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Abstract. Security API analysis typically only considers a subset of an API’s
functions, with results bounded by the number of function calls. Furthermore,
attacks involving partial leakage of sensitive information are usually not covered.
Type-based static analysis has the potential to alleviate these shortcomings. To
that end, we present a type system for secure information flowbased upon the one
of Volpano, Smith and Irvine [1], extended with types for cryptographic keys and
ciphertext similar to those in Sumii and Pierce [2]. In contrast to some other type
systems, the encryption and decryption of keys does not require special treatment.
We show that a well-typed sequence of commands is non-interferent, based upon
a definition of indistinguishability where, in certain circumstances, the adversary
can distinguish between ciphertexts that correspond to encrypted public data.

1 Introduction

It is common for computer systems which store, process and manipulate sensitive data
to use a dedicated security hardware device (e.g., IBM 4758 [3] and nCipher nShield
[4]). The set of functions provided by a security device is termed itssecurity API, as they
are intended to enforce a security policy as well as provide an interface to the device.
A security policy describes the restrictions on the access to, use of, and propagation of
data in the system. These restrictions, therefore, must follow as a direct consequence of
the API functions which are available to users of the security device.

The analysis of security APIs has traditionally been carried out by enumerating the
set of data items which the adversary (a malicious user) can obtain through repeated
interactions with the API. While this approach has had reasonable success (e.g., [5–9]),
results are typically bounded by the number of API calls, do not consider data integrity,
and only detect flaws which involve the release of sensitive data items in their entirety.

In contrast, static analysis has the potential to provide unbounded results, identify
flaws which allow for sensitive data to be leaked via covert control-flow channels, and
also deal with data integrity. The type system presented in this paper is the foundation
of one such approach, although it does not yet deal with integrity.



Our work builds upon the information-flow analysis capabilities of Volpano, Smith
and Irvine’s type system [1] by including cryptographic types similar to those from
Sumii and Pierce’s system for analysing security protocols[2]. Although there are many
similarities between security APIs and security protocols, analysis methods for the latter
are typically designed to deal with fixed-length specified interactions, and therefore
generally do not scale well when applied to arbitrary sequences of interactions.

2 Background

Hardware Security Modules (HSMs) comprise some memory and aprocessor inside a
tamper-proof enclosure which prevents the memory contentsfrom being physically read
— any breach causes the memory to be erased within a few micro-seconds. Additional
storage is provided by the host system to which the HSM is attached. This leads to a
natural partition of memory locations: those inside the HSMare high security, and those
on the host system are low security.

Memory locations on the host system are deemed low security,since the attack
model for security API analysis assumes that the adversary has full control of the host
system. In addition, the adversary is assumed to be capable of calling certain functions
provided by the HSM’s security API (because, for example, they have hijacked a user’s
session, or they are a legitimate user themselves).
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Fig. 1.The interactions between the adversary, the HSM API, and thememory locations.

Figure 1 shows the interactions between the adversary, HSM API, and memory loca-
tions in the standard attack scenario. HSM functions may access any memory locations,
while the adversary can only access the low security locations. A similar setup applies
in the case of software APIs, where the adversary is a malicious client program and the
high memory locations correspond to those which are hidden by the API.

The adversary’s goal is to execute a series of API function calls such that sensitive
data is unintentionally written to the low security memory,or that sensitive data can
be inferred from the API’s low security output. The aim of security API analysis is to
detect such insecure data flows, or to guarantee that no such flows exist.



n ∈ N Names
a ∈ A Locations
l ∈ L Security levels(where⊥,⊤∈ L)

e ::= n | !a | senc(e, e) | sdec(e, e) | junk(e) Expressions
c ::= a := e | c ; c | ε Commands
u ::= n | senc(u, u) Non-junk values
v ::= u | junk(u) Values

E ::= l data | l key | enc(E) Security types for expressions
A ::= E loc Security type for locations
C ::= cmd Security type for commands
T ::= E | A | C All security types

φ ::= φ ,a 7→ v | ε Store

∆ ::= ∆ ,n : l | ∆ ,a : l | ε Security levels environment
Γ ::= Γ, n : l data | Γ,n : l key | Γ,a : A | ε Security types environment

Fig. 2. Fundamental syntax definitions.

3 Type System

Figure 2 presents the fundamental syntax definitions upon which our type system is
built. The setN comprisesnamesrepresenting regular data items and cryptographic
keys;A is the set of abstract memorylocations, andL is the set of security levels
which may be associated to names and locations.3 Although our type system allows for
any number of security levels (wherel∈L→⊥≤ l ≤⊤), in this paper we only consider
⊥ and⊤ (i.e., low and high) in order to simplify the presentation and discussion.

An expressioncan be a name, the contents of a memory location, the result ofa
(symmetric) encryption or decryption, or ‘junk’ which denotes an incorrectly decrypted
term. Junk terms contain the expression which would have resulted had the correct
decryption key(s) been used, so we can ensure that a junk expression is treated in the
same way as the intended non-junk term. Acommandis zero or more instances of the
assignment operation. Avalueis a name, a fully evaluated ciphertext, or a junk value.

The security types for regular data items and cryptographickeys,l data and l key
respectively, associate a security level with their terms.The level associated with regular
data denotes the confidentiality level of that data item, whereas the one associated with
a cryptographic key denotes the maximum security level of expressions which that key
may encrypt. The different semantics are necessary becausewe allow the security level
of expressions to be arbitrarily increased and therefore cannot determine what a key
may encrypt based solely on its security level. For example,a low security key can be
considered a high security key and thus could be used to encrypt other high security
expressions. This approach also allows a high security key to encrypt and decrypt low
security expressions without forcing the result of the decryption to be high security.

3 Security levels are for analysis purposes only — they do not exist in practice (and even if they
did, the adversary would not gain anything from knowing a term’s security level).



To recover the precise type of encrypted data when it is subsequently decrypted, we
use a type operator;enc(E) is the type of an encrypted expression of typeE. This means
that no type information is lost as a result of the encryption/decryption process and also
allows us to handle nested encryptions. The security type for locations denotes the most
general type of expression which may be stored in that location. We do not associate a
security level with the command type, although we will do so in future work.

The store,φ, maps locations to values; the security levels environment, ∆, contains
the security levels of names and locations (used dynamically), and the security types
environment,Γ, contains the security types of names and locations (used statically). We
assume there is no overlap between the identifiers used for names and for locations.

3.1 Operational Semantics

Figure 3 presents the operational semantics for command sequences which we consider.
We wish to enforce the restriction that only ciphertext is decrypted, therefore any term
which evaluates to the decryption of non-encrypted data will get ‘stuck.’ That is, the
term cannot be fully evaluated under the operational semantics.

