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Abstract We study the complexity of satisfiability and model check-
ing problems for fragments of linear-time temporal logic with past
(pltl). We consider many fragments of pltl, obtained by restricting
the set of allowed temporal modalities, the use of negations or the
nesting of future formulas into past formulas. Our results strengthen
the widely accepted fact that "past is for free", in the sense that al-
lowing symmetric past-time modalities does not bring additional the-
oretical complexity. This result holds even for small fragments and
even when nesting future formulas into past formulas.

Introduction

Temporal logics. In 1977, Pnueli introduced temporal logics as a tool
for reasoning about concurrent programs [29]. Those logics provide
powerful methods for specifying and verifying properties of reactive
systems. We refer to [7,9,25,26] for more motivations and background.

Linear-time propositional temporal logic (called ltl) is the most
used framework in this area: An ltl formula expresses properties
about the ordering of events along a run of a system. For instance,
the fact that, at all times, a request will eventually be granted can
be expressed with:

G (request ⇒ F grant) (S1)
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Temporal logics with past. ltl is a pure-future temporal logic, i.e. a
logic where modalities only refer to the future of the current state.
It is possible, however, to define past-time modalities [15,11,23]. For
example, for expressing that a grant may only occur if some request

has been issued, we would write

G (grant ⇒ F
−1

request) (S2)

It is well-known that past-time modalities do not increase the ex-
pressiveness of ltl [15,12]. In [11], Gabbay gives a method for trans-
lating ltl+Past formulas into equivalent pure-future ltl formulas.
For instance, an equivalent pure-future formula for (S2) would be

¬
(

(¬request) U (grant ∧ ¬request)
)

(S3)

expressing that we cannot reach a grant without encountering a
request in the meantime. By concern of minimality, since they do
not add expressive power, past modalities have not been widely stud-
ied, and model-checkers such as Spin or Cadence-SMV do not handle
ltl+Past specifications. However, over the last few years, past has
been more and more studied: Several methods have been proposed for
model-checking ltl+Past [33,16,13,3], and some of them are being
implemented.

The benefits of the past. Allowing past-time modalities makes spec-
ifications easier and more natural [23]. Furthermore, there is a sense
in which past really brings more expressive power: there is a suc-
cinctness gap between ltl and ltl+Past, i.e. there exists ltl+Past
formulas that only have ltl equivalents of exponential size [21,27].
Finally, since model checking and satisfiability are not more difficult
for ltl+Past (pspace-complete in both cases [32]), one could argue
that ltl+Past should be preferred.

These arguments seem to indicate that past is for free. Can this
observation be made stronger and more systematic? In this paper, we
investigate if this line of argument still holds for different fragments of
ltl+Past, in order to characterize fragments that are more expressive
but not harder to verify.

Looking for simpler fragments. Pspace-hardness occurs in the gen-
eral case, but some fragments of ltl+Past have lower complexity
(e.g. L

+(F ,X ) [32] or L(F ,F−1 ) [10]). Identifying such “simpler”
fragments could lead to improved algorithms for special cases, and
help understand where the precise boundary lies between hard and
easy fragments. Several fragments have already been considered [32,
8], but not much is known about those with past-time modalities.
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Our contribution. We provide a systematic study of fragments of
ltl+Past obtained by three kinds of restrictions: on the set of allowed
modalities, on the use of negations, and on nesting of past and future
modalities. This includes the pure-future fragments. We sum up our
results in table 1, on page 8. They rely on a few basic techniques that
are used throughout the paper.

Several results are somewhat surprising. The first one is that our
simple techniques were sufficient to characterize the exact complexity
classes for all the problems we considered: All of them are either np-
complete or pspace-complete. While many people would think that
there is no room for model checking problems between np and pspace,
the gap is actually quite large and is populated by a few rare model
checking problems [19,20,31].

We also prove that, in many cases, restrictions on the set of al-
lowed modalities or on the use of negations decrease the theoretical
complexity of verification problems. This means that there are many
fragments for which specialized algorithms could be more efficient
than classical ones.

Concerning past-time modalities, it should be remarked that if
a given future modality is allowed, adding its symmetric past-time
modality does not increase the complexity. Moreover, allowing or dis-
allowing the nesting of future modalities in the scope of past modal-
ities does not change the complexity of the verification problems. To
sum up, past comes with no extra cost.

Last, we remark that, in some (positive) fragments, existential and
universal problems may have different complexities. This had prob-
ably not been remarked by Sistla and Clarke when they erroneously
claim (in [32]) that validity of L

+(F ,X ) is conp-complete, when it
is in fact pspace-complete.

Related work. As regards fragments of ltl+Past, Ramakrishna et
al. [30] studied lusat, the fragment of ltl+Past with only U and
S , and they provide an optimal (pspace) automata-theoretic algo-
rithm for model checking with this fragment. Other fragments of ltl

(with no past) are addressed in [8], namely fragments obtained by
bounding the temporal height and the number of atomic propositions
of formulas. Branching-time temporal logics with past have been in-
vestigated in [18,22].

Outline of the paper. In the sequel, we first formally define the struc-
tures, logics and problems under study, and sum up our results. We
prove np-completeness results in section 2, and pspace-completeness
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results in section 3. We summarize our study and conclude in sec-
tion 4.

1 pltl: Linear Temporal Logic with Past

Syntax of pltl. Let AP = {P1, P2, . . .} be a countable set of atomic
propositions. We define the syntax of pltl as follows:

pltl ∋ φ, ψ ::= ψ ∨ φ | ¬φ | Xφ | ψUφ | X−1 φ | ψ Sφ | P1 | P2 | . . .

where U reads “until”, S reads “since”, X is “next” and X
−1 is “pre-

vious”.
Some very useful abbreviations are commonly defined: ⊤ ≡ P1 ∨

¬P1, ⇒, ⇔... As regards temporal modalities, we will use the classical
F (eventually) and G (always), as well as their past counterparts
F
−1 φ ≡ ⊤Sφ and G

−1 φ ≡ ¬F
−1 ¬φ, read “eventually in the past”

and “always in the past” respectively.
Modalities S , X

−1 , F
−1 and G

−1 are called “past modalities”,
while U , X , F , G are “future modalities”.

Subformulas, temporal height and size of a formula. Given a formula
Φ ∈ pltl, the set of its subformulas, denoted by sf(Φ), is defined
inductively as follows:

sf(P ) = {P} for all P ∈ AP

sf(¬φ) = {¬φ} ∪ sf(φ) sf(φ ∨ ψ) = {φ ∨ ψ} ∪ sf(φ) ∪ sf(ψ)

sf(X φ) = {X φ} ∪ sf(φ) sf(φ U ψ) = {φ U ψ} ∪ sf(φ) ∪ sf(ψ)

sf(X−1 φ) = {X−1 φ} ∪ sf(φ) sf(φ S ψ) = {φ S ψ} ∪ sf(φ) ∪ sf(ψ)

Obviously, the number of subformulas is bounded by the size (i.e.
the number of symbols) of the formula. The closure of the formula

Φ, written sf(Φ), is the least set containing sf(Φ) and stable under
negation. It contains at most twice as many formulas as sf(Φ).

