
Computational soundness of equational theories?

(Tutorial)

Steve Kremer

LSV, ENS Cachan & CNRS & INRIA Futurs
kremer@lsv.ens-cachan.fr

Abstract. We study the link between formal and cryptographic models for se-
curity protocols in the presence of passive and adaptive adversaries. We first de-
scribe the seminal result by Abadi and Rogaway and shortly discuss some of its
extensions. Then we describe a general model for reasoning about the soundness
of implementations of equational theories. We illustrate this model on several
examples of computationally sound implementations of equational theories.

1 Introduction

Security protocols have been deployed massively during the last years. However, their
security is difficult to ensure and even small protocols are known to be error-prone.
Two different approaches for proving such protocols correct have been developed. On
the one hand, the symbolic or formal approach models messages and cryptographic
primitives by a term algebra. The adversary manipulates the terms only according to
a pre-defined set of rules. On the other hand, the computational approach considers
a more detailed execution and adversary model. Protocol messages are modelled as
bitstrings and cryptographic primitives as algorithms. The adversary is modelled to be
any probabilistic polynomial time Turing machine and the security of a protocol is
measured as the adversary’s success probability.

A considerable advantage of the symbolic model is that proofs can be (at least par-
tially) automated. Unfortunately, it is not clear whether the abstract symbolic model
captures all possible attacks. While the computational model provides much stronger
security guarantees, proofs are generally harder and difficult to automate. A recent
trend tries to get the best of both worlds: an abstract model which provides strong
computational guarantees. In their seminal paper, Abadi and Rogaway [4] have shown
a first such soundness result in the presence of a passive attacker for a simple abstract
algebra with symmetric encryption. However, many protocols rely on more complex
cryptographic primitives which may have algebraic properties (see [15] for a survey on
algebraic properties). Such properties are naturally modelled using equational theories.

In this tutorial paper, we first present the original Abadi and Rogaway result and
briefly discuss some of its extensions. Then we present a general framework for rea-
soning about the soundness of the implementation of an equational theory [10, 19]. The
formal indistinguishability relation we consider is static equivalence, a well-established

? Work partly supported by ARA SSIA Formacrypt and ARTIST2 Network of Excellence.

security notion coming from cryptographic pi calculi [3] whose verification can often
be automated [2, 11]. A soundness result for an equational theory proves that indeed
“enough” equations have been considered in the symbolic model, with respect to a
given implementation. We first consider soundness in the presence of a passive adver-
sary and then extend the setting to an adaptive adversary. We present soundness results
for several equational theories.

There do also exist soundness results in the presence of an active adversary, notably
pioneered by Backes et al. [9] and Micciancio and Warinschi [23]. However, we are not
aware of a framework for reasoning about soundness of equational theories with active
adversaries which remains a challenging topic of research.

This tutorial is mainly based on joint work with Mathieu Baudet, Véronique Cortier and
Laurent Mazaré [10, 19].

2 Preliminaries

Let f : N→ R be a function. We say that f is a negligible function of η if f(η) remains
eventually smaller than any η−n (n > 0) for sufficiently large η. Conversely, a function
f(η) is overwhelming if 1− f(η) is negligible.

We denote by AO the Turing machine A which has access to the oracles O.

x
R←− D denotes the random drawing of x from a distribution D.

Let η > 0 be a complexity parameter and (Dη) a family of distributions, one for each
η. A family of distributions (Dη) is collision-free iff the probability of collision be-

tween two random elements from Dη, that is, P[e1, e2
R←− Dη : e1 = e2], is a negligi-

ble function of η.

3 The Abadi-Rogaway result

In this section we summarize the seminal result of Abadi and Rogaway [4, 5]. They
show the first soundness result for a simple equivalence on formal expressions. This
paper has given raise to many extensions in the passive case and has inspired the gen-
eralization to the case of an adaptive and active adversary.

3.1 Formal expressions and equivalence

On the formal side, we consider a simple grammar of formal expressions or terms. The
expressions consider two base types for keys and Booleans which are taken from two
disjoint sets Keys and Bool. Keys and Booleans can be paired and encrypted.

M,N ::= expressions
K key (K ∈ Keys)
i bit (i ∈ Bool)
〈M,N〉 pair
{M}K encryption (K ∈ Keys)

For example the formal expression 〈K1, {〈0,K2〉}K1〉 represents a pair: the first com-
ponent of this pair is the key K1, the second, the encryption with key K1 of the pair
consisting of the boolean constant 0 and the key K2.

Before defining the equivalence relation between terms we first need to define the
deducibility relation `. Intuitively, M ` N , if the adversary can learn the expression N
from the expression M . Formally, ` is the smallest relation, such that

M `M M ` 0 M ` 1
if M ` N1 and M ` N2 then M ` 〈N1, N2〉
if M ` 〈N1, N2〉 then M ` N1 and M ` N2

if M ` {N}K and M ` K then M ` N
if M ` N and M ` K then M ` {N}K

For example, if M = 〈K1, {〈0,K2〉}K1〉, then we have that M ` K2. Moreover,
M ` 1, as the constants 0 and 1 are always known to the attacker.

The equivalence relation between terms is based on the equality of the patterns
associated to each term. A pattern represents the adversary’s view of a term. Patterns
extend the grammar defining terms by the special symbol �. The pattern of a term
replaces encryptions for which the key cannot be deduced by �. We define the function
p, taking as arguments a term and a set T of keys, inductively as follows.

p(K,T) = K (K ∈ Keys)
p(i, T) = i (i ∈ Bool)

p(〈M,N〉, T) = 〈p(M,T), p(N,T)〉

p({M}K , T) =
{
{p(M,T)}K if K ∈ T
� else

The pattern of an expression is defined as

pattern(M) = p(M, {K ∈ Keys |M ` K}).

For instance pattern(〈K1, {〈0, {1}K2〉}K1〉) = 〈K1, {〈0,�〉}K1〉.
We say that M and N are formally indistinguishable, written M ≡ N if and only

if pattern(M) = pattern(N)σ, where σ is a bijection on keys (here interpreted as a
substitution applied on pattern(N)). As an illustration, we have that 0 6≡ 1, K0 ≡ K1,
〈K0,K0〉 6≡ 〈K0,K1〉 and {0}K1 ≡ {1}K0 . Bijective renaming of keys reflects the
intuition that two different randomly chosen keys are indistinguishable.

3.2 Computational messages and indistinguishability

In the computational setting, we reason on the level of bitstrings and algorithms ex-
ecuted on Turing Machines, rather than on abstract terms. An encryption scheme in
this setting is a triple of polynomial time algorithms SE = (KG, E ,D), which are
the key-generation, encryption and decryption algorithms. The key generation algo-
rithm is parametrized by a security, or complexity parameter η ∈ 1∗ and encryp-
tion is probabilistic. Intuitively, η defines the key length. As expected we require that
Dk(Ek(m, r)) = m for any k ∈ KG(η) and random bitstring r. Moreover, decryption
fails and returns ⊥ in all other cases.

