
A Decidable Class of Problems for

Control under Partial Observation

Sophie Pinchinat a and Stéphane Riedweg b

aIRISA, Rennes, France, pinchina@irisa.fr

bLSV ENS-Cachan, Cachan, France, riedweg@lsv.ens-cachan.fr

Key words: Supervision, Discrete-events systems, Optimal control, Temporal
logic, Specification Language, Formal Methods.

The commonly accepted control theory for discrete event systems, due to
Ramadge and Wonham [13], followed by several other [17,4], has been more
recently extended to temporal logic specifications [8,2,14]. Control consists
in supervising a plant to guarantee some desired behavior, called control ob-
jectives; the objectives are standard properties such as non-blocking, safety,
temporal logic definable behaviors, etc. Concerning the nature of the supervi-
sion, it is natural and standard to suppose a partial observation of the plant,
as information on it moves and states is incomplete; we then talk about control
under partial observation (see [11]).
In this paper, we adapt the logical approach of [14] to specify control un-
der partial observation. This approach is based on quantification over atomic
propositions of the mu-calculus of [7], called the quantified mu-calculus. We
prove the decidability of controller synthesis when the specification is a nested
observational formula: the construction of controllers relies on the general-
izations of the automata quotient of [2] and the automata projection of [14].
An immediate important corollary is the synthesis of maximally permissive
controllers under partial observation for mu-calculus definable control objec-
tives. To our knowledge, maximal permissiveness of controllers has never been
properly answered before: permissiveness is manageable in the regular lan-
guages framework [10], but becomes intricate when branching-time objectives
are considered. The few results of the literature are [14] which concern control
problems with full observation, and [8,2] which do not take maximal permis-
siveness into account.
The paper is organized as follows: Sec.1 introduces the quantified mu-calculus
and show its adequacy to control specification ; Sec.2 is dedicated to the con-
trol synthesis for the decidable fragment of the logic.

Preprint submitted to Elsevier Science 11 May 2005

1 Quantified Mu-Calculus for Control Specifications

We assume given a finite set of events Ev = {α, σ, σ′, . . . } and a finite set of
atomic propositions AP = {c, p, . . . }. Models of systems are operational: they
are standard state machines called here processes.

Definition 1 Processes. Given two sets Σ ⊆ Ev and Γ ⊆ AP , a process on
(Σ, Γ) is a tuple S = 〈S, s0, t, L〉, where S is the set of states, s0 ∈ S is the
initial state, t : S × Σ → S is the transition function - it is partial -, and
L : S → 2Γ is a labeling function, labeling states with propositions - it is total.
The set Σ is called the type of S. The process S is complete if t(s, σ) is defined
for all s ∈ S and σ ∈ Σ, and it is finite if S is finite. We will use S,P, E , E ′, ...
as typical elements for processes.
The (weak) synchronous product of processes S1 = 〈S1, s

0
1, t1, L1〉 of type Σ1

and S2 = 〈S2, s
0
2, t2, L2〉 of type Σ2 is the process S1⊗S2 = 〈S1×S2, (s

0
1, s

0
2), t, L〉

on (Σ1 ∪ Σ2, Γ1 ∪ Γ2), hence of type Σ1 ∪ Σ2, where t((s1, s2), σ) = (s′1, s
′
2)

whenever (σ ∈ Σ1 ∩ Σ2) and (s1
σ
→ s′1) and (s2

σ
→ s′2) ; or (σ ∈ Σ1 \ Σ2) and

(s1
σ
→ s′1) and (s′2 = s2) ; or (σ ∈ Σ2 \ Σ1) and (s′1 = s1) and (s2

σ
→ s′2).

Moreover, L(s1, s2) = L1(s1) ∪ L2(s2).

