
Electronic Notes in Theoretical Computer Science 6 (1997)

URL: http://www.elsevier.nl/locate/entcs/volume6.html ?? pages

A Model for Recursive-Parallel Programs

O. Kouchnarenko, Ph. Schnoebelen

Leibniz-IMAG, 46 av. F. Viallet, F-38000 Grenoble, France

Abstract

We de�ne a formal model for a class of recursive-parallel systems with speci�c

invocation and synchronization primitives. This original model is in�nite-state but

can still be analyzed successfully using the \well-structured transition systems"

approach.

Introduction

RP schemes are a formal model of concurrency that we introduced in [9]. It is

a carefully chosen way of allowing Recursivity in Parallel systems (hence the

name). In this article, we show how RP schemes can be seen as well-structured

transition systems. (Well-structured transition systems, or WSTS's, are a

general family of non-necessarily �nite transition systems where general de-

cidability results exist [7,1].)

Apart from the original model and the speci�c decidability results we

present, the interest of this work is that it shows how the WSTS approach

can be adapted to new situations. We present two WSTS views that extend

(section 6) or modify (section 5) the standard WSTS de�nition.

The article is organized as follows: Section 1 presents the programming

language features we want to formalize. Sections 2 and 3 present RP schemes,

the formal model, and its behavioral semantics. In Section 4 we compare

the expressive powers of RP schemes and related models. Then, Section 5

explains how RP schemes can be viewed as well-structured transition systems,

yielding the decidability of some reachability problems. Section 6 gives another

well-structured view of RP schemes, allowing further decidability results (e.g.

termination). We conclude by relating RP schemes and other formal models.

1 A recursive-parallel programming language

RP is a (family of) imperative parallel programming languages developed for

the parallel machine of the IPI Institute in Iaroslavl. The language assumes

a shared global memory.

c

1997 Elsevier Science B. V.

Kouchnarenko and Schnoebelen

Fig. 1 contains an example of an RP program where we used abstract

action names a; b; c; : : : from some uninterpreted alphabet A instead of the

usual basic actions from imperative languages (assignments, : : :).

program main

a

1

;

l1: pcall subr1;

a

2

;

if b

1

then f

goto l1;

g else f

wait;

a

3

;

end;

g

procedure subr1

if b

2

then f

a

4

;

end;

g else f

pcall subr1;

a

5

;

wait;

end;

g

Fig. 1. An RP program

RP interests us because of its speci�c choice of primitives for parallelism

and synchronization:

pcall: or \parallel call". This construct invokes co-routines, \callees", that

will run in parallel while execution proceeds concurrently in the caller.

wait: This construct allows one form of synchronization. An invocation of a

procedure can only conclude a wait statement when all its callees (and their

callees, etc.) are terminated. As long as some of them are still running, the

caller waits for their termination.

Termination of a given invocation is obtained by the end statement. The use

of wait is not mandatory: a caller may well choose to terminate and let its

callees run. Observe the asymmetry brought by the fact that callees cannot

know whether their caller is terminated.

2 Recursive-parallel program schemes

RP programs schemes are better dealt with in a graphic form. A recursive-

parallel program scheme (over A) is a �nite rooted graph G representing the

structure of an RP program. We let RPPS

A

denote the class of all such

graphs. We will only give an informal description of these graphs and let the

reader write down the precise formal de�nitions (alternatively, s/he may refer

to [8,9]). Fig. 2 shows, by means of an example, how a scheme is associated,

in an obvious way, to the RP program. A scheme has several kind of nodes:

rectangular (resp. oval) nodes for basic actions (resp. tests), pentagonal nodes

for pcall's, triangular nodes for wait statements, etc. In this paper, we write

G = hQ; q

0

; : : :i to denote that Q is the set of nodes of scheme G, q

0

is the

start node, and we do not need names for the remaining components of G.