We say that an encryption scheme SE is type-0 secure, following the terminology
of [4], if for any security parameter η and any probabilistic polynomial time Turing
machine A (the adversary) the advantage Advtype-0(A, η,SE) =

P
[
k, k′

R←− KG(η) : AEk(·),Ek′ (·) = 1
]
− P

[
k

R←− KG(η) : AEk(0),Ek(0) = 1
]

is a negligible function of η. By convention, we suppose that adversaries are given
access implicitly to as many fresh random coins as needed, as well as the complexity
parameter η.

Intuitively, we require that an adversary cannot distinguish the case where he is
given two encryption oracles encrypting with two different keys from the case where
he is given twice the same encryption oracle always encrypting the constant bitstring
representing 0 with the same key. Note that the answers of the second pair of ora-
cles will be distinct each time because encryption is probabilistic. Type-0 security is
a message-length and which-key concealing version of the standard semantic secu-
rity [18]. Message-length concealing means that the encryption hides the length of the
plaintext. Which-key concealing means that the fact that two ciphertexts have been en-
crypted with the same key is hidden.

It is important to note that an encryption scheme respecting the above security def-
inition may be insecure as soon as the adversary is given a key cycle. A key cycle
is a sequence of keys K1, . . . ,Kn such that Ki+1 encrypts (possibly indirectly) Ki

and Kn encrypts K1. An encryption of key K with itself, i.e., EK(K) is a key cy-
cle of length 1. An example of a key cycle of size 2 would be EK1(K2), EK2(K1). In
Abadi and Rogaway’s main result, key cycles are therefore forbidden. This condition
can be found in most soundness results1. To better understand the problem of key cy-
cles suppose that SE = (KG, E ,D) is a semantically secure encryption scheme and let
SE ′ = (KG′, E ′,D′) be defined as follows:

KG′ = KG, E ′k(m, r) =
{
Ek(m, r) if m 6= k
const · k if m = k

, D′k(c) =
{
Dk(c) if c 6= const · k
k if c = const · k

where const is a constant such that for any key k, the concatenation const · k does
not belong to the set of possible ciphertexts obtained by E . Obviously, if the attacker
is given a key cycle of length 1, e.g., E ′k(k, r), the attacker directly learns the key. It is
also easy to see that SE ′ is a semantic secure encryption scheme as it behaves as SE
in nearly all cases (in the security experiment the adversary could make a query for
encrypting k with itself only with negligible probability).

The notion of computational indistinguishability requires that an adversary cannot
distinguish two (families of) distributions, with better than negligible probability. Let
D = {Dη} and D′ = {D′η} be two families of probability distributions, also called
ensembles. D and D′ are compuationally indistinguishable, written D ≈ D′ if for any
η and any probabilistic polynomial time Turing machine A, the advantage

AdvIND(A, η,Dη,D′η) = P
[
x

R←− Dη : A(x) = 1
]
− P

[
x

R←− D′η : A(x) = 1
]

is a negligible function of η.
1 A notable exception is [6] where a stronger definition is considered: Key Dependent Message

(KDM) security.

3.3 Interpretation of formal expressions and soundness result
To state Abadi and Rogaway’s soundness result we have to define an interpretation of
formal terms as bitstrings. Bitstrings are tagged using types “key”, “bool”, “pair” and
“ciphertext”. The initialize procedure, first draws all the keys using the key generation
algorithm KG; Keys(M) denotes the set of keys appearing in the term M . The convert
procedure implements encryption using algorithm E .

Initializeη(M)
for K ∈ Keys(M) do τ(K) R←− KG(η)

Convert(M)
if M = K (K ∈ Keys) then

return (τ(K),“key”)
if M = b (b ∈ Bool) then

return b,“bool”)
if M = 〈M1,M2〉 then

return (Convert(M1),Convert(M2), “pair”)
if M = {M1}K then
x

R←− Convert(M1)
y

R←− Eτ(K)(x)
return(y, “ciphertext”)

The initialize and convert procedures associate to a formal term M a family of proba-
bility distributions [[M]] = {[[M]]η}, one for each η. Abadi and Rogaway’s main result
is the following.

Theorem 1. For any formal expressions M and N that do not contain key cycles,
whenever the computational interpretation of the terms uses a type-0 secure encryp-
tion scheme, then M ≡ N implies that [[M]] ≈ [[N]].

3.4 Extensions
The above result has known many extensions. We mention some of them here. Laud and
Corin [20] allow the use of composed keys. Adão et al. [7] strengthen cryptographic
assumptions to allow key cycles. In [8], Adão et al. consider different implementations
of encryption allowing which-key and message-length revealing encryption and also
consider the case of one-time pad encryption and information-theoretic security. Garcia
and van Rossum [17] add (probabilistic) hash functions and Bresson et al. [12] consider
modular exponentiation. However, these extensions require to re-define each time a new
formal indistinguishability relation extending the classical notion of patterns.

Micciancio and Warinschi [22] also show a completeness result: whenever two fam-
ilies of distributions, resulting from the interpretation of two formal terms, are indis-
tinguishable, then the two formal terms are formally inditinguishable. This result re-
quires a stronger security requirement for encryption, which is authenticated encryp-
tion (see [22] for details). Such a completeness result ensures that no false attacks are
reported by the formal model. Adão et al. [8] extend this result to different implemen-
tations of encryptions as for soundness.

4 Abstract and computational algebras

To avoid redefining a new model and a new indistinguishability relation for each exten-
sion, we define a general model [10, 19] which relies on equational theories and static
equivalence.

4.1 Abstract algebras

In the Abadi-Rogaway model symbolic terms were given by a simple grammar mod-
elling encryption with atomic keys, pairs and boolean constants. Here we introduce a
more general model—called abstract algebras— which consists of term algebras de-
fined over a many-sorted first-order signature and equipped with equational theories.

Specifically, a signature (S,F) is made of a set of sorts S = {s, s1 . . .} and a set of
symbols F = {f, f1 . . .} together with arities of the form ar(f) = s1 × . . .× sk → s,
k ≥ 0. Symbols that take k = 0 arguments are called constants; their arity is simply
written s. We fix a set of names N = {a, b . . .} and a set of variables X = {x, y . . .}.
We assume that names and variables are given with sorts. By default, we assume that
an infinite number of names and variables are available for each sort. The set of terms
of sort s is defined inductively by

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) application of symbol f ∈ F

where for the last case, we further require that ti is a term of some sort si and ar(f) =
s1 × . . . × sk → s. We also allow subsorts: if s2 is a subsort of s1 we allow a term of
sort s2 whenever a term of sort s1 is expected. We write var(t) and names(t) for the
set of variables and names occurring in t, respectively. A term t is ground or closed iff
var(t) = ∅.

