
Cutting Through Regular Post Embedding Problems⋆

P. Karandikar1 and Ph. Schnoebelen2

1 Chennai Mathematical Institute
2 LSV, ENS Cachan, CNRS

Abstract. The Regular Post Embedding Problem extended with partial (co)di-
rectness is shown decidable. This extends to universal and/or countingversions.
It is also shown that combining directness and codirectness in Post Embedding
problems leads to undecidability.

1 Introduction

The Regular Post Embedding Problem(PEP for short, named by analogy with Post’s
Correspondence Problem) is the problem of deciding, given two morphisms on words
u,v : Σ∗ → Γ∗ and a regular languageR∈ Reg(Σ), whether there isσ ∈ R such that
u(σ) is a (scattered) subword ofv(σ). Thesubwordordering, also calledembedding, is

denoted “⊑”: u(σ) ⊑ v(σ) def
⇔ u(σ) can be obtained by erasing some letters fromv(σ),

possibly all of them, possibly none. Equivalently,PEP is the question whether a rational
relation, or a transduction,T ⊆ Γ∗×Γ∗ intersects non-vacuously the subword relation,
hence is a special case of the intersection problem for two rational relations.

This problem is new and quite remarkable: it is decidable [2]but surprisingly hard
since it is not primitive-recursive and not even multiply-recursive. In fact, it is at level
Fωω (and not below) in the Fast-Growing Hierarchy [8, 12].

A variant problem,PEPdir, asks for the existence ofdirect solutions, i.e., solu-
tionsσ ∈ R such thatu(τ) ⊑ v(τ) for every prefixτ of σ. The two problems are inter-
reducible [4], hence have the same complexity: decidability of PEP entails decidability
of PEPdir, while hardness ofPEPdir entails hardness forPEP.

Our contribution. We introducePEPpartial
dir , or “PEP with partial directness”, a new

problem that generalizes bothPEP andPEPdir, and prove its decidability. The proof
combines two ideas. Firstly, by Higman’s Lemma, a long solution must eventually con-
tain “comparable” so-called cutting points, from which one deduces that the solution
is not minimal (or unique, or . . .). Secondly, the above notion of “eventually”, that
comes from Higman’s Lemma, can be turned into an effective upper bound thanks to a
Length Function Theorem. The cutting technique described above was first used in [7]
for reducing∃∞PEP to PEP. In this paper we use it to obtain a decidability proof for
PEP

partial
dir that is not only more general but also more direct than the earlier proofs for

PEP or PEPdir. It also immediately provides anFωω complexity upper bound. We also

⋆ Supported by ARCUS 2008–11 Île de France-Inde and Grant ANR-11-BS02-001. The first
author was partially funded by Tata Consultancy Services.

2 P. Karandikar and Ph. Schnoebelen

show the decidability of universal and/or counting versions of the extendedPEPpartial
dir

problem, and explain how our attempts at further generalisation, most notably by con-
sidering the combination of directness and codirectness ina same instance, lead to un-
decidability.

Applications to channel machines.Beyond the tantalizing decidability questions, our
interest inPEP and its variants comes from their close connection with fifo channel
machines [11], a family of computational models that are a central tool in several areas
of program and system verification (see [5] and the references therein). Here,PEP and
its variants provide abstract versions of verification problems for channel machines [4],
bringing greater clarity and versatility in both decidability and undecidability (more
generally, hardness) proofs.

Beyond providing a uniform and simpler proof for the decidability of PEP and
PEPdir, our motivation for consideringPEPpartial

dir is that it allows solving the decid-
ability of UCST, i.e., unidirectional channel systems (with one reliable and one lossy
channel)extended with the possibility of testing the contents of channels[10]. We recall
thatPEP was introduced for UCS, unidirectional channel systems where tests on chan-
nels are not supported [4, 3], and thatPEPdir corresponds to LCS, i.e., lossy channel
systems, for which verification is decidable using techniques from WSTS theory [1, 9,
5]. The following figure illustrates the resulting situation.

UCST≃ PEP
partial
dir

UCS≃ PEP PEPdir ≃ LCS

decidability via
cuttings (this paper)

decidability by
WSTS theory [1, 9]

decidability
via blockers [2]

two-way reductions [4]

genera
liz

es generalizes

Outline of the paper.Section 2 recalls basic notations and definitions. In particular,
it explains the Length Function Theorem for Higman’s Lemma,and lists basic results
where the subword relation interacts with concatenations and factorization. Section 3
contains our main result, a direct decidability proof forPEP

partial
dir , a problem subsuming

both PEP andPEPdir. Section 4 builds on this result and shows the decidability of
counting problems onPEPpartial

dir . Section 5 further shows the decidability of universal
variants of these questions. Section 6 contains our undecidability results for extensions
of PEPpartial

dir . Proofs omitted for lack of space can be found in the full version of this
paper, available at arxiv.org/abs/1109.1691.

2 Basic notation and definitions

Words. Concatenation of words is denoted multiplicatively, withε denoting the empty
word. If s is a prefix of a wordt, s−1t denotes the unique words′ such thatt = ss′, and
s−1t is not defined ifs is not a prefix oft. Similarly, whens is a suffix oft, ts−1 is t with

thes suffix removed. For a wordx = a0 . . .an−1, x̃
def
= an−1 . . .a0 is the mirrored word.

