

the languages definable in EGy, <y) would not form a
variety.

sequence of fore4t.

As  expected we will only  manipulate



shallow multicontexts modulo FQ<y, <y) definabil- is saturated if it isP-valid and contains one representative
ity. Intuitively, FO,(<p, <y) treats a shallow multicontext  for eachk-MType 7 ¢ P and compatible H p, k)-PType.
as a string whose letters are eitherb(a), or b(O). For More formally, let P be a good set ok-MTypes. A con-
each positive integet and any two shallow multicontexts text A is said to beP-saturated if (i) it is P-valid and
p andp’, we writep =, p’ the fact thap andp’ agree on all  (ii) for each P-valid k-MType 7, and each each compatible
sentences of Fgi<y,, <y) of quantifier rankk. We denote  (Hp, k)-PTyped, there exists a node occurring inA on

by k-MTypes the equivalence classes of this relation. the path from the root oA to its port such that € ¢ and
Let P be a set ok-MTypes - this set will play the role  the shallow multicontext ol atx is in 7.

of forbidden patterns in our proof - a forests said to be We say that a tree languagk is closed underk-

P-valid if no element ofP occur int. Similarly we define  saturationif for all good setP of k-MTypes, for all context

the notion ofP-valid multicontext. A that is P-saturated, for alP-valid treet, for all P-valid

Consider a sel C H, X will later be a parameter in  shallow multicontext, for all positionz of p and for all
our induction. We define a logic B <y, <v) for denoting sequencd’ of P-valid forests whose types are fp, we
positions on shallow multicontexts. Intuitively, BQ<y, have:
,<v) is like FO(<p, <y) on shallow multicontexts but it w w w
cam)mt distinguighl;he s)ymbb{D) from the symbob(a) oA)a(t) = a(A)*a(p[T, )a(A)"a(t) (1)
whenevera(a) ¢ X. More formally, when it tests a la-  were p[T’, z] is the context formed fromp by placing the
bel, FOY (<p,<v) can usePy,) Whena(a) € X, or  forests ofT at the corresponding holes pfexcept for the

Py V Pyay Whena(a) ¢ X. hole at positionz. A language is closed under saturation if
Let z be a node of a tree. Let xy,---,2; be the it is closed undek-saturation for someé.

sequence of siblings of, including . Let ty,---,#;

be the subtrees ot rooted at those nodes. The The main result.

shallow multicontext ot at z is the sequence,,--- ,p; )

such thatp; = a if t; = a, p; = b(a) if t; = bla), Theorem 2.2 A regular f_orest_ IanguggeL recognlzgd by

pi = bla) if t; = b(s) with a(s) = a(a) € X and, theforestalgebrdH,V) s definable irFO,(<p, <v) iff

p; = b(0O) otherwise. Given two nodes and z’ of ¢ a) H verifies the equation

we writez =, x 2’ if the shallow multicontext of: and

the shallow multicontext of’ satisfy the same formulas of w(f+g+th)+g+w(f+g+h)=w(f+g+h) ()

FOy (<, <v) of quantifier depth at most, with one free

variable denoting respectively the positieandz’. We de- b) V" verifies the equation

note by(X, k)-PTypes the equivalence classes of this rela- (wow)“v(uvw)” = (uvw)® 3
tion and we only consid€rX, k)-PTypes such tha®, o) () . )
holds for some. ¢) L is closed under saturation.

‘Given a(X, k)-PTyped and ak-MType 7, we say that |t tyrns out that (2) and (3) above are exactly the identi-
¢ is compatible withr if all shallow multicontexty) € 7 tjes characterizing membership in the variety of semigsoup
contain a position: < 0. known asDA [14]. Hence (2) and (3) could be equivalently

rephrased af/ € DA andV € DA.
Saturation. As before,P denotes a set of-MTypes for Recall that FQ(<y, <v) can express the fact that a for-
somek. Atypeh € H is said to beP-reachable from the  estis a tree and, for eaéh that a tree has rank, hence
type 1/ if there exists aP-valid contextu such thath = Theorem 2.2 also apply for regular ranked tree languages.
a(u)h/. Two types areP-equivalent if they are mutually It is simple to see that Equations (2) and (3) are neces-
P-reachable. sary. That saturation is necessary is proved using a classi-

In the case where alP-valid shallow multicontexts have ~ cal, but tedious, Ehrenfeucht-Fsee argument whose proof
arity 1 we will see that we are in a setting similar to the word is omitted in this abstract:
case and we use a specific argument. In the case where the
is at least ond”-valid shallow multicontext of arity two we
have the following important property?-reachability con-
tains a unique maximaP-equivalence class (see Claim 3.2 The most difficult part of the proof of Theorem 2.2 is

"Cemma 2.3 A forest language definable FO, (<p, <v) is
closed under saturation.

below). We then denote by7p the unique maximal- to show that the conditions imply definability in the corre-
equivalence class and Wyp the types ofH notin Hp. In sponding logic. Section 3 is devoted to the proof of this
this case we say that is good implication. In Section 4 we discuss how the argument can

Finally, we are able to define the notion sdturation be modified in order to cope with other horizontal modali-
which is part of our characterization. Intuitively a corttex ties.