Other terms which will get stuck include the encryption of data with a key whose
security level is too low, the assignment of a value to a location whose security level is
too low, and the dereferencing of something other than a location. The first two of these
correspond to cases where continued evaluation would result in a security breach:

∆ = {a :⊥,vk :⊥, vm :⊤}
a := senc(vk, vm) (1)
a := vm (2)

Getting stuck in case (1) guarantees that, if the adversary is able to decrypt some
given piece of ciphertext, the result will not be sensitive,while getting stuck in case
(2) guarantees that sensitive data cannot be written directly to a low security memory
location. This latter property is known as ‘no-write down,’and is enforced by the rule
E-ASSIGN2. The ‘no read-up’ property follows from the assumption that an observer is
only able to read the contents of locations whose associatedsecurity level is low enough.
This is a legitimate assumption, since the sensitive locations will be those which are
inside the tamper-proof HSM whose security API is being analysed, or in the case of
software APIs, those locations which are hidden from clientprograms.

The junk term is returned when a piece of ciphertext is decrypted with a different
key from the one which was used to create it (E-SDEC4), or when the key or message
in an encryption or decryption operation is junk (E-SENC3, E-SENC4, E-SDEC5 and
E-SDEC6). In all cases, the expression within the junk term is that which would have
been returned had the correct decryption key(s) been used.

Encryption requires that the security level of the key is at least as high as that of
the message. However, this restriction is not enforced whenthe ciphertext is actually
created, but rather when it is subsequently decrypted or assigned to a location (i.e., when
the security level of the ciphertext has to be determined). The security level of ciphertext
is ⊥ since encryption is used primarily as a means of securely declassifying sensitive
data. If the result of an encryption should itself be sensitive, then this can be achieved
simply by assigning the ciphertext to a location which stores sensitive data and returning
a reference to that location.



Expressions
e→∆φ e′

ek →∆φ ek
′

senc(ek,em) →∆φ senc(ek
′,em)

E-SENC1

e→∆φ e′

senc(v, e) →∆φ senc(v, e′)
E-SENC2

senc(u, junk(u′)) →∆φ junk(senc(u, u′))
E-SENC3

senc(junk(u), v) →∆φ junk(senc(u, v))
E-SENC4

ek →∆φ ek
′

sdec(ek,em) →∆φ sdec(ek
′,em)

E-SDEC1

e→∆φ e′

sdec(v, e) →∆φ sdec(v, e′)
E-SDEC2

u′k 6= uk ∆ ⊢ u′k,uk : lk ∆ ⊢ um : lm lm ≤ lk
sdec(u′k, senc(uk,um)) →∆φ junk(um)

E-SDEC4

sdec(u, junk(u′)) →∆φ junk(sdec(u, u′))
E-SDEC5

sdec(junk(u), v) →∆φ junk(sdec(u, v))
E-SDEC6

Commands
〈φ,c〉 →∆ 〈φ′,c′〉

〈φ, c1〉 →∆ 〈φ′,c′1〉
〈φ,c1; c2〉 →∆ 〈φ′,c′1; c2〉

E-CMDS1

〈φ, ε ; c〉 →∆ 〈φ,c〉
E-CMDS2

e→∆φ e′

〈φ,a := e〉 →∆ 〈φ,a := e′〉
E-ASSIGN1

∆ ⊢ a : la ∆ ⊢ v : lv lv ≤ la
〈φ,a := v〉 →∆ 〈φ[a 7→v], ε〉

E-ASSIGN2

∆ ⊢ uk : lk ∆ ⊢ um : lm lm ≤ lk
sdec(uk, senc(uk,um)) →∆φ um

E-SDEC3

!a→∆φ φ(a)
E-DEREF

e→∆φ e′

junk(e) →∆φ junk(e′)
E-JUNK1

junk(junk(u)) →∆φ junk(u)
E-JUNK2

Security Levels of Values

n : l ∈ ∆
∆ ⊢ n : l

a : l ∈ ∆
∆ ⊢ a : l

∆ ⊢ uk : lk ∆ ⊢ um : lm lm ≤ lk
∆ ⊢ senc(uk,um) :⊥

∆ ⊢ u : l
∆ ⊢ junk(u) : l

Fig. 3.The operational semantics for command sequences.

3.2 Typing Rules

Figure 4 presents the rules of our type system. As noted previously, a location’s type
denotes the most general type of values which can be stored inthat location. By design,
the more general a type is, the greater its security level (i.e.,E <: E′ → lvl(E) ≤ lvl(E′)).
Therefore, the typing rule for assignment (T-ASSIGN) guarantees the ‘no write-down’
property since the security level associated with the location will be no lower than the
one associated with the expression.

Junk terms can have any expression type (T-JUNK), since they are generated only
as the result of a decryption with the wrong key, and we wish toconsider a junk term as
being equivalent to the intended result, had the correct decryption key been used. This
is to prevent insecure information flows which may otherwiseresult from the use of an
incorrect decryption key.



Commands

Γ ⊢ c1 : cmd Γ ⊢ c2 : cmd

Γ ⊢ c1 ; c2 : cmd
T-CMDS

Γ ⊢ a : E loc Γ ⊢ e: E

Γ ⊢ a := e: cmd
T-ASSIGN Γ ⊢ ε : cmd

T-EMPTY

Expressions

n : E ∈ Γ
Γ ⊢ n : E

T-NAME
Γ ⊢ e: E

Γ ⊢ junk(e) : E
T-JUNK

a : E loc ∈ Γ
Γ ⊢ a : E loc

T-LOC
Γ ⊢ a : E loc

Γ ⊢ !a : E
T-DEREF

Γ ⊢ ek : l key Γ ⊢ em : E lvl(E) = l
Γ ⊢ senc(ek,em) : enc(E)

T-SENC

Γ ⊢ ek : l key Γ ⊢ em : enc(E) lvl(E) = l
Γ ⊢ sdec(ek, em) : E

T-SDEC

Subtyping

Γ ⊢ t : T′
T
′ <: T

Γ ⊢ t : T
T-SUB

T <: T

T <: T
′′

T
′′

<: T
′

T <: T
′

l ≤ l ′

l data <: l ′ data
E <: E′

enc(E) <: enc(E′)

l key <: ⊤ data enc(E) <: ⊥ data

Security Levels of Types

lvl(cmd) = ⊥ lvl(l data) = l

lvl(l key) = ⊤ lvl(enc(E)) = ⊥

lvl(E loc) = lvl(E)

Fig. 4.The typing rules of our system.

The contents of a location are given the type of the most general expression that can
be stored in that location (T-DEREF). Thus, any security result is independent of the
values which are actually stored in each memory location.