Cutting Through Regular Post Embedding Problems 3

The mirror of a languageR is R̃
def
= {x̃ | x ∈ R}. We writes⊑ t whens is a subword

(subsequence) oft.

Lemma 2.1 (Subwords and concatenation).For all words y,z,s, t:
1. If yz⊑ st then y⊑ s or z⊑ t.
2. If yz⊑ st and z⊑ t and x is the longest suffix of y such that xz⊑ t, then yx−1 ⊑ s.
3. If yz⊑ st and z6⊑ t and x is the shortest prefix of z such that x−1z⊑ t, then yx⊑ s.
4. If yz⊑ st and z⊑ t and x is the longest prefix of t such that z⊑ x−1t, then y⊑ sx.
5. If yz⊑ st and z6⊑ t and x is the shortest suffix of s such that z⊑ xt, then y⊑ sx−1.
6. If sx⊑ yt and t⊑ s, then sxk ⊑ ykt for all k ≥ 1.
7. If xs⊑ ty and t⊑ s, then xks⊑ tyk for all k ≥ 1.

With a languageR one associates a congruence (wrt concatenation) given bys∼R

t
def
⇔ ∀x,y(xsy∈ R⇔ xty∈ R) and called the syntactic congruence (also, the syntactic

monoid). This congruence has finite index if (and only if)R is regular. For regularR, let
nR denote this index:nR ≤ mm whenR is recognized by am-state complete DFA.

Higman’s Lemma.It is well-known that for words over a finite alphabet,⊑ is a well-
quasi-ordering, that is, any infinite sequence of wordsx1,x2,x3, . . . contains an infinite
increasing subsequencexi1 ⊑ xi2 ⊑ xi3 ⊑ ·· · . This result is called Higman’s Lemma.

For n ∈ N, we say that a sequence (finite or infinite) of words isn-good if it has
an increasing subsequence of lengthn. It is n-bad otherwise. Higman’s Lemma tells us
that every infinite sequence isn-good for everyn. Hence everyn-bad sequence is finite.

It is often said that Higman’s Lemma is “non-effective” since it does not give any
explicit information on the maximal length of bad sequences. Consequently, when one
uses Higman’s Lemma to prove that an algorithm terminates, no meaningful upper-
bound on the algorithm’s running time is derived from the proof. However, complexity
upper-bound can be derived if the complexity of the sequences (or more precisely of the
process that generates bad sequences) is taken into account. The interested reader can
consult [12] for more details. Here we only need the simplestversion of these results,
i.e., the statement that the maximal length of bad sequencesis computable.

A sequence of wordsx1, . . . ,xl is k-controlled(k∈ N) if |xi | ≤ ik for all i = 1, . . . , l .

Length Function Theorem. There exists a computable function H: N3 →N such that
any n-bad k-controlled sequences of words inΓ∗ has length at most H(n,k, |Γ|). Fur-
thermore, H is monotonic in all three arguments.

Thus, a sequence with more thanH(n,k, |Γ|) words isn-good or is notk-controlled. We
refer to [12] for the complexity ofH. Here it is enough to know thatH is computable.

3 DecidingPEPpartial
dir , or PEP with partial directness

We introducePEPpartial
dir , a problem generalizing bothPEP andPEPdir, and show its

decidability. This is proved by showing that if aPEPpartial
dir instance has a solution, then

it has a solution whose length is bounded by a computable function of the input. This
proof is simpler and more direct than the proof (forPEP only) based on blockers [2].

4 P. Karandikar and Ph. Schnoebelen

Definition 3.1. PEPpartial
dir is the problem of deciding, given morphisms u,v : Σ∗ → Γ∗

and regular languages R,R′ ∈Reg(Σ), whether there isσ∈R such that u(σ)⊑ v(σ) and
u(τ)⊑ v(τ) for all prefixesτ of σ belonging to R′ (in which caseσ is calleda solution).
PEP

partial
codir is the variant problem of deciding whether there isσ ∈ R such that u(σ) ⊑

v(σ) and u(τ)⊑ v(τ) for all suffixes ofτ of σ that belong to R′.

BothPEP andPEPdir are special cases ofPEPpartial
dir , obtained by takingR′ =∅ andR′ =

Σ∗ respectively. ObviouslyPEPpartial
dir andPEPpartial

codir are two equivalent presentations,

modulo mirroring, of a same problem. Given aPEPpartial
dir (or PEPpartial

codir) instance, we

let Ku
def
= maxa∈Σ |u(a)| denote theexpansion factorof u and say thatσ ∈ Σ∗ is long if

|σ| > 2H(nRnR′ + 1,Ku, |Γ|), otherwise it isshort (recall thatH(n,k, |Γ|) was defined
with the Length Function Theorem). In this section we prove:

Theorem 3.2. A PEP
partial
dir or PEPpartial

codir instance has a solution if, and only if, it has a

short solution. This entails thatPEPpartial
dir andPEPpartial

codir are decidable.

Decidability is an obvious consequence since the maximal length for short solutions
is computable, and since it is easy to check whether a candidate σ is a solution. Fur-
thermore, one derives an upper bound on the complexity ofPEP

partial
dir since the Length

FunctionH is bounded inFωω [12].
For the proof of Theorem 3.2, we find it easier to reason on the codirect version.