The temporal height of a formula Φ ∈ pltl, for a given set M of
modalities, is defined recursively as follows:

hM (P ) = 0

hM (¬φ) = hM (φ)

hM (φ ∨ ψ) = max(hM (φ), hM (ψ))
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and, for any modality O of arity p,

hM (O(φ1, . . . , φp)) = max(hM (φ1), . . . ,hM (φp)) +

{

1 if O ∈M

0 otherwise

The temporal height of a formula is its temporal height for the
set of all modalities. The past temporal height is the temporal height
for the set of past-time modalities. The temporal height is obviously
bounded by the size of the formula.

Semantics. Formulas of pltl are interpreted over paths. A path is a
pair (π, ξ) in which π is an infinite sequence of states π(0), π(1), ...
and ξ is a mapping from {π(0), π(1), . . . , π(n), . . .} → 2AP . This way,
the states of π are labelled with atomic propositions.

Given a path (π, ξ), a natural i and a formula φ, we inductively
define the relation1 (π, ξ), i |= φ (read “φ holds at position i along
(π, ξ)”) as follows:

π, i |= P iff P ∈ ξ(π(i)),
π, i |= φ ∧ ψ iff π, i |= φ and π, i |= ψ,
π, i |= ¬φ iff π, i 6|= φ,
π, i |= Xφ iff π, i+ 1 |= φ,
π, i |= ψUφ iff there exists some j ≥ i s.t. π, j |= φ and for all

i ≤ k < j, π, k |= ψ,
π, i |= X

−1 φ iff i > 0 and π, i− 1 |= φ,
π, i |= ψ Sφ iff there exists some j ≤ i s.t. π, j |= φ and for all

j < k ≤ i, π, k |= ψ.

Equivalence of formulas. Two formulas are (globally) equivalent over
a class Π of paths (which we denote φ ≡Π ψ) if for any path π ∈ Π

and any integer i, the equivalence π, i |= φ ⇔ π, i |= ψ holds. The
formulas are initially equivalent over Π (φ ≡Π

i ψ) if for all paths
π ∈ Π, π, 0 |= φ⇔ π, 0 |= ψ is true. We omit Π when the equivalence
has to hold along all paths in (2AP )N.

Obviously, two equivalent formulas are initially equivalent. The
converse does not hold. For instance, P1 SP2 and P2 are initially
equivalent, but they clearly are not globally equivalent.

A formula φ is said to be initially (resp. globally) valid over Π if
it is initially (resp. globally) equivalent to ⊤ over Π. It is initially
(resp. globally) satisfiable over Π if its negation is not initially (resp.

1 In the sequel, we won’t mention ξ whenever it is not ambiguous.
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globally) valid over Π. This means that there exists a path π ∈ Π

(resp. a path π ∈ Π and a position i along that path) such that
π, 0 |= φ (resp. π, i |= φ).

These definitions formalize the results we mentioned about expres-
sive power in the introduction: that pltl is as expressive as ltl [15,
12,11] means that for any pltl formula, there exists an initially equiv-
alent ltl formula. The exponential succinctness gap in [21] can be
expressed as follows: there exists a sequence of pltl formulas (φn),
s.t. |φn| ∈ O(n), and for which any sequence of initially equivalent
ltl formulas (ψn) verifies that |ψn| ∈ Ω(2n).

Verification problems. In this paper, we are concerned with the fol-
lowing problems:

– Initial satisfiability and validity, as defined above;
– Universal model checking, i.e. is initial validity over a given set Π

of paths;
– Existential model checking, i.e. initial satisfiability over a given

set Π of paths.

Note that we only study “initial” problems, since these are the
most interesting ones as regards verification. Moreover, in the general
case, initial problems and their global counterparts are interreducible:
for instance, a formula φ is globally satisfiable if, and only if, Fφ is
initially satisfiable, and conversely, φ is initially satisfiable if, and only
if, G

−1
F
−1 φ is globally satisfiable.

Kripke Structures. For model checking, the set Π is often defined
through a Kripke Structure (KS for short), that is, a 4-tuple K =
(Q,Q0, l, R) in which Q is a finite set of states, Q0 is the set of initial
states, l ∈ (2AP )Q indicates the propositions that are true in each
state of Q, and R ⊆ Q×Q is a total relation representing the set of
allowed transitions. The size of K, which we denote |K|, is |Q|+ |R|.
A KS generates a set Π of infinite paths in the obvious way.

It should be remarked right now that, in the general case, both
model checking problems are dual: indeed, there exists a path satis-
fying a formula φ if, and only if, it is not the case that every path
satisfies the negation of φ. But this equivalence only holds for frag-
ments allowing negation.

Loops. A path (π, ξ) is said to be ultimately periodic if there exist
two integers m and p, with p > 0, such that for any integer n ≥ m,
πn = πn+p. Such a path can be finitely represented by a loop, that
is a deterministic KS, or, equivalently, by a couple of finite words
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(u, v) over the alphabet 2AP , where |u| = m and |v| = p. The path
correponding to a loop L = (u, v), which we denote by πL, is uvω.
The type of a loop (u, v) is (|u|, |v|). The size of a loop of type (m, p)
is the integer m+ p. The size of an ultimately periodic path π is the
size of the smallest loop encoding that path2.

Subpath, subloop. Given a path (π, ξ), a subpath is a path (π′, ξ|π′)
where π′ is a subsequence of π. We equivalently say that π′ is a sub-
path of π, or that π contains π′. If π′ is a subpath of π, there exists
an increasing function f such that, for all i, π′i = πf(i). We will write
π′ ⊑f π when we need the function f . Otherwise, we simply write
π′ ⊑ π.

In the same way, given a loop L, a subloop is a loop L′ whose
associated path is a subpath of the path associated to L. We also
write L′ ⊑ L in that case. Note that a subloop could be bigger than
its original loop. For instance, from the loop (ε, ab) (where ε is the
empty word), whose size is 2, we can extract the loop (aaba, aab),
whose size is 7.

Let L = (u, v) be a loop. We say that a subloop L′ = (u′, v′) of L
is acceptable, and we write L′ 4 L, whenever u′ is a subpath of u and
v′ a subpath of v. The size of an acceptable subloop is always lower
than or equal to the size of the original loop.

Fragments of pltl. We consider three types of restrictions: first of
all, restrictions about the allowed modalities. For denoting the frag-
ment of ltl where only M1, . . . ,Mp are allowed, we use the classical
notation L(M1, . . . ,Mp). For instance, L(F ) is the logic where F is
the only allowed temporal modality3. The second restriction we deal
with affects negations: we write L

+(F ,X ), for example, for the logic
where the only modalities are F and X , and where modalities can not
occur in the scope of a negation. Last, a formula is said to be stratified
if it has no future modality in the scope of past modalities [24]. Sets of
stratified formulas are denoted by Ls(. . .). We write L

+
s (F , S ) when

combining restrictions about negation and stratification.
For example, F (a ∧ G

−1 (b ∨ F c)) lies in L
+(F ,G−1 ), but it is

not stratified. It is initially equivalent to (b ∨ F c) U (a ∧ (b ∨ F c)),
which is in L

+(U ). And it is globally equivalent to F (a ∧ (F c ∨
G

−1 b ∨ b S c)), which belongs to Ls(F , S ).