Substitutions are written σ = {x1 7→ t1, . . . , xn 7→ tn} with domain dom(σ) =
{x1, . . . , xn}. We only consider well-sorted, cycle-free substitutions. Such a σ is closed
iff all of the ti are closed. We let var(σ) =

⋃
i var(ti), names(σ) =

⋃
i names(ti), and

extend the notations var(.) and names(.) to tuples and sets of terms and substitutions
in the obvious way. The application of a substitution σ to a term t is written σ(t) = tσ
and is defined in the usual way.

Symbols in F are intended to model cryptographic primitives, whereas names in
N are used to model secrets, that is, for example random numbers or keys. The ab-
stract semantics of symbols is described by an equational theory E, i.e, an equivalence
relation (also written =E) which is stable by application of contexts and well-sorted
substitutions of variables. For instance, symmetric encryption is modeled by the theory
Eenc generated by the equation Eenc = {dec(enc(x, y), y) = x}.

4.2 Deducibility and static equivalence

We use frames [3, 2] to represent sequences of messages observed by an attacker, for
instance during the execution of a protocol. Formally, a frame is an expression ϕ =

νã.{x1 = t1, . . . , xn = tn} where ã is a set of bound (or restricted) names, and for
each i, ti is a closed term of the same sort as xi.

For simplicity, we only consider frames ϕ = νã.{x1 = t1, . . . , xn = tn} which
restrict every name in use, that is ã = names(t1, . . . , tn). A name a may still be dis-
closed explicitly by adding a mapping xa = a to the frame. Thus we tend to assimilate
such frames ϕ to their underlying substitutions σ = {x1 7→ t1, . . . , xn 7→ tn}.

In the previous section, we introduced deducibility and formal indistinguishability
for the simple term algebra of encryption and pairing. We now define similar notions
with respect to an equational theory.

Definition 1 (Deducibility). A (closed) term t is deducible from a frame ϕ in an equa-
tional theory E, written ϕ `E t, iff there exists a termM such that var(M) ⊆ dom(ϕ),
names(M) ∩ names(ϕ) = ∅, and Mϕ =E t.

In what follows, again for simplicity, we only consider deducibility problems ϕ `E t
such that names(t) ⊆ names(ϕ). Consider for instance the theory Eenc and the frame
ϕ1 = {x1 7→ enc(k1, k2), x2 7→ enc(k4, k3), x3 7→ k3}: the name k4 is deducible
from ϕ1 since dec(x2, x3)ϕ1 =Eenc k4 but neither are k1 nor k2. Deducibility is not al-
ways sufficient to account for the knowledge of an attacker. For instance, it lacks partial
information on secrets. We refer the reader to [2] for additional details and examples.
That is why another classical notion in formal methods is static equivalence, which will
be our formal indistinguishability relation.

Definition 2 (Static equivalence). Two frames ϕ1 and ϕ2 are statically equivalent in a
theoryE, written ϕ1 ≈E ϕ2, iff dom(ϕ1) = dom(ϕ2), and for all termsM andN such
that var(M,N) ⊆ dom(ϕ1) and names(M,N)∩names(ϕ1, ϕ2) = ∅,Mϕ1 =E Nϕ1

is equivalent to Mϕ2 =E Nϕ2.

For instance, consider the equational theory Eenc of symmetric encryption. Let 0 and 1
be two constants (which are thus known by the attacker). Then the two frames {x 7→
enc(0, k)} and {x 7→ enc(1, k)} are statically equivalent with respect toEenc. However
ϕ = {x 7→ enc(0, k), y 7→ k} and ϕ′ = {x 7→ enc(1, k), y 7→ k} are not statically
equivalent for Eenc: let M be the term dec(x, y) and N be the term 0. M and N use
only variables defined by ϕ and ϕ′ and do not use any names. MoreoverMϕ =Eenc Nϕ

but Mϕ′ 6=Eenc Nϕ
′. The test M ?

=N distinguishes ϕ from ϕ′.

4.3 Concrete semantics

We now give terms and frames a concrete semantics, parameterized by an implemen-
tation of the primitives. Provided a set of sorts S and a set of symbols F as above, a
(S,F)-computational algebra A consists of

– a non-empty set of bitstrings [[s]]A ⊆ {0, 1}∗ for each sort s ∈ S; moreover, if s2 is
a subsort of s1 we require that [[s2]]A ⊆ [[s1]]A;

– a computable function [[f]]A : [[s1]]A × . . . × [[sk]]A → [[s]]A for each f ∈ F with
ar(f) = s1 × . . .× sk → s;

– a computable congruence =A,s for each sort s, in order to check the equality of
elements in [[s]]A (the same element may be represented by different bitstrings); by
congruence, we mean a reflexive, symmetric, transitive relation such that e1 =A,s1

e′1, . . . , ek =A,sk
e′k ⇒ [[f]]A(e1, . . . , ek) =A,s [[f]]A(e′1, . . . , e

′
k) (in the remaining

we often omit s and write =A for =A,s);
– an effective procedure to draw random elements from [[s]]A; we denote such a draw-

ing by x R←− [[s]]A.

Assume a fixed (S,F)-computational algebra A. We associate to each frame ϕ =
{x1 7→ t1, . . . , xn 7→ tn} a distribution ψ = [[ϕ]]A, of which the drawings ψ̂ R←− ψ are
computed as follows:

1. for each name a of sort s appearing in t1, . . . , tn, draw a value â R←− [[s]]A;
2. for each xi (1 ≤ i ≤ n) of sort si, compute t̂i ∈ [[si]]A recursively on the structure

of terms: ̂f(t′1, . . . , t′m) = [[f]]A(t̂′1, . . . , t̂′m);
3. return the value ψ̂ = {x1 7→ t̂1, . . . , xn 7→ t̂n}.

Such values φ = {x1 = e1, . . . , xn = en} with ei ∈ [[si]]A are called concrete
frames. We extend the notation [[.]]A to (tuples of) closed terms in the obvious way.

We focus on asymptotic notions of cryptographic security and consider families of
computational algebra (Aη) indexed by a complexity parameter η > 0. As in previous
section, the concrete semantics of a frame ϕ is a family of distributions over concrete
frames ([[ϕ]]Aη). We only consider families of computational algebras (Aη) such that
each required operation on algebras is feasible by a (uniform, probabilistic) polynomial-
time algorithm in the complexity parameter η. This ensures that the concrete semantics
of terms and frames is efficiently computable (in the same sense).

5 Relating abstract and computational algebras

In the previous section we have defined abstract and computational algebras. We now
relate formal notions such as equality, (non-)deducibility and static equivalence to their
computational counterparts, that is, equality, one-wayness and indistinguishability.

