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Abstract

In this paper we report on an analysis for finding known-pair and chosen-text attacks in protocols.
As these attacks are at the level of blocks, we extend the attacker by special capabilities related
to block chaining techniques. The analysis is automated using Blanchet’s protocol verifier and
illustrated on two well-known protocols, the Needham-Schroeder-Lowe public-key protocol as well
as the Needham-Schroeder symmetric-key protocol. On the first protocol, we show how the special
intruder capabilities related to chaining may compromise the secrecy of nonces and that chosen-
ciphertext attacks are possible. We propose two modified versions of the protocol which strengthen
its security. We then illustrate known-pair and chosen-plaintext attacks on the second protocol.

Keywords: Formal analysis of security protocols, known-pair and chosen-text attacks, block
chaining.

1 Introduction

Computer security has gained increasing importance with the overwhelming
growth of the Internet and electronic commerce. However, history has shown
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that security protocols are extremely error-prone and the need for applying
formal methods to security systems has been widely accepted. One of the most
well-known examples is the flaw Lowe [9] found in the Needham-Schroeder
public-key protocol [15] presented 17 years earlier. The protocol was believed
and even proved correct before (although one has to admit that Lowe changed
some, probably unrealistic, hypotheses).

In 1983, Dolev and Yao [6] set up the foundations for applying formal
methods to security protocols by defining what has been known since then as
the Dolev-Yao model. This model is based on the following two hypotheses:

• the intruder has complete knowledge of and access to the communication
network: he can remove any sent message and insert any messages he can
construct;

• the cryptography is perfect, e.g. unless you know the key, it is impossible
to decrypt an encrypted message.

This model has been well studied during the last twenty years. In one di-
rection, many theoretical results, related to the decidability and complexity
of the verification, have been established, e.g. [24,7]. In another direction, a
large number of methods and (partially or completely automated) tools have
been used and developed, for instance [1,8,9,12,16,19].

While the first hypothesis of the model is widely accepted, the perfect
encryption assumption is considered as too strong. For instance, many en-
cryption schemes present algebraic properties which an attacker might take
advantage of. Examples include the multiplicative property of the RSA en-
cryption scheme, i.e. (me

1 mod n) × (me
2 mod n) = (m1 × m2)

e mod n, the
fact that Diffie-Hellman key agreement is based on the commutativity of ex-
ponentiation, i.e. gab = gba, or that an encryption based on “exclusive-or”
cancels itself out, i.e. a⊕ b⊕ b = a. Many recent papers aim at extending the
Dolev-Yao model with these additional properties [2,3,14,17].

Another kind of attack which is not captured in a standard Dolev-Yao
model are guessing attacks [4,5,10]. In a guessing attack an intruder tries
to break a weak password, by trying to guess it. A guessing attack is pos-
sible whenever the protocol offers the possibility to verify that a previously
made guess was correct. A similar kind of cryptanalysis, although not re-
stricted to weak data, can be performed when a protocol offers the possibility
to obtain known-pairs or chosen-texts. In a known-pair attack, an attacker
gets knowledge of both a plaintext and the corresponding ciphertext. This
information may then be useful to a cryptanalyst when trying to obtain some
information about the key. More powerful attacks are chosen-plaintext and
chosen-ciphertext attacks, where the attacker can choose the plaintext for
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which he gets to know the encryption or vice-versa. Known plaintext at-
tacks were for instance used in WWII, to break Enigma keys. Cryptanalysts
used the fact that the weather report generally contained the word Wetter 3 .
Another example of a cryptosystem which is vulnerable to known plaintext
attacks is when exclusive-or is used as the encryption operator. Knowledge
of one known pair is enough to recover the secret key (although one should
never use the same key twice in this cryptosystem). Most modern ciphers re-
sist against this kind of attack. However, Shoup showed in [18] that the proof
of resistance against chosen-ciphertext attacks of OAEP was flawed. Known
and chosen-ciphertexts can also be used to mount (offline) dictionary attacks.
Given a known pair encrypted under a weak encryption key, e.g. password,
an attacker can try to encrypt the plaintext with keys from a list or dictio-
nary and compare the results. When given a chosen-text text, the attacker
prepares (once and for all) a list of one text encrypted (or decrypted) with a
list of possible keys. Then, the attacker can choose to obtain the encryption
(or decryption) of this text and try to find the result in his list to recover the
key. This would be a special case of guessing attacks.