2

Kouchnarenko and Schnoebelen

a

1

call

a

2

w

a

3

e

a

4

call

b

1

b

2

q

0

:

q

1

:

q

2

:

q

0

0

:

q

3

:

q

4

:

q

5

:

q

6

:

q

0

1

: q

0

2

:

q

0

3

:

q

0

4

:

w

e

Fig. 2. Scheme associated to the RP program from Fig. 1

3 Behavioral semantics

We consider a given scheme G = hQ; q

0

; : : :i 2 RPPS

A

and de�ne a formal

notion of behavior under the form of a labeled transition system TS(G). La-

bels are taken from A

�

(

def

= A[f�g, where � is a special name denoting silent,

internal computation) and ranged over by �; : : :

G may be the scheme G

P

associated to some RP program P but, more

generally, it may be any valid scheme without any textual, linear presentation.

Because we do not interpret the basic actions in G, our notion of behavior only

partly captures the real behavior of a program P to which the schemeG could

be associated. The di�erence is that

�

TS(G) does not consider the values of data components of P in its de�nition

of a state, and

�

TS(G) considers \if : : : then c

1

else c

2

" instructions as non-deterministic

\c

1

or c

2

".

These abstractions do not preclude a meaningful analyzing of P by examina-

tion of TS(G

P

): any safety property (in an enlarged sense where termination

is preserved) satis�ed by TS(G

P

) is also satis�ed by the interpreted semantics

of P [9,8].

De�nition 3.1 The set of hierarchical states of a scheme G is the least set

M(G) s.t. if q

1

; : : : ; q

n

are nodes of G, and �

1

; : : : ; �

n

2M(G) are hierarchical

states, then the multiset � = f(q

1

; �

1

); : : : ; (q

n

; �

n

)g is inM(G). (In particular,

; 2M(G).)

The intuition is that � = f(q

1

; �

1

); : : : ; (q

n

; �

n

)g denotes a state where n

concurrent activities are present. One such activity, say (q

i

; �

i

), is the invo-

3

Kouchnarenko and Schnoebelen

cation of an RPC co-routine (currently in state/node q

i

) with a family �

i

of

children invocations. So that a hierarchical state � looks like a marking of

some Petri net (with tokens in the q; q

0

; : : : nodes) with an additional tree-like

structure between tokens, keeping track of the parent-child relation created

by the pcall's, and used by the wait's statements.

In the rest of the article, we often omit a few parenthesis when this does

not introduce any confusion, and write e.g. q; � for f(q; �)g. Also, we use

the customary multiset notations \� + �

0

", \� � �

0

", : : : to denote addition,

inclusion, : : :

De�nition 3.2 The transition system TS(G) = hM(G); A

�

;!; �

0

i has ini-

tial state �

0

def

= q

0

; ;, and labeled transition relation !�M(G) � A

�

�M(G)

de�ned as the least family of triples (�; a; �

0

) (written \�

a

! �

0

") obeying the

following rules:

action: If q is an �-labeled action node (or test node) in G, and q

0

is a

successor node of q, then q; �

�

! q

0

; � for all �.

end: If q is an end node in G, then q; �

�

! � for all �.

call: If q is a pcall node in G, with successor node q

0

and with invoked

node q

00

, then q; �

�

! q

0

; (� + q

00

; ;) for all �.

wait: If q is a wait node in G, and q

0

is a successor node of q, then

q; ;

�

! q

0

; ;:

paral1: If �

�

! �

0

then � + �

00

�

! �

0

+ �

00

for all �

00

.

paral2: If �

�

! �

0

and q is a node of G, then q; �

�

! q; �

0

.

Rules for parallelism state that any activity �

�

! �

0

can still take place

when brothers are present (i.e. in some �+�

00

) or when a parent is present (i.e.

in some q; �). The wait-rule states how we can only perform a wait statement

in state q if the invoked sons are all terminated (and then not present any-

more). The other rules state how children invocations are created and kept

around.

Our example scheme from Fig. 2 admits, among others, an execution start-

ing with

q

0

; ;

a

1

! q

1

; ;

�

! q

2

; (q

0

0

; ;)

b

2

! q

2

; (q

0

2

; ;)

a

2

! q

3

; (q

0

2

; ;)

b

1

! q

4

; (q

0

2

; ;)

�

! q

4

; (q

0

3

; (q

0

0

; ;))

where the wait node q

4

cannot be passed yet, as long as the children invoca-

tions are not terminated.

Some consequences of De�nition 3.2 can be stated immediately. First,

TS(G) is a �nitely branching transition system. Then there exists only one

terminated state: � 6! i� � = ;.