5.1 Soundness and faithfulness

We introduce the notions of sound and faithful computational algebras with respect to
the formal relations studied here: equality, static equivalence and deducibility.

Let E be an equational theory. A family of computational algebras (Aη) is

– =E-sound iff for every closed terms T1, T2 of the same sort, T1 =E T2 implies that
P[e1, e2

R←− [[T1, T2]]Aη : e1 =Aη e2] is overwhelming;
– =E-faithful iff for every closed terms T1, T2 of the same sort, T1 6=E T2 implies

that P[e1, e2
R←− [[T1, T2]]Aη : e1 =Aη e2] is negligible;

– ≈E-sound iff for every frames ϕ1, ϕ2 with the same domain, ϕ1 ≈E ϕ2 implies
that ([[ϕ1]]Aη) ≈ ([[ϕ2]]Aη);

– ≈E-faithful iff for every frames ϕ1, ϕ2 of the same domain, ϕ1 6≈E ϕ2 implies
that there exists a polynomial-time adversaryA for distinguishing concrete frames,
such that AdvIND(A, η, [[ϕ1]]Aη

, [[ϕ2]]Aη
) is overwhelming;

– 6`E-sound iff for every frameϕ and closed term T such that names(T) ⊆ names(ϕ),
ϕ 6`E T implies that for each polynomial-time adversaryA, we have that the prob-
ability P[φ, e R←− [[ϕ, T]]Aη : A(φ) =Aη e] is negligible;

– 6`E-faithful iff for every frameϕ and closed term T such that names(T) ⊆ names(ϕ),
ϕ `E T implies that there exists a polynomial-time adversaryA such that the prob-
ability P[φ, e R←− [[ϕ, T]]Aη

: A(φ) =Aη
e] is overwhelming.

We note that faithfullness is stronger than completeness as defined in [22]. It re-
quires that whenever static equivalence does not hold distributions can be distinguished
efficiently. Completeness could be defined by replacing “overwhelming” with “non-
negligible”. Sometimes, it is possible to prove stronger notions of soundness that hold
without restriction on the computational power of adversaries. In particular, (Aη) is

– unconditionally =E-sound iff for every closed terms T1, T2 of the same sort, T1 =E

T2 implies that P[e1, e2
R←− [[T1, T2]]Aη : e1 =Aη e2] = 1;

– unconditionally≈E-sound iff for every framesϕ1, ϕ2 with the same domain,ϕ1 ≈E

ϕ2 implies ([[ϕ1]]Aη) = ([[ϕ2]]Aη);
– unconditionally 6`E-sound iff for every frameϕ and closed term T such that names(T) ⊆

names(ϕ) and ϕ 6`E T , the drawings for ϕ and T are independent: for all φ0,
e0, P[φ0, e0

R←− [[ϕ, T]]Aη
] = P[φ0

R←− [[ϕ]]Aη
]× P[e0

R←− [[T]]Aη
], and the drawing

(R←− [[T]]Aη) is collision-free.

Generally, (unconditional) =E-soundness is given by construction. Indeed true for-
mal equations correspond to the expected behavior of primitives and should hold in
the concrete world with overwhelming probability. The other criteria are however more
difficult to fulfill. Therefore it is often interesting to restrict frames to well-formed ones
in order to achieve soundness or faithfulness: we have already encountered a typical
example of such a restriction which was to forbid key cycles.

It is worth noting that the notions of soundness and faithfulness introduced above
are not independent.

Proposition 1. Let (Aη) be a =E-sound family of computational algebras. Then

1. (Aη) is 6`E-faithful;
2. if (Aη) is also =E-faithful, (Aη) is ≈E-faithful.

For many theories, we have that ≈E-soundness implies all the other notions of
soundness and faithfulness. This emphasizes the importance of≈E-soundness and pro-
vides an additional motivation for its study. As an illustration, let us consider an arbi-
trary theory which includes keyed hash functions.

A symbol f is free with respect to an equational theory E iff there exists a set of
equations F generating E such that f does not occur in F . A sort s is degenerated in E
iff all terms of sort s are equal modulo E.

Proposition 2. Let (Aη) be a family of≈E-sound computational algebras. Assume that
free binary symbols hs : s×Key → Hash are available for every sort s, where the sort
Key is not degenerated in E, and the drawing of random elements for the sort Hash ,
(R←− [[Hash]]Aη

), is collision-free. Then

1. (Aη) is =E-faithful;
2. (Aη) is 6`E-sound;
3. Assume the implementations for the hs collision-resistant in the sense that for all
T1, T2 of sort s, given a fresh name k of sort Key , the quantity

P
[
e1, e2, e

′
1, e

′
2

R←− [[T1, T2, hs(T1, k), hs(T2, k)]]Aη : e1 6=Aη e2, e
′
1 =Aη e

′
2

]
is negligible. Then (Aη) is =E-sound, 6`E-faithful and ≈E-faithful.

6 Examples

We now illustrate the framework by several examples. Details and proofs can be found
in [10, 19].

6.1 Exclusive OR

We study the soundness and faithfulness problems for the natural theory and implemen-
tation of the exclusive OR (XOR), together with constants and (pure) random numbers.

The formal model consists of a single sort Data⊕, an infinite number of names, the
infix symbol ⊕ : Data⊕ × Data⊕ → Data⊕ and two constants 0, 1 : Data⊕. Terms
are equipped with the equational theory E⊕ generated by:

(x⊕ y)⊕ z = x⊕ (y ⊕ z) x⊕ y = y ⊕ x x⊕ x = 0 x⊕ 0 = x

As an implementation, we define the computational algebras Aη, η ≥ 0:

– the concrete domain [[Data⊕]]Aη
is the set of bitstrings of length η, {0, 1}η, equipped

with the uniform distribution;
– ⊕ is interpreted by the usual XOR function over {0, 1}η;
– [[0]]Aη

= 0η and [[1]]Aη
= 1η.

Theorem 2. The implementation of XOR for the considered signature, (Aη), is uncon-
ditionally =E⊕ -, ≈E⊕ - and 6`E⊕ -sound. It is also =E⊕ -, ≈E⊕ - and 6`E⊕ -faithful.

6.2 Modular exponentiation

As another application, we study soundness of modular exponentiation. The crypto-
graphic assumption we make is that the Decisional Diffie-Hellman (DDH) problem is
difficult: even when given gx and gy , it is difficult for any feasible computation to dis-
tinguish between gxy and gr, when x, y and r are selected at random. The original
Diffie-Hellman protocol has been used as a building block for several key agreement
protocols that are widely used in practice (e.g. SSL/TLS and Kerberos V5).