Pick an arbitraryPEPpartial
codir instance(Σ,Γ,u,v,R,R′) and a solutionσ. Write N = |σ|

for its length,σ[0, i) andσ[i,N) for, respectively, its prefix of lengthi and its suffix of
lengthN− i. Two indicesi, j ∈ [0,N] arecongruentif σ[i,N)∼R σ[j,N) andσ[i,N)∼R′

σ[j,N). Whenσ is fixed, as in the rest of this section, we use shorthand notations like
u0,i andvi, j to denote the images, hereu(σ[0, i)) andv(σ[i, j)), of factors ofσ.

We prove two “cutting lemmas” giving sufficient conditions for “cutting” a solution
σ = σ[0,N) along certain indicesa< b, yielding a shorter solutionσ′ = σ[0,a)σ[b,N).
Here the following notation is useful. We associate, with every suffixτ of σ′, a corre-

sponding suffix, denotedS(τ), of σ: if τ is a suffix ofσ[b,N), thenS(τ) def
= τ, otherwise,

τ = σ[i,a)σ[b,N) for somei < a and we letS(τ) def
= σ[i,N). In particularS(σ′) = σ.

An index i ∈ [0,N] is said to beblue if ui,N ⊑ vi,N, it is red otherwise. In particular,
N is blue trivially, 0 is blue sinceσ is a solution, andi is blue wheneverσ[i,N) ∈ R′. If
i is a blue index, letl i ∈ Γ∗ be the longest suffix ofu0,i such thatl iui,N ⊑ vi,N and call it
the left marginat i.

Lemma 3.3 (Cutting lemma for blue indices).Let a< b be two congruent and blue
indices. If la ⊑ lb, thenσ′ = σ[0,a)σ[b,N) is a solution (shorter thanσ).

Proof. Clearlyσ′ ∈ R sinceσ ∈ R anda andb are congruent. Also, for all suffixesτ of
σ′, S(τ) ∈ R′ iff τ ∈ R′.

We claim that, for any suffixτ of σ′, if u(S(τ)) ⊑ v(S(τ)) thenu(τ) ⊑ v(τ). This is
obvious whenτ=S(τ), so we assumeτ 6=S(τ), i.e.,τ=σ[i,a)σ[b,N) andS(τ) =σ[i,N)
for somei < a. Assumeu(S(τ))⊑ v(S(τ)), i.e.,ui,N ⊑ vi,N. Now at least one ofui,a and
la is a suffix of the other, which gives two cases. Ifui,a is a suffix ofla, then

u(τ) = ui,aub,N ⊑ laub,N ⊑ lbub,N ⊑ vb,N ⊑ v(τ) .

Cutting Through Regular Post Embedding Problems 5

Otherwise,ui,a = xla for somex (see Fig. 1). Thenui,N ⊑ vi,N rewrites asui,aua,N =

(rightmost embedding)

0 i a b N

u(σ):
︸ ︷︷ ︸

u0,i

︸ ︷︷ ︸
ui,a

︸ ︷︷ ︸
ua,b

︸ ︷︷ ︸
ub,N

v(σ): v0,i
︷ ︸︸ ︷

vi,a
︷ ︸︸ ︷

va,b
︷ ︸︸ ︷

vb,N
︷ ︸︸ ︷

x la lb

Fig. 1.Schematics for Lemma 3.3, withla ⊑ lb

xlaua,N ⊑ vi,ava,N. Now, and sincela is the longest suffix for whichlaua,N ⊑ va,N,
Lemma 2.1.2 entailsx⊑ vi,a. Combining withla ⊑ lb (assumption of the Lemma) gives:

u(τ) = ui,aub,N = xlaub,N ⊑ vi,albub,N ⊑ vi,avb,N = v(τ) .

This shows thatσ′ is a solution (which completes the proof) since we can inferu(τ)⊑
v(τ) for any suffixτ ∈ R′ (or for τ = σ′) from the correspondingu(S(τ))⊑ v(S(τ)). ⊓⊔

If i is a red index, letr i ∈ Γ∗ be the shortest prefix ofui,N such thatr−1
i ui,N ⊑ vi,N

(equivalentlyui,N ⊑ r ivi,N) and call it theright marginat i.

Lemma 3.4 (Cutting lemma for red indices).Let a< b be two congruent and red
indices. If rb ⊑ ra, thenσ′ = σ[0,a)σ[b,N) is a solution (shorter thanσ).

Proof. Write ub,N under the formrbx so thatx ⊑ vb,N. We proceed as for Lemma 3.3
and show thatu(S(τ)) ⊑ v(S(τ)) implies u(τ) ⊑ v(τ) for all suffixesτ of σ′. Assume
u(S(τ)) ⊑ v(S(τ)) for someτ. The only interesting case is whenτ 6= S(τ) and τ =
σ[i,a)σ[b,N) for somei < a (see Fig. 2).

