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Abstract. Security APl analysis typically only considers a subset mfA®!'s
functions, with results bounded by the number of functioiscd&urthermore,
attacks involving partial leakage of sensitive informatare usually not covered.
Type-based static analysis has the potential to allevisset shortcomings. To
that end, we present a type system for secure informationifased upon the one
of Volpano, Smith and Irvine [1], extended with types formiygraphic keys and
ciphertext similar to those in Sumii and Pierce [2]. In castrto some other type
systems, the encryption and decryption of keys does notneegjpecial treatment.
We show that a well-typed sequence of commands is non-@méf, based upon
a definition of indistinguishability where, in certain airnstances, the adversary
can distinguish between ciphertexts that correspond trypted public data.

1 Introduction

It is common for computer systems which store, process andpukate sensitive data
to use a dedicated security hardware device (e.g., IBM 43b8rid nCipher nShield
[4]). The set of functions provided by a security device isted itssecurity AP] as they
are intended to enforce a security policy as well as provideterface to the device.
A security policy describes the restrictions on the accessge of, and propagation of
data in the system. These restrictions, therefore, mustéas a direct consequence of
the API functions which are available to users of the segualdtvice.

The analysis of security APIs has traditionally been cdrdat by enumerating the
set of data items which the adversary (a malicious user) taéairothrough repeated
interactions with the API. While this approach has had reabte success (e.g., [5-9]),
results are typically bounded by the number of API calls, doaonsider data integrity,
and only detect flaws which involve the release of sensitata dems in their entirety.

In contrast, static analysis has the potential to provideoumded results, identify
flaws which allow for sensitive data to be leaked via coverttrul-flow channels, and
also deal with data integrity. The type system presenteligngaper is the foundation
of one such approach, although it does not yet deal with fityeg



Our work builds upon the information-flow analysis capdtas of Volpano, Smith
and Irvine’s type system [1] by including cryptographic égpsimilar to those from
Sumii and Pierce’s system for analysing security protof@jlAlthough there are many
similarities between security APIs and security protocatelysis methods for the latter
are typically designed to deal with fixed-length specifietéiiactions, and therefore
generally do not scale well when applied to arbitrary segasrof interactions.

2 Background

Hardware Security Modules (HSMs) comprise some memory g eessor inside a
tamper-proof enclosure which prevents the memory confemtsbeing physically read
— any breach causes the memory to be erased within a few re@ronds. Additional
storage is provided by the host system to which the HSM isla¢td. This leads to a
natural partition of memory locations: those inside the H&®lhigh security, and those
on the host system are low security.

Memory locations on the host system are deemed low secsiitge the attack
model for security API analysis assumes that the adversasyuil control of the host
system. In addition, the adversary is assumed to be caphbédling certain functions
provided by the HSM's security API (because, for exampleythave hijacked a user’s
session, or they are a legitimate user themselves).
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Fig. 1. The interactions between the adversary, the HSM API, andhéraory locations.

Figure 1 shows the interactions between the adversary, HBMakd memory loca-
tions in the standard attack scenario. HSM functions magssany memory locations,
while the adversary can only access the low security lonatié similar setup applies
in the case of software APIs, where the adversary is a mabaitient program and the
high memory locations correspond to those which are hidgehé API.

The adversary’s goal is to execute a series of API functidis sach that sensitive
data is unintentionally written to the low security memaoy,that sensitive data can
be inferred from the API's low security output. The aim of sety API analysis is to
detect such insecure data flows, or to guarantee that no sweh diist.



n € N Names

a € 4 Locations

Il e L Security level§where LT € L)
e = n|la]sencg e€) | sdecg,€) | junk(e) Expressions

c = a:=ejc;c|¢e Commands

u = n|senc(,u) Non-junk values

v = u|junk(u) Values

E ::= | data || key | enc(E) Security types for expressions
A = Eloc Security type for locations

C = cmd Security type for commands
T::=E|A|C All security types

Q= @,a—Vv|e Store

A= An:l|Aal]e Security levels environment
M ==T,n:ldata|l,n:lkey|la:Ale Security types environment

Fig. 2. Fundamental syntax definitions.

3 Type System

Figure 2 presents the fundamental syntax definitions upohmbur type system is
built. The setA\l comprisesnamesrepresenting regular data items and cryptographic
keys; 4 is the set of abstract memotgcations and L is the set of security levels
which may be associated to names and locafigtithough our type system allows for
any number of security levels (whdre £ — | <1 < T), in this paper we only consider
L andT (i.e., low and high) in order to simplify the presentatioratiscussion.