2 This “smallest loop” does exist, since if two loops of type (m, p) and (m′, p′)
represent the path π, then we can build a loop of type (min(m, m′), gcd(p, p′))
encoding π.

3 In this case, we see F as a modality, and not as an abbreviation of ⊤U · .
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Our results. In the sequel, we get the following results:

Exist. MC Univ. MC Satisf. Validity

L
+(F ),L+(G ),L+(X ) np-c. conp-c. np-c. conp-c.

L
+(F ,X ) (np-c.) pspace-c. (np-c.) pspace-c.4

L
+(G ,X ) pspace-c. conp-c. pspace-c. conp-c.

L
+
s (F ,X−1 ) np-c. pspace-c. np-c. pspace-c.

L
+
s (G ,X−1 ) pspace-c. conp-c. np-c. conp-c.

L
+(F ,X ,F−1 ,X−1 ) np-c. pspace-c. np-c. pspace-c.

L
+(G ,X ,G−1 ,X−1 ) pspace-c. conp-c. pspace-c. conp-c.

L
+
s (G , S ,X−1 ) pspace-c. pspace-c. np-c. pspace-c.

L
+(G , S ,X−1 ) pspace-c. pspace-c. np-c. pspace-c.

L(X , S ,X−1 ) np-c. conp-c. np-c. conp-c.

L(F ,F−1 ) np-c. conp-c. np-c. [10] conp-c.

L
+
s (F , S ) pspace-c. pspace-c. pspace-c. conp-c.

L
+
s (G , S ) pspace-c. pspace-c. np-c. pspace-c.

L
+(G , S ) pspace-c. pspace-c. np-c. pspace-c.

L
+(U ) pspace-c. pspace-c. pspace-c. conp-c.

L
+(U , S ) pspace-c. pspace-c. pspace-c. conp-c.

pltl (pspace-c.) (pspace-c.) (pspace-c.) (pspace-c.)

Table 1: Complexity of pltl verification

The results in bold are proved in this paper, the ones in parenthe-
ses were proved in [32], and the other ones are corollaries, deduced
by inclusion or duality. For instance, existential model checking for
L

+
s (F ,X−1 ) is np-complete since it is a subcase of existential model

checking for L
+(F ,F−1 ,X ,X−1 ), and since it is more general than

existential model checking for L
+(F ). pspace-completeness of va-

lidity for L(F ,X ) comes by duality from pspace-completeness of
satisfiability for L

+(G ,X ). It should be remarked that X is self-
dual (since we consider infinite paths) but X

−1 is not: for example,
the argument above for validity of L(F ,X ) cannot be applied to
L

+
s (F ,X−1 ).

2 NP-complete problems

In this section, we first prove that verifying any non-trivial fragments
of pltl is at least np-hard. “Non trivial” means fragments allowing
at least one future modality. For “trivial” fragments, model checking

4 Contrary to a claim in [32] that it is co-np-complete.
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problems amount to evaluating a boolean formula, which is alog-

time-complete [4], and satisfiability and validity are the classical
satisfiability and validity problems for boolean formulas, which are
(co)np-complete.

We then provide np algorithms for several fragments of pltl,
which therefore are np-complete.

2.1 np-hardness of verifying linear temporal properties

Our first result is a small extension of a result given in [32]:

Theorem 1. For L
+(F ), L

+(G ) and L
+(X ), the existential model

checking problem is np-hard.

Proof. – We adapt Sistla and Clarke’s proof [32] of np-hardness for
model checking L(F ). To a 3-sat instance

∧

i

∨

j αi,j , where the

αi,j are literals on {x1, x2, . . . , xn}, we associate the following KS:

x1

x1

x2

x2

xn

xn

To one path in that structure corresponds one valuation of the
variables xi: Variable xi is evaluated to true if, and only if, the
path runs through state xi. Satisfiability of our 3-sat instance is
equivalent to the existence of a path verifying

∧

i

∨

j Fαi,j in the
above KS.

– in the same way, satisfiability of
∧

i

∨

j αi,j is equivalent to the ex-

istence of a path satisfying
∧

i

∨

j G¬(αi,j) in the same structure.

– for L
+(X ), our 3-sat instance

∧

i

∨

j αi,j is satisfiable if, and only

if, the above KS contains a path verifying
∧

i

∨

j X
2n(αi,j)−1αi,j ,

where n(xk) = n(xk) = k. �

By duality (since, for instance, verifying that “all paths satisfy a
formula φ ∈ L

+(F )” amounts to verifying that “there does not exist
a path satisfying ¬φ”, with ¬φ ∈ L

+(G )), we get

Theorem 2. Universal model checking for fragments L
+(G ), L

+(F )
and L

+(X ) is conp-hard.
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2.2 np-easy problems

What we saw in the previous section entails that any non-trivial verifi-
cation problem concerning linear temporal logics is np-hard. We know
from [32] that this lower bound is optimal for L(F ) and L

+(F ,X ),
that is, the satisfiability and (existential) model checking problems
for these logics are np-complete. In this section, we prove np-easiness
of satisfiability for four other fragments: L(X ,X−1 , S ), L(F ,F−1 ),
L

+(F ,F−1 ,X ,X−1 ), and L
+(G , S ). These results carry on to ex-

istential model checking, except for L
+(G , S ), which we will prove

is pspace-complete.
We systematically use the small witness method in order to do

this, consisting in

– providing a polynomial time algorithm for verifying that an ulti-
mately periodic path may be checked in polynomial time against
any pltl formula;

– showing that the fragments listed above have the “polynomial wit-
ness property”, i.e. if a formula is satisfiable, it is satisfiable along
a polynomial size ultimately periodic path.

This obviously gives an np-algorithm for satisfiability: First guess an
ultimately periodic witness, and then check it. In several cases, this
technique also provides a proof for np-easiness of the model checking
problems: Indeed, we show that, for some fragments, we can add ar-
bitrary states in the polynomial witness, which ensures that we can
find a polynomial witness in the KS under study. In these cases, the
algorithm for existential model checking is as follows: First pick the
candidate witness in the Kripke structure, and check that it satisfies
the formula.

2.2.1 Model checking a loop. We first recall the following result:

Theorem 3. Given a pure-future formula φ and a loop L, one can
check in time O(|L| · |φ|) whether πL, 0 |= φ.

For a deterministic KS, the ctl model checking algorithm [5,6]
can be applied to ltl formulas too, since path quantification will
always refer to the only possible execution.

This simple approach does not extend to the problem of checking
whether a loop satisfies a pltl formula: In a loop, future is deter-
ministic but past is not, since the first state of the periodic part has
two predecessors. The following lemma gives a way to overcome that
problem5.