We believe that it is important to make explicit the hypotheses made on
a cryptosystem used in a protocol, rather than treating it as a black box. A
protocol makes chosen-plaintext (ciphertext) attacks possible if the attacker
can use the protocol as an encryption (decryption) oracle. Even, if this might
not always lead to an attack the presence of such an oracle should be analysed:
an attacker could for instance mount an attack by mixing up two different
protocols, using the same keys, each of which might be secure independently.

In this paper we aim to develop an automated method for determining
whether a protocol offers the possibility to mount known-pair or chosen-text
attacks on the underlying encryption scheme. We do this in the framework of
block ciphers. In such ciphers encryption is performed at the level of blocks,
and we need to take into account what technique is used to chain the different
blocks. These techniques offer some additional attacker capabilities, allowing
to “reuse” pieces of encrypted messages to obtain other valid ciphertexts.

Related work

The work closest to ours is Stubblebine and Meadows’ analysis of known-
pair and chosen-text attacks [21,22]. They use the NRL protocol analyser to
automate their analysis and show how to automatically find a known attack
in an early version of the IP Encapsulating Security Protocol. One major
difference with our work is that Stubblebine and Meadows model cipher block

3 the German word for weather
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chaining at a low level, modelling the exclusive-or operation. However, due to
the limitations of the NRL Protocol analyser, associative-commutative prop-
erties are not included. In this paper, we give a more abstract view of chaining
modes, where special capabilities of the intruder related to chaining are repre-
sented as deduction rules. Moreover, we use a free term algebra in opposition
to the rewrite system used by the protocol analyser. This results in some of
the technical differences, which we will discuss when explaining our model.
To the best of our knowledge, Stubblebine and Meadows’ work is the only au-
tomated analysis of known-pair and chosen-text attacks. There exist several
other works, such as [11,20], which emphasise problems that can arise when
chaining modes are used without additional integrity mechanisms. However,
these works do not use automated tools to find such attacks.

Outline

In section 2 we give the preliminaries, including notation, definitions of
known-pair and chosen-pair attacks. We also explain block chaining tech-
niques and show how an attacker can use special properties of these tech-
niques. In section 3, we briefly present Blanchet’s protocol verifier, which we
used to automate our analysis. We define known-pair and chosen-text attacks
as queries given to the tool and encode special attacker capabilities, related
to block chaining, in the protocol verifier. In section 4, we illustrate our tech-
niques on two well-known protocols, the Needham-Schroeder-Lowe public-key
protocol and the Needham-Schroeder symmetric-key protocol. We demon-
strate the ability of the tool to find known-pair and chosen-text attacks, as
well as a secrecy attack, related to the extended attacker capabilities. To fa-
cilitate others in replicating our work and possibly developing it further, we
have made our analyses electronically available 4 . Finally, in section 5, we
conclude.

2 Known-pair, chosen-text attacks and block chaining

In this section we give the basic notations and introduce known-pair and
chosen-text attacks. We discuss them in the framework of block ciphers, which
can be either symmetric or public key cryptosystems. When using a block
cipher, the plaintext is divided into different blocks which are encrypted one by
one. These encrypted blocks are composed, or chained using special techniques
to form the ciphertext. As known pairs or chosen texts have to be found at
the level of blocks, we discuss some of them, and show how an attacker could
take advantage of some properties of these chaining techniques.

4 http://www.ulb.ac.be/di/scsi/skremer/Pairs/
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2.1 Notation

In the remainder of the paper, we use the following notation. A, B, I repre-
sent the entities Alice, Bob and the intruder. The expression pk(k) denotes
the public key corresponding to the secret key k; sEk(m) and sDk(c) are the
symmetric encryption and decryption (resp.) of m using the key k. The public-
key decryption and encryption of m using the key k and its public counterpart
pk(k) are written pDk(c) and pEpk(k)(m). We write h(m) for the cryptographic
hash of message m.

2.2 Known-pair and chosen-text attacks

Generally, the security of a cipher is evaluated with regard to the information a
cryptanalyst is provided (we assume that according to Kerkhoff’s assumption,
the attacker knows all the details about the encryption function, except the
secret key). Then, there exist different classes of attacks:

• ciphertext-only: the attacker has no information about the plaintext at all;

• known-plaintext: the attacker knows both the plain text and the ciphertext;

• chosen-plaintext: the attacker can choose the plaintext for which he wants
to know the cipher;

• chosen-ciphertext: the attacker can choose the cipher for which he wants to
know the plaintext.