3 Sufficientness of the properties

In all this section we fix a regular forest languaf¢hat
is recognized by the forest algeliH, V') via the morphism
«. We assume that is closed undek’-saturation and that
H andV verify Equations (2) and (3). We will show that
is definable in FQ(<p, <v).

Let £ be the number such that wheneyeandp’ have
the samé:”’-MType then for all forest we havex(p[s])
«(p'[8]), wherep[s] is the forest constructed fropby plac-
ing s at each hole op. Such ak” exists because we are
essentially in the string case and (2) guarantees defityabili
in FO»(<) in the string case as proved in [14], and taking
k" as the quantifier rank of the resulting formula yields the
desired result. We omit the details in this abstract.

We now takek as the maximum betweéin andk”. No-
tice thatL remains closed undérsaturation.

Given a forests, its typeis its image inH by a. We
assume that for each typec H there is a tree consisting of
a single leaf node that hasfor type viac. This simplifies
the notations in the proof with no harm in the generality of
the result.

The proof of Theorem 2.2 is done by induction using an
inductive hypothesis that is stated in the proposition\elo
One of the parameters is a subdétof H. The following
definition is taken from [3]. A forest is said to beX-
trimmed if the only nodes ofs that are of type inX are
leaves. We say that a forest langudgis definable modulo
X if there is a definable forest languafiéthat agrees with
L over X -trimmed forests. For eadhe H andv € V, let
LY, ={t|v-a(t) = handtis P-valid}.

Our goal in this section is to show that:

Proposition 3.1 Vh € H,v € V and X C H, andP a set
of k-MTypes,L”, is definable ifFO, (<y, <y) moduloX.

v,h

We can then complete the proof of Theorem 2.2 by ap-
plying Proposition 3.1 for alh € «(L) with v the empty
context, andP, X empty sets.

In the rest of this section we only care abdgtvalid
forests and hence we implicitly ignore the typese H
such thatn=*(h) contains naP-valid forests.

Recall the notion of-reachability for two typeg andg
of H. Similarly given two contexts, v € V we say that
is P-reachablefrom u whenever there is a contextvhich
is P-valid such thatv = u - a(c). The P-depthof v is
then the distance relative B-reachability betweemn and
the empty context.

We now define an order on sets/eMTypes. For each
k-MType 7, its X-numberis the number of X, k)-PTypes
compatible withr. For each seP of k-MTypes then-index
of P is the number of-MTypes of P of X-numbern. The
index of P is then the sequence of itsindexes ordered by
decreasing. We write P, < P, if the index of P; is strictly

smaller than the index df, (notice that the notion of index
depends orX).

In the rest of this section we prove Proposition 3.1 by
induction on the three following parameters, given below in
their order of importance:

o |X]|
¢ the index ofP
e the P-depth ofv

We consider three main cases: In the first case we suppose
that all shallow multicontexts that are not in have arity

0 or 1. In this case we show that we can treat our forests
as words and Proposition 3.1 follows from known results
over words. The reason why we distinguish this case is that
when we have at least one shallow multicontext of arity at
least 2 outside oP then P-reachability for forests contains

a uniqgue maximal class as the following claim shows:

Claim 3.2 If there is a shallow multicontext of arity at least
2 outside ofP then there is a unique maximal class regard-
ing P-reachability.

Proof. Take p outside of P and of arityn > 2. Given
h,h' € H, considert andt’ be two P-valid trees such that
a(t) = handa(t’) = h’. Consider the ordered s&t of
n P-valid forests containing copies ofindt’, with at least
one copy of and one copy of . Now «(pT') is P-reachable
from bothh andh’. O

Therefore as soon as we are not in the first case we
denote byHp the uniqgue maximal class relative tB-
reachability as guaranteed by Claim 3.2. Our second case
assumes that there exist®avalid forest whose type is nei-
therin X nor in Hp. In this case we can conclude by induc-
tion by either adding types i or a forbidden pattern i,
hence increasing its index. In the remaining cd$e, X is
reduced toH p on P-valid forests. We then show that we
can increase the index d@f, or increase thé’-depth ofv
or make use of closure under saturation.db show that
must be constant and hent§ , is trivially definable.
3.1 Case 1: All k-MTypes outside of P
have arity 0 or 1

We show that in this case we can treat our forests as
words and use the known results on words. Arwvalid
forestt that is not a collection of trees is of the form:

C1---CkS

where thecy, - - - , ¢ are P-valid shallow multicontexts of
arity 1 ands a P-valid shallow multicontext of arity). For
eachu € V andg € H, consider the languages:
Myg={t | t=c1--cgsis P-valid,
a(cy...ck) = u, anda(s) = g}



Notice thatLPh is the union of those Ianguages where
vug = h. We show that for any, andg, M, , is defin-
able in FGQ(<p, <y) modulo X. This will conclude this
case.

Let {r1,...,7»} be the set ok-MTypes not inP of ar-
ity 1. As H is in DA, all contexts of type-; have the same
image inV by a. Let {v,...,u,} be those types. Let
' ={ds,...,d,} be aword alphabet and define a morphism
BT — VbyB(d) = vi.