5 Another algorithm, reducing to the problem of model checking a finite path
against pltl, has been proposed in [28].



Past is for Free 11

Lemma 4. Let φ be a pltl-formula. For any loop L of type (m, p),
for all k ≥ m+ hP (φ)p,

πL, k |= φ iff πL, k + p |= φ.

This lemma indicates that, after some initial fluctuations, a state
of the periodic part always satisfies the same subformulas, irrespective
of how many times the periodic part has been traversed.

Proof. The proof is by induction on the structure of the formula φ:

– for φ = P , φ = ¬φ1 and φ = φ1 ∨ φ2, the result is obvious;
– if φ = Xφ1 or φ = φ1 Uφ2, we can apply the induction hypothesis

to states occurring after the k-th one.
– if φ = X

−1 φ1, then since k − 1 ≥ m + (hP (φ1) + 1)p − 1 ≥
m + hP (φ1)p, by induction hypothesis, we get the equivalence
πL, k − 1 |= φ1 ⇔ πL, k − 1 + p |= φ1. Thus πL, k |= X

−1 φ1 ⇔
πL, k + p |= X

−1 φ1;
– if φ = φ1 Sφ2, we have hP (φ) = max(hP (φ1), hP (φ2))+1. Suppose

that πL, k |= φ. There exists some k′ ≤ k s.t. πL, k
′ |= φ2, and for

k′ < l ≤ k, πL, l |= φ1. Two cases may arise:
– if k′ < k − p, then we know that the states from πk−p to πk

satisfy φ1. By induction hypothesis, so do the states from πk to
πk+p. Thus, πL, k + p |= φ, since πL, k

′ |= φ2 and all the states
between πk′+1 and πk+p satisfy φ1;

– otherwise, k′ ≥ k − p ≥ m + hP (φ1)p, and the induction hy-
pothesis directly applies to the states between πk′ and πk.

Thus πL, k |= φ⇒ πL, k + p |= φ. The reverse implication may be
proved similarly. �

Corollary 5. Model-checking pltl over a loop can be done in poly-
nomial time.

Proof. Given a loop L of type (m, p) and a pltl-formula ψ, we use
dynamic programming in order to compute which subformulas of φ
are true in the different states of the path πL. For this purpose, we
apply the following labelling algorithm:

– First unwind the periodic part of the loop h times with h greater
than hP (φ). This gives a loop of type (m+ hp, p).

– Then label that loop with the subformulas in sf(φ) inductively,
according to the following rules:
– If φ is an atomic proposition P , label the state k with P if, and

only if, P ∈ l(k),
– For boolean combinations, as well as for X - and U -modalities,

use the classical ctl labelling algorithm,
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– For a formula φ = X
−1 φ1, whenever a state i is labelled with

φ1, then label state i+ 1 (if it exists) with φ.
– For a formula φ = φ1 Sφ2, if a state i is labelled with φ2, then

label it with φ. Else if state i− 1 has been labelled with φ and
state i has been labelled with φ1, then label state i with φ.

This algorithm runs in time O(|L|2·|φ|2). It can easily been proved,
using Lemma 4, that a state is labelled with the set of subformulas it
satisfies.

2.2.2 Looking for ultimately periodic paths. We recall the existence of
an ultimately-periodic witness for any satisfiable formula of pltl [32].

Theorem 6. A pure-future formula φ ∈ ltl is satisfiable if, and only
if, it is satisfiable in a loop. A Kripke structure K “existentially” sat-
isfies a formula φ if, and only if, it contains an ultimately-periodic
path satisfying φ. These results also hold for pltl formulas.

Proof. For L(U ,X , S ), the first statement is shown in [32]. The
second one can be shown by a classical reduction from model checking
to satisfiability (see [32, lemma 4.3]): Given a KS K = (Q,Q0, l, R)
and a formula φ, we add a new atomic propositions Pq for each q ∈ Q.
We define the following formulas (we will use them several times in
the sequel):

ψstate =
∨

q∈Q

Pq ∧
∧

q∈Q

(Pq ⇒ ¬(
∨

q′ 6=q

Pq′)
)

ψlabel =
∧

q∈Q

(

Pq ⇒ (
∧

p∈l(q)

p ∧
∧

p′ /∈l(q)

¬p)
)

ψtrans =
∧

q∈Q

(Pq ⇒
∨

q′ s.t.
(q,q′)∈R

XPq′)

The first formula ensures that exactly one “state” proposition is true at
a time, the second one means that atomic propositions labelling that
state are true, and the third one means that transitions are respected.

Now, the formula

φ̂ =
[

(

∨

q0∈Q0

Pq0
)

∧ G ψstate ∧ G ψlabel ∧ G ψtrans

]

∧ φ

is satisfiable if, and only if, K contains a path starting from q0 along
which φ is true. But if φ̂ is satisfiable, it is satisfiable along an ulti-
mately-periodic path. This path witnesses the existence of an ultima-
tely-periodic path in K along which φ is true.
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The result is extended to pltl thanks to the following Theorem:

Theorem 7 ([15,11]). For any pltl formula φ, there exists a boolean
combination of pure-future and pure-past formulas which is initially
equivalent to φ. �

2.2.3 np-easy fragments. Lemmas 8 to 12 are four technical lemmas
that directly entail the polynomial witness property for several pltl

fragments. They prove np-easiness of satisfiability or validity for these
fragments. Some of them also entail np-easiness of model checking.

Lemma 8. The truth of an L(X ,X−1 , S )-formula φ in the initial
state of a path π only depends on the first hX (φ) states of π.

This result is obvious.

Lemma 9. Let φ ∈ L(F ,F−1 ), and L be a loop s.t. πL, i |= φ for
some integer i. Then there exists an acceptable subloop L′ 4 L, whose
size is polynomial in |φ|, containing πi, and s.t. any acceptable sub-
loop L′′ s.t. L′ 4 L′′ 4f L satisfies πL′′ , f−1(i) |= φ.

This lemma means that a path satisfying an L(F ,F−1 ) formula
has polynomialy many “important” states, the other states being re-
movable.

Proof. We suppose that the loop L is of type (m, p), and that, for
some i, πL, i |= φ. We write h = hP (φ).

For each subformula of φ of type F
−1 ξ, if there exists a position

where ξ is satisfied, then we know (from Lemma 4) that there is one
lower than m+ hp. In this case, we write

iF−1 ξ = min{i | πL, i |= ξ}

The same holds for subformulas of type F ξ: if there exists a state
satisfying ξ, we write

iF ξ = max{j ∈ J0;m+ hp− 1K | πL, j |= ξ}

For each F - or F
−1 -subformula ψ, we define jψ to be either equal

to iψ if iψ ≤ m, or congruent to iψ modulo p and between m and
m+ p− 1 otherwise. We define L′ to be the acceptable subloop of L
built by keeping states jψ for all F - and F

−1 -subformulas ψ of φ. We
also add the current state πi. The acceptable subloop L′′ is defined
from L′ by possibly inserting some other states of L. We let f be the
function s.t. πL′′ 4f πL. Remark that

– L′′ has type (m′′, p′′) with m′′ ≤ m and p′′ ≤ p,
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unwind the loop

select the states you
want to keepcreate the corresponding

acceptable subloop

a b c d e f g a b c d e f g c′ d′ e′ f ′ g′ c′′ d′′ e′′ f ′′ g′′

a b c d e f g c′ d′ e′ f ′ g′ c′′ d′′ e′′ f ′′ g′′a c e f

Figure 1 Construction of L′

– f(m′′) ≤ m ≤ f(m′′ + 1),
– for all k, f(m′′ + kp′′) ≤ m+ kp ≤ f(m′′ + kp′′ + 1).