For encryption, the key used must be able to encrypt messageswhich are at least as
secure as the actual message (T-SENC). For decryption, the message must be ciphertext
and the security level associated with the key must be no lower than the security level
associated with the result (T-SDEC).

Currently, we restrict keys to having the highest security level, and commands to
having the lowest security level, since our focus is on security APIs with secret keys
and public functions. Relaxing these restrictions will form part of our future work.

To prove the theorems presented in this paper, we require a couple of standard type-
theoretic lemmas. The proofs are quite straightforward andhave been omitted.

Lemma 1. Generation Lemma (Inversion of the Typing Relation)

1. If Γ ⊢ n :T thenT :> E andn : E ∈ Γ.
2. If Γ ⊢ a :T thenT ≡ E loc anda : E loc ∈ Γ.

3. If Γ ⊢ !a :T thenT :> E andΓ ⊢ a : E loc.
4. If Γ ⊢ senc(e1,e2) : T thenT :> enc(E), Γ ⊢ e1 : l key, Γ ⊢ e2 : E andlvl(E) = l .
5. If Γ ⊢ sdec(e1,e2) : T thenT :> E, Γ ⊢ e1 : l key, Γ ⊢ e2 : enc(E) andlvl(E) = l .
6. If Γ ⊢ junk(e) :T thenΓ ⊢ e:T.
7. If Γ ⊢ a := e: T thenT ≡ cmd, Γ ⊢ a : E loc, andΓ ⊢ e: E.



8. If Γ ⊢ ε :T thenT ≡ cmd.

9. If Γ ⊢ c1 ; c2 : T thenT ≡ cmd, Γ ⊢ c1 : cmd, andΓ ⊢ c2 : cmd.

Proof. Follows from induction on the typing derivations.

Lemma 2. Canonical Forms Lemma

1. If Γ ⊢ v : enc(E) thenv≡ senc(uk,um) or junk(senc(uk,um)).

2. If Γ ⊢ v : l key thenv ≡ n or junk(n).

3. If Γ ⊢ v : l data thenv ≡ n, senc(uk, um), junk(n) or junk(senc(uk,um)).

Proof. Follows from inspection of the typing rules and fundamentaldefinitions.

4 Progress and Preservation

The standard way to establishtype safetyfor a type system with respect to an operational
semantics is to show that theprogressandpreservationproperties hold. Preservation
establishes that the type of a term is not changed by the evaluation rules, while progress
demonstrates that well-typed terms will not get ‘stuck.’ Stuck terms represent certain
error conditions that may arise during evaluation. In our system, for example, a term
becomes stuck whenever further evaluation would result in asecurity leak. Such leaks
are prevented in the operational semantics by checks carried out on the security levels
in a number of the evaluation rules.

For the progress and preservation properties to hold, the initial storeφ must bewell-
typed, and the security levels environment∆ must belevel-consistentwith respect to the
typing contextΓ. Informally, φ is well-typed if every value inφ has the type predicted
by Γ, while ∆ is level-consistent with respect toΓ if every name and location in∆ has
the same security level as given to it byΓ.

Definition 1. A storeφ is well-typedwith respect to a typing contextΓ, written Γ ⊢ φ,
if dom(φ) = dom(Γ | loc) and,∀a∈ dom(φ), ∃E. Γ ⊢ φ(a) : E ∧ Γ ⊢ a : E loc.

Definition 2. A security levels environment∆ is level-consistentwith respect to a typing
contextΓ, writtenΓ ⊢ ∆ , if dom(∆) = dom(Γ), and

• ∀n∈ dom(Γ | nam), n :E ∈ Γ → n : lvl(E) ∈ ∆
• ∀a∈ dom(Γ | loc), a : E loc ∈ Γ → a : lvl(E) ∈ ∆

Here,S | nam andS | loc denote the subsets ofS containing only those elements which
are names and locations respectively.

Corollary 1. If Γ ⊢ ∆, Γ ⊢ v :E and∆ ⊢ v : l, then l≤ lvl(E).

Proof. By definition, v ≡ n, junk(n), senc(uk,um) or junk(senc(uk, um)). If v ≡ n or
junk(n) then, by Lemma 1,n : E′∈ Γ, whereE′ <: E. By Γ ⊢ ∆, n : lvl(E′) ∈ ∆ therefore
∆ ⊢ v : lvl(E′) and l = lvl(E′). It then follows fromE′

<: E that lvl(E′) ≤ lvl(E), so the
result holds. Ifv≡ senc(uk, um) or junk(senc(uk, um)) thenl = ⊥, so the result holds.⊓⊔



Theorem 1. Progress

i) If Γ ⊢ t : E, then either t is a value, or else for any security levels environment∆
and storeφ such thatΓ ⊢ ∆ andΓ ⊢ φ, there exists some t′ such that t→∆φ t ′.

ii) If Γ ⊢ t : C, then either t is the empty commandε or else, for any security types
environment∆ and storeφ such thatΓ ⊢ ∆ andΓ ⊢ φ, there exists some t′ and φ′
such that〈φ , t〉→∆ 〈φ′, t′〉.

Proof. By induction onΓ ⊢ t : E andΓ ⊢ t : C: (selected cases only)

• Case T-DEREF: t : E ≡ !a : E a : E loc

The rule E-DEREFapplies (it follows fromΓ ⊢ φ thata∈ φ).

• Case T-SENC: t : E ≡ senc(ek,em) : enc(E′) ek : l key em : E′ lvl(E′) = l
By the induction hypothesis, eitherek is a value, or else for any∆ andφ such that
Γ ⊢ ∆ andΓ ⊢ φ, there exists somee′k such thatek →∆φ e′k. Similarly for em. If ek is
not a value then E-SENC1 applies; ifem is not a value (butek is) then E-SENC2
applies; ifek is a junk value then E-SENC4 applies; ifem is a junk value (andek

is a non-junk value) then E-SENC3 applies; if bothek andem are non-junk values
thent is a value.

• Case T-SDEC: t : E ≡ sdec(ek, em) : E ek : l key em : enc(E) lvl(E) = l
By the induction hypothesis, eitherek is a value, or else for any∆ and φ such
that Γ ⊢ ∆ andΓ ⊢ φ, there exists somee′k such thatek →∆φ e′k. Similarly for em.
If ek is not a value then E-SDEC1 applies, and ifem is not a value (butek is)
then E-SDEC2 applies. Ifek is a value then, by Lemma 2, it must be of the form
n or junk(n). The former case is covered by the rules E-SDEC3, E-SDEC4 and
E-SDEC5 as described below; in the latter case, E-SDEC6 applies. Ifem is a value
then, by Lemma 2, it must be of the form senc(uk,um) or junk(senc(uk,um)). In the
first case, it follows from Lemma 1 thatΓ ⊢ uk : l ′ key, Γ ⊢ um : E′ and lvl(E′) = l ′,
whereenc(E) :> enc(E′) (thereforeE :> E′). If ek = uk then E-SDEC3 applies and if
ek 6= uk then E-SDEC4 applies. In the second case, whereem ≡ junk(senc(uk, um)),
the rule E-SDEC5 applies. For rules E-SDEC3 and E-SDEC4, the inequalitylm ≤
lk will be satisfied because it follows from Lemma 1 thatek : l key ∈ Γ, and from
Γ ⊢ ∆ thatek :⊤ ∈ ∆, thuslk = ⊤.