Since V is also in DA, for eachv € V there is a
FO,(<p, <v) formula ¢, such that the words df* satis-
fying ¢, are the words of type unders [14, 10]. From
each such formulg, we construct an F&<y, <y) for-
mula ¥, by replacing each symbal; with a formula that
tests if thek-MType at the current position is (recall that
this is expressible in F&<y, <y)). Since we can also eas-
ily express in FQ(<y, <y) thata(s) = g, by putting all
this together we get thalt/,, , is definable in FQ(<y, <v)
modulo X .

Proof. This lemma is proved using membershipifand
V in DA. We show that a subforest has a typé&iiiff it does
not contain certairk-MTypes. Since we can detect those
forbiddenk-MTypes using a formula of F<y,, <y), the
result will follow. The proof relies on the following claim:

Claim 3.4 Take a shallow multiconteytof arity n and take
two sequence® andT” of n P-valid forests of type irG.
We have:

a(plT]) € G & a(p[T']) € G

Proof. We use Equation (3) to prove this claim. We
write T = {t1, ..., t, } andT’ = {¢}, ..., ¢, }. Fori € [1,n]
we write c; the context obtained from[1"”] by replacing;
by a hole and’; by ¢; for j > i. Notice that by hypothesis
onp, T andT’, ¢; is P-valid. We writeu; = a(c;), and
show that:

uza(tl) el & ’U,ZOé(t;) eG (4)

This proves Proposition 3.1 for this case. In the rest of | ety = o(¢,;) andg’ = o(t}) and suppose thatg € G, we

this section we assume the existence bfidType of arity 2

outside ofP and therefore, by Claim 3.2, the existence of a

unique maximalP-reachable clas& p.

3.2 Case 2: There exists a P-valid forest
whose type is neither in X nor in Hp.

Let ¢ be such aP-valid tree. FixG as a class of mutu-
ally P-reachable types such that the typet @$ reachable
from any type ofG, G € X, andG is P-minimal with the
previous two properties. In other wordsis just aboveX
according taP-reachability, and is not itfif » by hypothesis.

Our agenda for this case is as follows. First, we show ¢/

that being a forest whose type is @ can be detected in

FOs(<p, <v) as it only depends on the presence or absence

of certaink-MTypes. Note that our hypothesis then guaran-
tees that there exists at least da&Type whose presence
forces that the corresponding forest has a type outSide
Then, intuitively, we can adds in X and use our in-
duction hypothesis in order to get an H&j,, <y) formula

describing the part of the tree which is above all subtrees ofu; . ;a(t/

type inG. We can also add t& the k-MTypes that are for-
bidden for having a type G’ and use again our induction
hypothesis in order to get an EQ<y,, <y) formula giving
the precise type 7 of a forest inG. We then conclude
using the antichain composition principle, see Figure 1.

We first show that membership @& can be detected in
FO2(<h7 <V>'

Lemma 3.3 There is a formulap(z) € FO;(<p, <y) such
that for any P-valid and X -trimmed treet the set of nodes
x such that the subtree afor the subforest at has type in
G is exactly the set of nodes at whigtholds.

show thatu;¢’ € G. By symmetry this will prove (4). By
definition we always have, g’ P-reachable frong’. There-
fore it remains to show thaj’ is P-reachable fromu;g’.
Fromu;g € G we get thaty’ is P-reachable fromu;g.
As g andg’ are both inG they are mutuallyP-reachable.
Therefore we have tw@-valid contextsc and¢’ such that

g = alc)u;g andg = a(c)g’. A little bit of algebra and
Equation (3) yields:
g = a(c)uia(d)g
g9 = (a(c)uia(c)*g'
9" = (a(c)uia(d)) ui(alc)usa(c’))“g"  using Equation (3)
= (a(Juia(c)) uig’
= (alecic))“uig’

ascc;c is P-valid, ¢’ is P-reachable fromu;¢’ and (4) is
proved.

For concluding the proof of the claim, notice that by con-
structiona(p[T]) = wia(t;). From Equation (4) we ob-
tain w;a(t;) € G iff w;a(t;) € G. Notice thatu,;a(t])
iv1).- Now, again from Equation (4), we have
uipra(tipr) € G iff uipa(t; ;) € G. Altogether this
givesu;a(t;) € G iff u;p1a(tiy1) € G. Finally by con-
struction we also have, «(t),) = a(p[T’]). By putting all
this together we obtain(p[T]) € G iff a(p[T’]) € G as
desired. O

A shallow multicontexip of arity n is said to bef{-good
if for some sequencé&’ of n P-valid forests of type in
we havea(p[T]) € G. From the previous claim we know
that this definition does not depend on the choic& ofA
shallow multicontexp that is notH-good is said to bé{-
bad. It turns out that this distinction between good and bad
shallow multicontexts characterizes membershi@in



Claim 3.5 Let ¢t be a P-valid X-trimmed forest. Then
we have o(t) € G iff ¢t contains only H-good
shallow multicontexts.