Note, that when considering public-key encryption, an encryption scheme
should always at least hold against known- and chosen-plaintext attacks, as
these can trivially be realized, as the encryption key is public knowledge. A
variant of chosen-text attacks are adaptively chosen-text attacks. The differ-
ence is that when a text is chosen, it may depend on the previous choices.
Whenever a protocol can be executed several times, it offers the possibility of
adaptively chosen-text attacks whenever chosen-text attacks are possible.

In the context of protocol analysis, we want to examine what are the exact
assumptions a protocol designer has to make about the use of the encryp-
tion functions. Rather than merely considering encryption functions as black
boxes, we want to quantify against which of the above attacks the used cipher
should resist. Therefore, we want to verify whether a given protocol offers the
possibility to mount one of the above attacks. Note that we do not pretend
that the presence of a known-pair or chosen-text attack breaks the protocol.
If the protocol offers such a possibility, the used encryption function should
explicitly be stated to resist against these kind of attacks.
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2.3 Block chaining techniques

Electronic Code Book (ECB), Cipher Block Chaining (CBC), Cipher Feedback
(CFB), and Output Feedback (OFB).

When using block ciphers (whether for symmetric or public-key cryptog-
raphy), the plaintext is first divided into blocks of fixed size, corresponding
to the blocksize of the encryption function. These blocks are then ciphered
one by one. Classical block chaining mechanisms are ECB (electronic code

book), CBC (cipher block chaining), OFB (output feedback) and CFB (cipher
feedback). However, as noted in [13] p. 285, OFB and CFB cannot be ap-
plied to public-key encryption. Therefore we focus on ECB and CBC. We
illustrate block chaining on symmetric key encryption, but the techniques di-
rectly apply to public-key encryption as well. The simplest chaining is ECB.
For a plaintext P1 . . . Pn of size n × blocksize, the corresponding ciphertext
C1 . . . Cn under key k is computed by setting

Ci = sEk(Pi) (1 ≤ i ≤ n).

CBC represents a more elaborate way of chaining. In CBC the cipher
of each block depends on the cipher of the previous one and is computed as
follows:

Ci = sEk(Pi ⊕ Ci−1) (1 ≤ i ≤ n)

where C0 = IV , an initialisation vector. In order to decrypt such a message
we compute

Pi = sDk(Ci) ⊕ Ci−1

where ⊕ denotes bitwise exclusive-or, which cancels itself out. According to
[13], the secrecy of the IV is not required for security, although secrecy might
be used to ensure IV ’s integrity. In the following, we suppose that the IV

is not secret and no additional mechanism is used to ensure its integrity, or
the integrity of the ciphered message. We defend the point of view that if an
additional mechanism is needed to ensure the integrity of the message, such
as a cryptographic hash for instance, then it should be stated explicitly in the
protocol description.

We now explain how an attacker could tamper with ciphered messages that
use either ECB or CBC. It is easy to see that if ECB is used, an attacker can
extract any ciphered block and compose a new sequence. Given a ciphertext
C1 . . . Cn, he can for instance extract the cipher Ci . . . Cj (1 ≤ i ≤ j ≤ n)
which corresponds to a correct cipher of Pi . . . Pj . In a similar way, the attacker
could delete some of the blocks and obtain C1 . . . CiCj . . . Cn (1 ≤ i < j ≤

n), corresponding to a valid cipher of P1 . . . PiPj . . . Pn. The attacker could
even recompose parts of different messages that were ciphered with the same
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key. Moreover, when both Ci and Pi are known, we immediately have a pair
Pi, sEm(Pi), which is not the case when using CBC due to the exclusive-or
operation.