More importantly, it is easy to see whether a state in TS(G) is normed.

Recall that a state � is normed, written � #, if there exists a terminating

behaviour starting from � [6]. (NB: This is a \may terminate", quite di�erent

4

Kouchnarenko and Schnoebelen

from the \must terminate" usually assumed in termination problems, and

considered in Section 6.)

We can decide whether � # in two steps. First we reduce normedness of

arbitrary states in M(G) to normedness of nodes in G through the following

equivalences:

(� + �

0

) # i� � # and �

0

#;

; # always,

(q; �) # i� (q; ;) # and � # :

Then, writing q # instead of the clumsier (q; ;) #, we can state the following

equalities based on the structure of G:

q # = true if q is an end node;

q # = q

0

if q

0

is the successor node of some wait or action node q;

q # =

W

fq

0

#; q

0

a successor of some test node qg;

q # = q

0

and q

00

if q

0

; q

00

are the successors of a pcall node q:

Now, seen as a function from Q into ffalse; trueg, with false � true, the \#"

predicate is the smallest solution of the previous set of equations, and can be

computed by the usual �xpoint algorithms.

4 Expressivity

RP schemes and their hierarchical states semantics are an in�nite-state model

of concurrent behavior. Their expressive power is in some way larger than

P/T nets because they allow a parent invocation to wait for the termination

of its children. On the other hand, they do not allow synchronization between

concurrent components.

In this article, we investigate the expressive power of RP schemes by study-

ing the class L(RPPS) of languages generated by RP schemes. Here the lan-

guage L(G) generated by a given schemeG 2 RPPS

A

is understood as the set

of traces of all executions (completed behaviours) where � actions are invisible

except when they indicate divergence, i.e. an in�nite sequence of � 's at the

end of a trace. Hence L(G) � A

�

[A

!

[A

�

:�

!

.

Then we have the following expressivity results:

Theorem 4.1 (i) L(RPPS) equals L(PA) which are the languages gener-

ated by PA (Process Algebra) programs [3,2].

(ii) L(RPPS) strictly includes L(BPP) [L(BPA) which are the languages

generated by BPP (Basic Parallel Processes) and BPA (Basic Process

Algebra) programs [4,5].

(iii) There is no inclusion between L(RPPS) and L(PN), the class of lan-

guages generated by labeled P/T nets (Petri Nets).

5

Kouchnarenko and Schnoebelen

Proof (Sketch)

�

(ii) and (iii) are consequences of (i).

�

L(PA) � L(RPPS) is easy to see because one can code the sequential

and parallel compositions operations from PA into RP schemes [8]. (A

branching-time view of this inclusion is possible, in term of the divergence

preserving � -bisimulation of [11].)

�

The reverse inclusion, L(RPPS) � L(PA), is longer to prove [8]. The idea

underlying the proof is better illustrated on an example: consider node q

0

in

Fig.3. Here �

0

= q

0

; ; will spawn a child invocation �

1

= q

1

; ;. �

1

will run \in

w

e

w

a

1

a

2

a

3

a

4

q

0

:

q

1

:

q

2

:

q

3

:

Fig. 3. Example of a call node with several continuations

parallel" with �

0

's continuation, until the continuation enters a wait node.

At this point, the relationship between �

0

's continuation and �

1

will be a

strict sequential composition. Thus a proper encoding of this (fragmentary)

RP scheme in PA is

X

q

0

=

�

a

1

:a

2

:Nil j X

q

1

�

+

�

a

1

:a

3

:a

4

:Nil j X

q

1

�

:X

q

2

+

�

a

1

:Nil j X

q

1

�

:X

q

3

X

q

1

= : : :

More generally, to allow possible loops between a node q and one of its

derivative wait nodes r, we need to introduce new variables X

r

q

accounting

for all di�erent ways of reaching r (and no other wait node). A de�nition

for X

r

q

is easy (using the other X

r

q

0

). Similarly, we add a simple de�nition

for a new variable X

nw

q

accounting for all behaviours from q where no wait

node is ever reached. Then, writing q

0

for the invoked node from q, and

succ(r) for the node following r, we can write the PA de�nition for a call

node q as

X

q

= X

nw

q

+

X

r

(X

r

q

j X

q

0

):X

succ(r)

6

Kouchnarenko and Schnoebelen

See [8] for details and a correctness proof. This encoding preserves the

generated languages but not the branching-time behavior: the PA process

X

q

0

has to choose immediately which branch will be followed, while state �

0

delays this choice. (We conjecture RP schemes are strictly more expressive

than PA when branching-time behavior is considered.)