Proof.  Suppose that(¢t) ¢ G, we show thatt con-
tains anH-bad shallow multicontext. Let be a subfor-
est of ¢t such thata(s) ¢ G ands = p[T] wherep is a
shallow multicontext and” a sequence of forests of type in
G (possibly empty ifp is of arity 0). The existence of such
a subforest is ensured by the fact that(t) ¢ G, thatG is
P-minimal and that is X-trimmed. By Claim 3.4 is an
H-bad shallow multicontext and it is containedtinO

It follows from this claim that in order to check whether
a subforestis of type ity, it is sufficient to check whether it
contains anf/-bad shallow multicontexts or not. It remains
to show that this can be expressed infF&,, <y). For this
we show that the set dif-good shallow multicontexts is a
union of k-MTypes.

Claim 3.6 Letp andp’ be two shallow multicontexts of the
samek-MType. Then we hayeis H-good iffp’ is H-good.

Proof. Suppose thap is H-good and of arityn. We
show thatp’ is H-good. Letn’ be the arity ofp’, by
Claim 3.4 itis sufficient to prove that there exists a seqeenc
of n/ forestsT” of type inG such thatu(p'[T']) € G. Let
t be a forest such that(t) € G andT be the sequence
of n copies oft andT” the sequence of’ copies oft. As
p =¢ P/, becausd: > k", we geta(p'[T']) = a(p[T]).
Sincep is H-good,a(p[T]) € G, thereforen(p'[T"]) € G.

O
This last claim concluded the proof of Lemma 3.3.
We now aim at applying Lemma 2.1, the antichain for-

mula being essentially the one given by Lemma 3.3. The

next two lemmas show that the appropriate languages ar
definable in FQ(<y, <v).

Lemma 3.7 Lih is definable ifFO;(<p, <y) moduloX U
G.

Proof. By induction on|X| in Proposition 3.1 we get that
LY, is definable modulaX U G. But as the language of
P-valid forests is definable modul® it is also definable
modulo X U G. By combining the two we get theﬂ{ih is
definable in FQ(<y, <y) moduloX UG. O

Lemma 3.8 For anyg € G, Lﬁg is definable inFO, (<,
, <y) moduloX.

Proof. Let P’ be the set ofi-bad k-MTypes described
in the proof of Lemma 3.3. Because is not Hp, there
exists at least & -badk-MType and hencé”’ is not empty.
We also know from the proof of Lemma 3.3 that forests
that have a type itz do not contain any:-MTypes inP’.

Therefore for any € G, L2, = L{”"). Notice that

(X U G)-trimmed

\//

No k-MTypes inP U P’

Figure 1. lllustration of the Antichain Compo-
sition Lemma for Case 2. The marked nodes
are the topmost nodes in G.

the index of P U P’ is strictly higher than the index aP.
Hence, by induction on the index @t in Proposition 3.1,
LYY s definable in FQ(<p, <y). O

We are now ready to give the final argument which is de-
picted in Figure 1. Letp be the formula which holds at a
nodez of a treet iff z isin L and there is no node between
the root oft andx in Lg. From Lemma 3.3y is defin-
able in FQ(<y, <v) and by definition it is an antichain for-
mula. By Lemma 3.7, there exists a langudgealefinable
in FOz(<p, <v) that agrees wittLih on (X U G)-trimmed
forests. Assumé& = {gy,---,g;}. Foranyi <1, leta;
be a leaf node such tha{a;) = g;. By Lemma 3.8 for any
1 < [, there exists a languade, definable in FQ(<p, <y)
that agrees with.’ , over X-trimmed forests. Hence from
the Antichain Composition Lemma, Lemma 2.1, we have
éhatK/ = {t | t[(Ll’QD) — a1, 7(Lk7§0) - ak] € K}
is also definable in F&<y, <y). By definition of K and
the L;, K’ agrees with..”', on X-trimmed and hencé.’,
is definable in FQ(<y, <y) moduloX. This concludes the
proof of Proposition 3.1 for this case.

3.3 Case 3: H\ X is reduced to Hp on P-
valid forests

An elementy € V P-preservew if v is P-reachable
from vu. A contextc P-preserves if a(c) preserves.

We then distinguish two subcases. In the first subcase
we assume that there iskaMType 7 not in P and a com-
patible (X, k)-PTyped such that no matter what forests we
place in the shallow multicontexts ef leaving a hole at a
position ind, the resulting context does nét-preserveu.

In this subcase, we conclude using the composition prin-
ciple lemma, after increasing the index Bffor showing
definability of one piece and increasing tiedepth ofv

for showing definability of the other pieces.



In the remaining subcase, we will use closure under sat-
uration to conclude that’, is trivial.

Formally, we say that &-MType 7 is P-bad for v if
7 ¢ P and there exist a compatibleX, k)-PTyped such
that for any shallow multicontext € = and any positiorn:
of pin ¢, all the context®[T, =] do notP-preservey.

We distinguish two subcases.

Subcase AThere exists &-MType m which is P-bad forv.
We fix ar ¢ P of maximal X-number that is?-bad for

a(X,k)-PTyped. Letp € 7 andx a position inp of typed.
The following lemma is immediate from the definitions.

Lemma 3.9 There is a formulap(y) € FOy(<p, <y) that
holds on anyP-valid X -trimmed tree at exactly the nodes
y of (X, k)-PTyped and such that the shallow multicontext
oftatyisinr.