• Case T-ASSIGN: t : C ≡ a := e: cmd a : E loc e: E

By the induction hypothesis for Part (i), eithere is a value, or else for any∆ and
φ such thatΓ ⊢ ∆ andΓ ⊢ φ, there exists somee′ such thate→∆φ e′. If e is a value,
then E-ASSIGN2 applies, otherwise E-ASSIGN1 applies. In the former case, the
inequality will hold because, by Lemma 1,a : E loc ∈ Γ, by Γ ⊢ ∆, a : lvl(E) ∈ ∆
thereforela = lvl(E), and by Cor. 1,lv ≤ lvl(E).

• Case T-CMDS: t : C ≡ c1 ; c2 : cmd c1 : cmd c2 : cmd

By the induction hypothesis, eitherc1 is the empty commandε or else, for any∆ and
φ such thatΓ ⊢ ∆ andΓ ⊢ φ, there exists somec′1 andφ′ such that〈φ, c1〉→∆ 〈φ′,c′1〉.
If c1 ≡ ε then the rule E-CMDS2 applies, otherwise the rule E-CMDS1 applies. ⊓⊔



Theorem 2. Preservation

i) If Γ ⊢ t : E, Γ ⊢ ∆, φ and there exists some t′ such that t→∆φ t ′, thenΓ ⊢ t ′ : E.

ii) If Γ ⊢ t : C, Γ ⊢ ∆, φ and there exists some t′ andφ′ such that〈φ , t〉→∆ 〈φ′, t′〉, then
Γ ⊢ φ′ andΓ ⊢ t ′ : C.

Proof. By induction onΓ ⊢ t : E andΓ ⊢ t : C: (selected cases only)

• Case T-DEREF: t : E ≡ !a : E a : E loc

E-DEREF is the only evaluation rule which may apply, thereforet ′ ≡ φ(a). By
Γ ⊢ φ, ∃E′ such thatΓ ⊢ a : E′ loc andΓ ⊢ φ(a) : E′. It therefore follows thatE′ ≡ E
and so the result holds.

• Case T-SENC: t : E ≡ senc(ek, em) : enc(E) ek : l key em : E lvl(E) = l
There are four evaluation rules which correspond to the transition t →∆φ t ′: E-
SENC1 through E-SENC4. Subcase E-SENC2 has a similar proof to subcase E-
SENC1, and subcase E-SENC4 has a similar proof to subcase E-SENC3.

• Subcase E-SENC1: ek →∆φ e′k t ′ ≡ senc(e′k, em)
The T-SENC rule has a subderivation whose conclusion isek : l key and the in-
duction hypothesis gives use′k : l key. Therefore, in conjunction withem : E and
lvl(E) = l , we can apply the rule T-SENC to conclude that senc(e′k, em) : enc(E).

• Subcase E-SENC3: ek ≡ uk em ≡ junk(um) t ′ ≡ junk(senc(uk, um))
The T-SENC rule has a subderivation whose conclusion is junk(um) : E, and by
Lemma 1 we getum : E. Therefore, in conjunction withuk : l key andlvl(E) = l ,
we can apply T-SENC and T-JUNK to conclude that junk(senc(uk, um)) : enc(E).

• Case T-SDEC: t : E ≡ sdec(ek, em) : E ek : l key em : enc(E) lvl(E) = l
There are six evaluation rules which correspond to the transition t →∆φ t ′: E-SDEC1
through E-SDEC6. Subcases E-SDEC1 and E-SDEC2 have similar proofs to sub-
case E-SENC1 above; subcases E-SDEC5 and E-SDEC6 have a similar proof to
subcase E-SENC3 above.

• Subcase E-SDEC3: ek ≡ n em ≡ senc(n, t ′)
The T-SDEC rule has a subderivation whose conclusion is senc(n, t ′) : enc(E).
It follows from Lemma 1 thatΓ ⊢ t ′ : E′ andenc(E′) <: enc(E). ThusE′ <: E,
and we can apply the T-SUB rule to conclude thatΓ ⊢ t ′ : E.

• Subcase E-SDEC4: em ≡ senc(uk, um) ek 6= uk t ′ = junk(um)
The T-SDEC rule has a subderivation whose conclusion is senc(uk,um) : enc(E).
It follows from Lemma 1 thatΓ ⊢ um : E′ andenc(E′) <: enc(E). ThusE′ <: E,
and we can apply T-SUB and T-JUNK to conclude thatΓ ⊢ junk(um) : E.

• Case T-ASSIGN: t : C ≡ a := e: cmd a : E loc e: E

Two evaluation rules may correspond to the transition〈φ, t〉→∆ 〈φ′, t ′〉: E-ASSIGN1
and E-ASSIGN2. The proof for the latter is trivial.

• Subcase E-ASSIGN1: 〈φ, e〉→∆ 〈φ, e′〉 t ′ = a := e′

The T-ASSIGNrule has a subderivation whose conclusion ise: E. Applying the
induction hypothesis to this subderivation gives usΓ ⊢ e′ : E. In conjunction



with the other subderivationΓ ⊢ a : E loc, we can apply T-ASSIGN to conclude
thatΓ ⊢ a := e′ : cmd. Γ ⊢ φ′ follows immediately from the fact thatφ = φ′.

• Case T-CMDS: t : C ≡ c1 ; c2 : cmd c1 : cmd c2 : cmd

Two evaluation rules may correspond to the transition〈φ, t〉→∆ 〈φ′, t ′〉: E-CMDS1
and E-CMDS2. The proof for the latter is trivial.

• Subcase E-CMDS1: 〈φ, c1〉→∆ 〈φ′,c′1〉 t ′ = c′1 ; c2

The T-CMDS rule has a subderivation whose conclusion isc1 : cmd and the
induction hypothesis gives usΓ ⊢ φ′ andΓ ⊢ c′1 : cmd. Using the latter of these,
in conjunction with the other subderivationΓ ⊢ c2 : cmd, we can apply the rule
T-CMDS to conclude thatΓ ⊢ c′1 ; c2 : cmd. ⊓⊔

The following lemma states that the type of an expression is preserved under evaluation
with respect to a well-typed store, independent of the actual values contained in the
locations of that store, and is required to prove our non-interference result.