When CBC is used, altering messages and obtaining pairs might seem more
difficult. However, as we will show now, there are several properties that can
be exploited. A property that has already been noticed and automated in
[23], is that any prefix of a valid cipher is also a valid cipher: given C1 . . . Cn,
C1 . . . Ci (1 ≤ i ≤ n) is a valid cipher corresponding to the encryption of the
i first blocks. It might be less obvious that one can also reuse any postfix of
a cipher as a valid cipher. All we need to do is to set the IV to Ci and we
obtain a valid cipher Ci+1 . . . Cn corresponding to the encryption of the n − i

last plaintext blocks. There is an additional property which can be exploited
when a public-key encryption scheme is used. Given any cipher C1 . . . Ci of
a plaintext P1 . . . Pi, we can obtain a valid cipher C1 . . . Cn corresponding to
the plaintext P1 . . . Pn where the last n − i plaintext blocks are freely chosen.
Doing so yields into a valid ciphertext for which we do not know the beginning
of the plaintext, i.e. the i first blocks. Note that this is only possible because
the encryption key is known. It would not work when using symmetric en-
cryption, unless we are in the uninteresting case where the encryption key,
and hence the decryption key too, would be known. However, there exists a
similar property, which also works in the symmetric case. Given C1, . . . Cn and
C ′

1 . . . C ′

n′, the attacker can concatenate these two ciphers. The decryption re-
sults into P1 . . . Pn, X, P ′

2 . . . P ′

n′, where X = sDk(C
′

1)⊕Cn is a random-looking
block as it is not properly decrypted. In [11] this property has been exploited
to find new flaws, as X could be accepted as being a fresh nonce or key.

In addition to the fact that using CBC gives new capabilities to the at-
tacker, we will show how known-pair or chosen-text attacks can be found when
CBC is used. As Ci �= sEk(Pi), obtaining a pair is not direct. However, if we
know Pi, Ci and Ci−1, we can compute the decryption of Ci as

sDk(Ci) = Pi ⊕ Ci−1

and obtain a known pair. This same technique can be used in a chosen-
ciphertext attack to recover the decryption of the block. In a chosen-plaintext
attack, we want to get the encryption of a given block Pi. To do this we have
to insert P ′

i = Pi ⊕ Ci−1. Indeed, when applying the encryption algorithm
with CBC to the block P ′

i , we obtain

sEk(P
′

i ⊕ Ci−1) = sEk(Pi).

The “tricks” described above are not useful in practice unless we make some
assumptions related to the size of blocks and message fields. In the following,
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we assume that the size of all fields is a multiple of the blocksize. This means
that we can always “cut” message at the right place and that there is never
a need for padding to achieve the right blocksize. Although this assumption
might be unrealistic, we want to verify that the security of the protocol holds
in a worst case behaviour and does not depend on unstated assumptions of
the implementation. Also note that when public-key cryptography is used, a
1024-bit RSA block is unlikely to be of the same size as a nonce. However,
public-key cryptography based on elliptic curves uses much smaller key and
block sizes, making the size match much more realistic.

Under these assumptions, we conclude that when knowing a ciphertext
and the corresponding plaintext, it is always possible to get the plaintext for
each block and the corresponding encryption. Moreover, given a chosen cipher
block, we know how to integrate it correctly in a message, such that, when
obtaining the decryption of the message, we can extract the decryption of the
chosen block. In section 3, we show how we extend the attacker’s capabilities
in an abstract way, where we do not need to actually model the functioning
of CBC.

3 The protocol verifier tool and our model

In this section, we briefly introduce the tool which we use to automate our
analysis. We use Blanchet’s protocol verifier tool [1], which is based on Prolog
rules and a specialised solving algorithm, which terminates for many proto-
cols. Although, we believe that many other tools could easily be extended to
perform a similar analysis our choice was guided by the following arguments:
the protocol verifier does not bound the number of sessions, is very efficient
and above all allows us to encode the attacker capabilities without need of
modifying the tool itself.

3.1 Protocol description

Each protocol is described by a set of Prolog rules where protocol messages
are composed of terms. For a detailed syntax, we refer the reader to [1].

Cryptographic primitives are represented by functions. As an example,
encryption is modeled as a function taking two parameters, the plaintext and
the key. The cryptosystems are modelled in terms of a free term algebra, which
means that we do not explicitly model decryption. Only explicitly encrypted
terms can be decrypted.

Secret keys are names and nonces are names parametrised by the messages
previously received in the given protocol session, in order to model fresh name
generation (even if this is slightly weaker than really creating a new name).

S. Kremer, M.D. Ryan / Electronic Notes in Theoretical Computer Science 128 (2005) 87–10494



Public keys are represented by a function, which maps a private key to the
corresponding public key, i.e. whenever one knows the secret keys, the public
key can be deduced.