Given two elementé andh’ of H, we say thah is vT-
equivalent tdv’ if for all u P-reachable from» such thav is
not P-reachable from; (hence theP-depth ofu is strictly
higher that the”-depth ofv) we haveuh = uh/'.

Lemma 3.10 Each v*-equivalence class is definable in
FOu(<h, <v) moduloX.

Proof. This is immediate by induction on the-depth ofv
in Proposition 3.1.0

Intuitively, we want to approximate the subtree below a
v-bad position by its-equivalence class. When doing this
we may reintroduce shallow multicontexts that were forbid-
den byP. But fortunately the index of will increase when
doing so.

Letp € 7. Letxy,---,x; be all the positions o of
(X, k)-PTyped. Letb(O) be the label of all the;; in p. Let
PT be the set of all the shallow multicontexts constructed
from p by replacing at all the positions;, b(O) by b(a;),
for some arbitrary choice of;, ¢ X. Let A be the set of
k-MTypest’ of all the shallow multicontexts i#®*. Let P’
be(PU{r})\ A.

Lemma 3.11 The sethi'h is definable InFOx(<y, <v)
moduloX.

Proof. We show that?’ > P, the result follows by induc-
tion on the index ofP in Proposition 3.1.

More precisely, we show that any € A is of X-
number strictly smaller than th€-number ofr. This gives
the desired result.

By definition of A there existp € T andp’ € 7 such
thatp’ can be obtained from by replacing symbols some
b(0O) with subtrees of the form(a) with a(a) ¢ X. Con-
sider a positionz’ of p’ of label ¥/(0). By construction
the corresponding position of p has the same label. By
the definition of the logic used for definifd, k)-PTypes,

No k-MTypes inP’ > P

\//
\L~

vt -equivalence classes definable inf@Q;,, <v) by Lemma 3.10

Figure 2. Illustration of the Antichain Com-
position Lemma for Subcase 1. The marked
nodes are the topmost nodes of type 7.

2 and 2’ must have the samgX, k)-PType. Hence any
(X, k)-PType compatible with’ is also compatible with.
Moreover, by construction o\, ¢ is no longer compatible
with /. Has7 had a maximaK -number,P’ > P. O

Based on the above lemmas, we conclude this case of
Proposition 3.1 as follows. Consider the property that
holds at a nodey of a treet if the k-MType of the
shallow multicontext ay is in 7 and its (X, k)-PType in
0 and there is no node between the root ahdy satisfying
this property. By Lemma 3.9 this property is expressible by
a formulagp(y) of FOz(<y, <y) and it is antichain by defi-
nition. We also know that each such positiphas the same
label, sayb.

Let v1,--- ,v, be all the equivalence classes of the
equivalence relation. For each such clagsconsider the
set of trees{b - ¢ | ¢t € ~;}. Thanks to Lemma 3.10, for
each such set there exidis definable in FQ(<y, <y) that
agrees with it onX-trimmed trees. Forany=1,--- ,k,
let h; be an arbitrarily chosen forest type in the classaand
let a; be a leaf label whose type is.

By Lemma 3.11, there exisfs definable in FQ(<y,, <y
) that agrees Witlifi'h on X-trimmed trees. Hence we can
apply the Antichain Composition Lemma (see Figure 2) and
have that{t | t[(L1,¢) — a1, , (L, ) — ax] € K}is
definable in FQ(<y, <y).

We conclude by showing that]’, = {t | t[(L1,¢) —
ai,---,(Lk,p) — ax] € K} over X-trimmed trees. It
follows that LT, is definable moduloX. This is a simple

v

consequence of the following two lemmas.

Lemma 3.12 For any P-valid X-trimmed tree ¢,
t[(L1,¢) — a1, -+, (Lg, ) — ai] is P'-valid.
Proof. This follows from the construction af’ and the

definition ofp. O



Lemma 3.13 For any X-trimmed tree ¢,
Ua(t[(Lla (p) — a1, (Lk’a 90) - (Ik])

va(t)

Proof. The proof goes by induction on the number
of occurrences ofr in ¢ and the number of nodeg of
(X, k)-PTyped in each occurrence of 7. If there is no
occurrence ofr, this is immediate as the substitution does
nothing.

Consider a nodg of a shallow multicontexp such that
p € T andy is in § and no node abovg satisfies that prop-
erty. Lets be the subforest below in ¢t andi such that
a(s) € ;. Letc be the context formed fromby placing
a hole aty. Let d the context formed frona by removing
all the strict ancestors af. By choice ofy, ad does not
P-preservey. We writet’ the tree constructed frotrby re-
placing the subforest undgrwith the leafa;. By construc-
tiont'[(L1, ) — a1, -+, (Lg, p) — agisca;[(L1,p) —
ay,--+,(Lk,) — ag]. By induction hypothesis we have
thatva(t') = va(t'[(L1,¢) — a1, ,(Lk,») — ag]).
Therefore it remains to show thatv(t') = va(cs). We
first claim thatv is not P-reachable fromva(ed). This
is a consequence of Equation (3), suppose th& P-
reachable fromva(cd), then there exists &-valid « such
thatv = wva(ed)u. From there we get the following se-
guence of equalities:

using (3)

This implies thatx(d) P-preserves, which we know to be
false. Let theru = va(ed). From the above is not P-
reachable from but, ast is P-valid, u is P-reachable from
v. Henceua(s) = ua(a;) by definition ofvT-equivalence.
This implies the desired resultd

Subcase 2There is ndk-MType 7 which is P-bad forv.