(rightmost embedding)

0 i a b N

u(σ):
︸ ︷︷ ︸

u0,i

︸ ︷︷ ︸
ui,a

︸ ︷︷ ︸
ua,b

︸ ︷︷ ︸
ub,N

v(σ): v0,i
︷ ︸︸ ︷

vi,a
︷ ︸︸ ︷

va,b
︷ ︸︸ ︷

vb,N
︷ ︸︸ ︷

ra rb x

Fig. 2. Schematics for Lemma 3.4, withrb ⊑ ra

Fromui,N = ui,aua,N ⊑ vi,ava,N = vi,N, i.e.,u(S(τ))⊑ v(S(τ)), andua,N 6⊑ va,N (since
a is a red index), the definition ofra entailsui,ara ⊑ vi,a (Lemma 2.1.3). Then

u(τ) = ui,aub,N = ui,arbx⊑ ui,aravb,N ⊑ vi,avb,N = v(τ) . ⊓⊔

6 P. Karandikar and Ph. Schnoebelen

We now conclude the proof of Theorem 3.2. Letg1 < g2 < · · · < gN1 be the blue
indices inσ, let b1 < b2 < · · · < bN2 be the red indices, and look at the corresponding
sequences(lgi)i=1,...,N1 of left margins and(rbi)i=1,...,N2 of right margins.

Lemma 3.5. |lgi | ≤ (i−1)×Ku for all i = 1, . . . ,N1, and|rbi | ≤ (N2− i+1)×Ku for all
i = 1, . . . ,N2. In other words, the sequence on left margins and thereversedsequence of
right margins are Ku-controlled.

Now, letNc
def
= nRnR′ +1 andL

def
= H(Nc,Ku, |Γ|) and assumeN > 2L. SinceN1+N2 =

N+ 1, eitherσ has at leastL+ 1 blue indices and, by definition ofL and H, there
exist Nc blue indicesa1 < a2 < · · · < aNc with la1 ⊑ la2 ⊑ ·· · ⊑ laNc

, or σ has at least
L+1 red indices and there existNc red indicesa′1 < a′2 < · · · < a′Nc

with ra′Nc
⊑ ·· · ⊑

ra′2
⊑ ra′1

(since it is the reversed sequence of right margins that is controlled). Out of
Nc = 1+nRnR′ indices, two must be congruent, fulfilling the assumptions of Lemma 3.3
or Lemma 3.4. Thereforeσ is not the shortest solution, proving Theorem 3.2.

4 Counting the number of solutions

We consider two counting questions:∃∞PEP
partial
dir is the question whether aPEPpartial

dir

instance has infinitely many solutions (a decision problem), while #PEPpartial
dir is the

problem of computing the number of solutions of the instance(a number inN∪{∞}).
For technical convenience, we often deal with the (equivalent) codirected versions,
∃∞PEP

partial
codir and #PEPpartial

codir .

For an instance(Σ,Γ,u,v,R,R′), we letKv
def
= maxa∈Σ |v(a)| and define

L
def
= H(nRnR′ +1,Kv, |Γ|) , L′ def

= H
([

nR(2L+1)
]nR(2L+1)

nR′ +1,Ku, |Γ|
)

.

We say that a solutionσ ∈ Σ∗ is long if |σ| > 2L andvery longif |σ| > 2L′ (note that
“long” is slightly different from “not short” from Section 3). In this section we prove:

Theorem 4.1. For a PEP
partial
dir or PEPpartial

codir instance, the following are equivalent:
(a). It has infinitely many solutions.
(b). It has a long solution.
(c). It has a solution that is long but not very long.

From this, it will be easy to count the number of solutions:

Corollary 4.2. ∃∞PEP
partial
dir and∃∞PEP

partial
codir are decidable,#PEPpartial

dir and#PEPpartial
codir

are computable.

Proof. Decidability for the decision problems is clear sinceL andL′ are computable.
For actually counting the solutions, we check whether the number of solutions is

finite or not using the decision problems. If infinite, we are done. If finite, we first com-
pute an upper bound on the length of the longest solution. Forthis we buildPEPpartial

dir

(resp.PEPpartial
codir) instances whereR is replaced byRrΣ≤M (which is regular whenR

is) for increasing values ofM ∈ N. When eventuallyM is large enough, the instance is
negative and this can be detected (by Theorem 3.2). Once we know that there are no
solutions longer thanM, counting solutions is done by finite enumeration. ⊓⊔

Cutting Through Regular Post Embedding Problems 7

We now prove Theorem 4.1. First observe that if the instance has a long solution, it
has a solution withR replaced byR∩Σ>2L. This language has a DFA withnR(2L+1)
states, thus the associated congruence has index at most(nR(2L+ 1))nR(2L+1). From
Theorem 3.2, the instance has a solution which is long but notvery long. Hence (b) and
(c) are equivalent.

It remains to show (b) implies (a) since obviously (a) implies (b). For this we fix an
arbitraryPEPpartial

codir instance(Σ,Γ,u,v,R,R′) and consider a solutionσ, of lengthN. We
develop two so-called “iteration lemmas” that are similar to the cutting lemmas from
Section 3, with the difference that they expandσ instead of reducing it.

As before, an indexi ∈ [0,N] is said to beblueif ui,N ⊑ vi,N, andredotherwise. With
blue and red indices we associate words analogous to thel i ’s andr i ’s from Section 3,
however now they are factors ofv(σ), not u(σ) (hence the different definition forL).
The terms “left margin” and “right margin” will be reused here for these factors.

We start with blue indices. For a blue indexi ∈ [0,N], let si be the longest prefix of
vi,N such thatui,N ⊑ s−1

i vi,N (equivalentlysiui,N ⊑ vi,N) and call it theright marginat i.

Lemma 4.3. Suppose a< b are two blue indices with sb ⊑ sa. Then for all k≥ 1,
sa(ua,b)

k ⊑ (va,b)
ksb.