Lemma 3. If (Γ, a : E loc) ⊢ e :E ′, Γ ⊢ v : E, (Γ, a :E loc) ⊢ ∆, φ and e→∆φ′
∗ v′, whereφ′ ≡

φ[a 7→ v], thenΓ ⊢ v′ : E ′.

Proof. By induction on (Γ,a : E loc) ⊢ e: E′: (selected cases only)

• Case T-DEREF: e: E′ ≡ !a′ : E′ a′ : E′ loc

!a′→∆φ′ φ′(a′). By Lemma 1,a′ : E′ loc ∈ Γ. If a = a′ thenv′ = v andE′ ≡ E, thus the
result holds. Ifa 6= a′ thenv′ = φ(a′) and the result follows from (Γ,a : E loc) ⊢ φ.

• Case T-SENC: e: E′ ≡ senc(ek, em) : enc(E′′) ek : l key em : E′′ lvl(E′′) = l
senc(ek,em) →∆φ′

∗ senc(vk, vm) →∆φ′
∗ v′, whereek →∆φ′

∗ vk andem →∆φ′
∗ vm. By the in-

duction hypothesis,Γ ⊢ vk : l key andΓ ⊢ vm : E′′. If vk andvm are both non-junk
values, thenv′ ≡ senc(vk,vm) and the the result follows from T-SENC. Otherwise,
vk ≡ junk(uk) and/orvm≡ junk(um), thereforev′ ≡ junk(senc(uk,um)) and the result
follows from T-JUNK and T-SENC.

• Case T-SDEC: e: E′ ≡ sdec(ek, em) : E′ ek : l key em : enc(E′)
sdec(ek,em) →∆φ′

∗ sdec(vk,vm) →∆φ′
∗ v′ whereek →∆φ′

∗ vk andem →∆φ′
∗ vm. By the induc-

tion hypothesis,Γ ⊢ vk : l key andΓ ⊢ vm : enc(E′), and by Lemma 2,vk is of the
form n or junk(n), andvm is of the form senc(uk, um) or junk(senc(uk,um)). In both
cases forvm, it follows from Lemma 1 thatΓ ⊢ um : E′′, whereE′′

<: E′. By inspec-
tion of the evaluation rules,v′ will be of the formum or junk(um). In the first case,
we can apply T-SUB to Γ ⊢ um : E′′ andE′′ <: E′ to conclude thatΓ ⊢ um : E′; in the
second case, the result follows from T-SUB and T-JUNK. ⊓⊔

5 Indistinguishability

Our type system is intended for analysing systems with ciphers that arerepetition con-
cealingandwhich-key concealing— also known as type-1 ciphers ([10], Sec. 4.2). Rep-
etition concealing means that it is not possible to say whether two messages encrypted
under the same key are equal. Which-key concealing means that it is not possible to say



whether two keys used to encrypt the same message are equal. Both of these properties
are possessed by standard block ciphers, such as DES and AES,when used in CBC
or CTR mode ([10], Sec. 4.4). However, these definitions assume that the adversary is
unable to correctly decrypt the ciphertexts. This is not strictly the case with security
APIs: the API functions can be used to decrypt ciphertexts whose contents are public,
whilst keeping the actual values of the keys secret. As a result, we have to capture the
ability of the adversary to distinguish between ciphertexts which contain public data,
under certain circumstances.

We use the notationΓ ⊢ v1∼l v2 : E to denote that the valuesv1 andv2 both have
typeE and are indistinguishable at the security levell , and the notationΓ ⊢ φ∼l φ′ to
denote that the storesφ andφ′ are indistinguishable at the security levell . In both cases,
l denotes the maximum security level associated with the locations that an observer can
read directly.

Definition 3. We define theindistinguishability of two values, v1 and v2, with respect
to a typing environmentΓ and observation level l, denotedΓ ⊢ v1 ∼l v2 : E, as the least
symmetric relation closed under the following rules, whereΓ ⊢ v1,v2 : E:

• Γ ⊢ n1∼l n2 : l ′ data iff ( l ≥ l ′) → (n1 = n2)

• Γ ⊢ n1∼l n2 : l ′ key iff ( l ≥ l ′) → (n1 = n2)

• Γ ⊢ senc(uk, um)∼l senc(u′k, u′m) : enc(E) iff (Γ ⊢ um∼l u′m : E) ∧

(Γ ⊢ junk(um)∼l u′m : E ∨ Γ ⊢ uk ∼l u′k: lvl(E) key)

• Γ ⊢ junk(u)∼l junk(u′) : E

• Γ ⊢ junk(n)∼l n′ : l ′ data iff ( l < l ′)

• Γ ⊢ junk(n)∼l n′ : l ′ key iff ( l < l ′)

• Γ ⊢ junk(senc(uk, um))∼l senc(u′k, u′m) : enc(E) iff Γ ⊢ junk(um)∼l u′m : E

If a value has a type which permits it to be observed by the adversary, we must assume
that this will eventually occur. It then follows that unencrypted data items which can
be observed must be equal for them to be considered indistinguishable. Keys will be
distinguishable if the output from their use is distinguishable. That is, by encrypting a
known value with each key, decrypting each ciphertext with both keys, then comparing
the final results to the original input: if any of the outputs are distinguishable from the
input, then the two keys cannot be the same, and are thus distinguishable.

Ciphertexts are indistinguishable if their messages are indistinguishable, and the
keys must also be indistinguishable if the observer could otherwise determine when
one of the ciphertexts has been incorrectly decrypted. Thatis, if the keys have a type
which allows them to encrypt observable data, then we must assume that the adversary
is able to correctly decrypt each ciphertext, and can thus determine whether or not the
required keys are the same whenever he can predict the correct output. It follows from
the definition that keys which operate on non-observable data are indistinguishable.

Two junk values are indistinguishable, since they are both essentially just random
bit-strings. For this reason also, junk names are distinguishable from observable non-
junk names. Junk ciphertext is indistinguishable from non-junk ciphertext if the results
of decrypting each one cannot be distinguished.



Definition 4. We define theindistinguishability of two stores, φ1 andφ2, with respect
to a typing environmentΓ and observation level l, denotedΓ ⊢ φ1 ∼l φ2, as the least
relation closed under the following rules:

• Γ ⊢ ε∼l ε
• Γ ⊢ (φ, a 7→ v)∼l (φ′, a 7→ v′) iff Γ ⊢ φ∼l φ′, Γ ⊢ v, v′ : E andΓ ⊢ v∼l v′ : E

This definition states that two stores are indistinguishable if their domains are equal,
and the values stored in equivalent locations are indistinguishable.