An expressiorcan be a name, the contents of a memory location, the resalt of
(symmetric) encryption or decryption, or ‘junk’ which detes an incorrectly decrypted
term. Junk terms contain the expression which would haveltegs had the correct
decryption key(s) been used, so we can ensure that a junk®sipn is treated in the
same way as the intended non-junk termc@mmands zero or more instances of the
assignment operation. yalueis a name, a fully evaluated ciphertext, or a junk value.

The security types for regular data items and cryptograkéys, | data and| key
respectively, associate a security level with their teffite level associated with regular
data denotes the confidentiality level of that data item,rehgthe one associated with
a cryptographic key denotes the maximum security level pfessions which that key
may encrypt. The different semantics are necessary bewaaiaow the security level
of expressions to be arbitrarily increased and thereformotdetermine what a key
may encrypt based solely on its security level. For exanglew security key can be
considered a high security key and thus could be used to photlier high security
expressions. This approach also allows a high security &epntrypt and decrypt low
security expressions without forcing the result of the giption to be high security.

3 Security levels are for analysis purposes only — they do rist é practice (and even if they
did, the adversary would not gain anything from knowing atsrsecurity level).



To recover the precise type of encrypted data when it is sjuesgly decrypted, we
use a type operatognc(E) is the type of an encrypted expression of tgpd his means
that no type information is lost as a result of the encryptiecryption process and also
allows us to handle nested encryptions. The security typledations denotes the most
general type of expression which may be stored in that lonatiVe do not associate a
security level with the command type, although we will dosduture work.

The storegp, maps locations to values; the security levels environpdgrdontains
the security levels of names and locations (used dynamjcalhd the security types
environment[, contains the security types of names and locations (uatidaity). We
assume there is no overlap between the identifiers used foesand for locations.

3.1 Operational Semantics

Figure 3 presents the operational semantics for commangksegs which we consider.
We wish to enforce the restriction that only ciphertext isnypted, therefore any term
which evaluates to the decryption of non-encrypted dathget ‘stuck: That is, the
term cannot be fully evaluated under the operational seicgant

Other terms which will get stuck include the encryption ofadaith a key whose
security level is too low, the assignment of a value to a locatvhose security level is
too low, and the dereferencing of something other than dilmearhe first two of these
correspond to cases where continued evaluation wouldtiesaksecurity breach:

a: = senclk, Vm) (1)

A={a:l,w:Ll,vn:T} a:=vm )

Getting stuck in case (1) guarantees that, if the adversaaple to decrypt some
given piece of ciphertext, the result will not be sensitimdile getting stuck in case
(2) guarantees that sensitive data cannot be written dirext low security memory
location. This latter property is known as ‘no-write dowarjd is enforced by the rule
E-AsSIGN2. The ‘no read-up’ property follows from the assumptiort timobserver is
only able to read the contents of locations whose assodatadity level is low enough.
This is a legitimate assumption, since the sensitive looatwill be those which are
inside the tamper-proof HSM whose security APl is being gsed, or in the case of
software APIs, those locations which are hidden from cl@ograms.

The junk term is returned when a piece of ciphertext is deegpvith a different
key from the one which was used to create it (E£28), or when the key or message
in an encryption or decryption operation is junk (E48&3, E-SENc4, E-SDec5 and
E-SDec6). In all cases, the expression within the junk term is thiaictv would have
been returned had the correct decryption key(s) been used.

Encryption requires that the security level of the key iseatst as high as that of
the message. However, this restriction is not enforced wherciphertext is actually
created, but rather when it is subsequently decrypted ayresd to a location (i.e., when
the security level of the ciphertext has to be determineldg. §ecurity level of ciphertext
is L since encryption is used primarily as a means of securellagdgifying sensitive
data. If the result of an encryption should itself be sewsjtihen this can be achieved
simply by assigning the ciphertext to a location which ss@ensitive data and returning
a reference to that location.