Symbolic model. The symbolic model consists of two sorts G (group elements) and R
(ring elements), an infinite number of names forR, no name for sortG and the symbols:

+, · : R×R→ R add, mult
− : R→ R inverse

0R, 1R : R constants

exp : R→ G exponentiation
∗ : G×G→ G mult in G

We consider the equational theory EDH generated by:

x+ y = y + x x · y = y · x (x+ y) + z = x+ (y + z)
x · (y + z) = x · y + x · z (x · y) · z = x · (y · z) x+ (−x) = 0R

0R + x = x 1R · x = x exp(x) ∗ exp(y) = exp(x+ y)

There exists a direct correspondence between terms of sort R and the set of polynomi-
als Z[NR] where NR is the set of names of sort R. An integer i simply corresponds
to 1R + . . .+ 1R︸ ︷︷ ︸

i times

if i > 0, to −(1R + . . .+ 1R︸ ︷︷ ︸
i times

) if i < 0 and to 0R if i = 0. We also

write xn for x · . . . · x︸ ︷︷ ︸
n times

. This correspondence can be exploited to decide static equiva-

lence [19].
We put two restrictions on formal terms: products have to be power-free, i.e., xn

is forbidden for n > 1, and products must not contain more than l elements for some
fixed bound l, i.e. x1 · ... · xn is forbidden for n > l. Both restrictions come from the
DDH assumption and seem difficult to avoid [12]. Furthermore we are only interested
in frames using terms of sort G.

Concrete model. An Instance Generator IG is a polynomial-time (in η) algorithm that
outputs a cyclic group G (defined by a generator g, an order q and a polynomial-time
multiplication algorithm) of prime order q. The family of computational algebras (Aη)
depends on an instance generator IG that generates a cyclic group G of generator g and
of order q: the concrete domain [[R]]Aη is Zq with the uniform distribution. Symbols +
and · are the classical addition and multiplication over Zq, exp is interpreted as modular
exponentiation of g. Constants 0R and 1R are respectively interpreted by integers 0 and
1 of Zq. The domain [[G]]Aη contains all the bitstrings representation of elements of G.

A family of computational algebras satisfies the DDH assumption if its instance
generator satisfies the assumption, i.e. for every probabilistic polynomial-time adver-
sary A, we have that his advantage A, AdvDDH(A, η, IG), defined as

P
[
(g, q)← IG(η) : a, b← Zq : A(ga, gb, gab) = 1

]
−

P
[
(g, q)← IG(η) : a, b, c← Zq : A(ga, gb, gc) = 1

]
is negligible in η. We suppose that for any η there is a unique group given by IG. We
show that the DDH assumption is necessary and sufficient to prove soundness of ≈EDH

.

Theorem 3. Let (Aη) be a family of computational algebras. (Aη) is ≈EDH
-sound iff

(Aη) satisfies the DDH assumption.

6.3 Ciphers and lists

We now detail the example of symmetric, deterministic and length-preserving encryp-
tion schemes. Such schemes, also known as ciphers [24], are widely used in practice,
the most famous examples being DES and AES.

Symbolic model. Our formal model consists of a set of sorts S = {Data,List0,List1 . . .Listn . . .},
an infinite number of names for every sort Data and Listn, and the following symbols
(for every n ≥ 0):

encn,decn : Listn ×Data → Listn encryption, decryption
consn : Data × Listn → Listn+1 list constructor
headn : Listn+1 → Data head of a list
tailn : Listn+1 → Listn tail of a list

nil : List0 empty list
0, 1 : Data constants

We consider the equational theory Ecipher generated by the following equations (for
every n ≥ 0 and for every name a0 of sort List0):

decn(encn(x, y), y) = x
encn(decn(x, y), y) = x
headn(consn(x, y)) = x
tailn(consn(x, y)) = y

consn(headn(x), tailn(x)) = x

enc0(nil, x) = nil
dec0(nil, x) = nil

tail0(x) = nil
a0 = nil

where x, y are variables of the appropriate sorts. The effect of the last four equations is
that the sort List0 is degenerated in Ecipher (all terms of sort List0 are equal).

Notice that each well-sorted term has a unique sort. As the subscripts n of function
symbols are redundant with sorts, we tend to omit them in terms. For instance, if k, k′ :
Data , we may write enc(cons(k, nil), k′) instead of enc1(cons0(k, nil), k′).

The concrete meaning of sorts and symbols is given by the computational algebras
Aη, η > 0, defined as follows:

– the carrier sets are [[Data]]Aη = {0, 1}η and [[Listn]]Aη = {0, 1}nη equipped with
the uniform distribution and the usual equality relation;

– encn,decn are implemented by a cipher for data of size nη and keys of size η
(we discuss the required cryptographic assumptions later). Since they are length-
preserving they verify the equation encn(decn(x, y), y) = x;

– [[nil]]Aη
is the empty bitstring, [[consn]]Aη

is the usual concatenation, [[0]]Aη
= 0η,

[[1]]Aη = 1η, [[headn]]Aη returns the η first digits of bitstrings (of size (n + 1)η)
whereas [[tailn]]Aη returns the last nη digits.

For simplicity we assume without loss of generality that encryption keys have the
same size η as blocks of data. We also assume that keys are generated according to
the uniform distribution. It is not difficult to prove that the above implementation is
unconditionally =Ecipher

-sound.

Concrete model. We now study the ≈Ecipher
-soundness problem under classical cryp-

tographic assumptions. Standard assumptions on ciphers include the notions of super
pseudo-random permutation (SPRP) and several notions of indistinguishability. In par-
ticular, IND-P1-C1 denotes the indistinguishability against lunchtime chosen-plaintext
and chosen-ciphertext attacks. These notions and the relations between them have been
studied notably in [24].

Initially, the SPRP and IND-P1-C1 assumptions apply to (block) ciphers special-
ized to plaintexts of a given size. Interestingly, this is not sufficient to imply ≈Ecipher

-
soundness for frames which contain plaintexts of heterogeneous sizes, encrypted under
the same key. Thus we introduce a strengthened version of IND-P1-C1, applying to a
collection of ciphers (Eη,n,Dη,n), where η is the complexity parameter and n ≥ 0 is
the number of blocks of size η contained in plaintexts and ciphertexts.

We define the ω-IND-P1-C1 assumption by considering the following experiment
Gη with a 2-stage adversary A = (A1,A2):

– first a key k is randomly chosen from {0, 1}η;
– (Stage 1) A1 is given access to the encryption oracles Eη,n(·, k) and the decryption

oracles Dη,n(·, k); it outputs two plaintexts m0,m1 ∈ {0, 1}n0η for some n0, and
possibly some data d;

– (Stage 2) a random bit b ∈ {0, 1} is drawn; A2 receives the data d, the challenge
ciphertext c = Eη,n0(mb, k) and outputs a bit b′;

– A is successful in Gη iff b = b′ and it has never submittedm0 orm1 to an encryption
oracle, nor c to a decryption oracle.