2

5 Well structured RP schemes

Though they are quite powerful, RP schemes can still be analyzed successfully.

It turns out that it is possible to give them a structure of well-structured

transition system in the sense of [1] (see also [7]).

Well-structured transition systems get their name from their use of a well-

ordering between states. Recall that a well-ordering is a partial ordering (S;�)

s.t. any in�nite sequence s

0

; s

1

; :: contains an in�nite increasing subsequence

s

i

0

� s

i

1

� : : : (with i

0

< i

1

< : : :). Two important consequences of well-

ordering are:

�

any upward-closed set I � S can be represented by a �nite basis I

0

=

fs

1

; : : : ; s

n

g of minimal elements s.t. I = "(I

0

) where for any given M � S,

"(M), the upward-closure of M , is

"(M)

def

= fs j s � s

i

for some s

i

2Mg

�

any increasing in�nite sequence I

0

� I

1

� I

2

� � � � of upward-closed sets

eventually stabilizes at some I

k

= I

k+1

= I

k+2

= : : : .

TS(G), the transition system associated to some RP scheme G, can be

given a well-structure through the following notion of embedding between

hierarchical states:

De�nition 5.1 (Embedding)A hierarchical state � = f(q

1

; �

1

); : : : ; (q

n

; �

n

)g

is embedded into �

0

= f(q

0

1

; �

0

1

); : : : ; (q

0

m

; �

0

m

)g, written � � �

0

, if

�

� � �

0

j

for some j = 1; : : : ;m, or

�

there are some j

1

; : : : ; j

n

(all distinct) in f1; : : : ;mg s.t. for i = 1; : : : ; n we

have (q

i

; �

i

) � (q

0

j

i

; �

0

j

i

), de�ned as

8

>

<

>

:

q

i

= q

0

j

i

and �

i

� �

0

j

i

,

or f(q

i

; �

i

)g � �

0

j

i

.

This inductive de�nition yields a well-founded partial ordering, with ; as

minimum element. The intuition is that � � �

0

when � can be obtained by

removing nodes in �

0

(and grafting the remaining branches appropriately). By

Kruskal's Tree Theorem [10], this order is also a well-ordering.

In our model, the embedding ordering is fundamental because transitions

in TS(G) are compatible (in some sense) with it:

Proposition 5.2 (Downward-compatibility for �) For all �

1

� �

0

1

and

step �

0

1

�

! �

0

2

, then either �

1

� �

0

2

, or there is a �

1

�

! �

2

with �

2

� �

0

2

.

7

Kouchnarenko and Schnoebelen

We use the notation �[�] to denote that � contains an occurence of � at

a given position. �[:] is a context in which variants of � could be plugged,

yielding variants of �.

Proof (Sketch) If �

0

1

�

! �

0

2

, then �

0

1

has the form �

0

1

[q] and �

0

2

is �

0

1

[�] with

q

�

! � a valid transition. Now if �

1

� �

0

1

= �

0

1

[q] then there are two cases.

Either �

1

� �

0

1

[;] (i.e. embedding �

1

does not need the q component in �

0

1

)

and then �

1

� �

0

2

, or �

1

has the form �

1

[q] with �

1

[:] � �

0

1

[:]. Then there is a

transition �

1

�

! �

2

= �

1

[�], entailing �

2

� �

0

2

. 2

Write Post(�)

def

= f�

0

j �

�

! �

0

for some �g for the set of all immediate

successors of some �. Extend to Post

m

(�) (resp. Post

�

(�)) for the m-steps

(resp. many-steps) successors. A consequence of downward-compatibility is

"(S) � "(S

0

) implies

8

>

<

>

:

"(S [Post(S)) � "(S

0

[Post(S

0

))

"(Post

�

(S)) � "(Post

�

(s

0

))

(1)

The downward-compatibility property (and some simple e�ectiveness prop-

erties) allow us to state some decidability results, e.g. of some control-state

reachability problems, as a special case of

Theorem 5.3 (i) Given a state �, we can compute (a �nite basis of) the

upward-closure of Post

�

(�).