E-SEncl

Expressions
& —p &
Sency, ém) —p SENcé’ em)

€0 €
sency, €) — sency, €)

E-SEnC2

senc(, junk()) — junk(sencg, u)) = o0

senc(junkg), v) — junk(sency, v)) E-SEuca

& —p &
sdecéx, m) —p SdeCE, m)

E-SDecl

e €
sdecy, €) — sdecy, €)

E-SDec2

U #u AFuucl AFumilm In <l
sdec(y, sencli, Um)) —4p junk(Um)

sdec(, Junk()) —g junk(sdect, 1)) E-SDec5

sdec(unk(), v) — junk(sdecg, v) = o0

Security Levels of Values

E-SDec4

Commands (@.c) 4 (d.¢)

(@.c1) = (9. c))
(¢,c1;C2) = (@, €5 C2)

E-CmDs1

—————— E-C 2
(@e;0) (@e)

€€
(pa=e) 5 (pa=¢)

E-AssIiGNL

AFa:ly Av:ly Iv<la
(p.a=v) = (9la—Vv],e)

E-AsSSIGN2

AFuc:ly AFumilm Im<Ig
sdec(i, sencl, Um)) —4p Um

E-SDec3

- L E-D
2y o) EREF

€ o €
junk(e) — junk(€)

E-JUNK1

Junk(unk(W)) —g junk(u) ="

AFu:l
At junk(u) : 1

a:lel
AFa:l

n:lel
AFn:l

A ug:ly AFumilm Im<Ig
A+ senc(y, Um) : L

Fig. 3. The operational semantics for command sequences.

3.2 Typing Rules

Figure 4 presents the rules of our type system. As noted gusly, a location’s type
denotes the most general type of values which can be stothdtitocation. By design,
the more general a type is, the greater its security level d.<: E' — IVI(E) < VI(E')).
Therefore, the typing rule for assignment (Ts&IGN) guarantees the ‘no write-down’
property since the security level associated with the looawill be no lower than the
one associated with the expression.

Junk terms can have any expression type (), since they are generated only
as the result of a decryption with the wrong key, and we wistotaosider a junk term as
being equivalent to the intended result, had the correatygéion key been used. This
is to prevent insecure information flows which may otherwissult from the use of an
incorrect decryption key.



Commands Subtyping
M-ci:emd TFcp:emd ret:17 T<:T

T-C P _—
M-cp;co:emd Mps FEt:T T-sue T<T
l~a:Eloc r}—e:ETA TE T< T T < T
-a:=e:cmd “AssIeN Fe:cmd 0 T<T
Expressions < E<FE
.|/ . !
nEel . e E - | data <:|"data enc(E) <: enc(E’)
FFne M Fjunk@:E N
a:Eloc e rTL I'Fa:EIocTD I key <: Tdata enc(E) <: L data
MFaElc °° relace oo
Security Levels of Types
Fec: Feéem: =
MFeclkey ThemE ME)=T o Memd)= L I( data) =1

I - sencéy, em) : enc(E)

IVI(l key) =T Ivi(enc(E)) = L
M-ec:lkey T'Fen:enc(E) IVI(E)=I T.SDeC
It sdecé, em) : E IVI(E loc) = IVI(E)

Fig. 4. The typing rules of our system.

The contents of a location are given the type of the most géegpression that can
be stored in that location (T-EREF. Thus, any security result is independent of the
values which are actually stored in each memory location.

For encryption, the key used must be able to encrypt messauek are at least as
secure as the actual message (TNSE For decryption, the message must be ciphertext
and the security level associated with the key must be norltivea the security level
associated with the result (T-$0).

Currently, we restrict keys to having the highest secugtyel, and commands to
having the lowest security level, since our focus is on secéPls with secret keys
and public functions. Relaxing these restrictions willfopart of our future work.

To prove the theorems presented in this paper, we requiragleof standard type-
theoretic lemmas. The proofs are quite straightforwardtzang been omitted.

Lemma 1. Generation Lemma (Inversion of the Typing Relation)

IfFFn:TthenT:>Eandn:E €.

Ifr'-a:TthenT =Elocanda:Eloc €T.

If T +1a:TthenT :> Eandl -a:Eloc.

If T+ sencés,e): TthenT :>enc(E), I ep:lkey, I e :Eandivi(E) =1.
If I - sdecés,e): TthenT :>E, I ey :lkey, I e :enc(E) andivI(E) =1.
If T+ junk(e): T thenl -e:T.

Ifr'-a:=e:TthenT =cmd, - a:Eloc, andl - e: E.