Define the advantage of A as

Advω-IND-P1-C1(A, η) = 2× P [A is successful in Gη]− 1 (1)

The ω-IND-P1-C1 assumption holds for (Eη,n,Dη,n) iff the advantage of any proba-
bilistic polynomial-time adversary is negligible. It holds for the inverse of the encryp-
tion scheme iff it holds for the collection of ciphers (Dη,n, Eη,n).

We now state our ≈Ecipher
-soundness theorem. To define well-formed frames we

orient the equations of Ecipher from left to right which forms a convergent rewriting
system R. A closed frame is well-formed iff its R-normal form has only atomic keys,
contains no encryption cycles and uses no head and tail symbols.

Theorem 4 (≈Ecipher
-soundness). Let ϕ1 and ϕ2 be two well-formed frames of the same

domain. Assume that the concrete implementations for the encryption and its inverse
satisfy both the ω-IND-P1-C1 assumption. If ϕ1 ≈Ecipher

ϕ2 then ([[ϕ1]]Aη) ≈ ([[ϕ2]]Aη).

Cryptographic assumptions of Theorem 4 may appear strong compared to existing
work on passive adversaries [4, 22]. This seems unavoidable when we allow frames to
contain both encryption and decryption symbols.

6.4 A theory for guessing attacks

In the context of password based protocols and guessing attacks, Abadi et al. [1] con-
sider a complex equational theory: it accounts for symmetric and asymmetric encryp-
tion, as well as ciphers that can use passwords as keys. Security against guessing attacks

can be elegantly modelled using static equivalence [14]. The main result is soundness of
static equivalence for this equational theory. A direct corollary is soundness of security
against guessing attacks. Because of lack of space we will not detail this result.

7 Adaptive soundness

In [19], we extend soundness of static equivalence to the adaptive setting from [21]. In
≈E-soundness the adversary observes the computational value of a fixed frame whereas
in this setting the adversary sees the computational value of a sequence of adaptively
chosen frames. Applications of this adaptive setting include the analysis of multicast
key distribution protocols [21] and dynamic group key exchange protocols [19].

The adaptive setting is formalized through a cryptographic game. Let (Aη) be a
family of computational algebras and A be an adversary. A has access to a left-right
evaluation oracleOLR: given a pair of terms (t0, t1) it outputs either the implementation
of t0 or t1. This oracle depends on a selection bit b and uses a local store to record
values generated for the different names (these values are used when processing further
queries). With a slight abuse of notation, we omit this store and write:

Ob
LR,Aη

(t0, t1) = [[tb]]Aη

Adversary A plays an indistinguishability game and its objective is to find the value of
b. Formally the advantage of A is defined by:

AdvADPT(A, η, Aη) = P
[
AO

1
LR,Aη = 1

]
− P

[
AO

0
LR,Aη = 1

]
Without further restrictions on the queries made by the adversary, having a non-negligible
advantage is easy in most cases. For example the adversary could submit a pair (0, 1)
to his oracle. We therefore require the adversary to be legal.

Definition 3 (Adaptive soundness). An adversary A is legal if for any sequence of
queries (ti0, t

i
1)1≤i≤n made by A to its left-right oracle, queries are statically equiva-

lent: {
x1 7→ t10, . . . , xn 7→ tn0

}
≈E

{
x1 7→ t11, . . . , xn 7→ tn1

}
A family of computational algebras (Aη) is

– ≈E-ad-sound iff the advantage AdvADPT(A, η, Aη) of any polynomial-time legal
adversary A is negligible.

– unconditionally ≈E-ad-sound iff the advantage AdvADPT(A, η, Aη) of any legal
adversary A is 0.

Note that as variables are typed, any query (ti0, t
i
1) of a legal adversary to the oracle is

such that ti0 and ti1 have the same sort. Adaptive soundness implies the original sound-
ness notion for static equivalence.

Proposition 3. Let (Aη) be a family of computational algebras. If Aη is ≈E-ad-sound
then Aη is also ≈E-sound but the converse is false in general.

Interestingly, in the case of unconditional soundness, adaptive and non-adaptive
soundness coincide.

Proposition 4. Let (Aη) be a family of computational algebras. Aη is unconditionally
≈E-ad-sound iff Aη is unconditionally ≈E-sound.

A direct corollary of this proposition is the following.

Corollary 1. The implementation of XOR for the signature considered in Section 6.1,
(Aη), is unconditionally ≈E⊕ -ad-sound.

8 Adaptively sound theories

We have already seen that the theory of XOR is unconditionally adaptively sound. We
now present additional adaptive soundness results for several equational theories: sym-
metric encryption (which is adaptively sound under IND-CPA) and modular exponenti-
ation (adaptively sound under DDH). We also consider composed theories: symmetric
encryption and modular exponentiation as well as symmetric encryption and XOR. For
these theories we allow keys to be computed, using respectively modular exponentiation
and XOR. Additional details and proofs can be found in [19].

8.1 Symmetric encryption

We consider the case of probabilistic symmetric encryption which recasts the result
of [21] in our framework and illustrates well the difference between a purely passive
and an adaptive adversary.

Symbolic model. Our symbolic model consists of the set of sorts S = {Data}, an
infinite number of names for sort Data called keys and the function symbols:

enc,dec : Data ×Data → Data encrypt, decrypt
pair : Data ×Data → Data pair constructor
πl, πr : Data → Data projections

samekey : Data ×Data → Data key equalities test
tenc, tpair : Data → Data type testers

0, 1 : Data constants

A name k is used at a key position in a term t if there exists a sub-term enc(t′, k) of t.
Else k is used at a plaintext position. We consider the equational theory Esym generated
by:

dec(enc(x, y), y) = x πl(pair(x, y)) = x
πr(pair(x, y)) = y samekey(enc(x, y), enc(z, y)) = 1

tenc(enc(x, y)) = 1 tpair(pair(x, y)) = 1

As usual enc(t, k) is also written {t}k and pair(t, t′) is also written 〈t, t′〉.

Well-formed frames and adversaries. As usual we forbid the formal terms to contain
such cycles. Let ≺ be a total order among keys. A frame ϕ is acyclic for ≺ if for any
subterm {t}k of ϕ, if k′ occurs in t then k′ ≺ k. Moreover as noted in [21], selective
decommitment [16] can be a problem. The classical solution to this problem is to require
keys to be sent before being used to encrypt a message or they must never appear as a
plaintext. A frame ϕ = {x1 7→ t1, . . . , xn 7→ tn} is well-formed for ≺ if

– ϕ is acyclic for ≺;
– the terms ti only use symbols enc, pair, 0 and 1, and only names are used at key

positions;
– if k is used as plaintext in ti, then k cannot be used at a key position in tj for j < i.