Consider aP-valid shallow multicontextp of arity at
least 2, and two positions, y of p and a sequenc@& of
P-valid forests. Lefl" be an arbitrary sequence Bfvalid
forests with types inHp. Let p[T, z,y] be the multicon-
text of arity 2 constructed from by placing the two holes
in z andy and placing the forests @f for the other holes.
Let p™ [T, x] be the context constructed fropill’, z, y] by
placingA“h, at the hole denoted hy. Letp™ [T, y] be the
context constructed from[T, z, y] by placingA“h, at the
hole denoted by:.

Then we have:

a(A)hy = a(A)a(pT [T, z])a(A)* hy using (1)
= a(A)“a(p" [T, y])a(A) hy
= a(A)*hy using (1)

And we are done with the last case.

4 Other logics

Using the same proof structure we can obtain the
decidability of several other logics that differ with
EF+F ' (Fy, F, ') only in the horizontal modalities.

We illustrate this with the predicates SS, X, and )gl
but we believe that other modalities could be considered, as
suming the induced logic over words has a decidable char-
acterization.

The predicate Sp holds atz if ¢ holds at some sibling
of z (it is a shorthand for fp v Fl;1<p), and the predicate
Sy as a shorthand fap v S¢. The predicates Kand )gl
are the usual next sibling and previous sibling modalities.

In the sequel, O is either {S}, {S;} or
{Xn,Fn. X', F; '} and we denote by EF+E(0)
the corresponding logics over forests. When considering
only their horizontal behavior, these logics correspongrov
words to a fragment of LTL denoted by LTO).

We first recall the known characterizations over words,
the first two being folklore while the last one is taken

Using closure under saturation, we show that in this case,from [14]. A regular languagé is definable in LTI(.S . ) iff

v is P-preserved by a context that is constant okevalid
trees. This implies that}’, contains naP-valid trees or all
of them and is therefore definable in F&p, <v).

By hypothesis, for eachh ¢ P and each compatible
(X, k)-PTyped, there exists a shallow multicontexte
and a positior: € ¢ of p such that there exists a sequefite
of P-valid X -trimmed forests such that the conteXt’, x|,

P-preserves. For each paifr,d), we fix such a context

its syntactic monoid satisfiedh = 2h andf +g =g+ f.
It is definable in LTLS) iff its syntactic monoid satis-
fies2h = handf +¢g = g+ f. It is definable in
LTL (Xn, Fn, X;, ', Fy, 1) iff its syntactic monoid is in a vari-
ety known aDA*D, a decidable property as shown in [1].
The characterizations of EF¥E(S), EF+F (S, ) and
EF+F ! (Xp, Fn, X, ', F, ) require thatV” is in DA as be-
fore, thatH satisfy the known characterization of the frag-

p[T,x]. Let A be the context defined as the concatenation ment of LTL induced by the horizontal modalities, together

of all those contexts. By constructiod\” is P-valid and
P-preserves. By constructiomA* is also saturated.

Using closure under saturation we show thét is con-
stant onP-valid trees. Leth; and hy be two elements of
Hp. We want to show thak(A)“h; = a(A)¥hs.

with a notion of saturation modified in order to use a notion
k-MType and(X, k)-PType appropriate to the new horizon-
tal expressive power.

For instance in the case of EF+HS) ak-MType is now
completely specified by the presence or absence of certain



trees in the shallow multicontexts up to threshold 2. In par- It would be interesting to incorporate the vertical suc-
ticular it does not depend ok Similarly, in the case of cessor and obtain a decidable characterization for the
EF+F ' (Xn, Fn, X, ', Fy '), k-MTypes correspond to de- navigational core of XPath or, equivalently FQp, <y
finability in LTL (Xy, Fu, lel, F;l). ,+nl, +v1), over trees. But this seems to require new ideas.
For a given set of horizontal ax(8, we then say thakt It would also be interesting to obtain an equivalent de-
is closed under saturation relativedif it is closed under  cidable characterization of FKO<y,, <y) without using the
saturation as defined in Section 2 using a specification ofcumbersome notion of saturation. For instance it is notclea

k-MTypes and of X, k)-PTypes based on LTIO). whether the notion of confusion introduced in [6] can be

used as a replacement. We leave this as an open problem.
Theorem 4.1 LetO be either S, $ or {Xp, Fy, X;, ', Fy '} Our proof technique requires that the logic can at least
A regular languagd. is definable irEF+F 1 (©) iff express the fact that two nodes are siblings. In particular i

does not apply to F&<y). We leave as an open problem

1. H satisfiessh = 2handf +g = g+ f,inthe case of 4 fing a decidable characterization for Q).
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A Necessity of saturation: Game argument

The goal of this section is to prove Lemma 2.3, i.e. that
saturation is a necessary condition.

AssumeL is definable in EF+F'(F,, ') and is rec-
ognized by the tree algeb(d/, V') via some morphisna.