The weak synchronous product gives the formal meaning to the notion of
controller under partial observation : given a process P - for “plant” - of type
Σ, a subset O ⊆ Σ of observable events, and a property Ψ on processes - which
will be made clear further - a controller of P for Ψ under observation O is
some non-empty process C on (O, ∅) with additional properties we explain
now. The controlled plant is the process P ⊗C and it satisfies Ψ. Note that C
cannot prevent non-observable events from occurring, and neither can it take
the occurrence of a non-observable event into account. Moreover, it is standard
that disallowing transitions is subject to additional constraints : the observable
events set O splits into the controllable events set Σco and the uncontrollable
events set Σuco. Hence, realistic controllers should disallow only controllable
transitions (labeled by controllable events), the controllers are then called
admissible. In the following, an admissible controller under observation O of
P for Ψ is called a controller for (P, Σco, O, Ψ). The property Ψ is any formula
of the mu-calculus logic [7,1], which subsumes classical temporal logics as
CTL? [5] . We take the convention that given P on (Σ, Γ) with Σco ⊆ O ⊆ Σ,
and a mu-calculus formula Ψ, the Basic Control Under Partial Observation
Problem is: “Does there exist a controller for (P, Σco, O, Ψ)? If so, compute
one”.
We recall what the mu-calculus (written Lµ) is.

Definition 2 Assume given a set of variables V ar = {X,Y, . . . }, the set of
formula of Lµ is defined, for any σ ∈ Ev, p ∈ AP and X ∈ V ar, by:

Φ ::= > | p |X | ¬Φ |Φ ∨ Φ | 〈σ〉Φ |µX.Φ(X)

2

Fixed-point formulas µX.Φ(X) can be properly interpreted whenever each oc-
currence of X in Φ(X) is under the scope of an even number of negation
symbols ¬ (see [1]). Sentences are the formulas for which each occurrence of
a variable X is beneath some µX. We will use ⊥, Φ ∧ Φ′, [σ]Φ, νX.Φ(X)
respectively for ¬>, ¬(¬Φ∨¬Φ′), ¬〈σ〉¬Φ, ¬µX.¬Φ(¬X), as well as

σ
→, []Φ

and Φ⇒Φ′ respectively for 〈σ〉>,
∧

σ∈Ev[σ]Φ and ¬Φ ∨ Φ′. For Φ ∈ Lµ, AGΦ
is a notation for νX.[]X ∧ Φ: AGΦ expresses the invariance of Φ, namely
“from now on, the property Φ always holds”.
Given a process S = 〈S, s0, t, L〉 and a valuation val : V ar � 2S, the in-

terpretation J Φ K
[val]
S of an Lµ-formula Φ is a subset of S defined inductively

by: J p K
[val]
S = {s ∈ S |p ∈ L(s)}, J ¬Φ K

[val]
S = S \ J Φ K

[val]
S , J > K

[val]
S = S,

JΦ∨Φ′K
[val]
S = JΦK

[val]
S ∪JΦ′K

[val]
S , J〈σ〉ΦK

[val]
S = {s∈S|∃s′ ∈ JΦK

[val]
S , t(s, σ) = s′},

J µX.Φ(X) K
[val]
S =

⋂
{V ⊆ S |J Φ K

[val(V/X)]
S ⊆ V }, J X K

[val]
S = val(X). Since

for sentences J Φ K
[val]
S is independent of val, we simply write J Φ KS , and write

S |= Φ, read “S satisfies Φ,” whenever s0 ∈ J Φ KS .

We consider now the logic qLµ (the quantified mu-calculus) introduced in
[14] propositions. We and we extend it to specify controllers under partial
observation . To define the logic, we consider particular classes of processes
: we let LabO

p be the set of complete processes on (O, {p}) (called labelling
processes in [14]).

Definition 3 The set of formulas of the Quantified-Mu-Calculus (written qLµ)
is defined by:

ϕ ::= ∃p(O).ϕ |¬ϕ|ϕ ∨ ϕ|Φ,

where p ∈ AP , O ⊆ Ev, and Φ is a sentence of Lµ. We write ∀p(O).ϕ for
¬∃p(O).¬ϕ. The interpretation of the formulas in qLµ is relative to a process
S = 〈S, s0, t, L〉 on (Σ, Γ). It is J ϕ KS ⊆ S, defined inductively as follows:
the case where ϕ ∈ Lµ is given by Def.2; J ∃p(O).ϕ KS is the set of states
s ∈ S s.t. there exists a (complete) process E = 〈E, ε0, t′, L′〉 ∈ LabO∩Σ

p with
(s, ε0) ∈ J ϕ KS×E ; the remaining cases for ¬ϕ and ϕ ∨ ϕ′ are obvious.