Proof. saua,N ⊑ va,N expands as(saua,b)ub,N ⊑ va,bvb,N. Sinceub,N ⊑ vb,N, Lemma 2.1.4
yieldssaua,b ⊑ va,bsb. One concludes with Lemma 2.1.6, usingsb ⊑ sa. ⊓⊔

Lemma 4.4 (Iteration lemma for blue indices).Let a< b be two congruent and blue
indices. If sb ⊑ sa, then for every k≥ 1, σ′ = σ[0,a).σ[a,b)k.σ[b,N) is a solution.

Now to red indices. For a red indexi ∈ [0,N], let ti be the shortest suffix ofv0,i such
thatui,N ⊑ tivi,N. This is called theleft marginat i. Thus, for a bluej such thatj < i,
u j,N ⊑ v j,N impliesu j,iti ⊑ v j,i by Lemma 2.1.5.

Lemma 4.5 (Iteration lemma for red indices).Let a< b be two congruent and red
indices. If ta ⊑ tb, then for every k≥ 1, σ′ = σ[0,a).σ[a,b)k.σ[b,N) is a solution.

We now conclude the proof of Theorem 4.1. We first prove that thePEP
partial
codir instance

has infinitely many solutions iff it has a long solution. Obviously, only the right-to-left
implication has to be proven.

Suppose there areN1 blue indices inσ, sayg1 < g2 < · · ·< gN1; andN2 red indices,
sayb1 < b2 < · · ·< bN2.

Lemma 4.6. |sgi | ≤ (N1− i +1)×Kv for all i = 1, . . . ,N1, and |tbi | ≤ (i −1)×Kv for
all i = 1, . . . ,N2. That is, thereversedsequence of right margins and the sequence of
left margins are Kv-controlled.

Assume thatσ is a long solution of lengthN ≥ 2L+1. At leastL+1 indices among
[0,N] are blue, or at leastL+1 are red. We apply one of the two above claims, and from
eithersgN1

, . . . ,sg1 (if N1 ≥ L+1) or tb1, . . . , tbN2
(if N2 ≥ L+1) we get an increasing

subsequence of lengthnRnR′ + 1. Among these there must be two congruent indices.
Then we get infinitely many solutions by Lemma 4.4 or Lemma 4.5.

8 P. Karandikar and Ph. Schnoebelen

5 Universal variants ofPEPpartial
dir

We consider universal variants ofPEPpartial
dir (or ratherPEPpartial

codir for the sake of unifor-

mity). Formally, given instances(Σ,Γ,u,v,R,R′) as usual,∀PEPpartial
codir is the question

whethereveryσ ∈ R is a solution, i.e., satisfies bothu(σ) ⊑ v(σ) andu(τ) ⊑ v(τ) for
all suffixesτ that belong toR′. Similarly, ∀∞PEP

partial
codir is the question whether “almost

all”, i.e., all but finitely many, σ in R are solutions, and #¬PEPpartial
codir is the associated

counting problem that asks how manyσ ∈ Rare not solutions.
The special cases∀PEP and∀∞PEP (whereR′ = ∅) have been shown decidable

in [7] where it appears that, at least for Post Embedding, universal questions are simpler
than existential ones. We now observe that∀PEP

partial
dir and∀∞PEP

partial
dir are easy to solve

too: partial codirectness constraints can be eliminated since universal quantifications
commute with conjunctions (and since the codirectness constraint is universal itself).

Lemma 5.1. ∀PEPpartial
codir and∀∞PEP

partial
codir many-one reduce to∀∞PEP.

Corollary 5.2. ∀PEP
partial
codir and∀∞PEP

partial
codir are decidable,#¬PEPpartial

codir is computable.

We now prove Lemma 5.1. First,∀PEPpartial
codir easily reduces to∀∞PEP

partial
codir : add an

extra letterz to Σ with u(z) = v(z) = ε and replaceRandR′ with R.z∗ andR′.z∗. Hence
the second half of the lemma entails its first half by transitivity of reductions.

For reducing∀∞PEP
partial
codir , it is easier to start with the negation of our question:

∃∞σ ∈ R :
(
u(σ) 6⊑ v(σ) or σ has a suffixτ in R′ with u(τ) 6⊑ v(τ)

)
. (∗)

Call σ ∈ R a type 1 witnessif u(σ) 6⊑ v(σ), and atype 2 witnessif it has a suffixτ ∈ R′

with u(τ) 6⊑ v(τ). Statement (∗) holds if, and only if, there are infinitely many type 1
witnesses or infinitely many type 2 witnesses. The existenceof infinitely many type 1
witnesses (call that “case 1”) is the negation of a∀∞PEP question. Now suppose that
there are infinitely many type 2 witnesses, sayσ1,σ2, . . . For eachi, pick a suffixτi of
σi such thatτi ∈ R′ andu(τi) 6⊑ v(τi). The set{τi | i = 1,2, . . .} of these suffixes can be
finite or infinite. If it is infinite (“case 2a”), then

u(τ) 6⊑ v(τ) for infinitely manyτ ∈ (
−→
R ∩R′) , (∗∗)

where
−→
R is short for

−−→
≥0R and fork ∈ N,

−−→
≥kR

def
= {y | ∃x : (|x| ≥ k andxy∈ R)} is the

set of the suffixes of words fromR one obtains by removing at leastk letters. Observe
that, conversely, (∗∗) implies the existence of infinitely many type 2 witnesses (for a
proof, pick τ1 ∈

−→
R ∩R′ satisfying the above, chooseσ1 ∈ R of which τ1 is a suffix.