(ii) Then, given any upward-closed set I � M(G), it can be decided whether

all states reachable from � are in I.

Proof. (i) De�ne a sequence of sets of states with

S

0

def

= f�g; S

i+1

def

= S

i

[Post(S

i

)

Clearly all S

i

's are computable because! is �nitely branching and Post(�) is

computable for any �. S

i

� S

i+1

entails "(S

0

) �"(S

1

) � � � � But the "(S

i

)'s are

upward-closed, so that there is some rank k s.t. "(S

k

) ="(S

k+1

) ="(S

k+2

) = : : :

(though perhaps S

k

6= S

k+1

6= : : :). In fact, as soon as "(S

k

) ="(S

k+1

) for some

k, (1) entails "(S

k

) = "(S

k

0

) for all k

0

� k. We can e�ectively compute such a

k: this amounts to detecting when two �nite sets have a same upward-closure,

which is easy when � is decidable.

Now there just remains to see that "(S

k

) ="(Post

�

(�)), but this is obvious

since S

i

= Post

0

(�)[� � � [Post

i

(�). Finally S

k

is a �nite basis of "(Post

�

(�)).

(ii). Because I is upward-closed, Post

�

(�) � I i� "(Post

�

(�)) � I. This

last condition is easy to check once we have S

k

(assuming I is given through

a �nite basis). 2

(Of course, more elaborate implementations of this decision result are pos-

sible.)

8

Kouchnarenko and Schnoebelen

6 Another well-structured view

Proposition 5.2 introduced downward-compatibility while in the literature,

upward-compatibility is more commonly used [7,1]. It turns out that RP

schemes also enjoy upward-compatibility. For this we need a more sophisti-

cated ordering taking normedness into account:

De�nition 6.1 (?-embedding)A hierarchical state � = f(q

1

; �

1

); : : : ; (q

n

; �

n

)g

is ?-embedded into �

0

= f(q

0

1

; �

0

1

); : : : ; (q

0

m

; �

0

m

)g, written ��

?

�

0

, if

(i) � #, �

0

#, and

(ii)

�

��

?

�

0

j

for some j = 1; : : : ;m, or

�

there are some j

1

; : : : ; j

n

(all distinct) in f1; : : : ;mg s.t. for i = 1; : : : ; n

(q

i

; �

i

)�

?

(q

0

j

i

; �

0

j

i

), de�ned as

8

>

<

>

:

q

i

= q

0

j

i

and �

i

�

?

�

0

j

i

,

or f(q

i

; �

i

)g�

?

�

0

j

i

.

Again, this de�nes a well-ordering. It is decidable (because being normed

is decidable) and is compatible with transitions in the following sense

Proposition 6.2 (Upward-compatibility for �

?

) For all �

1

�

?

�

0

1

and step

�

1

�

! �

2

, there is a n � 2 and a sequence �

0

1

! �

0

2

! � � � �

0

n�1

�

! �

0

n

s.t. �

2

�

?

�

0

n

and �

1

�

?

�

0

k

for k = 1; : : : ; n� 1.

Proof (Sketch) �

1

is some �

1

[q] s.t. the step �

1

�

! �

2

is the occurrence of

some q

�

! � in the �

1

[:] context (and then �

2

= �

1

[�]). �

1

�

?

�

0

1

means that �

0

1

can be written as some �

0

1

[q] in a way respecting ?-embedding. In the simplest

cases, q

�

! � is possible in the �

0

1

[:] context and we get a step �

0

1

�

! �

0

2

def

= �

0

1

[�].

Then it is possible (but tedious) to prove �

2

�

?

�

0

2

.

When q

�

! � is not possible in the �

0

1

[:] context, this means that q

�

! � is a

wait transition, only possible when q has no children, a condition ful�lled by

the �

1

[:], and not the �

0

1

[:], context. Then �

0

1

[q] can be written as �

00

[q; �

q

] where

�

q

(6= ;) are the children of q in �

0

1

[q]. There �

00

[q; ;]

�

! �

00

[�; ;] is possible. The

key argument now is that �

q

may terminate because ?-embedding requires

;�

?