The example shown on Figure 1 explains this construction.
We now have to prove that this construction is correct. For this,

we show that

∀ψ ∈ sf(φ), ∀j ∈ N, πL′ , j |= ψ ⇔ πL, f(j) |= ψ.

We prove this by induction on the structure of ψ:

– for atomic propositions and boolean combinations, the result is
straightforward;

– if ψ = Fψ1, suppose that for some j, πL′ , j |= Fψ1. Then for
some state j′ ≥ j, we have πL′ , j′ |= ψ1. By ind. hyp. and since f
is increasing, we get a state f(j′) ≥ f(j) s.t. πL, f(j′) |= ψ1, and
πL, f(j) |= Fψ1.
Conversely, if we suppose that πL, f(j) |= Fψ1, then there exists
a state j′ ≥ f(j) s.t. πL, j

′ |= ψ1. Two cases may arise:
– either j′ ≤ m + hp − 1, then we have j′ ≤ iFψ1

. By ind. hyp.
we get that πL′ , f−1(iFψ1

) |= ψ1, and since f is increasing, we
have f−1(iFψ1

) ≥ j.
– or j′ ≥ m + hp. In that case, Lemma 4 ensures that there

exists a state k satisfying ψ1 s.t. k is between m + (h − 1)p
and m+hp− 1. Then k ≤ iFψ1

, and πL′ , f−1(iFψ1
) |= ψ1. The

remark above ensures that f−1(iFψ1
) lies between m′+(h−1)p′

and m′ +hp′. Since Lemma 4 also applies to L′, we get that for
all l ≥ 0, πL′ , f−1(iFψ1

) + lp′ |= ψ1. Thus for all m, πL′ ,m |=
Fψ1, especially for m = j.

– if ψ = F
−1 ψ1, the proof is similar. �

Lemma 10. Let φ ∈ L
+(F ,F−1 ,X ,X−1 ) be a satisfiable formula,

and L a loop s.t. πL, i |= φ for some integer i. Then there exists
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an acceptable subloop L′ of L, whose size is polynomial in |φ|, con-
taining πi, and s.t. any loop L′′ for which L′ 4 L′′ 4f L satisfies
πL′′ , f−1(i) |= φ.

Proof. The proof is similar to the proof of Lemma 9: we first unwind
the loop hP (φ) times. Then, by induction on the structure of the
formula, we build a set S of “witness states”. At each step, we prove
that

∀j ≤ m+ hP (φ) · p, ∀ψ ∈ sf(φ), (j, ψ) ∈ S ⇒ πL, j |= ψ (1)

– initially, S contains {(i, φ)}. The property (1) is satisfied by hy-
pothesis;

– while S contains pairs of the form (j, ψ) where ψ is not (a negation
of) an atomic proposition, we remove (j, ψ) from S, put it in T

and
– if ψ = α∨ β, then either πL, j |= α or πL, j |= β. We add (j, α)

or (j, β) to S in order to keep (1) true;
– if ψ = α ∧ β, then add (j, α) and (j, β) to S;
– if ψ = Xα, then add (j + 1, α) (or (j + 1 − p, α) if j + 1 >

m+ hP (φ) · p) to S;
– if ψ = X

−1 α, then add (j − 1, α) to S. We know that j ≥ 1
since πL, j |= X

−1 α. Thus (1) still holds;
– if ψ = Fα, we know that α is true in some state k greater

than j and smaller than m + (h(φ) + 1)p. If k is greater than
m + h(φ)p + 1, then we can substract p in order to remains
lower than m+ h(φ)p+ 1 (thanks to Lemma 4). Thus we add
(k, α) to S, so that (1) is still satisfied;

– if ψ = F
−1 α, the argument is the same.

This process clearly ends, since the sum of sizes of formulas in S

decreases at each step. Moreover, |S ∪ T | ≤ |φ| at the end.
Now consider the acceptable subloop L′ of L containing the states

we kept in S ∪ T . We also possibly add some other states (this con-
struction is the same as the one shown in Figure 1). We write f for
the function s.t. πL′ 4f πL. The remarks of the previous proof still
apply. Then πL′ , f−1(i) |= φ.

Indeed, we prove that, for any (j, ψ) ∈ T∪S, we have πL′ , f−1(j) |=
ψ: clearly, for each (j, ψ) in S, we have πL′ , f−1(j) |= ψ since ψ is an
atomic proposition. For (j, ψ) ∈ T , several cases may arise:

– if ψ = α∨ β, then either (j, α) or (j, β) is in T ∪ S, and the result
comes by ind. hyp.,

– if ψ = α∧β, then (j, α) and (j, β) are in T ∪S, and the result also
comes from the ind. hyp.,
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– if ψ = Xα, then (j+1, α) (or (j+1−p, α)) is in T ∪S. In the first
case, the result is immediate. In the second case, it comes from
Lemma 4,

– for the other modalities F ,F−1 and X
−1 , the argument is the

same. �

This proof can easily be adapted to L
+(F ,X ,F−1 ,¬X

−1 ¬), where
¬X

−1 ¬ is the dual modality of X
−1 . Indeed, we simply have to han-

dle that dual modality slightly differently, by differentiating the case
when j = 0 and the other cases when building S. By duality from
this remark, we get a conp algorithm for universal model checking
and validity for L

+(G ,X ,G−1 ,X−1 ).

Lemma 11. Let φ ∈ L
+(G , S ,X−1 ), π a path and a a state. Then

– If aω, 0 |= φ, then for all i, aω, i |= φ;
– If π, 0 |= φ, then (π0)

ω, 0 |= φ.

Proof. We use structural induction once again: Assume that aω, 0 |=
φ. Then:

– If φ is an atomic proposition, a conjunction or a disjunction, the
result is obvious;

– If φ = Gψ, then aω, 0 |= ψ. By induction hypothesis, aω, i |= ψ

for all i, and aω, i |= φ for all i;
– If φ = ψ1 Sψ2, then aω, 0 |= ψ2. By induction hypothesis, all

position i satisfy ψ2 along aω, and aω, i |= φ for all i;
– If φ = X

−1 ψ, we cannot have aω, 0 |= φ.

The second statement is proved in the same way: We assume that
π, 0 |= φ, and prove that (π0)

ω, 0 |= φ:

– It is obvious for atomic propositions and positive boolean combi-
nations;

– If φ = Gψ, then π, 0 |= ψ. By induction hypothesis, (π0)
ω, 0 |= ψ,

and the first statement of the lemma ensures that for positions i,
(π0)

ω, i |= ψ. Hence the result;
– If φ = ψ1 Sψ2, the same arguments apply;
– The case when φ = X

−1 ψ is trivial, as previously.