Then chooseτ2 such that|τ2|> |σ1|, and proceed similarly).
On the other hand, if{τi | i = 1,2, . . .} is finite (“case 2b”), then there is aτ∈R′ such

thatu(τ) 6⊑ v(τ) andσ′τ ∈ R for infinitely manyσ′. By a standard pumping argument,
the second point is equivalent to the existence of some suchσ′ with also |σ′| > kR,

wherekR is the size of a NFA forR (takingkR = nR also works). Write noŵR for
−−→
>kRR:

if {τi | i = 1,2, . . .} is finite, thenu(τ) 6⊑ v(τ) for someτ in (R′∩ R̂), and conversely this
implies the existence of infinitely many type 2 witnesses.

Cutting Through Regular Post Embedding Problems 9

To summarize, and since
−→
R andR̂ are regular and effectively computable fromR,

we have just reduced∀∞PEP
partial
codir to the following conjunction

∀∞σ ∈ R : u(σ)⊑ v(σ)
︸ ︷︷ ︸

not case 1

∧
∀∞τ ∈ (

−→
R ∩R′) : u(τ)⊑ v(τ)

︸ ︷︷ ︸

not case 2a

∧
∀τ ∈ (R̂∩R′) : u(τ)⊑ v(τ)
︸ ︷︷ ︸

not case 2b

.

This is now reduced to a single∀∞PEP instance by rewriting the∀PEP into a∀∞PEP
(as said in the beginning of this proof) and relying on distributivity:

n∧

i=1

[
∀∞x∈ Xi : . . . some property . . .

]
≡ ∀∞x∈

n⋃

i=1

Xi : . . . same

6 Undecidability for PEPco&dir and other extensions

The decidability ofPEPpartial
dir is a non-trivial generalization of previous results forPEP.

It is a natural question whether one can further generalize the idea of partial direct-
ness and maintain decidability. In this section we describetwo attempts that lead to
undecidability, even though they remain inside the regularPEP framework.3

Allowing non-regular R′. One direction for extendingPEPpartial
dir is to allow more ex-

pressive R′ setsfor partial (co)directness. LetPEPpartial[DCFL]
codir andPEPpartial[Pres]

codir be like

PEP
partial
codir except thatR′ can be any deterministic context-freeR′ ∈ DCFL(Σ) (respec-

tively, any Presburger-definableR′ ∈ Pres(Σ), i.e., a language whose Parikh image is a
Presburger, or semilinear, subset ofN

|Σ|). Note thatR∈ Reg(Σ) is still required.

Theorem 6.1 (Undecidability).PEPpartial[DCFL]
codir andPEPpartial[Pres]

codir are Σ0
1-complete.

Since both problems clearly are inΣ0
1, one only has to prove hardness by reduction, e.g.,

from PCP, Post’s Correspondence Problem. Let(Σ,Γ,u,v) be aPCP instance (where
the question is whether there existsx ∈ Σ+ such thatu(x) = v(x)). ExtendΣ and Γ
with new symbols:Σ′ def

= Σ∪ {1,2} and Γ′ def
= Γ∪ {#}. Now defineu′,v′ : Σ′∗ → Γ′∗

by extendingu,v on the new symbols withu′(1) = v′(2) = ε andu′(2) = v′(1) = #.
Define nowR= 12Σ+ andR′ = {τ2τ′ | τ,τ′ ∈ Σ∗ and|u(ττ′)| 6= |v(ττ′)|}. Note thatR′

is deterministic context-free and Presburger-definable.

Lemma 6.2. ThePCP instance(Σ,Γ,u,v) has a solution if and only if thePEPpartial[Pres]
codir

andPEPpartial[DCFL]
codir instance(Σ′,Γ′,u′,v′,R,R′) has a solution.

Combining directness and codirectness.Another direction is to allowcombiningdirect-
ness and codirectness constraints. Formally,PEPco&dir is the problem of deciding, given
Σ, Γ, u, v, andR∈ Reg(Σ) as usual, whether there existsσ ∈ R such thatu(τ) ⊑ v(τ)
andu(τ′)⊑ v(τ′) for all decompositionsσ = τ.τ′. In other words,σ is both a direct and
a codirect solution.
3 PEP is undecidable if we allow constraint setsR outsideReg(Σ) [2]. Other extensions, like
∃x∈ R1 : ∀y∈ R2 : u(xy)⊑ v(xy), for R1,R2 ∈ Reg(Σ), have been shown undecidable [6].

10 P. Karandikar and Ph. Schnoebelen

Note thatPEPco&dir has noR′ parameter (or, equivalently, hasR′ = Σ∗) and requires
directness and codirectness at all positions. However, this restricted combination is al-
ready undecidable:

Theorem 6.3 (Undecidability).PEPco&dir is Σ0
1-complete.

Membership inΣ0
1 is clear and we prove hardness by reducing from the Reachability

Problem for length-preserving semi-Thue systems. The undecidability is linked to re-
lying on differentembeddings ofu(σ) in v(σ) for the directness and codirectness. In
contrast, forPEPpartial

dir we need to consider only the leftmost embedding ofu(σ) in
v(σ).