There is also a special predicate att(m), which is interpreted as “the at-

tacker knows message m”.

The protocol messages themselves are encoded as Prolog rules, one for each
message. The intuition is that the intruder completely controls the network
and each message is sent to him. Hence, each message foreseen by the proto-
col allows the attacker to increase his knowledge, provided that the attacker
has knowledge of all the preceding messages this entity should have received
in the protocol. This is required to ensure that a honest protocol entity can-
not execute the protocol out of order. As an example, consider the classical
Needham-Schroeder public key protocol fixed by Lowe [9], in its three message
version, as described in protocol 1.

Protocol 1 Needham-Schroeder-Lowe public key protocol

1. A → B: pEpk(B)(NA, pk(A))

2. B → A: pEpk(A)(NA, NB, pk(B))

3. A → B: pEpk(B)(NB)

This protocol description gives us the following set of rules, corresponding
to each of the three messages.

att(pk(x))

att(pEpk(sB[])(NA[pk(x)], pk(sA[])))

att(pEpk(sB[])(x, y))

att(pEy(x, NB [x, y], pk(sB[])))

att(pk(x)) ∧ att(pEpk(sA[])(NA[pk(x)], y, pk(x)))

att(pEpk(x)(y))

In the first rule, corresponding to the first message, we require the attacker to
know some public key of an entity x. This reflects the fact that Alice is willing
to engage a session with any other entity, including possibly the attacker
himself. Therefore, we allow the attacker to trigger Alice’s protocol execution,
choosing with whom she starts the protocol. When doing so, the attacker
learns the first message of the protocol. We denote Alice’s (respectively Bob’s
private key) by the names sA[] (respectively sB[]). Note that the nonce NA is
parametrised by pk(x) to ensure that a different nonce is used for each session.
Also note that we model entity names by their public keys, which is a possible
implementation of the protocol.

The second rule says, that whenever the intruder can provide a pair (x, y)
encrypted with Bob’s public key, Bob will respond by sending the second
message of the protocol, interpreting x as the initiator’s nonce and y as the
initiator’s private key. The interpretation of the third rule is similar.
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att(m)

att(h(m))

att(m) ∧ att(k)

att(sEk(m))

att(sEk(m)) ∧ att(k)

att(m)

att(x)

att(pk(x))

att(m) ∧ att(pk(k))

att(pEpk(k)(m))

att(pEpk(k)(m)) ∧ att(k)

att(m)

Fig. 1: Standard attacker capabilities

3.2 Attacker capabilities

We now define what are the capabilities of the attacker to construct and
decompose messages in a Dolev-Yao style. The capabilities of the intruder are
encoded as Prolog rules in a similar way as the protocol messages themselves.

In figure 1, we present the attacker rules corresponding to the standard
attacker capabilities. The first rule corresponds to the attacker’s capability
of hashing a message. The second and third rules represent symmetric key
encryption and decryption. The remaining rules correspond to public-key
operations and should be clear. The attacker can also perform basic operations
which we do not mention explicitly, such as concatenation, generating new
terms, etc. Moreover, we can give initial knowledge to the attacker. To add
the message m to the attacker’s initial knowledge, we add the fact att(m).

In figure 2, we describe the additional capabilities, which we grant to the
attacker when we assume that encryption is used with either CBC mode or
ECB mode 5 . When using CBC, we allow the attacker, given the encryption
of a message, to extract the encryption of a prefix, respectively a postfix of
this message. We explained in section 2 how this is realized. In this abstract
modelling, we suppose that all messages are either atomic or a concatenation
of atomic messages. It is not possible to cut an atomic message, even if in
real life this might be feasible and could be used to mount subtle attacks. As
discussed in section 2, when using public key encryption it is also possible to
extend an encrypted message, if the encryption key is known. This is reflected
by the third rule. In the fourth and fifth rule we model the fact that a random-
looking block is produced by introducing a new name rnd, which depends on
the two blocks that are incorrectly merged when decrypting. When ECB is
used as a chaining technique, we add similar capabilities.