The quantification-free fragment of qLµ is simply Lµ. Clearly, bisimilar 1 pro-
cesses satisfy the same qLµ formulas since processes are deterministic.

Controllers under observation O will be represented in their extended form:
processes of LabO

c , with the implicite assumption that O ⊆ Σ (the events set
of the plant). Informally, a fresh atomic proposition c is chosen which labels
original states of the controller, whereas new states, not labeled by c, are added
in order to make the result a complete process of type O. Given a controller
C, we will write EC the process obtained by this completion procedure. The
relationship between C and EC, is formalized by the notion of pruning.

1 We mean strong bisimulation, which takes events into acount.

3

Definition 4 Pruning. Given S = 〈S, s0, t, L〉 on (Σ, Γ) and c ∈ AP , the
c-pruning of S is S

�c = 〈S, s0, t′, L′〉 on (Σ, Γ \ {c}) where: (1) for all s ∈ S
and σ ∈ Σ, t′(s, σ) = t(s, σ) if c ∈ L(t(s, σ)), undefined otherwise, and (2)
L′(s) = L(s) \ {c}.

Now, for a controller C, we have EC�c = C. The relationship between the
properties of P ⊗ C and P ⊗ EC relies on the notion of adjustment.

Definition 5 Adjustment. For all Φ ∈ Lµ and c ∈ AP , the c-adjustment
of Φ is Φ

�c ∈ Lµ, inductively defined by: (Φ ∨ Φ′)
�c = Φ

�c ∨ Φ′
�c , >

�c = >,
(〈σ〉Φ)

�c = 〈σ〉(c ∧ Φ
�c), X

�c = X, (µX.Φ)
�c = µX.Φ

�c, (¬Φ)
�c = ¬Φ

�c,
and finally, p

�c = p whenever p 6= c, and p
�c =⊥ otherwise.

Proposition 6 Given a process S on (Σ, Γ), E ∈ LabO
c with c /∈ Γ, and

Φ ∈ Lµ, we have: S ⊗ (E)
�c |= Φ iff S ⊗ E |= Φ

�c.

PROOF. S⊗(E)
�c and (S ⊗ E)

�c being isomorphic, JΦKS⊗(E)
�c

= JΦK(S⊗E)
�c

;

an induction on Φ gives J Φ K(S⊗E)
�c

= J Φ
�c KS⊗E to conclude.

Proposition 7 Let Adm(c, Σco) be the formula νY.[](c ⇒ Y) ∧ (
∧

u/∈Σco
[u]c).

Assume given a process S on (Σ, Γ) and two sets Σco and O s.t. Σco ⊆ O ⊆ Σ.
For any E ∈ LabO

c we have:
S ⊗ E |= Adm(c, Σco) ∧ Ψ

�c iff E
�c is a controller for (S, Σco, O, Ψ)

PROOF. Assume E
�c is a controller for (P, Σco, O, Ψ); hence P ⊗ E

�c |=
Ψ, which entails P ⊗ E |= Ψ

�c, by Prop.6. It remains to show that P ⊗
E |= Adm(c, Σco) : assume given a proposition p ∈ AP s.t. J p KP⊗E is the set
J
∧

u/∈Σco
[u]cKP⊗E . Hence, JpKP⊗E is the the set of states (s, e) in P⊗E

�c s.t. for
any u /∈ Σco, if a u-transition is firable from s then it is not disallowed by E

�c.
Since E

�c is admissible, P ⊗ E(�c) |= AG(p) and then P ⊗ E satisfies AG(p)
�c

which is Adm(c, Σco). Reciprocally, let E ∈ LabO
c s.t. P⊗E |= Adm(c, Σco)∧Ψ

�c.
By assumption, according to Prop.6, P⊗E

�c |= Ψ and because P⊗E satisfies
Adm(c, Σco), we show that E

�c is admissible, using similar arguments as above.

We can now state the following result, as immediate consequence of Prop.7.

