The ORCHIDS Intrusion Detection Tool*

Julien Olivain Jean Goubault-Larrecq

LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan
61 avenue du président-Wilson, F-94235 Cachan Cedex
olivain@lsv.ens-cachan.fr

Phone: +33-147407550 Fax: +33-147 40 24 64

Abstract. ORCHIDS is an intrusion detection tool based on techniques for fast,
on-line model-checking. Temporal formulae are taken from a temporal logic tai-
lored to the description of intrusion signatures. They are checked against merged
network and system event flows, which together form a linear Kripke structure.

Introduction: Misuse Detection as Model-Checking. ORCHIDS is a new intrusion
detection tool, capable of analyzing and correlating events over time, in real time. Its
purpose is to detect, report, and take countermeasures against intruders. The core of the
engine is originally based on the language and algorithm in the second part of the pa-
per by Muriel Roger and Jean Goubault-Larrecq [6]. Since then, the algorithm evolved:
new features (committed choices, synchronization variables), as well as extra abstract
interpretation-based optimizations, and the correction of a slight bug in op.cit., appear
in the unpublished report [1]. Additional features (cuts, the “without” operator) were
described in the unpublished deliverable [2]. Finally, contrarily to the prototype men-
tioned in [6], ORCHIDS scales up to real-world, complex intrusion detection.

The starting point of the ORCHIDS endeavor is that intrusion detection, and specif-
ically misuse detection, whereby bad behavior (so-called attacks) is specified in some
language and alerts are notified when bad behavior is detected, is essentially a model-
checking task. The Kripke model to be analyzed is an event flow (collected from various
logs, and other system or network sources), and complex attack signatures are described
in an application-specific temporal logic.

Let us give an example of a modern attack [5]. Far
from being a gedankenexperiment, this really works
in practice and has already been used to penetrate ™"
some systems. We also insist that, as systems get more
and more secure, we are faced with more and more
complex attacks, and [5] is just one representative.
The schema on the right displays what a modular ker-
nel (e.g., Linux) does when a user program (here with
pid 100) calls an unimplemented functionality.

* Partially supported by the RNTL Project DICO, the ACI jeunes chercheurs “Sécurité informa-
tique, protocoles crypto. et détection d’intrusions” and the ACI cryptologie “Psi-Robuste”.

The kernel will search for a kernel module that implements this functionality, calling
the modprobe utility to search and install the desired module. If modprobe does not
find any matching module, an error code is reported to the user program.

;

&l—"‘

I
I
I
I
I
I
I
I
I
I
|
T
I
s rights I
A S Q
I
I
I
I
I
I
I
I
I

I
I

I

I

I

| | exec ("/bin/snn)
I

I Atta

| ool .

rno=ENOSYS

While this is how this is meant to work, some versions of Linux suffer from a
race condition (above, left): while modprobe has all kernel privileges, the kernel up-
dates the owner tables to make modprobe root-owned while modprobe has already
started running. So there is a small amount of time where the malicious program has

complete control over the kernel process modprobe: between timepoints D and Q.
The malicious program takes this opportunity to attach the modprobe process through
the standard Unix debugging API function ptrace, inserting a shellcode (malicious
code) inside modprobe’s code. When modprobe resumes execution, it will execute
any code of the intruder’s choosing, with full root privileges (above, right).
Challenges in On-Line, Real-Time Model-Checking. Intrusion detection requires
specific logics to describe attack signatures, and specific model-checking algorithms.
Compared to standard misuse detection tools, a temporal logic allows one to de-
scribe behavior involving several events over time: standard misuse detection tools (e.g.,
anti-virus software or simple network intrusion detection systems) match a library of
patterns against single events, and emit an alert once single so-called dangerous events
occur. More and more attacks nowadays involving complex, correlated sequences of
events, which are usually individually benign. In the ptrace attack, no individual
event (calling an unimplemented system call, or ptrace, etc.) is dangerous per se.
The signature language of ORCHIDS extends [6, Section 4]. Among other things,
it allows one to write temporal formulas of the typical form Fy A O(Fo A O(F5...) V
F3 N O(F3...)), where < is the strict “there exists in the future” operator. In general,
more complex formulae can be written, using operators resembling Wolper’s ETL [7]
except going through a transition denotes either no time-passing at all (e-transitions),
or & (not () as in ETL). Such formulae are described internally as automata; we just
give a signature for the ptrace exploit as an illustration. (Some other attacks such as
the do_brk exploit [3] require committed choices, or other features of ORCHIDS not
described in [6]. To save space, we don’t recount them here.) A formula matching the
ptrace exploit is the following automaton, described in slightly idealized form:

Attach(X,Y, Z) —o> Exec(Y) —o> Syscall(X,Y) —o> Getregs(X,Y) (1)
¢ =

Poketext(X,Y) -0 Detach(X,Y)

where X, Y, Z are existentially quantified first-order variables meant to match the
attacker’s pid, the target’s pid (i.e., modprobe’s pid), and the attacker’s effective uid

respectively; where Attach(X,Y, Z) abbreviates a formula (not shown) matching any
single event displaying a call to ptrace by process X owned by Z, on process Y, with
the ATTACH command, Exec(Y’) matches single events where /sbin/modprobe is
execed with pid Y, and the remaining formulas match single events where process X
issues a call to ptrace on target Y, with respective commands SYSCALL, GETREGS,
POKETEXT (used to insert the shellcode), and DETACH.

Compared to other more standard uses of model-checking, the logic of ORCHIDS
is constrained to only specify eventuality properties. This is because the model-checker
needs to to work on-line, that is, by always working on some finite (and expanding over
time) prefix of an infinite sequence of events. Compared to standard model-checking
algorithms, e.g., based on Biichi automata for LTL, the model-checker is not allowed
to make multiple passes over the sequence of events (e.g., we cannot rebuild a product
automaton each time a new event is added); in general, intrusion detection tasks are
submitted to very stringent efficiency requirements, both in time and in space.

Second, the logic of ORCHIDS includes some first-order features. As witnessed by
the use of variables X, Y, Z in (1), this logic can be seen as an existential fragment of
a first-order temporal logic.

Finally, such a model-checker cannot just report the existence of matches, but must
enumerate all matches among a given representative subset, with the corresponding
values of the existential variables, build an alert for each match and possibly trigger
countermeasures. This is the raison d’étre behind the Getregs(X,Y") formula in (1);
if we only wanted a yes/no answer, this would just be redundant, and could be erased
from the automaton; here, this is used to be able to report whether the attacker issued at
least one call to ptrace(PTRACE_GETREGS) or not during the attack.

The model-checking task for the logic of ORCHIDS is NP-hard (it includes that of
[6, Section 4]), but can be done using an efficient, on-line and real-time algorithm [2,
1]. Moreover, this algorithm is optimal in the following sense: for every attack signa-
ture (formula F), if at least one attack (sequence of possibly non-contiguous events) is
started at event ey that matches F', then exactly one attack is reported amongst these,
the one with the so-called shortest run. The latter is usually the most meaningful attack
among all those that match. The notion of shortest run was refined in ORCHIDS, and
now appears as a particular case of cuts [2]; this gives more control as to which unique
attack we wish to isolate amongst those that match.

Related Work. There are many other formalisms attempting to detect complex intru-
sion detection scenarios, using means as diverse as Petri nets, parsing schemata, con-
tinuous data streams, etc. Perhaps one of the most relevant is run-time monitoring (or
cousins: F. Schneider’s security automata and variants, and security code weaving),
where the event flow is synchronized at run-time with a monitor automaton describing
paths to bad states. The ORCHIDS approach is certainly close to the latter (although
arrows in e.g., (1) are more complex than simple automaton transitions); shortest runs
and cuts, which introduce priorities between paths in the monitor, and the fact that only
one optimal path among equivalent paths is reported, is a useful refinement.

Implementation. The ORCHIDS engine is implemented in C. At the core of ORCHIDS
lies a fast virtual machine for a massively-forking virtual parallel machine, and a byte-
code compiler from formulae (such as (1)) to this virtual machine. ORCHIDS uses a

hierarchy of input modules to subscribe to, and to parse incoming events, classified by
input source and/or event format. A main event dispatcher reads from polled and real-
time I/O, reads sequences of events in syslog format, snare, sunbsm, apache
and other various formats, coming from log files or directly through dedicated network
connections, and feeds the relevant events to the core engine. ORCHIDS is able to do
both system-level and network-based intrusion detection, simultaneously.