NogagprwdhPE



8. IfF'~¢€:TthenT = cmd.
9. IfF~cy;c: TthenT =cmd, I - cq:ecmd, andl” - ¢, : cmd.

Proof. Follows from induction on the typing derivations.
Lemma 2. Canonical Forms Lemma

1. If I F v:enc(E) thenv = senc(i, Um) or junk(sencily, uny)).
2. If T Fv:lkey thenv = nor junk(n).
3. If I - v:ldata thenv = n, senc(k, Um), junk(n) or junk(sencfy, Unm)).

Proof. Follows from inspection of the typing rules and fundamed#gfinitions.

4 Progress and Preservation

The standard way to establigtpe safetyor a type system with respect to an operational
semantics is to show that thpgogressand preservationproperties hold. Preservation
establishes that the type of a term is not changed by theati@tLrules, while progress
demonstrates that well-typed terms will not get ‘stuckiuckt terms represent certain
error conditions that may arise during evaluation. In owtse, for example, a term
becomes stuck whenever further evaluation would resultsaarity leak. Such leaks
are prevented in the operational semantics by checks dastieon the security levels
in a number of the evaluation rules.

For the progress and preservation properties to hold, flialistoreq must bewell-
typed and the security levels environmenimust bdevel-consistentith respect to the
typing context. Informally, @ is well-typed if every value inp has the type predicted
by I', while A is level-consistent with respect foif every name and location iA has
the same security level as given to it by

Definition 1. A store@is well-typedwith respect to a typing contekf written” - ¢,
if dom(@) = dom(I | loc) and,Va € dom(p), JE. - @(a) :E AT - a:Eloc.

Definition 2. A security levels environmedtis level-consistentvith respect to a typing
context, writtenl” - A, if dom@) = dom("), and

e VYnedom( |nam),n:E€l — n:IVI(E) € A
e Yacdom( |loc),a:Eloc e ' — a:IVI(E) € A

Here,S | nam ands | loc denote the subsets gfcontaining only those elements which
are names and locations respectively.

Corollary 1. If THA, T Fv:EandAl v:l, then|< IVI(E).

Proof. By definition,v = n, junk(n), senc(, uyn) or junk(senclx, Um)). If v=nor
junk(n) then, by Lemma In: E’ € I, whereE’ <: E. By I A, n: WI(E') € A therefore
AR v:IVI(E') andl = IVI(E'). It then follows fromE’ <: E thatlvl(E') < IVI(E), so the
result holds. Ifv = senc(, um) or junk(sencdy, uy)) thenl = 1, so the result holds. O



Theorem 1. Progress

i) If T +t:E, then either t is a value, or else for any security levels @mmentA
and storepsuch that” - A andT |- @, there exists someé such that t—, t!

ii) If I Et:C, then either t is the empty commaadr else, for any security types
environment\ and storeg such that” - A andTl F @, there exists somé and ¢f
such that{@, t) —, (¢, t').

Proof. By inductiononl -t:E andl -t:C: (selected cases only)

e Case T-[EREF t:E='a:E a:Eloc
The rule E-CEREFapplies (it follows froml” - @thata € ¢).

e Case T-SEC: t:E=sencék,en):enc(E') e:lkey en:E IWIE)=I
By the induction hypothesis, eitheg is a value, or else for an& andg such that
= Aandr - @, there exists some| such thaiex —,, €. Similarly for em. If e is
not a value then E-S¥c1 applies; ifey, is not a value (bug is) then E-SEc2
applies; ifeg is a junk value then E-S¥c4 applies; ifey is a junk value (ana
is a non-junk value) then E-SE3 applies; if bothe, andey, are non-junk values
thent is a value.

e Case T-Skc: t:E=sdecék.em):E e:lkey em:enc(E) IVI(E)=I
By the induction hypothesis, eithex is a value, or else for an and @ such
thatl - A andTl + @, there exists some, such thatex —, €. Similarly for ep,.
If e is not a value then E-SEX1 applies, and ifey, is not a value (bug is)
then E-SEC2 applies. Ifeg is a value then, by Lemma 2, it must be of the form
n or junk(n). The former case is covered by the rules E£8B, E-SD=c4 and
E-SDec5 as described below; in the latter case, EESDB applies. Ifey, is a value
then, by Lemma 2, it must be of the form semg(nm) or junk(sency, uy)). In the
first case, it follows from Lemma 1 th&tk ug: 1’ key, I F um: E’ andIvi(E') = I,
whereenc(E) :> enc(E’) (thereforeE : > E'). If & = ux then E-SEC3 applies and if
& # U then E-S[Ec4 applies. In the second case, whefe= junk(senc(, Um)),
the rule E-SEC5 applies. For rules E-SEX3 and E-S[Ec4, the inequalityy, <
I« will be satisfied because it follows from Lemma 1 tleat| key € I', and from
= Athatec: T € A, thusly=T.