Theorem 8 Basic Control Problem. For any Ψ ∈ Lµ, there exists a con-
troller for (P, Σco, O, Ψ) if and only if

P |= ∃c(O).Adm(c, Σco) ∧ Ψ
�c (1)

We illustrate now the use of qLµ to specify various control requirements.
The formula of Th.8 is enriched to integrate new control rules ; we focus on

4

permissiveness issue and decentralized control. A controller C for (P, Σco, O, Ψ)
is maximally permissive if no other controller for (P, Σco, O, Ψ) can disallow
strictly fewer transitions than C. Let us write c @ c′ for c v c′ ∧ ¬(c′ v c)
where c v c′ is a notation for the invariant property ([]AG(c′))

�c. According
to [15] generalized to the weak synchronous product:

Theorem 9 Maximally permissive controllers. For any Ψ ∈ Lµ, there
exists a maximally permissive controller for (P, Σco, O, Ψ) if and only if

P |= ∃c(O).[Adm(c, Σco) ∧ Ψ
�c] ∧ ∀c′(O).c @ c′⇒¬[Adm(c′, Σco) ∧ Ψ

�c′] (2)

PROOF. By Eq.(2), there exists E ∈ LabO
c s.t. (Prop.7) E

�c is a controller
for (P, Σco, O, Ψ) and P ⊗ E ⊗ E ′ satisfies c @ c′ ⇒¬[Adm(c′, Σco) ∧ Ψ

�c′], for
any E ′ ∈ LabO

c′ . By [15], E ′
�c′ cannot be a controller for (P, Σco, O, Ψ) and

strictly more permissive than E
�c. The converse follows the same reasoning

backwards for a maximally permissive controller E
�c.

Theorem 10 Decentralized controllers. For any Ψ ∈ Lµ, there exist two
controllers: C1 of type O1 admissible for Σ1

co ⊆ O1 and C2 of type O2 admissible
for Σ2

co ⊆ O2 s.t. P ⊗ C1 ⊗ C2 |= Ψ if and only if

P |= ∃c1(O1).Adm(c1, Σ
1
co) ∧ ∃c2(O2).Adm(c2, Σ

2
co) ∧ (Ψ

�c1)�c2
(3)

2 A Decidable Class of Control Problems

According to [2], there is no hope to decide the Model Checking Problem
for the full logic qLµ since the decentralized control problem is undecidable.
Nevertheless, we focus on a decidable fragment of the logic which can be used
to require maximally permissive controllers.

Definition 11 A formula ϕ of qLµ is nested observational (n.o. for short
whenever it is written Q1c1(O1).Q2c2(O2) . . . Qncn(On).Φ where (1) the Qi’s
are quantifiers, (2) Φ is a sentence of Lµ, and (3) Oi ⊆ Oi+1 for 1 ≤ i < n.

W.l.o.g. we only consider n.o. formulas which outermost quantifier is existen-
tial. In Th.16, we prove that the Model Checking of such formulas is decidable,
with a complexity bound of nEXPTIME in the size of the problem, where
n is the number of quantifiers. Automata-theoretic approaches provide the
model theory of mu-calculus, and they offer decision algorithms for the sat-
isfiability and the model-checking problems [6,16,9,1]; we consider alternating
parity automata, or APA in short [6,1].

5

Definition 12 An APA on (Σ, Γ) (with Σ ⊆ Ev and Γ ⊆ AP) is a tuple
A = 〈Q,Q∃, Q∀, q0, δ, r〉 where Q is a finite set of states partitioned into two
subsets Q∃ and Q∀ of existential and universal states, q0 ∈ Q is the initial
state, the transition function δ which assigns to each state q and each subset
of Γ and a set of pairs in Moves = ((Σ∪{ε})×Q)∪ (Σ×{→, 6→}). Formally,
δ : Q×2Γ → 2((Σ∪{ε})×Q)∪(Σ×{→,6→}). Finally, r : Q → IN is the parity condition.

Parity games provide the semantics for APA . A parity game is a graph with
an initial vertex v0, with a partition (VI , VII) of the vertices, and with a partial
mapping r from the vertices to a given finite set of integers. A play from some
vertex v proceeds as follows: if v ∈ VI , then player I chooses a successor vertex
v′, else player II chooses a successor vertex v′, and so on ad infinitum unless
one player cannot make any move. The play is winning for player I if it is
finite and ends in a vertex of VII , or if it is infinite and the upper bound of
the set of ranks r(v) of vertices v that are encountered infinitely often is even.
A strategy for player I is a function f assigning a successor vertex to every
sequence of vertices

→
v , ending in a vertex of VI . A strategy f is memoryless

if f(
→
v) = f(

→
w) whenever the sequences

→
v and

→
w end in the same vertex.