Here are a few figures of ORCHIDS on an instance of the ptrace attack:

Time : Real time : 1267s
CPU Time : 370.810s
CPU usage : 29.27%
Memory (peak) : 2.348 MB
Signalisation network load : 1.5 GB

Resources :

Analyzer :|Loading and rule compilation : < 5 ms

Processed events : 4 058 732

To stress the detection engine, the attack was hidden in the middle of a huge amount of
normal ptrace debugging events, generated by tracing the compilation of the whole
GCC C Compiler (with the command line tar xzvf gcc-3.3.2.tar.gz ; cd
gcc-3.3.2 ; ./configure ; cd gcc ; strace -F -f make).
Conclusion. The ptrace attack above is one of the typical attacks that ORCHIDS can
detect. Experiments are going on at LSV to test ORCHIDS on actual network traffic and
system event flows.

From the point of view of security, a good news is that, contrarily to most misuse in-
trusion detection systems, ORCHIDS is able to detect intrusions that were not previously
known (contrarily to popular belief on misuse IDSs). E.g., the signature we use for the
do_Dbrk attack [3], which tests whether some process managed to gain root privilege
without calling any of the adequate system calls, detected the recent (Jan. 2005) Linux
uselib attack.

For more information, see the Web page [4].

References

1. J. Goubault-Larrecq. Un algorithme pour I’analyse de logs. Research Report LSV-02-18, Lab.
Specification and Verification, ENS de Cachan, Cachan, France, Nov. 2002. 33 pages.

2. J. Goubault-Larrecq, J.-P. Pouzol, S. Demri, L. Mé, and P. Carle. Langages de détection
d’attaques par signatures. Sous-projet 3, livrable 1 du projet RNTL DICO. Version 1, June
2002. 30 pages.

3. A. Morton and P. Starzetz. Linux kernel do_brk function boundary condition vulnerability.
http://www.securityfocus.com/bid/9138, Dec. 2003. References CAN-2003-
0961 (CVE), BugTraq Id 9138.

4. J. Olivain. ORCHIDS—real-time event analysis and temporal correlation for intrusion detec-
tion in information systems. http://www.lsv.ens-cachan.fr/orchids/,2004.

5. W. Purczynski. Linux kernel privileged process hijacking vulnerability. http://www.
securityfocus.com/bid/ 7112, Mar. 2003. BugTraqId 7112.

6. M. Roger and J. Goubault-Larrecq. Log auditing through model checking. In Proc. 14th IEEE
Computer Security Foundations Workshop (CSFW’01), Cape Breton, Nova Scotia, Canada,
June 2001, pages 220-236. IEEE Comp. Soc. Press, 2001.

7. P. Wolper. Temporal logic can be more expressive. Information and Control, 56(1/2):72-99,
1983.

A Appendix

A.1 Tool demonstration

The demonstration will emphasize the most important aspects of the intrusion detection
tool ORCHIDS. Our emphasis is to show that slightly deviant model-checking tasks can
profitably be used for actual security applications, in real time, detecting real, sophisti-
cated, and hard-to-detect attacks.

Our aim in demonstrating ORCHIDS is not as a proof-of-concept for some model-
checking algorithm. The stress is not on algorithmic novelty (although ORCHIDS im-
plements new things such as committed choices, or cuts, or the “without” operator),
rather on the usability of an actual fool based on some ideas in model-checking. This is
in particular why we submit this as a tool presentation. Because this is a tool presenta-
tion, we have chosen to stress its application domain, and the challenges it has to meet,
rather than any fancy algorithmic feature that had better be presented in a regular paper.

Of course, this does not mean that we won’t describe any of the fancy new features
of ORCHIDS if asked so, in particular compared to the proof-of-concept algorithm of
[6]: committed choices, cuts, notably. We just feel that it is not the purpose of a tool
presentation to stress these points.

In addition to the points stressed in the tool paper itself, and in particular the chal-
lenges that have to be met for an on-line, real-time model-checker in such specific
environments, we want to show:

The large range of data sources and types: ORCHIDS can extract data and events from
multiple distributed sources (kernel system calls, network firewall actions, web
server, mail server, etc.) This wide variety of events enables ORCHIDS to corre-
late many events over time and over different event sources, a particularly wel-
come asset in a modern intrusion detection system. The demonstration shows the
modularity of ORCHIDS; it currently recognizes 400 data fields from about 50 data
sources.

On-line analysis: ORCHIDS continuously receives events from sources, as soon as
possible after their creation date (the delay depends of the communication method
for reporting events, either local or remotely, through udp). The analysis has to be
done in one pass, incrementally, over the event flow. The event flow, as seen by the
analyzer, will be shown during the demonstration.