An adversary is well-formed for ≺ if the sequence of queries (ti0, t
i
1)1≤i≤n that he

makes to his oracle yields two well-formed frames {x1 7→ t10, . . . , xn 7→ tn0} and
{x1 7→ t11, . . . , xn 7→ tn1} for ≺.

Concrete model. The family of computational algebras (Aη) giving the concrete se-
mantics depends on a symmetric encryption scheme SE = (KG, E ,D). The concrete
domain [[Data]]Aη

contains all the possible bitstrings and is equipped with the distribu-
tion induced by KG. Interpretation for constants 0 and 1 are respectively bitstrings 0η

and 1η. The enc and dec function are respectively interpreted using algorithm E and
D. We assume the existence in the concrete model of a concatenation operation which
is used to interpret the pair symbol. The corresponding left and right projections im-
plement πl and πr. Finally, as we are only interested in well-formed frames, we do not
provide any computational interpretation for tenc, tpair and samekey.

Semantic security. In this section we suppose a message-length, but not necessarily
which-key concealing semantically secure encryption scheme. The definition that we
recall below uses a left-right encryption oracle LRb

SE . This oracle first generates a key
k using KG. Then it answers queries of the form (bs0, bs1), where bs0 and bs1 are
bitstrings. The oracle returns ciphertext E(bsb, k). The goal of the adversary A is to
guess the value of bit b. His advantage is defined as:

Advcpa(A, η,SE) = P
[
ALR1

SE = 1
]
− P

[
ALR0

SE = 1
]

Encryption scheme SE is IND-CPA secure if the advantage of any adversaryA is negli-
gible in η. The standard definition of IND-CPA allows the scheme to be message-length
revealing. By abuse of notation we call the above scheme also IND-CPA secure.

We also describe a variant of IND-CPA security, IND-CPA′, which models non-
adaptive adversaries. The left-right encryption oracle LR′b

SE takes as input a list of pairs
of bitstrings (bsi

0, bs
i
1) for i in [1, n] and returns the list of ciphertexts E(bsi

b, k) for i
in [1, n]. This oracle can only be queried once. The adversary can observe multiple en-
cryptions but he is not allowed to chose them adaptively. The advantage of an adversary
is defined in a similar way as above, replacing LRb

SE by LR′b
SE . A symmetric encryp-

tion scheme is said to be IND-CPA′ if the advantage of any polynomial time adversary
A is negligible in η. These two notions of semantic security are related by the following
proposition.

Proposition 5. Let SE be a symmetric encryption scheme. If SE is IND-CPA, then SE
is IND-CPA′. However SE can be IND-CPA′ without being IND-CPA.

We now state the soundness theorem for symmetric encryption.

Theorem 5. Let ≺ be a total order among keys. In the remainder of this proposition
we only consider well-formed adversaries for≺. Let (Aη) be a family of computational
algebras based on a symmetric encryption scheme SE .

– (Aη) is ≈Esym-ad-sound if SE is IND-CPA but the converse is false.
– (Aη) is ≈Esym-sound if SE is IND-CPA′ but the converse is false.

The proof uses a similar hybrid argument as the one used by Micciancio and Pan-
jwani in [21]. Results of this section are summed up in the following table. Note that the
relations between adaptive and non-adaptive soundness have not been detailed formally.

≈Esym-ad-sound
⇐
6⇒ IND-CPA

6⇑ ⇓ 6⇑ ⇓

≈Esym-sound
⇐
6⇒ IND-CPA′

8.2 Modular exponentiation

We suppose the same symbolic and concrete model as in Section 6.2. The DDH as-
sumption is necessary and sufficient to prove adaptive soundness.

Theorem 6. Let (Aη) be a family of computational algebras. (Aη) is ≈EDH
-sound iff

(Aη) satisfies the DDH assumption. (Aη) is ≈EDH
-ad-sound iff (Aη) satisfies the DDH

assumption.

The proof of this result uses an adaptive variant of DDH called 3DH [12]: it general-
izes several previously used variants of DDH. The main difficulty in this proof consists
in relating DDH and 3DH.

Results for modular exponentiation are summed up in the following table. Note that
while adaptive soundness and (classical) soundness are not equivalent for symmetric
encryption, they coincide in this case.

≈EDH
-ad-sound⇐⇒ DDH⇐⇒ ≈EDH

-sound

8.3 Composing encryption with exponentiation

Symbolic model. We consider an equational theory E containing both EDH and Esym

and suppose that G is a subsort of Data .

Well-formed frames. Let≺ be a total order between keys and exponentiations. A frame
ϕ (on Σ) is well-formed for ≺ if:

– ϕ does not contain any dec, tenc, tpair, πl, πr or ∗ symbol, only names and expo-
nentiations are used at key position.

– For any subterm exp(p) of ϕ used at a key position, p is linearly independent of
other polynomials p′ such that exp(p′) is a subterm of ϕ.

– For any subterm {t}t′ of ϕ, if t′′ is a name of sort Data or an exponentiation then
t′′ ≺ t′.

The second condition is similar to the conditions on key cycles. The last condition is to
avoid selective decommitment.

Concrete model. The concrete model is given by the models for symmetric encryption
and modular exponentiation. However, exponentiations can be used as symmetric keys
in our symbolic model. This needs to be reflected in the concrete model. The family of
computational algebras (Aη) giving the concrete semantics is parameterized by a sym-
metric encryption scheme SE and an instance generator IG. We require the key gener-
ation algorithm of SE to randomly sample an element of IG(η). Giving an IND-CPA
encryption scheme SE ′, we build another IND-CPA encryption scheme SE which in-
deed uses such a key generation algorithm. This is achieved by using a key extractor
algorithm Kex [13]. This algorithm (usually a universal hash function used with the en-
tropy smoothing theorem) is used to transform group elements into valid keys for SE ′.
Its main characteristic is that applying Kex to a randomly sampled element of a group
created by IG produces the same distribution as the one given by the key generation
algorithm of SE ′. Then the new encryption and decryption algorithms of SE apply the
Kex algorithm to the group element which is used as key. This produces a symmetric
key which can be used with the encryption and decryption algorithms of SE ′.

The family of computational algebras (Aη) implementing encryption with exponen-
tiation is EE-secure if the encryption scheme SE is secure against IND-CPA and uses a
key generation algorithm as described above and IG satisfies the DDH assumption.

Theorem 7. Let ≺ be a total order between keys and exponentiations. Let (Aη) be an
EE-secure family of computational algebras then (Aη) is≈E-ad-sound for well-formed
frames for ≺.

8.4 Composing encryption with XOR

Symbolic model. We consider an equational theory E containing both E⊕ and Esym

and suppose that Data⊕ is a subsort of Data .

Well-formed frames. Let ≺ be a total order between keys and terms of sort Data⊕. A
frame ϕ = {x1 7→ t1, . . . xn 7→ tn} is well-formed for ≺ if the following conditions
are verified. Let X be the set of maximal subterms of ϕ of sort Data⊕2.