A strategy for player I is winning if all play following the strategy from the
initial vertex are winning for player I. Winning strategies for player II are
defined similarly. The fundamental result of parity games is the memoryless
determinacy Theorem, established in [6,1] which states that for any parity
game, one of the two players has a (memoryless) winning strategy.

Definition 13 Given an APA A = 〈Q,Q∃, Q∀, q0, δ, r〉 and a process S =
〈S, s0, t, L〉, we define the parity game G(A,S); where the vertices of player I
are in (Q∃ ∪ {⊥}) × S and the vertices of player II are in (Q∀ ∪ {>}) × S;
the initial vertex v0 is (q0, s0), the other vertices and transitions are defined
inductively as follows. Vertices in {>} × S and vertices in {⊥} × S have no
successor. For any vertex (q, s), there is an edge from (q, s) to (q ′, s′) if s′ = s
and (ε, q′) ∈ δ(q, L(s)), or (σ, q′) ∈ δ(q, L(s)) and t(s, σ) = s′; and to (>, s)
if (σ,�) ∈ δ(q, L(s)) and t(s, σ) is defined, or (σ, 6→) ∈ δ(q, L(s)) and t(s, σ)
is undefined; and to (⊥, s) if (σ,→) ∈ δ(q, L(s)) and t(s, σ) is undefined, or
(σ, 6→) ∈ δ(q, L(s)) and t(s, σ) is defined. The APA A accepts the process S
(noted S |= A) if there is a winning strategy for player I in G(A,S).

For the Model-Checking of n.o. formulas, we consider two automata construc-
tions: the quotient of automata and the projection of automata, respectively
adapted from [2] and [14] for the weak synchronous product case.

Theorem 14 Quotient of APA . Given a process S on (Σ, Γ) and an APA
A on (Σ ∪ Σ′, Γ] Γ′), we can construct an APA A/S on (Σ′, Γ′) s.t. for any
complete process E on (Σ′, Γ′), S ⊗ E |= A iff E |= A/S

6

PROOF. The existential states of A/S are (Q∃ ∪{⊥})×S and its universal
states are (Q∀ ∪ {>}) × S ; its initial state is (q0, s0), its parity condition r/
verifies r/(q, s) = r(q), for all (q, s) ∈ Q × S, and its transition function δ/ is
defined by: for all Λ ⊆ Γ′ and σ ∈ Σ′, δ/((q, s), Λ) is the least set containing:

• (ε, (>, s)) in cases (i) (α,→) ∈ δ(q, L(s)]Λ) and either α ∈ Σ′\Σ, or α ∈ Σ
and t(s, α) is defined; or (ii) (α, 6→) ∈ δ(q, L(s)] Λ) and α ∈ Σ and t(s, α)
is undefined;

• (ε, (⊥, s)) in cases (i) (α, 6→) ∈ δ(q, L(s)]Λ) and either α ∈ Σ′ \Σ or α ∈ Σ
and t(s, α) is defined; or (ii) (α,→) ∈ δ(q, L(s)] Λ) and α ∈ Σ and t(s, α)
is undefined;

• (ε, (q′, s)) whenever (ε, q′) ∈ δ(q, L(s)] Λ);
• (ε, (q′, s′)) whenever (α, q′) ∈ δ(q, L(s)]Λ) and t(s, α) = s′ and α ∈ Σ \Σ′;
• (σ, q′, s) whenever (σ, q′) ∈ δ(q, L(s)] Λ) and σ ∈ Σ′ \ Σ;
• (σ, q′, s′) whenever (σ, q′) ∈ δ(q, L(s)] Λ) and σ ∈ Σ and t(s, σ) = s′.

By construction, for any complete process E on (Σ′, Γ′), the games G(A,S⊗E)
and G(A/S, E) are isomorphic: the isomorphism relates positions (q, (s, e))
and ((q, s), e), positions ((>, s), e) and (>, (s, e)), and positions ((⊥, s), e) and
(⊥, (s, e)) in G/. Hence, the existence of winning strategy holds for both games
exactly at the same time

Theorem 15 Projection of APA . Given an APA A on (Σ′, Γ′), sets Σ ⊆
Σ′ and Γ ⊆ Γ′, we can construct an APA A↓(Σ,Γ) on (Σ, Γ) s.t. for any complete
process E on (Σ, Γ), E |= A↓(Σ,Γ) if and only if there exists a complete process
E ′ on (Σ′, Γ′ \ Γ) s.t. E ⊗ E ′ |= A.