6 Non-Interference

Informally, non-interference states that changes to non-observable inputs should have
no effect on observable outputs. For expressions, this means that given two indistin-
guishable stores (which differ in the contents of at least one non-observable location),
the final values obtained by fully evaluating the same expression with respect to those
stores should be indistinguishable. For command sequences, this means that given
two indistinguishable stores (which again differ in the contents of at least one non-
observable location), the stores which result from fully evaluating the same command
sequence with respect to those stores should also be indistinguishable.

Theorem 3. Non-Interference

i) If (Γ, a :E loc) ⊢ e :E ′, Γ ⊢ v1, v2 : E andΓ ⊢ ∆,φ1,φ2, such thatΓ ⊢ v1∼l v2 : E and
Γ ⊢ φ1 ∼l φ2, then it follows from e→∆φ′

1

∗ v′1 and e→∆φ′
2

∗ v′2 thatΓ ⊢ v′1 ∼l v′2 : E ′, where
φ′i ≡ φi [a 7→vi ].

ii) If (Γ, a :E loc) ⊢ c : C, Γ ⊢ v1, v2 : E andΓ ⊢ ∆,φ1,φ2, such thatΓ ⊢ v1 ∼l v2 : E and
Γ ⊢ φ1 ∼l φ2, then it follows from〈c,φ′1〉 →∆

∗ 〈ε, φ′′1〉 and 〈c,φ′2〉 →∆
∗ 〈ε, φ′′2〉 that

Γ ⊢ φ′′1 ∼l φ′′2, whereφ′i ≡ φi [a 7→vi ].

Proof. By induction on (Γ,a : E loc) ⊢ e: E′ and (Γ,a : E loc) ⊢ c : C: (selected cases
only)

• Case T-DEREF: e: E′ ≡ !a′ : E′ a′ : E′ loc

!a′ →∆φ′
i
φ′i(a′). If a′ = a, then v′i = vi and E′ ≡ E, thus the result follows from

Γ ⊢ v1 ∼l v2 : E. If a′ 6= a, the result follows fromΓ ⊢ φ1 ∼l φ2.

• Case T-SENC: e: E′ ≡ senc(ek, em) : enc(E′′) ek : l ′ key em : E′′ lvl(E′′) = l ′

senc(ek,em) →∆φ′
1

∗ senc(vk,vm) →∆φ′
1

∗ v′1 whereek →∆φ′
1

∗ vk andem →∆φ′
1

∗ vm. senc(ek, em)
→∆φ′

2

∗ senc(v′k,v
′
m)→∆φ′

2

∗ v′2 whereek →∆φ′
2

∗ v′k andem→∆φ′
2

∗ v′m. It follows from Lemma 3
thatΓ ⊢ vk,v′k : l ′ key andΓ ⊢ vm, v′m : E′′, by Lemma 2,vk ≡ n or junk(n), andv′k ≡ n′

or junk(n′), and by definition,vm ≡ um or junk(um), andv′m ≡ u′m or junk(u′m). If
vk ≡ n andvm ≡ um thenv′1 ≡ senc(n,um) [A]; if vk ≡ junk(n) andvm ≡ um then,
by E-SENC4, v′1 ≡ junk(senc(n,um)) [B]; if vk ≡ n andvm ≡ junk(um) then, by
E-SENC3, v′1 ≡ junk(senc(n,um)) [C], and if vk ≡ junk(n) andvm ≡ junk(um) then,
by E-SENC4, E-JUNK1, E-SENC3 and E-JUNK2,v′1 ≡ junk(senc(n,um)) [D]. The
equivalent outcomes forv′2 are denoted by [E] through [H]. There are 16 cases for
Γ ⊢ v′1 ∼l v′2 : E′ which we need to consider (resulting from the cross product of
[A,B,C,D] and [E,F,G,H]):



• Subcase [A]×[E]: Γ ⊢ senc(n,um)∼l senc(n′, u′m) : enc(E′′)
By the induction hypothesis,Γ ⊢ n∼l n′ : l ′ key andΓ ⊢ um∼l u′m : E′′, and since
lvl(E′′) = l ′, the result follows immediately from Def. 3.

• Subcase [A]×[F]: Γ ⊢ senc(n,um)∼l junk(senc(n′,u′m)) : enc(E′′)
By the induction hypothesis,Γ ⊢ n∼l junk(n′) : l ′ key thus, by Def. 3,l < l ′.
Γ ⊢ senc(n,um)∼l junk(senc(n′,u′m)) : enc(E′′) iff Γ ⊢ um∼l junk(u′m) : E′′ and
this holds whenl < lvl(E′′). The result then follows fromlvl(E′′) = l ′ andl < l ′.

• Subcases [A]×[G,H]: Γ ⊢ senc(n,um)∼l junk(senc(u′k,u
′
m)) : enc(E′′)

By the induction hypothesis,Γ ⊢ um∼l junk(u′m) : E′′, thus the result follows
immediately from Def. 3.

• Subcases [B,C,D]×[F,G,H]: Γ ⊢ junk(senc(n,um))∼l junk(senc(n′,u′m)) : enc(E′′)
The result follows immediately from Def. 3.

Subcase [B]×[E] is similar to subcase [A]×[F] and subcases [C,D]×[E] are similar
to subcases [A]×[G,H].

• Case T-SDEC: e: E′ ≡ sdec(ek,em) : E′ ek : l ′ key em : enc(E′) lvl(E′) = l ′

sdec(ek,em) →∆φ′
1

∗ sdec(vk,vm) →∆φ′
1

∗ v′1, whereek →∆φ′
1

∗ vk andem →∆φ′
1

∗ vm. sdec(ek, em)
→∆φ′

2

∗ sdec(v′k, v′m) →∆φ′
2

∗ v′2, whereek →∆φ′
2

∗ v′k andem →∆φ′
2

∗ v′m. It follows from Lemma 3
thatΓ ⊢ vk, v′k : l ′ key andΓ ⊢ vm,v′m : enc(E′), and by Lemma 2,vk ≡ n or junk(n),
v′k ≡ n′ or junk(n′), vm ≡ senc(ua,ub) or junk(senc(ua,ub)), andv′m ≡ senc(u′a, u′b)
or junk(senc(u′a, u′b)). If vk ≡ n andvm ≡ senc(n,ub) then, by E-SDEC3, v′1 = ub

[A]; if vk ≡ n andvm≡ senc(ua, ub) whereua 6= n then, by E-SDEC4,v′1 = junk(ub)
[B]; if vk ≡ junk(n) andvm ≡ senc(ua, ub) then, by E-SDEC5, v′1 = junk(ub) [C];
if vk ≡ n andvm ≡ junk(senc(ua, ub)) then, by E-SDEC6, v′1 = junk(ub) [D], and if
vk ≡ junk(n) andvm≡ junk(senc(ua,ub)) then, by E-SDEC6, E-JUNK1, E-SDEC5
and E-JUNK2,v′1 = junk(ub) [E]. The equivalent outcomes forv′2 are denoted by [F]
through [J]. There are 25 subcases forΓ ⊢ v′1∼l v′2 : E′ which we need to consider
(resulting from the cross product of [A,B,C,D,E] and [F,G,H,I,J]):
• Subcase [A]×[F]: Γ ⊢ ub∼l u′b : E′

By the induction hypothesis,Γ ⊢ senc(n,ub)∼l senc(n′, u′b) : enc(E′), therefore
it follows from Def. 3 thatΓ ⊢ ub∼l u′b : E′.