A semi-Thue systemS= (ϒ,∆) has a finite set∆ ⊆ ϒ∗×ϒ∗ of string rewrite rules
over some alphabetϒ, written∆ = {l1 → r1, . . . , lk → rk}. The one-step rewrite relation

−→∆ ⊆ ϒ∗ ×ϒ∗ is defined as usual withx−→∆y
def
⇔ x = zlz′ andy = zrz′ for some rule

l → r in ∆ and stringsz,z′ in ϒ∗. We writex
m
−→∆y andx

∗
−→∆y whenx can be rewritten

into y by a sequence ofm (respectively, any number, possibly zero) rewrite steps.
TheReachability Problemfor semi-Thue systems is “GivenS= (ϒ,∆) and two reg-

ular languagesP1,P2 ∈ Reg(ϒ), is therex∈ P1 andy∈ P2 s.t.x
∗
−→∆y?”. It is well-known

(or easy to see by encoding Turing machines in semi-Thue systems) that this problem is
undecidable (in fact,Σ0

1-complete) even when restricted tolength-preserving systems,
i.e., systems where|l |= |r| for all rulesl → r ∈ ∆.

We now construct a many-one reduction toPEPco&dir. Let S= (ϒ,∆), P1, P2 be a
length-preserving instance of the Reachability Problem. W.l.o.g., we assumeε 6∈ P1 and
we restrict to reachability via an even and non-zero number of rewrite steps. With any
such instance we associate aPEPco&dir instanceu,v : Σ∗ → Γ∗ with R∈ Reg(Σ) such
that the following correctness property holds:

∃x∈ P1, ∃y∈ P2, ∃m s.t.x
m
−→∆y (andm> 0 is even)

iff ∃σ ∈ Rs.t.u(τ)⊑ v(τ) andu(τ′)⊑ v(τ′) for all decompositionsσ = ττ′.
(CP)

The reduction uses letters likea, b andc taken fromϒ, and adds † as an extra letter.
We use six copies of each such “plain” letter. These copies are obtained by priming and
double-priming letters, and by overlining. Hence the six copies ofa area,a′,a′′,a,a′,a′′.
As expected, for a “plain” word (or alphabet)x, we writex′ andx to denote a version of
x obtained by priming (respectively, overlining) all its letters. Formally, lettingϒ† being

short forϒ∪{†}, one hasΣ = Γ def
= ϒ†∪ϒ′

†∪ϒ′′
† ∪ϒ†∪ϒ′

†∪ϒ′′
† .

We define and explain the reduction by running it on the following example:

ϒ = {a,b,c} and∆ = {ab→ bc, cc→ aa}. (Sexmp)

Assume thatabc ∈ P1 and baa ∈ P2. ThenP1
∗
−→∆P2 sinceabc

∗
−→∆baa as witnessed

by the following (even-length) derivationπ = “abc−→∆bcc−→∆baa”. In our reduction,
a rewrite step like “abc−→∆bcc” appears in the PEP solutionσ as the letter-by-letter
interleavingabbccc, denotedabc�bcc, of a plain string and an overlined copy of a
same-length string.

Cutting Through Regular Post Embedding Problems 11

Write T◮(∆), or justT◮ for short, for the set of allx�y such thatx−→∆y. Obviously,
and since we are dealing with length-preserving systems,T◮ is a regular language, as
seen by writing it asT◮ =

(

∑a∈ϒ aa
)∗
.
{

l � r | l → r ∈ ∆
}
.
(

∑a∈ϒ aa
)∗

, where{l �
r | l → r ∈ ∆} is a finite, hence regular, language.

T◮ accounts for odd-numbered steps. For even-numbered steps likebcc−→∆baa in π
above, we use the symmetricbbacac, i.e.,baa�bcc. Here tooT◭

def
= {y�x | x−→∆y} is

regular. Finally, a derivationπ of the general formx0−→∆x1−→∆x2 . . .−→∆x2k, whereK
def
=

|x0|= . . .= |x2k|, is encoded as a solutionσπ of the formσπ = ρ0σ1ρ1σ2 . . .ρ2k−1σ2kρ2k

that alternates between the encodings of steps (theσi ’s) in T◮∪T◭, andfillers, (theρi ’s)
defined as follows:

σi
def
=

{
xi−1�xi for odd i ,
xi�xi−1 for eveni ,

ρ0
def
= x′′0�†′′K ,

ρ2k
def
= x′′2k�†′′K ,

ρi
def
=

{
†′K�x′i for odd i ,
x′i�†′K for eveni 6= 0,2k .

Note that the extremal fillersρ0 andρ2k use double-primed letters, when the internal
fillers use primed letters. Continuing our example, theσπ associated with the derivation
abc−→∆bcc−→∆baa is

σπ = a
′′†′′b′′†′′c′′†′′

︸ ︷︷ ︸

a′′b′′c′′�†′′†′′†′′

abbccc
︸ ︷︷ ︸
abc�bcc

†′b′†′c′†′c′
︸ ︷︷ ︸

†′†′†′�b′c′c′

bbacac
︸ ︷︷ ︸
baa�bcc

b
′′†′′a′′†′′a′′†′′

︸ ︷︷ ︸

b′′a′′a′′�†′′†′′†′′

.