e Case T-/8SIGN t:C=a:=e:cmd a:Eloc e:E
By the induction hypothesis for Part (i), eithelis a value, or else for ang and
@such that” - A andr - @, there exists somé such thaie—,, €. If eis a value,
then E-AsSIGN2 applies, otherwise E-#sIGNL applies. In the former case, the
inequality will hold because, by Lemma &;Eloc € T, by ' - A, a:IvI(E) € A
thereforey = IVI(E), and by Cor. 1|, < IVI(E).

e Case T-@GuDs: t:C=cy;c:cmd  ci:cmd  Co:icmd
By the induction hypothesis, either is the empty commangior else, for anyA and
@such thaf’ - Aandr + @, there exists some and¢g such that, c1) — (¢, c}).
If c; = ethenthe rule E-@Ds2 applies, otherwise the rule EMDs1 applies. O



Theorem 2. Preservation

i) IfFHt:E, T A @and there exists someduch that t—, t/, thenl -t': E.

i) fF-t:C, T+ A ®and there exists soméandg such that(g,t) — (¢, t'), then
M-¢ andlh ~t': C.

Proof. By inductiononl -t:E andl -t:C: (selected cases only)

e Case T-EREF t:E=!a:E a:Eloc
E-DEREF is the only evaluation rule which may apply, therefdte= @(a). By
I+ @, 3" such thafl - a: E'loc andl I~ ¢(a) : E'. It therefore follows thaE’ =
and so the result holds.

e Case T-SKC: t:E=sencé,em):enc(E) e:lkey en:E IIE)=I
There are four evaluation rules which correspond to thesitamt —,t'": E-
SENc1 through E-SEc4. Subcase E-S¥c2 has a similar proof to subcase E-
SEnc1, and subcase E-3#4 has a similar proof to subcase E-$E3.

e Subcase E-SkC1: & & 1 =senc,em)
The T-SE\C rule has a subderivation whose conclusiogqsl key and the in-
duction hypothesis gives &: | key. Therefore, in conjunction withy, : E and
IvI(E) =1, we can apply the rule T-S¥ to conclude that seng{, em) : enc(E).

e Subcase E-SEC3: &=Ux en=junk(uy) t' = junk(sencl, Um))
The T-SE\C rule has a subderivation whose conclusion is jurf( E, and by
Lemma 1 we getin: E. Therefore, in conjunction withy : | key andIvl(E) =1,
we can apply T-SEc and T-1NK to conclude that junk(senaf, uy)) : enc(E).

e Case T-Skc: t:E=sdecék.em):E e:lkey em:enc(E) IVI(E)=I
There are six evaluation rules which correspond to the tiiang —, t": E-SDEC1
through E-S[EC6. Subcases E-Sirl and E-SEcC2 have similar proofs to sub-
case E-SKEc1 above; subcases E-&D5 and E-S[Ec6 have a similar proof to
subcase E-SEC3 above.

e Subcase E-SEc3: &=n &n=senchHt))
The T-SCec rule has a subderivation whose conclusion is senQ(. enc(E).
It follows from Lemma 1 thaf ~t’:E’ andenc(E’) <: enc(E). ThusE’' <: E,
and we can apply the T« rule to conclude that - t': E.

e Subcase E-SBc4: en=senclik,Um) e #Uc t' =junk(um)
The T-SDecrule has a subderivation whose conclusion is sa&naf,) : enc(E).
It follows from Lemma 1 thaf + uy: E’ andenc(E’) <: enc(E). ThusE’ <: E,
and we can apply T-$ and T-INK to conclude thaf + junk(uy) : E.

e Case T-/8SIGN t:C=a:=e:cmd a:Eloc e:E
Two evaluation rules may correspond to the transitipr) —, (¢,t'): E-ASSIGNL
and E-AssIGN2. The proof for the latter is trivial.