�

q

. So that there is a sequence

(�

q

=) �

1

! �

2

� � � ! �

m

= ;

(obviously with ;�

?

�

i

for i = 1; : : : ;m) allowing

(�

0

1

=) �

00

[q; �

1

]! �

00

[q; �

2

] � � � �

00

[q; ;]

�

! �

00

[�; ;]

Let n

def

= m+1 and �

0

i

def

= �

00

[q; �

i

]. There only remains to check that �

1

�

?

�

00

[q; �

i

]

for i = 1; : : : ;m (a consequence of ;�

?

�

i

) and that �

2

�

?

�

0

n

. 2

The upward-compatibility property (and some simple e�ectiveness prop-

erties) allows us to state some other decidability results, e.g. the decidability

of the halting problem, as a special case of

Theorem 6.3 Given a state �, and an upward-closed

1

I � M(G), it is de-

cidable whether all computations eventually reach a state not in I.

1

w.r.t. ?-embedding.

9

Kouchnarenko and Schnoebelen

Corollary 6.4 It is decidable whether all computations starting from some

state � eventually terminate.

Proof. Indeed, M(G) n f;g, the set of non-terminated states, is an upward-

closed set (w.r.t. ?-embedding) for which a �nite basis is easily constructed.

Then we just apply Theorem 6.3. 2

Theorem 6.3 extends a similar theorem from [1] to our more general upward-

compatibility property. We nevertheless choose to give a complete proof be-

cause (1) we �nd our presentation clearer (also less concerned with algorithmic

improvements), and (2) it explains why we need the speci�c requirement, in

Proposition 6.2, that �

1

�

?

�

0

k

for k = 1; : : : ; n� 1.

We need an auxiliary construction and de�ne RT (�), the reachability tree

starting from �, as a rooted tree with nodes labeled by states. More precisely

�

Nodes are live or dead.

�

The root is a live node labeled by �.

�

Any live node labeled by some � has sons labeled by the immediate succes-

sors (if any) of �, i.e. one son for each �

0

s.t. � ! �

0

in TS(G).

�

A son node n labeled by �

0

is live unless we can �nd a node n

0

6= n in the

path from the root to node n, labeled with some �

0

s.t. �

0

�

?

�

0

. Then we

say n

0

subsumes n and n is a dead node.

Because TS(G) is a �nitely branching transition system,RT (�) is a �nite tree.

This is a classical argument: assume RT (�) is in�nite, then it has an in�nite

path (by Koening's Lemma) and, because �

?

is a well-ordering, we can �nd

along this path an earlier node n

0

subsuming a later node n. Thus n must

be a dead node, a contradiction. Because RT (�) is �nite, it can be computed

e�ectively.

Now the proof of Theorem 6.3 relies on the following lemma, which trans-

lates the initial question into an equivalent one that can be easily decided (by

�niteness of RT (�)) when I is given via a �nite basis.

Lemma 6.5 All computations (in the transition system) starting from � even-

tually reach a state not in I i� all complete paths (in RT (�)) eventually reach

a (node carrying a) state not in I.

Proof. The \(" direction is easy because each computation has a pre�x

under the form of a complete path in RT (�). The \)" direction is more

involved. Assume, by way of contradiction, that a complete path in RT (�)

has only nodes labeled with states in I. This path is some n

0

; : : : ; n

k

, labeled

by �

0

; : : : ; �

k

. Then we can build a computation (� =) �

0

! �

1

! where all

states are greater (w.r.t. �

?

) than one of the �

i

's, and thus belong to I.

We build the �

i

's inductively, starting from �

0

= � = �

0

. Assume we have

already built �

0

; : : : ; �

n

. �

n

is greater than some �

i

. There are two cases:

�

If i < k then there is a step �

i

! �

i+1

. By upward-compatibility, there exists

a sequence �

n

! � � � ! �

m

(m > n) with �

n

; : : : ; �

m�1

�

?

�

i

and �

m

�

?

�

i+1

.

10

Kouchnarenko and Schnoebelen

We use them to lengthen our sequence up to �

m

.

�

If i = k, then �

i

is a leaf n

k

of RT (�). If it is a live node, then �

i

has no

successor, and then �

i

= ; = �

n

, so that we have a complete computation.