5 Encoding these attacker models is slightly more complicated as shown in the figure, as
we have to use the pairing operator inside functions rather than operations on tuples.
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Cipher block chaining:

att(sEk(m, n))

att(sEk(m)) ∧ att(sEk(n))

att(pEpk(x)(m, n))

att(pEpk(x)(m)) ∧ att(pEpk(x)(n))

att(pEpk(x)(m)) ∧ att(n) ∧ att(pk(x))

att(pEpk(x)(m, n))

att(sEk(m, n)) ∧ att(sEk(m
′, n′))

att(sEk(m, n, rnd[n, m′], n′))

att(pEpk(x)(m, n)) ∧ att(pEpk(x)(m
′, n′))

att(pEpk(x)(m, n, rnd[n, m′], n′))

Electronic code book:

att(sEk(m, n))

att(sEk(m)) ∧ att(sEk(n))

att(pEpk(x)(m, n))

att(pEpk(x)(m)) ∧ att(pEpk(x)(n))

att(sEk(m)) ∧ att(sEk(n))

att(sEk(m, n))

att(pEpk(x)(m)) ∧ att(pEpk(x)(n))

att(pEpk(x)(m, n))

Fig. 2: Extended attacker capabilities due to block chaining

3.3 Property specification

Blanchet’s protocol verifier implements a Prolog-like solving algorithm, which
can be used to check whether a fact is derivable from the available rules or
not. The most direct properties one can verify are secrecy properties. If we
want to know whether a protocol guarantees a secret s, we verify that att(s)
cannot be deduced. Moreover, whenever s is derivable from the rules, the tool
shows the derivation trace.

We are interested in verifying whether a protocol offers possibility for
known-pairs or chosen-text attacks, in order to determine what hypotheses
are required on the primitives. We will show now that these different attacks
can be formalised as secrecy properties.

Known-pair attacks

Remember that in order to mount a known-pair attack, we need to know a
ciphertext and the corresponding plaintext. Therefore, we say that a protocol
allows a known-pair attack with respect to key k, if att(sEk(x), x) can be
deduced for some x.
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Chosen-plaintext attacks

For an attacker to be able to mount a chosen-plaintext attack, the attacker
should be able to use the protocol as an oracle and choose whatever plaintext
to be encrypted. We model this by giving the attacker a challenge, i.e. we
add a special name called challenge to his knowledge, which is a plaintext
that is never used by any of the protocol participants. If the attacker succeeds
in getting this challenge encrypted, we conclude that he can do so for any
plaintext of his choice. We say that a protocol allows a chosen-plaintext
attack with respect to key k, if given att(challenge[]), it is possible to deduce
att(sEk(challenge[])).

Chosen-ciphertext attacks

A chosen-ciphertext attack is formalised in a similar way to chosen-plaintext
attacks. The idea is that the challenge we give to the attacker is a ciphertext,
for which he does not know the plaintext. As we are in a free term algebra, we
cannot express that a challenge is a ciphertext; instead, we give the attacker
the encryption of the challenge and require him to recover the challenge itself.
We say that a protocol allows a chosen-ciphertext attack with respect to key
k, if given att(sEk(challenge[])), it is possible to deduce att(challenge[]). The
query for a public-key encryption function is similar.

We can now briefly compare our definitions to Stubblebine and Meadows’
definitions [21,22]. First, we use the idea of a challenge to model chosen-text
attacks. Meadows and Stubblebine used a special function not sent which
enables the attacker to choose a value. The definition of this function is
however rather tricky. Second, we do not explicitly need decryption to define
a chosen-ciphertext attack. Giving the attacker knowledge of the encryption
of the challenge and requiring him to produce the challenge itself captures the
notion of chosen-cipher attack.

4 Analysis

In this section, we illustrate our analysis on two well known protocols: the
Needham-Schroeder-Lowe public-key protocol and the Needham-Schroeder
symmetric-key protocol.

4.1 The Needham-Schroeder-Lowe public-key protocol

The protocol is described in protocol 1. We suppose that the reader is familiar
with its main ideas. Our analysis reveals two things. On one hand, we show
that giving the attacker additional capabilities related to block chaining allows
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the attacker to compromise the secrecy of the nonces used in the protocol. On
the other hand, the protocol allows the attacker to mount a chosen-ciphertext
attack. We then show a slight variation of the protocol, which only requires
to change the order of fields in the first message to prevent both attacks.