e Subcase E-ASIGNL: (€)= (p€) t'=a=¢
The T-AssIGNrule has a subderivation whose conclusioe:ig. Applying the
induction hypothesis to this subderivation givesluis € : E. In conjunction



with the other subderivatioh I- a: E loc, we can apply T-AsIGNto conclude
thatl Fa:=€ :cmd. I + ¢ follows immediately from the fact thag= ¢.

e Case T-GuDs: t:C=cy;c:cmd cp:cmd c:cmd
Two evaluation rules may correspond to the transitist) —, (¢,t'): E-CMDS1
and E-QuDs2. The proof for the latter is trivial.

e Subcase E-@Ds1: (pc1) = (@,c)) t'=cp;c
The T-QubDSs rule has a subderivation whose conclusiortiscmd and the
induction hypothesis gives @ist- ¢f andl” + ¢} : cmd. Using the latter of these,
in conjunction with the other subderivatiérn- c; : cmd, we can apply the rule
T-CwmDs to conclude thaf + ¢} ; ¢ : cmd. O

The following lemma states that the type of an expressiorgsgyved under evaluation
with respect to a well-typed store, independent of the dctalaes contained in the
locations of that store, and is required to prove our noe#fetence result.

Lemma 3. If (I, a:Eloc) -e:E T -V E, (I,a:Eloc) - A, @and ey V, whereq =
@ar—v], thenl -V E!

Proof. By induction on (,a:Eloc) - e: E: (selected cases only)

e Case T-[FREF e:E'=1d:E d:Floc
la —4 @(a). By Lemma 14 :E'loc € I'. If a= & thenV =vandE’ = E, thus the
result holds. Ifa # & thenv' = @(a’) and the result follows fromi{ a: E loc) - @.

e Case T-SHEC: e:E' =sencé,em):enc(E”) e:lkey en:E”" IWI(E")=I
sencéx, €m) —4y Senclk, Vm) —y Vv, whereex —y W andem —y Vm. By the in-
duction hypothesid; - v : I key and T - v : E” If vk andvy, are both non-junk
values, therv = sency, vim) and the the result follows from T-SE€. Otherwise,
vk = junk(uk) and/ovm = junk(um), therefore/ = junk(senc(, um)) and the result
follows from T-JUNK and T-SEC.

e Case T-SkBC: e:E' =sdeck,em):E'  e:lkey en:enc(E)
sdecé, em) —fy sdeclk,Vvm) —§y V Whereex —y Vk andem —y Vm. By the induc-
tion hypothesisl - vk : 1 key andl - vy :enc(E’), and by Lemma 2y is of the
form n or junk(n), andvy, is of the form senaf, uy) or junk(sency, uy)). In both
cases foln, it follows from Lemma 1 thaf + um: E”, whereE” <: E’. By inspec-
tion of the evaluation rules/ will be of the formup, or junk(um). In the first case,
we can apply T-88 to I - uy: E” andE” <: E’ to conclude thaf + uy: E'; in the
second case, the result follows from THSand T-UNK. O

5 Indistinguishability

Our type system is intended for analysing systems with c¢iptit areepetition con-
cealingandwhich-key concealing- also known as type-1 ciphers ([10], Sec. 4.2). Rep-
etition concealing means that it is not possible to say wérdiio messages encrypted
under the same key are equal. Which-key concealing meatis ihaot possible to say



whether two keys used to encrypt the same message are eqtlabBhese properties
are possessed by standard block ciphers, such as DES andavhgS,used in CBC

or CTR mode ([10], Sec. 4.4). However, these definitionsmassthat the adversary is
unable to correctly decrypt the ciphertexts. This is natsyr the case with security
APIs: the API functions can be used to decrypt ciphertextssgtcontents are public,
whilst keeping the actual values of the keys secret. As dtrese have to capture the
ability of the adversary to distinguish between ciphegexhich contain public data,
under certain circumstances.

We use the notatioh + v ~| v» : E to denote that the values andv, both have
type E and are indistinguishable at the security leiednd the notatiof - @~ ¢ to
denote that the storggandg are indistinguishable at the security leVeln both cases,
| denotes the maximum security level associated with thdilmtathat an observer can
read directly.