Let k& be the quantifier rank of a formula recognizihgwe
show thatl is closed undek-saturation.

The proof is an Ehrenfeucht Fs#e argument and
we adopt the EF+F'(F,, F,') point of view instead
of FOy(<p, <y) as the corresponding game is slightly
simpler. The definition of the game corresponding to
EF+F (R, F;l) is standard. There are two players, Du-
plicator and Spoiler, the board consists in two forests and

The following claim will be useful later. It follows by
a simple adaptation of the winning strategy of thenove
game over the stringk’ and1? with d, d’ > n.

Claim A.1 For all n and alld,d’ > n, Duplicator has a
winning strategy in thee-move game oth; and A .

Let P,, be the context formed from by replacing all
subforests of type,; by U; ,,A}'t andT,, be the sequence
of forests constructed froffi by replacing each forests of

Finally let:

T:= A" Pp|Tom,x) A t

5
T' = AT AT ¢ ©)

both players agree on the number of moves in advance. At

The following claim then conclude the proof of

any time there is one pebble placed on a node of each of
the two forests and the corresponding nodes have the samk&Mma 2.3.

label. At the beginning of the game the two pebbles are ¢|5im A2 Duplicator has a winning strategy for the-
placed on the root of the leftmost tree of each forests. At ,5ve game betwedhand7”.

each step Spoiler moves one of the pebble, either to some

ancestor of its current position, or to some descendant ortop o The winning strategy

some left or right sibling. Duplicator must respond by mov-
ing the other pebble in the same direction to a node of the
same label. If Duplicator cannot move then Spoiler wins.

Given P, A, p, z, t and T as in the definition ofk-
saturation, leit = a(A), h = a(t) andv = a(p[T, z]).

We exhibit two forestd” andT” such thain(T) = u“h
anda(T’) = u®vu®h and such that the Duplicator has a
winning strategy for thé&-move game above.

A classical argument then shows that this implies that no
formula of EF+F ! (Fy, Fgl) of quantifier depthk can dis-
tinguish the two forests. This implies thath = u“vu“h
as desired.

Our agenda is as follows. In Section A.1 we define the
two trees on which we will play. Finally in Section A.2
we give the winning strategy for Duplicator for tikemove
game on the two trees.

A.1 Definition of the trees.

Let Hp = {hq, -, h} be the maximaP-equivalence
class. Leth = a(t) € H, andh’ = u*. Because mutudp-
reachability has only one equivalence class, for éabkre
exists aP-valid contextU; such that; = «(U;)h’. Recall
that by definition ofk-saturation, for each simple multicon-
textp occurring inU; there exists @’ occurring inA such
that(p, ) 2 (p',2') wherez andz’ mark the position in
p andp’ of the skeletons of the corresponding context.

We now construct by induction gincontextsA ; andU; ;
for all 7, such thatv(A ;) = vanda(U; ;) = u;.

SetU; o := U; andAq := A. Letm := 2*. Forj >
0 U;; and A; are formed from thé/; ;_; and A;_; by
replacing each maximal subforest of tyipeby U; ;-1 A"t

Proof sketch of Claim A.2 We give a winning strategy
for Duplicator in this game. In order to be able to formulate
this strategy we need further definitions.

Given two nodes: andy and a numben we denote by
x = y the fact that Duplicator has a winning strategy in
the n-move game played on the sequence of siblings of
andy, starting from positions, y.

Given a noder, thesubforest of: is the forest formed by
all the subtrees of all the siblings of

The nesting levebf a noder of T or 7" is the minimal
number! suchz belongs to a contexh; or U; ;.

The skeletonof T' (or of T") is the longest path of”
containing all the nodes of nesting level. i.e. the path
that goes from the root d&f to the port of each of tha,,,.

The upward levelof a nodex € T (or x € T') is the
number of occurrences @f,,, abovez in the skeleton.

Notice that given a node of nesting level, eitherz has
a child of nesting level or 2 has exactly one sibling with
such a child. This sibling is denoted as thgibling of x.

Thedownward levebf a nodex € T (orx € T") is the
number of copies of\; that are below thé-sibling of z,
wherel is the level ofx.

Given a noder of nesting level, for all I’ > [, its key
ancestor at level is the first (starting fronx) ancestoy of
z that has nesting levé/.

Given an integen we say that: has an-ancestorif it
has a key ancestor of downward level smaller thanif
this is the case the-ancestor ofr is the node of maximal
nesting level satisfying this property.

We now state a property(n) that depends on an integer
n, two nodesr € T andy € T’ and possibly two nodes



2 € T andy € T that are ancestors of respectivaelyand
Y.
We then show that wheR(n) holds on a game starting
atz,y, then Duplicator can play one move while enforcing
P(n —1). As itis easy to see th& (k) holds for the roots

of T'andT”, this will conclude the proof of Claim A.2.

P(n) states that: is defined iffy is defined and, when-
ever they are defined, both have nesting level greater tha
n, upward level greater thanand non-ancestor.

Moreover it requires the disjunction of the following
three cases:

1. & andy are defined. In this case Duplicator has a win-
ning strategy in the-move game played on the subfor-
est ofz and the subforest af, and starting at positions
x andy.