Lemma 12. Let φ ∈ L
+(U , S ). For all path π and for all state s,

we have

– if for some i, sω, i 6|= φ, then for all i, sω, i 6|= φ;
– if for some i, π, i 6|= φ, then for all j, (πi)

ω, j 6|= φ.

Thus a non-valid L
+(U , S )-formula has a small counterexample,

and validity for that fragment is conp-complete.
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Proof. We begin with the first statement, by induction:

– For atomic propositions, or (positive) boolean combinations of sub-
formulas, the result is obvious;

– If φ = φ1 Uφ2, then sω, i 6|= φ entails that sω, i 6|= φ2. By induction,
for all j, sω, j 6|= φ2, and φ cannot be satisfied along sω;

– A similar argument may be used if φ = φ1 Sφ2.

We prove the second part of the lemma in the same way:

– It is obvious for atomic propositions, as well as for conjunctions or
disjunctions;

– If φ = φ1 Uφ2, then π, i 6|= φ entails that π, i 6|= φ2. By induc-
tion, (πi)

ω, i 6|= φ2, and the first part of the lemma ensures that
(πi)

ω, j 6|= φ2 for all j. Hence (πi)
ω, j 6|= φ for all j;

– In the same way, when φ = φ1 Sφ2, then (πi)
ω, i 6|= φ2, then

(πi)
ω, j 6|= φ2 for all j, and (πi)

ω, j 6|= φ for all j.

Theorem 13. Satisfiability and existential model checking are np-
complete for L(X , S ,X−1 ), L(F ,F−1 ), L

+(F ,F−1 ,X ,X−1 ), and
for their non-trivial fragments.

Validity is conp-complete for L
+(U , S ) and its non-trivial frag-

ments.
Satisfiability is np-complete for L

+(G , S ,X−1 ) and its non-trivial
fragments.

np-easiness is a direct consequence of the previous results. np-
hardness was proved in Section 2.1. These results are summarized in
the table on page 8.

3 PSPACE-complete problems

In this section, we prove pspace-hardness of verification problems for
several fragments of pltl.

The proofs are reductions from two tiling problems we now de-
fine: Let C be a finite set of colors. A domino-type is a 4-tuple
〈dup, ddown , dleft , dright〉 of colors of C. Given a set T ⊆ C4 of domino-
types, and two integers m and n, tiling the m × n-grid amounts to
finding a function f : [1,m] × [1, n] → T s.t.

∀(i, j) ∈ [1,m− 1] × [1, n], f(i, j)right = f(i+ 1, j)left

∀(i, j) ∈ [1,m] × [1, n− 1], f(i, j)up = f(i, j + 1)down

We consider the following tiling problem, which is a slightly mod-
ified version of [14, prob. B2]:
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Given a set T of domino-types, a natural m (in unary), and
two colors c0 and c1 of C, does there exist a natural n s.t. the
m × n-grid can be tiled, with the additional conditions that
f(1, 1)down = c0 and f(m,n)up = c1?

This problem is pspace-complete. The second problem we will use is
the following:

Given a set T of domino-types, a natural m (in unary), and two
colors c0 and c1 of C, do all correct tiling satisfying f(1, 1)down =
c0 eventually satisfy f(m,n)up = c1 for some n?

This problem is also pspace-complete since it can encode the univer-
sality problem for a polynomial space Turing machine.

Let (C, T = {d1, . . . dp},m, c0, c1) be an instance of B2. W.l.o.g.,
we may assume that the domino-types whose dup-color is c1 are num-
berred from 1 to q, and the other ones from q + 1 to p.

We build the Kripke structure shown on Figure 2. The set of atomic
propositions is T ∪ {E} ∪ {i = k | k = 1, . . . ,m}. The initial states
are all the states where the ddown-color is c0 and the value of i is 1.
All the transitions from a state labelled with i = k to a state labelled
with i = k + 1 are enabled for k ≤ m− 1. For i = m, if the dup-color
is not c1, then it is only possible to go to states labelled with i = 1,
else it is only possible to go to state E.

i=1,d1

i=1,d2

...

i=1,dq

i=1,dq+1

...

i=1,dp

i=2,d1

i=2,d2

...

i=2,dq

i=2,dq+1

...

i=2,dp

· · ·

· · ·

...

· · ·

· · ·

...

· · ·

i=m,d1

i=m,d2

...

i=m,dq

i=m,dq+1

...

i=m,dp

E
i=1,d2 i=m,d2

Figure 2 The Kripke structure K associated with our tiling
problem.

We now have to write formulas stating that:
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– Colors are respected from left to right;
– Colors are respected from top to bottom;
– The initial and final conditions are fulfilled.

3.1 The fragment L
+(U )

It is well-known that model-checking and satisfiability are pspace-
complete for L(U ) [32]. The result here is a little stronger since we
cannot, for instance, encode the G modality in L

+(U ).

Theorem 14. Existential model-checking for L
+(U ) is pspace-hard.

Proof. We simply have to express the three properties stated above
with L

+(U ) formulas:

– Both “initial” and “final” conditions are satisfied:

φif
def

= ⊤UE

– The sequence of colors from left to right is correct:

φhoriz
def

=

(

m−1
∧

k=1

∧

d∈T

(i = k ∧ d) ⇒

(

i = k U (i = k + 1 ∧
∨

d′∈T
d′left=dright

d′)
))

UE

– The sequence is also correct from bottom to top:

φvert
def

=

(

m
∧

k=1

∧

d∈T

(i = k ∧ d) ⇒

(

i = k U

(

¬i = k∧

(¬i = k)U
(

E ∨ (i = k ∧
∨

d′∈T
d′down=dup

d′)
)

)

))

UE

A path inK satisfying the conjunction of those formulas eventually
reaches E, after having run n times through a state where i = 1
holds. The path gives rise to a function f : [1,m] × [1, n] → T in the
obvious way. This function is a tiling function since the path satisfies
the φhoriz and φvert conditions. Thus the (pspace-complete) problem
B2 is (polynomialy) reducible to model-checking L

+(U ), and model
checking L

+(U ) is pspace-hard.

Corollary 15. Satisfiability for L
+(U ) is pspace-hard.
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Proof. A classical method for such a proof is to reduce model checking
to satisfiability. However, since we cannot use or express G in L

+(U ),
we cannot encode the behaviour of a (general) Kripke structure. Thus
we will reduce our tiling problem to the satisfiability problem, by en-
coding the Kripke structure of Figure 2 into an L

+(U ) formula. This
is possible since we only have to encode its behaviour until it reaches
E.

We assume that the KS of Figure 2 is (Q,Q0, l, R), and we keep
the notations introduced in the proof of Theorem 6, page 12.