Definition 3. We define théndistinguishability of two valugss; and p, with respect
to a typing environmerit and observation level |, denoté€d- v1 ~| v : E, as the least
symmetric relation closed under the following rules, wherevy, v, : E:

o [Fny~yny:l’dataiff (I >1") — (N1 =ny)
o [Fnp~yny:l’keyiff (I >1") — (N1 =ny)
I - senc(y, um) ~1 senc(y, uy,) : enc(E) iff (M F um~ Uy,  E) A
(T F junk(um) ~ U s E VT ug~ U IVI(E) key)

I+ junk(u)~ junk(U): E

I+ junk(n)~ i’ ;1" data iff (1 < 1)

I Fjunk(n)~ n': 1" key iff (I <)

I = junk(senc(i um)) ~1 senc(y, uy,) : enc(E) iff I - junk(un) ~ up, - E

If a value has a type which permits it to be observed by the @dve, we must assume
that this will eventually occur. It then follows that uneppted data items which can
be observed must be equal for them to be considered indissingble. Keys will be
distinguishable if the output from their use is distingaible. That is, by encrypting a
known value with each key, decrypting each ciphertext withtkeys, then comparing
the final results to the original input: if any of the outpute distinguishable from the
input, then the two keys cannot be the same, and are thusgligghable.

Ciphertexts are indistinguishable if their messages adéstimguishable, and the
keys must also be indistinguishable if the observer couldtise determine when
one of the ciphertexts has been incorrectly decrypted. iBhitt the keys have a type
which allows them to encrypt observable data, then we mssiras that the adversary
is able to correctly decrypt each ciphertext, and can thtsragne whether or not the
required keys are the same whenever he can predict the tougut. It follows from
the definition that keys which operate on non-observable da indistinguishable.

Two junk values are indistinguishable, since they are betiertially just random
bit-strings. For this reason also, junk names are diststtable from observable non-
junk names. Junk ciphertext is indistinguishable from juork ciphertext if the results
of decrypting each one cannot be distinguished.



Definition 4. We define théndistinguishability of two storesp, and ¢, with respect
to a typing environmerit and observation level |, denotéd- @, ~| @, as the least
relation closed under the following rules:

e [Fe~e
e [H(pa—Vv)~ (¢,a—V)iffTFo~ @, TFv,V:Eandl Fv~ V' E

This definition states that two stores are indistinguishattheir domains are equal,
and the values stored in equivalent locations are indistsible.

6 Non-Interference

Informally, non-interference states that changes to noseovable inputs should have
no effect on observable outputs. For expressions, this sméfaat given two indistin-
guishable stores (which differ in the contents of at leagt non-observable location),
the final values obtained by fully evaluating the same exgio@swith respect to those
stores should be indistinguishable. For command sequgtitiesmeans that given
two indistinguishable stores (which again differ in the woms of at least one non-
observable location), the stores which result from fullplesating the same command
sequence with respect to those stores should also be ngligthable.

Theorem 3. Non-Interference

i) If(F,a:Eloc) e :E T vy, vo:Eandl - A,@,@, suchthal vy~ vo: E and
T F @1~ @, then it follows from e, v; and e—y v, thatl™ - vj ~ v, : E, where
¢ = @la—vi].

ii) If (M,a:Eloc)Fc:C, T Fvy,v:Eandl - A@,@, such thal” - vy~ v2: E and
I F @~ @, then it follows from(c, @) — (g, ¢) and (c,¢,) — (€, @) that
I+ ([fl/ ~| ([fz/, wherecp{ = (n[a |—>Vi].

Proof. By inductionon (,a:Eloc) - e:E' and (,a:Eloc)-c:C:  (selected cases

only)

e Case T-[FREF e:E'=!d:E d:Floc
la —4@(@). If @ = a, thenv] = vi andE’ = E, thus the result follows from
I+ vi~ Vo E. If & # a, the result follows fronT™ - @ ~| @.