. & and gy are undefined and the upward level ofis
smaller tham. In this caser andy are at the same
position in the tree (recall that by constructidhand
T’ are isomorphic up tan copies ofA,,,).

. & andg are undefined, the upward level ofs greater
thann. In this caser andy have non-ancestor and are
of nesting level greater than moreoverr = y.

Assume we are in a situation whelPgn + 1) holds. We
sketch how Duplicator can play while enforcif®{n). The
strategy depends on wi(n + 1) holds.

Case 1: z, and therefore alsg, are defined.

If Spoiler moves to a node belowthen Duplicator sim-
ply use the strategy provided by item one®fn + 1). %
andy remain unchanged.

We now assume that Spoiler moves to a netiabove
x.

If the upward level ofr’ is less tham, then Duplicator
can easily answer while satisfying item two@tn). In this
caser andy now become undefined.

If the upward level oft’ is > n. By saturation ofA,,,
there is a node in A, such that’ =, 2. By hypothesis
the upward level of; is larger than the upward level gf
which is larger tham + 1. Hence we can find abowgan
occurrence of\,,, of upward level larger than. Duplicator
answer by the copy of in this occurrence ofA,,, and item
three of P(n) is satisfied. In this case andy now become
undefined.

Case 2: The upward level of is smaller tham + 1.

If Spoiler moves up or horizontally, Duplicator simply
copy Spoiler’s move and item two @%(n) is true if we end
up with an upward levek n otherwise item three trivially

hold. Assume now that Spoiler moves to some descendant

z' of .

n

If 2’ has a key ancestor of nesting levethat has no-
ancestor. Then we sgtto this key ancestor. As the nesting
level ofy must be greater tham+ 1 (by P(n + 1) the nest-
ing level ofy is equal to the nesting level af), the subtree
aty contains a copy of all the subforests occurring at nest-
ing leveln. Hence we can find a descendgnf y whose
subforest is isomorphic to the subforestiof Duplicator
then pick the copy of’ in the subforest of; and item one
of P(n) is satisfied.

If 2/ has an-ancestor of nesting level greater than
Then we set: to thisn-ancestor and let be the subforest
of Z. As the nesting level of must be greater than+1 (by
P(n + 1) the nesting level of is equql to the nesting level
of z), there is below; an occurrence ah\,,. We set; to the
copy ofz in the skeleton of this occurrence Af,. Let s’ be
the subforest ofj. Notice thats ands’ only differ by their
nesting imbrication but those are bigger thanHence by
Claim A.1 Duplicator has a winning strategy when playing
n-moves ons ands’. Item one ofP(n) is satisfied.

If 2’ has nesting level greater tharand non-ancestor.
By saturation ofA,,, there is a node in A,, such that
2’ =1 2. By hypothesis the nesting level gfis larger
thann + 1. Hence we can find below an occurrence of
Aj with j > n. Duplicator answer by the copy efin this
occurrence of\; and item three oP(n) is satisfied. In this
caset andg remain undefined.

Case 3: The upward level of is greater tham + 1 andx
does not have én + 1)-ancestor.

o If Spoiler moves horizontally, Duplicator moves ac-
cording to its winning strategy given @gl+1).

o If Spoiler moves up to some nodé.

If the upward level ofr’ is less tham, then Duplicator
can easily answer while satisfying item two®¢n). In this
caser andyg remain undefined.

If the upward level oft’ is > n. By saturation ofA,,,
there is a node in A,, such that’ =;’ z. By hypothesis
the upward level of is larger tham + 1. Hence we can find
abovey an occurrence oA\, of upward level larger than.
Duplicator answer by the copy af in this occurrence of
A, and item three oP(n) is satisfied. In this caseandy
remain undefined.

o If Spoiler moves down to some nodé

If ' has a key ancestor of nesting levethat has no:-
ancestor. Then we sgtto this key ancestor. As the nesting
level of y must be greater tham+ 1 because oP(n + 1),
the subtree af contains a copy of all the subforests occur-
ring at nesting deptlv. Hence we can find a descendant
g of y whose subforest is isomorphic to the subforest of
Duplicator then pick the copy af in the subforest of and
item one ofP(n) is satisfied.

If 2/ has an-ancestor of nesting level greater than
Then we set: to thisn-ancestor and let be the subforest



of Z. As the nesting level of must be greater tham + 1
because oP(n + 1), hence below there is an occurrence
of A,,. We sety to the copy ofz in the skeleton of this
occurrence of\,,. Let s’ be the subforest af. Notice that

s ands’ only differ by their nesting imbrication but those
are bigger tham. Hence by Claim A.1 Duplicator has a
winning strategy when playing-moves ons ands’. Item
one of P(n) is satisfied.

If 2’ has nesting level greater tharand non-ancestor.
By saturation ofA,,, there is a node in A,, such that
»' =H 2. By hypothesis the nesting level gfis larger
thann + 1. Hence we can find below an occurrence of
Aj with j > n. Duplicator answer by the copy efin this
occurrence of\; and item three oP(n) is satisfied. In this
casei andy remain undefined.

This conclude the proof of Claim A.2 and the proof of
Lemma 2.3.