PROOF. We construct A↓(Σ,Γ) in two steps: first, according to [14], from A,
we can construct an APA B on (Σ′, Γ) s.t. for any process S on (Σ′, Γ), S |= B
if and only if there exists a complete process E ′ on (Σ′, Γ′ \ Γ) - hence of type
Σ′ - s.t. S ⊗ E ′ |= A. Secondly, we derive from B another APA B′ on (Σ, Γ)
s.t. for any complete process E on (Σ, Γ), E |= B′ if and only if loop(E) |= B,
where loop(E) is the complete process on (Σ′, Γ) obtained from E by adding
self-loop α-transitions, for each α ∈ Σ′\Σ, as explained in the next paragraph.
Taking A↓(Σ,Γ) as B′ is adequate: for any complete process E on (Σ, Γ), we have
E |= A↓(Σ,Γ) if and only if loop(E) |= B which is equivalent to the existence
of a complete process E ′ on (Σ′, Γ′ \ Γ) s.t. loop(E) ⊗ E ′ |= A. Now, because
loop(E) ⊗ E ′ and E ⊗ E ′ are the same, we conclude.
We now explain the construction of B′: for B an APA 〈Q,Q∃, Q∀, q0, δ, r〉 on
(Σ′, Γ), we define B′ on (Σ, Γ) by B′ = 〈Q∪{>,⊥}, Q∃∪{⊥}, Q∀∪{>}, q0, δ′, r〉
where for any q ∈ Q, and Λ ⊆ Γ and σ ∈ Σ, δ′(q, Λ) is the least set containing:
(ε, q′) if (ε, q′) ∈ δ(q, Λ) or (α, q′) ∈ δ(q, Λ) with α ∈ Σ′ \ Σ; and (ε,>) if
(α,→) ∈ δ(q, Λ); and (ε,⊥) if (α, 6→) ∈ δ(q, Λ) with α ∈ Σ′ \ Σ; and (σ, q′) if
(σ, q′) ∈ δ(q, Λ); and (σ,→) if (σ,→) ∈ δ(q, Λ); and (σ, 6→) if (σ, 6→) ∈ δ(q, Λ).

7

It can shown that the games G(B′,S) and G(B, loop(S)) are isomorphic for
any S on (Σ, Γ), since S and loop(S) only differ by self-loop transitions labeled
over Σ′ \ Σ.

Theorem 16 Automata for n.o. formulas. Given a finite process S and
a n.o. formula ϕ, there exists an APA A(ϕ,S) s.t. S |= ϕ if and only if
A(ϕ,S) has a model.

PROOF. Consider ϕ a n.o. formula of the form Q1c1(O1). . . . Qncn(On).Φ and
a process S on (Σ, Γ). For any APA A, ¬A is the APA obtained by comple-
mentation ([12]). First, we construct the APA AΦ on (Σ∪On, Γ]{c1, . . . cn})
equivalent to the mu-calculus sentence Φ: the construction is standard (see
[1]). According to Th.14, we construct AΦ/S on (On, {c1, . . . cn}) s.t. for any
complete process E on (On, {c1, . . . cn}), we have: E |= AΦ/S iff S ⊗ E |= AΦ.
Lastly, we construct define Ai on (Oi, {c1, . . . ci}) by AΦ/S if i = n, oth-
erwise Ai is [Ai+1] ↓(Oi,{c1,...,ci}) if Qi+1 = ∃, otherwise (Qi+1 = ∀) it is
¬[(¬Ai+1)] ↓(Oi,{c1,...,ci}). By construction, for any E1 ∈ LabO1

c1
, E1 |= A1 iff

S ⊗ E1 |= Q2c2(O2) . . . Qncn(On).Φ. Take A(ϕ,S) = A1.