An attack compromising secrecy of nonces

We first show, how the attacker learns Alice’s nonce. The attack is based
on the attacker’s capabilities to extract a prefix from a ciphertext and to add
a postfix to an existing ciphertext. The attack is presented in attack 1, where
I denotes the attacker, or intruder. The attacker starts observing the first
message in a protocol session between Alice and Bob. Then, the attacker
extracts pEpk(B)(NA) from this message. For this, he takes the prefix of the
ciphertext. As the attacker knows Bob’s public key, he can construct the
message pEpk(B)(NA, I). Remember that this is possible, by ciphering his
identity, and considering the last block of pEpk(B)(NA) as the IV . Now the
attacker can himself start a session with Bob, who decrypts the unknown
nonce NA and sends it back encrypted with the attacker’s public key.

Attack 1 An attack compromising the secrecy of Alice’s nonce

1. A → B: pEpk(B)(NA, B)

2. extract pEpk(B)(NA) from pEpk(B)(NA, B) and construct pEpk(B)(NA, I)

3. I → B: pEpk(B)(NA, I)

4. B → I: pEpk(I)(NA, NB, pk(B))

An even simpler attack can be used to learn Bob’s nonce. Here, the at-
tacker observes the third message of the protocol, which is pEpk(B)(NB). From
this message, the attacker constructs pEpk(B)(NB, I), starts a fresh session with
Bob and proceeds exactly as in the previous attack. Note, that in this attack,
we do not even need to extract a prefix from a message. We describe the
scenario in attack 2.

Chosen-ciphertext attacks

We now show how a chosen-ciphertext attack can be launched against
Bob’s secret key. The attack is again based on the idea of postfixing an existent
ciphertext. Suppose that we give the intruder the ciphertext pEpk(B)(challenge).
In order to succeed the attacker only needs to be able to recover the plain-
text challenge. The attacker can achieve this as follows. First, he constructs
the message pEpk(B)(challenge, I) and then starts a protocol session with Bob.
Bob will accept the encrypted challenge as the encryption of the attacker’s
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Attack 2 An attack compromising the secrecy of Bob’s nonce

1. A → B: pEpk(B)(NA, B)

2. B → A: pEpk(A)(NA, NB, pk(B))

3. A → B: pEpk(B)(NB)

4. construct pEpk(B)(NB, I) from pEpk(B)(NB)

5. I → B: pEpk(B)(NB, I)

6. B → I: pEpk(I)(NB, N ′

B, pk(B))

nonce and will send back its decryption, encrypted with the intruder’s private
key. This scenario is presented in attack 3. Note that there is no chosen-
ciphertext attack against Alice’s private key (i.e. against the private key of
the person acting as the initiator of the protocol). The intruder could of course
start a session with Alice, where Alice is taking Bob’s role.

Attack 3 A chosen-ciphertext attack on Bob’s private key

1. construct pEpk(B)(challenge, I) from pEpk(B)(challenge)

2. I → B: pEpk(B)(challenge, I)

3. B → I: pEpk(I)(challenge, NB, pk(B))

A more robust version of the protocol

There exists a simple way to avoid the above described potential attacks
in the case CBC is used. If we have a closer look at them, we realize that they
are all based on the fact that the first message can be forged by appending the
attacker’s identity to the encryption of an unknown nonce. A simple change
consists in inverting the nonce and the identity in the first field, which gives us
the message pEpk(B)(B, NA), instead of pEpk(B)(NA, B). As the unknown part
of the message, the nonce, is the last field, we cannot use the same “trick”
on CBC as before. It is not possible to add a prefix to an encrypted text, as
the IV would not match anymore. Note however, that when ECB would be
used as the block chaining mode, our fix does not help. Nor does it help if we
use right-to-left instead of the usual left-to-right CBC. The fact that changing
the order of the fields avoids the above attack is rather a curiosity than a real
fix. A better protocol practice would be to ensure integrity of the message by
the means of a cryptographic hash of the message, which could be included
in the cipher. We changed the protocol by adding this additional integrity
mechanism, i.e. we systematically replace pEpk(x)(m) with pEpk(x)(m, h(m)).
This modified version resists against all of the above attacks.
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4.2 The Needham-Schroeder symmetric key protocol

Let us first briefly describe the classical Needham-Schroeder symmetric key
protocol [15], which we use as a second case study, illustrating the analysis of
known-pair and chosen-plaintext attacks.