We define

φK
def

=
(

∨

q0∈Q0

Pq0

)

∧ ¬E ∧ (ψstate ∧ ψlabel ∧ ψtrans)UE

By construction, φK ∧φhoriz∧φvert is satisfiable if, and only if, the
instance of the tiling problem we considered has a solution.

Theorem 16. Universal model checking is pspace-hard for L
+(U ).

Proof. This proof requires the second tiling problem: The input is
the same, but the question is whether all correct tilings having c0 as
leftmost bottom color will eventually have c1 as rightmost top color.
We will write a formula expressing that each path either does not
represent a correct tiling, or eventually reaches E. Thus we write

– Left-to-right tiling condition is not satisfied at some place:

φhoriz
def

=
m−1
∨

k=1

∨

d∈T

⊤U

(

i = k ∧ d∧

(

i = k U (i = k + 1 ∧
∧

d′∈T
d′left=dright

¬d′)
)

)

– Bottom-up tiling condition is not fulfilled at some place:

φvert
def

=
m
∨

k=1

∨

d∈T

⊤U

(

i = k ∧ d ∧
(

i = k U
(

¬i = k∧

(

¬i = k U (i = k ∧
∧

d′∈T
d′down=dup

¬d′)
))

))

A path satisfying those properties does not correspond to a correct
tiling. Thus checking that all the paths satisfy φhoriz ∨ φvert ∨ ⊤UE

amounts to solving our tiling problem.
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3.2 pspace-hardness for L
+(F ,X ), L

+(G ,X ), L
+
s (F ,X−1 ) and

L
+
s (G ,X−1 )

Satisfiability and existential model checking for L
+(F ,X ) are np-

complete [32]. We show here that universal model checking is harder
for that fragment.

Theorem 17. The universal model checking problem for L
+(F ,X )

is pspace-hard.

Proof. The reduction is similar to the previous one, and formulas are
even easier to write: We simply have to write the formulas expressing
that a path does not correspond to a correct tiling:

– Left-to-right tiling condition is not satisfied at some place:

φhoriz
def

=

m−1
∨

k=1

∨

d∈T

F (i = k ∧ d ∧
∧

d′∈T
d′left=dright

X¬d′)

– Bottom-up tiling condition is not fulfilled at some place:

φvert
def

=

m
∨

k=1

∨

d∈T

F (i = k ∧ d ∧
∧

d′∈T
d′down=dup

X
n¬d′)

By duality, we get

Corollary 18. Existential model checking and satisfiability problems
are pspace-hard for L

+(G ,X ).

Proof. For existential model checking, the result comes by duality
from the previous Theorem. The reduction from existential model
checking to satisfiability for L(F ,X ) [32] also applies to L

+(G ,X ).

It is easy to adapt the proof of Theorem 17 to L
+(F ,X−1 ). This

entails the following Theorem:

Theorem 19. The universal model checking problem for L
+(F ,X−1 )

is pspace-hard.

The following result also holds, but is not exactly dual with the
previous one:

Theorem 20. The existential model checking problem is pspace-hard
for L

+
s (G ,X−1 ).
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Proof. We consider the dual problem of the one we used for the proof
of Theorem 16: Given the same input, the question is whether there
exists a correct tiling that never satisfies the “final” condition. For
this purpose, we simply have to express that a path satisfies the tiling
conditions:

– Left-to-right tiling condition is satisfied:

φhoriz
def

=
m
∧

k=2

∧

d∈T

G (i = k ∧ d⇒
∨

d′∈T
d′right=dleft

X
−1 d′)

– Bottom-up tiling condition is satisfied:

φvert
def

=
m
∧

k=1

∧

d∈T

G (i = k ∧ d⇒ (X−1 k⊥ ∨
∨

d′∈T
d′up=ddown

X
−1 nd′))

Checking that there exists a path satisfying φhoriz ∧ φvert ∧ G¬E
amounts to solving the initial pspace-complete problem.

Even though satisfiability for L
+
s (G ,X−1 ) is np-complete, we

prove here that validity for L
+
s (F ,X−1 ) is pspace-complete, which

emphasizes the fact that X
−1 is not self-dual:

Lemma 21. Validity is pspace-hard for L
+
s (F ,X−1 ).

Proof. We reduce the same problem we used in the proof of The-
orem 16: Do all correct tilings having c0 as leftmost bottom color
eventually have c1 as rightmost top color?

We encode a slightly modified KS in order to be able to refer to
the beginning of a path: The only initial state is labelled with Init,
it has no incoming edge and has outgoing edges to the states where
i = 1 and the ddown-color is c0. Figure 3 illustrates this construction.

The reduction is achieved as follows: We write a formula stating
that

– either the path does not belong to the modified structure,
– or it does not correspond to a correct tiling,
– or it eventually reaches E.

For the sake of simplicity, and since it is not ambiguous, we assume
that our new KS is defined by (Q, {Init}, R, l). We keep the notations
introduced in the proof of Theorem 6. That a path does not belong
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Init

i=1,d1

i=1,d2

...

i=1,dq

i=1,dq+1

...

i=1,dp

i=2,d1

i=2,d2

...

i=2,dq

i=2,dq+1

...

i=2,dp

· · ·

· · ·

...

· · ·

· · ·

...

· · ·

i=m,d1

i=m,d2

...

i=m,dq

i=m,dq+1

...

i=m,dp

E
i=1,d2 i=m,d2

Figure 3 The modified Kripke structure (assuming that excatly
d2 and dq+1 have c0 as ddown-color).

to the modified structure can be expressed through a disjunction of
four subformulas:

φinit = ¬Init

φstate = F¬ψstate

φlabel = F¬ψlabel

φtrans = F

[(

¬Init ∧
∧

(s,s′)∈R

(¬s′ ∨ X
−1 ¬s)

)

∨
(

Init ∧ X
−1 ⊤

)]

A path satisfies the disjunction of these formulas iff it is not extracted
from our Kripke structure.

Expressing that the path does not represent a correct tiling is done
in the same way as before:

φhoriz =
∨

d∈T

F
(

X
−1 d ∧ ¬E ∧ ¬

∨

d′∈T
d′left=dright

d′
)

φvert =
∨

d∈T

F
(

(X−1 )md ∧ ¬E ∧ ¬
∨

d′∈T
d′down=dup

d′
)

Let G be an infinite correct tiling having c0 as leftmost bottom
color, and πG its associated path. Since the disjunction is valid, and
since πG correspond to a correct tiling, the validity of the disjunction
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above entails that πG satisfies FE, i.e. that the tiling eventually has
c1 as its rightmost top color.

Conversely, if all correct tilings having c0 as leftmost bottom color
eventually have c1 as rightmost top color. Then, if a path belongs
to the Kripke structure and correspond to a correct tiling, it will
eventually reach state E.

3.3 pspace-hardness for L
+
s (F , S ) and L

+
s (G , S )

Theorem 22. Existential model checking for L
+
s (F , S ) is pspace-

hard.