Real-time detection and coutermeasure: ORCHIDS collects data, computes informa-
tion, and executes actions at any given instant of the detection process. ORCHIDS
is organized so as to react as quickly as possible to an attack, and must therefore
announce that an attack has been detected as soon as the last characteristic event of
the attack has been received. Additionally, ORCHIDS is able to generate interme-
diate reports, when only part of a temporal formula has been matched, i.e., when
it is only likely that a given attack is currently being perpetrated. If the temporal
formula eventually matches in whole, ORCHIDS will eventually confirm that the
attack occurred, through a complementary report.

Moreover, we shall demonstrate that ORCHIDS is able to take countermeasures
against attackers by killing compromised processes, closing suspect user accounts,
or blocking network connections by inserting new rules into a firewall.

These features will be demonstrated by running ORCHIDS itself, and by inspecting
the formulae, the currently monitored instances of these formulae (the threads), the
current event flow, through ORCHIDS’ administration interface (see Figure 1).

It is to be noted, too, that the attacks we shall demonstrate are no toy examples.
They are recent, sophisticated attacks, which have already been used in practice (by
hackers), and whose detection is particularly challenging.

The demonstration is done on a single laptop. Demonstrating a distributed intru-
sion detection system working on just one computer entails some specific difficulties or
deviations from real behavior:

— The analyzer runs on the audited computer; so it will analyze its own event flow, as
well as its sensors’. Some precautions have to be taken to avoid the analyzer to loop,
analyzing itself and therefore generating new events that have to be monitored, ...,
recursively.

— The real attacks we shall demonstrate are launched against the operating system
kernel, which can then end up in an unstable state. We have been careful to craft
our attacks so as to be perfect (from the attacker point of view), i.e., to steal the
target resource without crashing the whole system. In actual deployments (and in
our testbed at LSV), ORCHIDS would naturally be running on a remote machine
with only in connections to receive event flows, so that crashing an audited system
would not crash ORCHIDS.

— The activity of a single host is much less intense than that of an entire network.
To simulate the event flow in a realistic network environment, we shall use the
EvtGen tool (which we designed specifically to this end) to generate fake events,
too, simulating normal behaviour with randomly interspersed errors or anomalies.

Real
- Event flow
attacks

I I I
Senjsors

The figure on the right shows how differ- :
ents components interact on the demon- Generic O O O

X simulator
stration computer.

Admin Orchids
interface analyzer

The complete presentation of the tool consists in launching a few attacks, once with
ORCHIDS disabled to show that the attacks really work and allow us to gain illegiti-
mate root access; and a second time to show that the same attacks will be detected
and countered by ORCHIDS. We do not require any specific equipment other than a
videoprojector; we shall use a laptop of our own, with all necessary tools installed.

We illustrate just one attack here, corresponding to the one described in the paper.
Figure 2 shows an intruder logging in through ssh on a machine (which will just be
localhost in the demonstration), compiling a pt race attack and getting root priv-
ileges. (As the # sign at the final prompt shows.) Note that the attack is particularly
verbose, for pedagogical reasons, and explains every step it does: see the lines starting
with [+]. (An actual attack would not be as verbose.)

[| Orchids internal informations - Mozilla

*
-0 VG'#\.LJ.S —
Internal state viewer
[+]
- Menu - Rule 4: dhcp_lease_check
Main
Configuration
Statistics Preview:
Rules
Rule instances
Thread queue
Active events
Repars |
Freq/Phase alert_offer
About
[Full Size] [dot] [eps] [pdf]
Property Value
States 10
Transitions 12
Static env size 23
Dynamic env size (2
Source Jrulesfdhep_lease_check.rule:5
D Name Line Trans. Action code
0 init 6 1 Mo action.
1 discover 11 2 0000; 05 b9 pushfield [185]
0002: 08 00 pp [0
04 0L pushstatic [1]
o0 00 call [0]
| 00 end
2 alert_offer 23 0 o000 0404 pushstatic [4]
0002 08 00 call [0]
0004; 08 0f call [15]
000! 00 end
3 offer 28 3 o000; 05 b8 pushfield [184]
o00z; 08 01 pop [1]
0004 0405 pushstatic [5]
0001 09 Ob call [11
LSV 2002-2004 (c) 2 ==
. § alent reouest 45 0 OO0 04 i |_nushstatie [10]1 E
[« [+
il L

Fig. 1. The ORCHIDS administration interface

user@dell5:~fattacks - Terminal n°3 - Konsole
Session Edition affichage Configuration Aide

goubaultBdellS{reports} 1007 § ssh user@localhost -
userilocalhost.'s password:

Last login: Fri Oct 15 10:35:52 2004 from localhost. localdomain
ickstart-installed Red Hat Linux Fri Sep 26 12:16:19 CEST 2003
[userBdell5 userl]# cd attacks/

[user@dell5 attacks]s ls

apache-openssl-exploit linux-ptrace-1.c mini-kernel-backdoor
linux-brk,c linux-ptrace-2,c

[userBoellS attacks]s make limux-ptrace—1

f=ted linux-ptrace-1.c -0 linux-ptrace-1

[user@c=ll5 asttacks]s ,/linux-ptrace-1

[+] Start

[+] Attached to 2163

[+] Signal caught

[+] Shellcode placed at Oxd000ecid

[+] Mow wait for suid shell...

[+] Start

sh-2.05a# Il

@ Nuuvea&[@Termina] @T&rmina] n#2 @T&rminal n#G @Termmal n#d

Fig. 2. Running a ptrace attack without ORCHIDS

goubault@delld.lsv.ens-cachan.ir: home/goubaultforchids-localdemo-2004-10 - Terminal n*3 - Koi
Session Edition afichage Configuration Aide

zoubaultBdel15ireportsd 1009 ¢ ssh userBlocalhost
user@localhost 's password:
Last login: Fri Oct 15 10:36:43 2004 from localhost,localdomain
Kickstart-installed Red Hat Lirux Fri Sep 26 12:16:13 CEST 2003
[userBdells user]$ cd sttacks/
[userBdells attacksl$ ls
spache-openssl-exploit linux-ptrace-l.c mini-kernel-backdoor
Linux-brk.c linux-ptrace-2.c
[userBdellS attacks]$ make linux-ptrace-1
(i lirnux-ptrace-1.c -o linux-ptracs-1
[userBdellS attacks]$./linux-ptrace-1

Start.

Attached to 2314

Signal caught

Shellcode placed at Oxd000ec7d

Mow wait for suid shell,,,

Start
=h-2,05a% Connection to localhost closed,
goubaultBodel15freports] 1010 ¢ ssh userBlocalhost
uzer@localhost 's password:
Last loging Fri Oct 15 10:43:04 2004 from localhost,localdomain
[Kickstart-installed Red Hat Linux Fri Sep 26 12:16:19 CEST 2003
This account is currently not availsble.
Connection to localhost closed.
coubault@dellSireportsd 1011 ¢ |l

@ Mouveau [@Terminal @T&rminal he2 @T&rminal neg @Termmal ned
-

Fig. 3. ORCHIDS counters the ptrace attack

When ORCHIDS is enabled, the same attack produces the response shown in Fig-
ure 3. The illegal connection is closed, and the account is closed (the intruder cannot
log in again). The reason for the latter is that the attack actually succeeded, and there is
a risk that the intruder managed to install a setuid bit shell, which would allow him to
regain root privileges without even replaying an attack.
Figure 4 shows excerpts from the detailed report that ORCHIDS produces. Look at
the first event that matched the attack (top). This is the call to ptrace (see field 23,
rawsnare.syscall)using the ATTACH command (see field 50, rawsnare.ptrace_req)
by process 2987 (field 28, rawsnare . pid) with effective uid 501 (field 24, rawsnare.euid)
on process 2988 (field 51, rawsnare . ptrace_pid). The last event matching the at-
tack, namely, the DETACH event is event 6 in the report (not shown).
Compared to the idealized formula (1), the formula contains additional transitions to
track actions that follow the last characteristic event of the attack. Event 7 (not shown)
in particular is a call from the (malicious) shellcode to chown, and event 8 (shown)
is a call from the shellcode to chmod, indicating that the intruder managed to install
the setuid bit on some (now root-owned) file before it got kicked out by ORCHIDS:
the value of the protection bits (field 35, rawsnare.createmode)is decimal 3565,
i.e. octal 6755, aka. ~-rwsr—-sr—x in more readable Unix notation. This confirms our
guess (above) that the intruder produced a setuid bit shell.

A.2 Status

ORCHIDS is currently in a prototype status. It is deployed experimentally in the network
of the laboratory where it was designed and implemented (LSV), consisting of about
150 equipments (servers, workstations and routers). It supports common standards to
make deployment easier (Unix syslog, sendmail, apache logs, snmp protocol, etc.) OR-
CHIDS is designed so as to run as autonomously as possible. Naturally, it still requires
a systems or security administrator.