Protocol 2 The Needham-Schroeder symmetric key protocol

1. A → S: A,B,NA

2. S → A: sEKAS
(NA, B, KAB, sEKBS

(KAB, A))

3. A → B: sEKBS
(KAB, A)

4. B → A: sEKAB
(NB)

5. A → B: sEKAB
(NB − 1)

The protocol is described in protocol 2. It uses a trusted key server S

to establish a shared key KAB between Alice and Bob. It is assumed that
the server shares long term keys with each entity. In the first message, Alice
requests the server to generate a key to be shared between Bob and herself.
The server answers by sending back the key, as well as the key encrypted for
Bob. Moreover a nonce NA is used to ensure freshness. Then Alice sends the
encrypted key to Bob, in message 3. Messages 4 and 5 are a challenge-response
handshake to ensure that Alice knows the key and that the key is fresh. Note
that NB − 1 is modelled by declaring a function decrease().

Known-pair attacks

Known-pair attacks against the long-term keys KAS and KBS are simple.
To find such pairs, the attacker does not even require any special capability. A
known pair with respect to KAS is found when Alice starts a session with the
attacker. When the three first messages have been exchanged, the attacker
has learned all the elements, which are encrypted in the second message, as
the third message is directly sent to the attacker and he can extract the shared
key KAI . To learn a known pair with respect to Bob’s long term key KBS the
attacker only needs to send I, B, NI to the server. The server’s answer will
contain sEI(KIB), and hence the attacker has a known pair. When analysing
the protocol for known-pair attacks against the session key KAB, the tool came
up with a false attack. This means that we can neither conclude that an attack
exists nor that the protocol is secure. However, when we disable the attacker
capability of concatenating two ciphertexts, generating a random block, no
known-pair attack is possible against the established session key KAB. It is
rather surprising that the protocol offers more possibilities to attack the long
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term keys than the session keys, whose security level should be considered as
lower.

Chosen-plaintext attacks

When we do not add additional attacker capabilities, chosen-plaintext at-
tacks are not feasible. However, when we allow the intruder to deduce sEk(m)
and sEk(n) from sEk(m, n), the two long term keys can again be attacked.

We first describe the attack against KAS, where the attacker has to learn
the encryption of the challenge under this key. The attack is presented in
attack 4, where the notation A(I) means that the attacker is masquerading as
Alice. Note that this attack only involves the presence of the server and not
of Alice nor Bob. Therefore this same attack can be directly reused to mount
an attack against Bob’s long shared key.

Attack 4 A chosen-plaintext attack on Alice’s long term key

1. A(I) → S: A, B, challenge

2. S → A(I): sEKAS
(challenge, B, KAB, sEKBS

(KAB, A))

3. I extracts sEKAS
(challenge)

5 Conclusion

In this paper, we report on an automated analysis of known-pair and chosen-
text attacks. For this purpose we give definitions in terms of reachability for
these attacks. In particular, we use the notion of challenge when defining
chosen-text attacks. As known-pair and chosen-text attacks are performed at
the level of blocks, we model two block chaining techniques, ECB and CBC.
These block chaining techniques are modelled in an abstract way, without the
need of actually modelling the exclusive or operation for CBC, using deduc-
tion rules. Our method is automated using Blanchet’s protocol verifier and
illustrated on two famous examples, the Needham-Schroeder-Lowe public-key
protocol and the Needham-Schroeder symmetric-key protocol. On the first
protocol, we show how the special intruder capabilities related to chaining
may compromise the secrecy of nonces and that chosen-ciphertext attacks are
possible. We propose two modified versions of the protocol which strengthen
its security. We then illustrate known-pair and chosen-plaintext attacks on
the Needham-Schroeder symmetric key protocol.

As future work we foresee to apply these techniques to real-life protocols,
which precise what chaining techniques are used. An interesting case study
would be Kerberos, as it is based on the here studied Needham-Schroeder
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symmetric key protocol. Moreover, we believe that the additional attacker
capabilities allow us to discover new guessing attacks. Consider a protocol
that uses (deterministic) public-key encryption to encrypt weak data w, i.e.
pEpk(x)(w). A trivial guessing attack is to guess w′ and verify the guess by
re-encrypting w′ and comparing it to the original cipher. While adding a
fresh nonce inside the encryption, i.e. pEpk(x)(N, w), would make this guessing
attack impossible in a standard model, our additional attacker capabilities
would keep the attack feasible.
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