Proof. We still consider the structure of Figure 3. We express that

– the initial and final conditions are satisfied:

φif
def

= FE

– horizontal sequences of dominoes form a correct tiling:

φhoriz
def

= F

(

E ∧
(

m
∧

k=2

∧

d∈T

(i = k ∧ d) ⇒

(

i = k S (i = k − 1 ∧
∨

d′∈T
d′right=dleft

d′)
)

)

S Init
)

– vertical tiling conditions are fulfilled:

φvert
def

= F

(

E ∧
(

m
∧

k=1

∧

d∈T

(i = k ∧ d) ⇒
(

i = k S (¬i = k∧

((¬i = k)S (Init ∨ (i = k ∧
∨

d′∈T
d′up=ddown

d′)))
)

)

S Init
)

A path satisfying all these conditions eventually reaches E, and
corresponds to a correct tiling. Thus, existential model checking for
L

+
s (F , S ) is pspace-complete.

Theorem 23. Existential model checking for L
+
s (G , S ) is pspace-

hard.

Proof. This demonstration uses the same problem as in the demon-
stration of theorem 20, but the reduction uses the structure of fig-
ure 3. Thus, we have to write two formulas stating that the sequence
of states satisfies the horizontal and vertical tiling conditions:
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– Left-to-right tiling condition is satisfied:

φhoriz
def

=
m
∧

k=2

∧

d∈T

G

(

i = k∧d⇒
∨

d′∈T
d′right=dleft

(i = k S (i = k−1∧d′)
)

– Bottom-up tiling condition is satisfied:

φvert
def

=
m
∧

k=1

∧

d∈T

G

(

i = k ∧ d⇒
(

i = k S

(

¬i = k∧

(¬i = k)S
(

Init ∨ (i = k ∧
∨

d′∈T
d′up=ddown

d′)
)

)))

Checking that there exists a path satisfying φhoriz ∧ φvert ∧ G¬E
amounts to solving the initial pspace-hard problem.

Theorem 24. Satisfiability is pspace-hard for L
+
s (F , S ).

Proof. We simply have to encode the KS of Figure 3 into temporal
logic formulas. We still use notations defined on page 12. We define
the followong formulas:

φinit
def

= Init ∧ ψstate ∧ ψlabel

φtrans
def

=
[(

(i = 1 ∧ ¬(ddown = c0)) ⇒ (i = 1 S i = m)
)

∧
(

(i = 1 ∧ (ddown = c0)) ⇒ (i = 1 S (φinit ∨ i = m))
)

∧

(

m
∧

k=2

(i = k ⇒ (i = k S (i = k − 1)))
)]

S φinit

φpath
def

= F

(

E ∧ E S (¬E ∧ (¬E ∧ ψstate ∧ ψlabel ∧ φtrans) S φinit)
)

This does not ensure that a path exactly encodes a run in the
Kripke structure, since we cannot avoid going back to Init in the
middle of the run. But the formula ensures that the part of the path
between the first occurence of an E and the latest Init before that
E really encodes a run in the Kripke structure. The conjunction of
this formula and formulas of the proof of theorem 22 is satisfiable if,
and only if, the tiling problem has a solution. Thus satisfiability is
pspace-complete for L

+
s (F , S ).

Theorem 25. The universal model checking problem for L
+
s (F , S )

is pspace-hard.
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Proof. The reduction is similar to the one of Theorem 16. We have to
write formulas expressing that horizontal or vertical tiling conditions
are not fulfilled. In L

+
s (F , S ), this cas be written as follows:

– Left-to-right tiling condition is not satisfied at some position:

ψhoriz(k,d)
def

=
(

(i = k ∧ d) ∧ (i = k S (i = k − 1 ∧
∧

d′∈T
d′right=dleft

¬d′))
)

φhoriz
def

=

m
∨

k=2

∨

d∈T

F ψhoriz(k,d)

– Bottom-up tiling condition is not fulfilled at some position:

ψvert(k,d)
def

=
(

(i = k ∧ d) ∧ (i = k S (¬i = k ∧ (¬i = k S

(i = k ∧
∧

d′∈T
d′up=ddown

¬d′))))
)

φvert
def

=
m
∨

k=1

∨

d∈T

F ψvert(k,d)

All path satisfy FE ∨ φhoriz ∨ φvert if, and only if, all correct tiling
eventually have c1 as rightmost top color.

Theorem 26. The universal model checking problem for L
+
s (G , S )

is pspace-hard.

Proof. We reduce the dual problem of our initial tiling problem: Given
the same input, the question is whether there exists no correct tiling
meeting both initial and final conditions. This is achieved by writing
that, for all path in the Kripke structure of Figure 3, if state E is
eventually reached, then the path does not correspond to a correct
tiling. Thus we write:

G

(

E ⇒ ⊤S

(

(
m
∨

k=2

∨

d∈T

ψhoriz(k,d)) ∨ (
m
∨

k=1

∨

d∈T

ψvert(k,d))
))

Theorem 27. Validity for L
+
s (G , S ) is pspace-hard.
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Proof. We keep the notations of the previous proof, and write the
following formula:

φ
def

= Init ⇒ G

[

E ⇒

F
−1
(

(
m
∨

k=2

∨

d∈T

ψhoriz(k,d)) ∨ (
m
∨

k=1

∨

d∈T

ψvert(k,d))∨

¬ψstate ∨ ¬ψlabel ∨ (
∧

(s,s′)∈R

¬s′ ∨ s′ S¬s)
)

]

Clearly, if φ is valid, then the path corresponding to a correct
tiling having c0 as leftmost bottom color cannot reach E, i.e. the
tiling never has c1 as rightmost top color. Conversely, if no correct
tiling ever meets both initial and final requirements, then any path
not satisfying φ will start in state Init , reach state E, and correspond
to a correct tiling, which is impossible.

Theorem 28. Model-checking and satisfiability for fragments L
+(U ),

L
+(G ,X ), L

+
s (G ,X−1 ), L

+
s (F , S ), and for fragments of pltl con-

taining one of them, are pspace-complete. Model-checking is pspace-
complete for L

+
s (G , S ).

Proof. This is a direct consequence of [32, Theorem 4.1], and of The-
orems in this section.

4 Concluding remarks

The results we got are sufficient to completely classify all the con-
sidered fragments of pltl w.r.t. the complexity of (existential and
universal) model-checking and satisfiability problems.

This exhaustive case study led to several surprising results. We
showed that existential and universal model checking might have the
different complexity for positive fragments (np vs. pspace). We found
only one case where existential model checking and satisfiability have
different theoretical complexity. On the other hand, we observe that
using the symmetric past-time modalities of the allowed future modal-
ities does not increase the complexity of verification problems. The
same remark holds for the use of future modalities in the scope of
past-time modalities. This all boils down to the conclusion that past
is really cheap.

After this study on the effect of adding past into fragments of ltl,
it would be interesting to look into when “past is for free” for exten-
sions of that logic, such as ctl

∗ (as far as we know, the complexity
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of model checking for ctl
∗ with linear past is still open [18]) or timed

temporal logics ([2] proves that, for the validity problem over timed
state sequences, past can be added for free in the Metric Temporal
Logic from [17], but not in the Timed Propositional Temporal Logic
of [1]).
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