• Subcase [A]×[G]: Γ ⊢ ub∼l junk(u′b) : E′

By the induction hypothesis, we haveΓ ⊢ senc(n,ub)∼l senc(u′a, u′b) : enc(E′)
andΓ ⊢ n∼l n′ : l ′ key. By Def. 3, it follows from the second of these thatl < l ′

or n = n′. From the first one, it follows thatΓ ⊢ ub∼l u′b : E′ as well as either
Γ ⊢ n∼l u′a : lvl(E′) key or Γ ⊢ ub∼l junk(u′b) : E′. In the latter case, the result is
immediate. In the former case, it follows from Def. 3 thatl < lvl(E′) or n = u′a.
However, sincelvl(E′) = l ′, it must be the case thatl < lvl(E′), otherwise we
would haven = n′ = u′a which is prevented by the requirement for [G] which
states thatn′ 6= u′a. The result then follows from Def. 3.

• Subcases [A]×[H,J]: Γ ⊢ ub∼l junk(u′b) : E′

By the induction hypothesis,Γ ⊢ n∼l junk(n′) : l ′ key, therefore it follows from
Def. 3 thatl < l ′. Sincel ′ = lvl(E′), the result follows from Def. 3.



• Subcase [A]×[I]: Γ ⊢ ub∼l junk(u′b) : E′

By the induction hypothesis,Γ ⊢ senc(n,ub)∼l junk(senc(v′a, u′b)) : enc(E′) and
so it follows from Def. 3 thatΓ ⊢ ub ∼l junk(u′b) : E′.

• Subcases [B,C,D,E]×[G,H,I,J]: Γ ⊢ junk(ub)∼l junk(u′b) : E′

The result follows immediately from Def. 3.
Subcase [B]×[F] is similar to subcase [A]×[G]; subcases [C,E]×[F] are similar to
subcases [A]×[H,J], and subcase [D]×[F] is similar to subcase [A]×[I].

• Case T-ASSIGN: c : C ≡ a′ := e: cmd a′ : E loc e: E

〈a′ := e,φ′1〉 →∆
∗ 〈ε, φ′1[a′ 7→ v]〉 wheree→∆φ′

1

∗ v, and〈a′ := e,φ′2〉 →∆
∗ 〈ε, φ′2[a′ 7→ v′]〉

wheree→∆φ′
2

∗ v′. By the induction hypothesis for part (i),Γ ⊢ v∼l v′ : E and thus, in
conjunction withΓ ⊢ φ′1 ∼l φ′2 andΓ ⊢ v1 ∼l v2 : Γ, the result follows from Def. 4.

• Case T-CMDS: c : C ≡ c1 ; c2 : cmd c1 : cmd c2 : cmd

〈c1 ; c2,φ′1〉 →∆
∗ 〈ε ; c2,φ′′′1 〉 →∆ 〈c2, φ′′′1 〉 →∆

∗ 〈ε, φ′′1〉 where〈c1,φ′1〉 →∆
∗ 〈ε, φ′′′1 〉 and

〈c1 ; c2,φ′2〉 →∆
∗ 〈ε ; c2,φ′′′2 〉 →∆ 〈c2, φ′′′2 〉 →∆

∗ 〈ε, φ′′2〉 where〈c1,φ′2〉 →∆
∗ 〈ε, φ′′′2 〉. The

result then follows by two applications of the induction hypothesis. ⊓⊔

Theorem 3 guarantees that well-typed expressions and command sequences are non-
interferent. As an example, consider the following presentation of an API function for
encrypting low security data stored inmsgloc with a key that is itself encrypted (by a
master key,km) and stored in a low security location,ekeyloc:4

km :⊤ key, ekeyloc : enc(⊥ key) loc,Γ =

{

key loc :⊥ key loc, msgloc :⊥ data loc, res loc : enc(⊥data) loc

}

key loc:= sdec(km, !ekeyloc) ; res loc:= senc(!key loc, !msgloc) : cmd

The non-interference theorem tells us that the above well-typed command sequence
will not leak any information about the values ofkm and !key loc into the low security
locations.

7 Example: Wrap/Decrypt Attack

The wrap/decrypt attack ([11], Sec. 2.3) is one of the most basic attacks which a key
management API can be susceptible to. In short, a sensitive key is altered in such a
way as to be able to wrap (encrypt) other sensitive keys and also decrypt public data.
This typically involves altering the key’s ‘type’ so that itis accepted by each of the two
required API functions. Alternatively, two copies of the key can be obtained such that
each copy has one of the two necessary types. Both of these requirements can be quite
straightforward to achieve (e.g., as discussed in [7]). Theoutcome is that a sensitive key
can be discovered by first wrapping it, then decrypting the result:

x := senc(k1,k2) . . .‘wrap’ k2 with k1

y := sdec(k1, !x) . . . recoverk2

4 Recall that we treat all keys as high security values, and thesecurity level associated with a
key’s type denotes the level of data that it may encrypt.



[⇒ l = ⊤] [⇒ E′ ≡⊤key]

k1 :⊤ key ∈ Γ k2 :⊤ key ∈ Γ [ HOLDS ]

[⇒ E ≡ enc(⊤key)] Γ ⊢ k1 : l key Γ ⊢ k2 : E′ lvl(E′) = l
[ HOLDS ]

x : enc(⊤ key) loc ∈ Γ Γ ⊢ senc(k1,k2) : enc(E′) enc(E′) <: E

Γ ⊢ x : E loc Γ ⊢ senc(k1,k2) : E

Γ ⊢ x:= senc(k1,k2) : cmd

Fig. 5. Successful typing derivation for the wrap command

[⇒ E′ ≡⊤key]
[⇒ l = ⊤]

x : enc(⊤ key) loc ∈ Γ
k1 :⊤ key ∈ Γ Γ ⊢ x : enc(⊤ key) loc

[ HOLDS ]

[⇒ E ≡⊥data] Γ ⊢ k1 : l key Γ ⊢ !x : enc(E′) lvl(E′) = l





DOES

NOT

HOLD





y :⊥ data loc ∈ Γ Γ ⊢ sdec(k1, !x) : E′ E′ <: E

Γ ⊢ y : E loc Γ ⊢ sdec(k1, !x) : E

Γ ⊢ y:= sdec(k1, !x) : cmd

Fig. 6. Failed typing derivation for the decrypt command

Our type system can be applied to these commands as follows:

k1 :⊤ key, k2 :⊤ key, x:= senc(k1,k2) : cmdΓ =

{

x : enc(⊤ key) loc, y :⊥ data loc

}

y:= sdec(k1, !x) : cmd

Figure 5 shows the typing derivation for the wrap command, and Fig. 6 shows the
typing derivation for the decrypt command (unnecessary instances of the T-SUB rule
have been omitted in both cases).