If n

k

is a dead node, then an earlier �

j

subsumes �

i

. And then �

j

�

?

�

n

,

so that we are back to the previous case and can lengthen our sequence.

2

Observe that Theorem 6.3 cannot be proven by simply saying that !

+

,

the transitive closure of !, has the compatibility property used in [1]. This

fails because

�

!

+

is not �nitely branching in general,

�

it is not decidable in general,

�

more importantly, stating that all \computations" in the !

+

-sense even-

tually reach a given set is not equivalent to the property we are interested

in.

7 Related approaches

As far as we know, the RPPS model we introduced is not closely related to

other models of concurrency:

�

Results from Section 4 indicate a close link between the restricted primitives

we allow and the PA fragment of process algebra. However, the process-

algebraic view has its own bene�ts and drawbacks. An advantage of RPPS

is that our notion of hierarchical states already abstracts from much of the

syntax that is required in PA, and directly gives an eye-opening kind of

normal form for states.

�

In this sense, hierarchical states are more reminiscent of markings in Petri

nets. Still, the RPPS model cannot be seen as a special kind of high-level

nets [12]. In the general PrTr nets, or in coloured nets, the nature of tokens is

changed. In RPPS, the \tokens" are not richer. Rather, they are embedded

into precise dependency relationships which are carried on through token

moves.

�

Other models allowing recursivity in parallelism exist, using e.g. denota-

tional semantics, : : : . In general, they do not try to control how much

expressive power is a�orded and balance this with decidability issues.

�

Perhaps term rewriting systems are the most natural formalism in which

we can frame our RPPS proposal. Of course, TRS's are much more gen-

eral (hence have fewer decidable properties) and not particularly aimed at

describing concurrent computations.

Conclusion

We proposed a model for a quite new class of concurrent programs. This

models is not �nite-state but can be turned into a well-structured transition

11

Kouchnarenko and Schnoebelen

system, so that the decidability of several interesting problems is easy to prove.

The model has no clear connection with other structured transitions systems

like P/T nets, lossy channel systems, timed automata, : : : , where the well-

structure is quite simple to see. We believe it isolates a carefully chosen set

of construct for controlling recursivity in parallel systems.

References

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and T. Yih-Kuen. General decidability

theorems for in�nite-state systems. In Proc. 11th IEEE Symp. Logic in

Computer Science, New Brunswick, NJ, July 1996.

[2] J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Cambridge

Tracts in Theoretical Computer Science. Cambridge Univ. Press, 1990.

[3] J. A. Bergstra and J. W. Klop. Process theory based on bisimulation semantics.

In Linear Time, Branching Time and Partial Order in Logics and Models

for Concurrency, Noordwijkerhout, LNCS 354, pages 50{122. Springer-Verlag,

1989.

[4] S. Christensen. Decidability and Decomposition in Process Algebras. PhD

thesis, Univ. Edinburgh, September 1993.

[5] S. Christensen, Y. Hirshfeld, and F. Moller. Decidable subsets of CCS. The

Computer Journal, 37(4):233{242, 1994.

[6] S. Christensen and H. H�uttel. Decidability issues for in�nite-state processes -

a survey. EATCS Bull., 51:156{166, October 1993.

[7] A. Finkel. Reduction and covering of in�nite reachability trees. Information

and Computation, 89(2):144{179, December 1990.

[8] O. Kouchnarenko. S�emantique des programmes r�ecursifs-parall�eles et m�ethodes

pour leur analyse. Th�ese de Doctorat, Univ. Joseph Fourier-Grenoble I, France,

February 1997.

[9] O. Kouchnarenko and Ph. Schnoebelen. Mod�eles formels pour les programmes

r�ecursifs-parall�eles. In Proc. RENPAR'8, Bordeaux, pages 85{88, May 1996.

[10] J. B. Kruskal. Well-quasi-ordering, the Tree Theorem, and Vazsonyi's

conjecture. Trans. Amer. Math. Soc., 95:210{225, 1960.

[11] R. Milner. A modal characterisation of observable machine-behaviour. In Proc.

CAAP'81, Genoa, LNCS 112, pages 25{34. Springer-Verlag, March 1981.

[12] E. Smith. A survey on high-level Petri-net theory. EATCS Bull., 59:267{293,

June 1996.

12