The point with primed and double-primed copies is thatu andv associate them with
different images. Precisely, we define

u(a) = a, u(a′) = †, u(†′) = †, u(a′′) = ε, u(†′′) = ε,
v(a) = †, v(a′) = a, v(†′) = wϒ, v(a′′) = a, v(†′′) = wϒ,

wherea is any letter inϒ, and wherewϒ is a word listing all letters inϒ. E.g.,w{a,b,c} =
abc in our running example. The extremal fillers use special double-primed letters be-
cause we wantu(ρ0) = u(ρ2k) = ε (while v behaves the same on primed and double-

primed letters). Finally, overlining is preserved byu andv: u(x)
def
= u(x) andv(x)

def
= v(x).

This ensures that, fori > 0, u(σi) ⊑ v(ρi−1) andu(ρi) ⊑ v(σi), so that aσπ con-
structed as above is a direct solution. It also ensuresu(σi)⊑ v(ρi) andu(ρi−1)⊑ v(σi)
for all i > 0, so thatσπ is also a codirect solution. One can check it on our running
example by writingu(σπ) andv(σπ) alongside:

σπ =

ρ0
︷ ︸︸ ︷

a
′′†′′b′′†′′c′′†′′

σ1
︷ ︸︸ ︷

abbccc

ρ1
︷ ︸︸ ︷

†′b′†′c′†′c′

σ2
︷ ︸︸ ︷

bbacac

ρ2
︷ ︸︸ ︷

b
′′†′′a′′†′′a′′†′′

u(σπ) = abbccc †††††† bbacac

v(σπ) = aabcbabccabc †††††† abcbabccabcc †††††† babcaabcaabc

There remains to defineR. Sinceρ0 ∈
(
ϒ′′†′′

)+
, sinceσi ∈ T◮ for odd i, etc., we let

R
def
=

(
ϒ′′†′′

)+
.T∩P1

◮ .
(
†′ϒ′

)+
.

(

T◭.
(
ϒ′†′

)+
.T◮.

(
†′ϒ′

)+
)∗

.T∩P2
◭ .

(
ϒ′′†′′

)+
, (1)

12 P. Karandikar and Ph. Schnoebelen

whereT∩P1
◮

def
= {x� y | x−→∆y∧ x ∈ P1} = T◮ ∩{x� y | x ∈ P1 ∧ |x| = |y|} is clearly

regular whenP1 is, and similarly forT∩P2
◭

def
= {y� x | x−→∆y∧ y ∈ P2}. Sinceσπ ∈ R

when π is an even-length derivation fromP1 to P2, we deduce that the left-to-right
implication in (CP) holds.

We refer to the full version of this paper at arxiv.org/abs/1109.1691 for a proof that
the right-to-left implication also holds, which concludesthe proof of Theorem 6.3.

7 Concluding remarks

We introduced partial directness in Post Embedding Problems and proved the decid-
ability of PEPpartial

dir by showing that an instance has a solution if, and only if, it has
a solution of length bounded by a computable function of the input. This generalizes
and simplifies earlier proofs forPEP andPEPdir. The added generality is non-trivial
and leads to decidability for UCST, or UCS (that is, unidirectional channel systems)
extended with tests [10]. The simplification lets us deal smoothly with counting or
universal versions of the problem. Finally, we showed thatcombiningdirectness and
codirectness constraints leads to undecidability.

References

1. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels.Information and
Computation, 127(2):91–101, 1996.

2. P. Chambart and Ph. Schnoebelen. Post Embedding Problem is notprimitive recursive, with
applications to channel systems. InProc. FST&TCS 2007, vol. 4855 ofLNCS, pages 265–
276. Springer, 2007.

3. P. Chambart and Ph. Schnoebelen. Mixing lossy and perfect fifo channels. InProc. CONCUR
2008, vol. 5201 ofLNCS, pages 340–355. Springer, 2008.

4. P. Chambart and Ph. Schnoebelen. Theω-Regular Post Embedding Problem. InProc. FOS-
SACS 2008, vol. 4962 ofLNCS, pages 97–111. Springer, 2008.

5. P. Chambart and Ph. Schnoebelen. The ordinal recursive complexity of lossy channel sys-
tems. InProc. LICS 2008, pp. 205–216. IEEE Comp. Soc. Press, 2008.

6. P. Chambart and Ph. Schnoebelen. Computing blocker sets for the Regular Post Embedding
Problem. InProc. DLT 2010, vol. 6224 ofLNCS, pp. 136–147. Springer, 2010.

7. P. Chambart and Ph. Schnoebelen. Pumping and counting on the Regular Post Embedding
Problem. InProc. ICALP 2010, vol. 6199 ofLNCS, pp. 64–75. Springer, 2010.

8. M. Fairtlough and S. S. Wainer. Hierarchies of provably recursivefunctions. In S. Buss,
editor,Handbook of Proof Theory, chapter 3, pp. 149–207. Elsevier Science, 1998.

9. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere!Theoretical
Computer Science, 256(1–2):63–92, 2001.

10. P. Jaňcar, P. Karandikar, and Ph. Schnoebelen. Unidirectional channel systems can be tested.
In preparation, 2012.

11. A. Muscholl. Analysis of communicating automata. InProc. LATA 2010, vol. 6031 ofLNCS,
pp. 50–57. Springer, 2010.

12. S. Schmitz and Ph. Schnoebelen. Multiply-recursive upper bounds with Higman’s lemma.
In Proc. ICALP 2011, vol. 6756 ofLNCS, pages 441–452. Springer, 2011.