The first command type-checks, sincelvl(E′) = l andenc(E′) <: E both hold, but
the second command does not, sinceE′

<: E does not hold. The flaw is that a sensitive
piece of data is written to a public location — the failed subtype condition indicates
that the security level of the data is greater than that of thelocation. Note that using the
definition x : enc(⊥ data) loc instead ofx : enc(⊤ key) loc in the above example makes
the second command type-check, but it prevents the first command from type-checking,
sinceenc(E′) <: E no longer holds.

The wrap/decrypt attack is one of a number of attacks which initially require the
type of a key to be altered, therefore our type system should be able to identify when
an API command may allow this to occur. One such command is ‘unwrap,’ which takes
an existing key and ciphertext corresponding to a second keyencrypted under the first
one, and then decrypts the ciphertext before storing the result. Figure 7 shows that our
type system is indeed able to identify that the following instantiation of that command
is insecure:

key:⊤ key,Γ =

{

wkey: enc(l key), res: l ′ key loc

}

res:= sdec(key,wkey) : cmd



[⇒ l ′′ = ⊤] [⇒ E ≡ l key]

key:⊤ key ∈ Γ wkey: enc(l key) ∈ Γ [ HOLDS ]

[⇒ E′ ≡ l ′ key] Γ ⊢ key: l ′′ key Γ ⊢ wkey: enc(E) lvl(E) = l ′′





MAY

NOT

HOLD





res: l ′ key loc ∈ Γ Γ ⊢ sdec(key, wkey) : E E <: E′

Γ ⊢ res: E′ loc Γ ⊢ sdec(key, wkey) : E′

Γ ⊢ res:= sdec(key, wkey) : cmd

Fig. 7.The unwrap command is only secure whenl key <: l ′ key (i.e., whenl = l ′)

Since the security level associated with the type of a key restricts what that key can
be used to encrypt and decrypt, and the instantiation of the ‘unwrap’ command given
above allows this level to be changed (i.e., whenl 6= l ′), then it is clearly insecure. This
particular flaw can be prevented in practice by including usage information for the key
within the ciphertext, thereby making it possible to carry out a check which is equivalent
to ensuring thatl andl ′ are equal. However, it is then necessary to ensure that no API
command allows this usage information to be modified unintentionally.

8 Related Work

Vaughan and Zdancewic [12] give a security typed language inwhich valid programs
are guaranteed to be non-interfering; a result which is achieved via a combination of
static and dynamic checks. However, they require that encrypted messages adhere to
a strict format which prevents their system from being used to analyse many existing
security APIs.

Laud [13] presents a weakened variant of non-interference termed ‘computational
independence,’ using static analysis to track dependencies between variables. Security
is guaranteed when the public outputs are computationally independent from all of the
sensitive inputs. Encryption is probabilistic and assumedto be secure with respect to
a polynomially-bounded adversary. Key cycles are permitted, as the rules will identify
the resulting cyclic dependencies.

Focardi and Centenaro [14] give a type system for enforcing non-interference in
multi-threaded distributed programs which share common memory locations. They use
confounders(unique values associated with each new ciphertext) as an abstraction of
probabilistic encryption, and give a definition of equivalence for low security values
based on the notion ofpatterns[10]. If the confounder is uniquely determined by the
message, then their definition of indistinguishability forciphertexts is equivalent to the
one given in this paper. Their definition for memories is stronger than our one since
we do not distinguish between copies of the same ciphertext and different ciphertexts
created from the same key and message (doing so is only necessary when considering
conditionals). However, because they deal with distributed systems where restrictions
on key usage cannot be enforced, they do not associate a secondary security level with
cryptographic keys which means that if a high security key isused to encrypt some low
security data, the result of the subsequent decryption is forced to be high.



Bengtson et al. [15] have developed an extended typecheckerfor F# code that is
annotated withrefinement types. A refinement type includes a logical formula which
places restrictions upon the associated term. They consider an active adversary and use
a generalised version of the symbolic cryptography model. The focus of their research is
on authentication and authorisation properties for security protocols, but the flexibility
afforded by refinement types means that the technique may be applicable to related
domains such as security API analysis. However, due to the different target domain,
the underlying type system that Bengtson et al. employ is quite different from the one
which we give in this paper.

9 Conclusions and Future Work

Using typing rules for analysing the security properties ofcryptographic systems is not
new (e.g., [16]), but it is common for restrictions to be placed upon the use of encryption
and decryption, as well as on any keys involved. Consequently, certain security APIs
cannot be analysed using some of these existing systems. Forexample, the IBM 4758
[3] has one internal master key that is used to encrypt all other keys which are then
stored on the attached host, therefore rule sets in which theresult of a decryption cannot
be used as a key (e.g., [17]) are unable to analyse the security API for that device.

In this paper, we have presented the foundations of a type system that is designed
to deal with common features of security APIs such as encrypted keys and nested
encryptions. We gave a definition of indistinguishability which captures the potential
for an adversary to determine that the keys used in two ciphertexts are different, even
though their actual values remain unknown. We then proved that well-typed command
sequences are non-interferent with respect to this definition. We also proved the type-
safety of our system meaning that the type information can beignored at run-time.

The next stage of our research is to extend our type system to include additional fea-
tures present in Volpano, Smith and Irvine’s original type system [1] and Volpano and
Smith’s extension [18] — specifically procedures, primitive operations and conditional
statements. This will allow us to analyse more accurate representations of functions in
widely used security APIs such as PKCS #11 [20]. Adding conditionals will require
a modified definition of the indistinguishability of stores,similar to the one given by
Focardi and Centenaro [14]. It should be noted that such a change will not affect our
results for the indistinguishability of expressions.

Further ahead, we plan to extend our type system to deal with data integrity, since
this is equally as important as data confidentiality for key management APIs, as well
as permitting explicit declassification thus allowing our system to analyse an additional
class of security APIs.
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