Th.16 can be exploited for control synthesis: given a finite plant P and ϕ of the
form ∃c(O).ϕ′, the APA A(ϕ,P) specifies a possibly empty family of controllers
which answer (P, Σco, O, Ψ); assume the family is non-empty: according to a
classic result, still based on the memoryless determinacy Theorem, we can
compute some regular (i.e. finite) process E ∈ LabO

c model of A(ϕ′,P), hence
a controller E

�c. In turn, if ϕ′ states the existence of other controllers (as in
the decentralized case), they can be synthesized similarly by considering the
models of A(ϕ′,P⊗E). By [14], the size of A(ϕ,P) is bounded by (n−1)EXP (|P|×
|ϕ|), where n is the number of quantifiers in ϕ (|P| the cardinal of P and |ϕ|
the number of sub-formulas in ϕ). Now, its non-emptiness can be checked
in nEXPTIME(|P| × |ϕ|) and a model can be synthesized with the same
complexity (see [6], for example).

Conclusion The present work proposes a logical framework for the specifi-
cation of control problems under partial observation and the controller syn-
thesis of n.o. formulas is proved decidable with a model synthesis procedure.
The Model-Checking problem of the complementary set of the n.o. formulas
is undecidable, since both the Post Correspondence Problem (like in [2]) and
the Tiling Problem [3] can be encoded. The fragment of n.o. formulas is ex-
pressive enough to deal with maximally permissive controllers under partial
observation for any mu-calculus definable control objective. Up to our knowl-
edge, this is the first time that existence of maximally permissive controllers
under partial observation is proved, e.g. [8,2] could not consider this aspect,
hence this is a strong argument in favor of our approach.

8

References

[1] A. Arnold and D. Niwinski. Rudiments of mu-calculus. North-Holland, 2001.

[2] A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers
with partial observation. TCS, 1:7–34, 2003.

[3] R. Berger. The undecidability of the domino problem. Memoirs American

Mathematical Society, 66, 1966.

[4] C. G. Cassandras and S. Lafortune. Introduction to Discrete Event Systems.
Kluwer Academic, 1999.

[5] E. A. Emerson and J. Y. Halpern. On branching versus linear time temporal
logic. Journal of the ACM, 33(1):151–178, 1986.

[6] E.A. Emerson and C.S. Jutla. Tree automata, mu-calculus and determinacy.
In Proc. IEEE FOCS’91, pages 368–377. IEEE Computer Society Press, 1991.

[7] D. Kozen. Results on the propositional µ-calculus. TCS, 27(3):333–354, 1983.

[8] O. Kupferman, P. Madhusudan, P.S. Thiagarajan, and M.Y. Vardi. Open
systems in reactive environments: Control and synthesis. Proc. CONCUR’00,

LNCS 1877, pages 92–107, 2000.

[9] O. Kupferman, M.Y. Vardi, and P. Wolper. An automata-theoretic approach
to branching-time model checking. Journal of the ACM, 47(2):312–360, 2000.

[10] Y. Li, F. Lin, and Z.H. Lin. A generalized framework for supervisory control
of discrete event systems. International Journal of Intelligent Control and

Systems, 2(1):139–159, 1998.

[11] F. Lin and W.M. Wonham. On observability of discrete-event systems.
Information Sciences, 44(3):173–198, 1988.

[12] D.E Muller and P.E. Schupp. Simulating alternating tree automata by
nondeterministic automata: new results and new proofs of the theorems of
rabin, mcnaughton and safra. TCS, 141:69–107, 1995.

[13] P.J. Ramadge and W.M. Wonham. The control of discrete event systems.
Proceedings of the IEEE, Special issue on Dynamics of Discrete Event Systems,
77(1):81–98, 1989.

[14] S. Riedweg and P. Pinchinat. Quantified mu-calculus for control synthesis. In
MFCS’03, volume 2747 of LNCS, pages 642–651, 2003.

[15] S. Riedweg and S. Pinchinat. Maximally permissive controllers in all contexts.
In WODES’04, pages 283–288, Reims, France, 2004.

[16] R.S. Streett and E.A. Emerson. An automata theoretic decision procedure for
the propositional mu-calculus. Information and computation, 81:249–264, 1989.

[17] J.G. Thistle and W.M. Wonham. Supervision of infinite behavior of discrete-
event systems. SIAM Journal on Control and Optimization, 32:1098–1113, 1994.

9