2 Using standard definitions for manipulating terms X is formally defined as follows: X =S
1≤i≤n {ti|p | p ∈ pos(ti), sort(ti|p) = Data⊕, p = p′ · k ⇒ sort(ti|p′) 6= Data⊕}.

– ϕ does not contain function symbols dec, tenc, tpair, πl or πr and only terms of
sort Data⊕ and names are used at key positions.

– For any x ∈ X used at a key position, there does not exist a set {x1, . . . , xi} ⊆
X ∪ {1}, disjoint from {x}, such that x =E⊕ x1 ⊕ ...⊕ xi.

– For any subterm {t}t′ of ϕ, if t′′ is a subterm of t which is a name of sort Data or
an element of X then t′′ ≺ t′.

Concrete model. The concrete model is given by the models for symmetric encryption
and exclusive OR. However, as in the combination of encryption with exponentiation,
we need to reflect that nonces can be used as keys. The family of computational algebras
(Aη) giving the concrete semantics is parameterized by a symmetric encryption scheme
SE . The XOR part uses the same implementation as in Section 6.1. We require that the
key generation algorithm of SE consists in randomly sampling an element of [0, 1]η.
The family of computational algebras (Aη) is said EX-secure if the encryption scheme
SE is secure against IND-CPA and uses a key generation algorithm as described above.

Theorem 8. Let ≺ be a total order between keys and terms of sort Data⊕. Let (Aη)
be an EX-secure family of computational algebras then (Aη) is ≈E-ad-sound for well-
formed frames for ≺.

9 Conclusion

In this paper we have described computationally soundness results for a model relying
on equational theories and static equivalence. We consider the case of passive and adap-
tive adversaries and present several examples of sound equational theories to illustrate
this framework. Whether this framework can be generalized to an active attacker is still
a challenging research topic.

References

1. M. Abadi, M. Baudet, and B. Warinschi. Guessing attacks and the computational soundness
of static equivalence. In Proc. 9th International Conference on Foundations of Software
Science and Computation Structures (FoSSaCS’06), volume 3921 of LNCS, 2006.

2. M. Abadi and V. Cortier. Deciding knowledge in security protocols under equational the-
ories. In Proc. 31st International Colloquium on Automata, Languages and Programming
(ICALP’04), volume 3142 of LNCS, pages 46–58, 2004.

3. M. Abadi and C. Fournet. Mobile values, new names, and secure communications. In Proc.
28th Annual ACM Symposium on Principles of Programming Languages (POPL’01), pages
104–115. ACM Press, 2001.

4. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). In Proc. 1st IFIP International Conference on Theoret-
ical Computer Science (IFIP–TCS’00), volume 1872 of LNCS, pages 3–22, 2000.

5. M. Abadi and P. Rogaway. Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology, 15(2):103–127, 2002.

6. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in the pres-
ence of key-cycles. In Proc. 10th European Symposium on Research in Computer Security
(ESORICS’05), volume 3679 of LNCS, pages 374–396, 2005.

7. P. Adão, G. Bana, J. Herzog, and A. Scedrov. Soundness of formal encryption in the pres-
ence of key-cycles. In Proc. 10th European Symposium on Research in Computer Security
(ESORICS), volume 3679 of LNCS, pages 374–396. Springer, 2005.

8. P. Adão, G. Bana, and A. Scedrov. Computational and information-theoretic soundness and
completeness of formal encryption. In Proc. 18th IEEE Computer Security Foundations
Workshop (CSFW’05), pages 170–184, 2005.

9. M. Backes, B. Pfitzmann, and M. Waidner. A composable cryptographic library with nested
operations. In Proc. 10th ACM Conference on Computer and Communications Security
(CCS’03), 2003.

10. M. Baudet, V. Cortier, and S. Kremer. Computationally sound implementations of equational
theories against passive adversaries. In Proceedings of the 32nd International Colloquium
on Automata, Languages and Programming (ICALP’05), volume 3580 of LNCS, pages 652–
663. Springer, 2005.

11. B. Blanchet. Automatic proof of strong secrecy for security protocols. In Proc. 25th IEEE
Symposium on Security and Privacy (SSP’04), pages 86–100, 2004.

12. E. Bresson, Y. Lakhnech, L. Mazaré, and B. Warinschi. A generalization of ddh with ap-
plications to protocol analysis and computational soundness. In Advances in Cryptology -
CRYPTO’07, Proc. 27th Annual International Cryptology Conference, volume 4622, pages
482–499. Springer, 2007.

13. O. Chevassut, P.-A. Fouque, P. Gaudry, and D. Pointcheval. Key derivation and ran-
domness extraction. Technical Report 2005/061, Cryptology ePrint Archive, 2005.
http://eprint.iacr.org/.

14. R. Corin, J. Doumen, and S. Etalle. Analysing password protocol security against off-line
dictionary attacks. ENTCS, 121:47–63, 2005.

15. V. Cortier, S. Delaune, and P. Lafourcade. A survey of algebraic properties used in crypto-
graphic protocols. Journal of Computer Security, 14(1):1–43, 2006.

16. C. Dwork, M. Naor, O. Reingold, and L. J. Stockmeyer. Magic functions. J. ACM,
50(6):852–921, 2003.

17. F. D. Garcia and P. van Rossum. Sound computational interpretation of symbolic hashes
in the standard model. In Advances in Information and Computer Security (IWSEC’06),
volume 4266 of LNCS, pages 33–47. Springer, 2006.

18. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28(2):270–299, 1984.

19. S. Kremer and L. Mazaré. Adaptive soundness of static equivalence. In Proc. 12th European
Symposium on Research in Computer Security (ESORICS’07), volume 4734 of LNCS, pages
610–625. Springer, Sept. 2007.

20. P. Laud and R. Corin. Sound computational interpretation of formal encryption with com-
posed keys. In Proc. 6th International Conference on Information Security and Cryptology
(ICISC’03), volume 2971 of LNCS, pages 55–66. Springer, 2004.

21. D. Micciancio and S. Panjwani. Adaptive security of symbolic encryption. In Proc. 2nd The-
ory of cryptography conference (TCC’05), volume 3378 of LNCS, pages 169–187. Springer,
2005.

22. D. Micciancio and B. Warinschi. Completeness theorems for the Abadi-Rogaway logic of
encrypted expressions. Journal of Computer Security, 12(1):99–129, 2004.

23. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In Proc. 1st Theory of Cryptography Conference (TCC’04), volume 2951 of
LNCS, pages 133–151. Springer, 2004.

24. D. H. Phan and D. Pointcheval. About the security of ciphers (semantic security and pseudo-
random permutations). In Proc. Selected Areas in Cryptography (SAC’04), volume 3357 of
LNCS, pages 185–200, 2004.