It has been deployed for local, real-conditions testing on the network of the lab since
September, 2004. We do not want to publicize this yet, as this kind of announcement
invariably attracts script kiddies. Since ORCHIDS is still a prototype, this would only
augment the chances that our network be hacked into.

A.3 Availability

As of today, ORCHIDS is not available in source form. The single-laptop demonstra-
tion version is however available free of charge for academic use only, in binary form
(compiled for Linux with glibc; current version is known to work on Linux 2.4.18-3,
2.4.20-20.7, and 2.4.20-24.7), upon request to the authors.

The attacks demonstrated are known to work on Linux 2.4.18-3, Red Hat release 7.3
(Valhalla). The pt race attack will not work on higher versions. In general, the demon-
strated versions will not work on up-to-date versions of Linux: we will not demonstrate
attacks that have not been countered already.

The mod_ss1 attack (a network attack allowing an intruder to gain access to a
remote computer, which we shall demonstrate as a preparation for launching a ptrace

- OY‘CL\-.LAS =

Internal state viewer

Report for rule: ptrace

Event 1 (id:0x80e7820 1 ref)
FID Field Type | Monotony Data content
53 |rawsnare ptrace_data|ptt32 | unkn (niry
32 |rawsnare pirace_addr[ptr32 |unkn (nil}
51 |rawsnare ptrace_pid |int unkn 2988
a0 |rawsnare pirace_req [wstr unkn (16) PTRACE_ATTACH
A |rawsnare retcode int unkn 1]
30 |rawsnare.procname [wsir unkn linux-ptrace-1
29 |ravsnare ppid int unkn 2986
28 |rawsnare pid int unkn 2987
27 |rawsnare. egid int unkn a01
26 |rawsnare.euid int unkn 501
23 |rawsnare.rgid int unkn 501
24 |rawsnare ruid int unkn 501
23 |rawsnare syscall wsir unkn (2B) 5%5&_pirace
22 |rawshare.class int unkn 1
21 |rawsnare time timeval | mono FriOct 15 10:50:50 2004 +235177 us
(1097830250.235177)
13 |udp.msg bstr unkn i
linus-ptrace-1. .
12 |udp.dst_port int unkn BZR2
9 |udp.sre_addr ipwd |unkn 127.0.0.1 (ocalhostlocaldomain, localhost)
8 |udptime fimeval | mona FriOct 15 10:50:50 2004 +235190 us
(10976830250.235190)
7 |udp.event int mono SEE
Event 2 (id:0260e8250 1 ref)
[FD] Field [Twne [Monotony| Data content.
[]
[]
[]
B UURLSTECAuar I LRI V201 G EI IS LIS EIAU T, st
& |udptime timeval | mong Fri Oct15 10:50:50 2004 +370506 us
(1097630250.370506)
7 |udp.event int mong 590
Event 8 (id:0x80e89a0 2 ref)
FID Field ‘Type | Monotony Data content
33 |rawsnare createmode fint unkn 3565
34 |rawsnare mode int unkn 1]
33 |rawsnare path wett |unkn AhomesusetsattacksAinug-ptrace-1
J2 |rawsnare workdir wstr |unkn i
31 |rawsnare retcode int urkn a
30 |rawsnare.procname |wsir unkn madprobe
29 |rawsnare.ppid int unkn 2986
28 |rawsnare pid int unkn bt ol
27 |rawsnare.egid int unkn 1]
26 |rawsnare euid int unkn i}
29 |rawsnare.rgid int unkn 501
24 |rawsnare ruid int unkn]
23 |rawsnare syscall watr unkn (15) 8%S_chmod
22 |rawsnare.class int unkn 1
21 |rawsnare lime timewval | mono Fri Oct 15 10:50:50 2004 +295358 us
(1097830250.298358)
13 [udp.msg hstr unkn L
modprobe fhotme/userfattacks/linux-ptrace-1

Fig. 4. Report on the ptrace attack

10

attack; not described here for space reasons) requires the Apache Web server v.1.3.23-
11 (exactly), the mod_ss1-2.8.7-4 Apache SSL extension (exact version again),
and the cryptographic package openss1-0.9.6b-18 (again, exact version).

We do not wish to distribute the attacks, whether in source or binary code, for obvi-

ous reasons.
See the Web page http://www.lsv.ens—-cachan.fr/orchids/ for more

information on ORCHIDS.

11