e Case T-SHEcC: e:E' = sencé, em):enc(E”) e:l'key en:E’ WNIE") =V
sencex, em) —ig Sencli, Vm) —igy vy wheree, —i@, Vk andem —y Vm. Sencex, em)
—ig, Sency, Vi) —y, Vo Whereex —y Vi andem —ig, V. It follows from Lemma 3
thatl™ - v, v : 1" key andl” F v, v, : E”, by Lemma 2y, = nor junk(n), andvy = n’
or junk(n’), and by definitionym = um or junk(um), andvy, = uy, or junk(uy). If
Vi = n andvm = um thenv; = senc, um) [A]; if vi = junk(n) andviy = um then,
by E-SENC4, v; = junk(sench,um)) [B]; if vk = n andvm = junk(um) then, by
E-SENC3, V) = junk(sench, um)) [C], and if vk = junk(n) andvm = junk(um) then,
by E-SENC4, E-JNK1, E-SENC3 and E-INK2,V; = junk(sencg, um)) [D]. The
equivalent outcomes fox, are denoted byH] through H]. There are 16 cases for
I V)~ V,:E" which we need to consider (resulting from the cross prodiict o
[A,B,C,D] and [E,F,G,H):



e SubcaseA] x[E]: I F sench, um) ~ sencf, up,) : enc(E”)
By the induction hypothesi§,- n~ n': I’ key andl" - um ~| Ur,: E”, and since
IVI(E") = I’, the result follows immediately from Def. 3.

e SubcaseA4] x[F: I F sench, um) ~ junk(sencty, ur,)) : enc(E”)
By the induction hypothesis, - n~; junk(n’) : 1’ key thus, by Def. 3] < I
I F senc, um) ~| junk(sencl, u,)) : enc(E”) iff T+ um~ junk(uy,) :E” and
this holds when < IvI(E”). The result then follows frortvI(E”) =I" andl < I,

e Subcases] x[G,H]: I F senc, um) ~ junk(sency, ur,)) : enc(E”)
By the induction hypothesis; - um ~; junk(ur,) : E”, thus the result follows
immediately from Def. 3.

e Subcased,C,D] x[F,G,H: I - junk(sench, um)) ~| junk(sencq, u,)) : enc(E”)
The result follows immediately from Def. 3.

SubcaseB] x[E] is similar to subcased] x[F] and subcase<]D] x[E] are similar
to subcasesA] x[G,H].

Case T-S[BC: e:E' =sdeck,em):E'  ec:l'key em:enc(E’) WNIE)=I
sdecé, em) — sdeck, Vin) —i vy, whereeg —e Vk anden 5, Vm. sdecé, en)
—ig, SAECY, Vi) —, Vo, Whereex —y Vi andem —g Vi, It follows from Lemma 3
thatl" - v, v : 1" key andl™ - v, Vi, : enc(E’), and by Lemma 2y = n or junk(n),
Vi = 1’ or junk(n'), vm = senc(la, Up) or junk(senc(a, Up)), andvy, = senc(y, up)
or junk(senc(j, up)). If vk = n andvy, = senc(, up) then, by E-SIEC3, V| = up
[A]; if vk = nandvy, = senc(y, Up) whereu, # nthen, by E-S[Ec4, V) = junk(up)
[B]; if v = junk(n) andvm = senc(a, Up) then, by E-SIECS5, v; = junk(up) [C];
if vic = nandvm = junk(sencga, up)) then, by E-SIEC6, v; = junk(up) [D], and if
Vi = junk(n) andvy, = junk(sencyy, Up)) then, by E-SEc6, E-JUNK1, E-SDECS
and E-UNK2,V] = junk(up) [E]. The equivalent outcomes fol are denoted byA]
through [J]. There are 25 subcases fot- V| ~ v, : E' which we need to consider
(resulting from the cross product o4 B,C,D,H and [F,G,H,I,J):

e Subcase4] x[F: M =up~up: E
By the induction hypothesis, - sencf, up) ~| senc(y, up) : enc(E’), therefore
it follows from Def. 3 thatl” - up ~ uj, : E'.

e SubcaseA4] x[G]: I+ up ~ junk(uy) : E’
By the induction hypothesis, we haVe- sencf, up) ~| senc(i, up) : enc(E’)
andl - n~ n': I’ key. By Def. 3, it follows from the second of these that |’
or n = n'. From the first one, it follows thaft - u, ~ u : E as well as either
M= ne~pug:IVI(E) key or I = up ~ junk(up) : E'. In the latter case, the resultis
immediate. In the former case, it follows from Def. 3 that IvI(E") or n = uL.
However, sincdvl(E’) = I, it must be the case that< IvVI(E’), otherwise we
would haven = n’ = uj which is prevented by the requirement f@] [which
states tha' # uj. The result then follows from Def. 3.

e SubcasesA] x[H,J: I+ up ~ junk(uy): E’
By the induction hypothesi§, - n~ junk(rY) : I key, therefore it follows from
Def. 3 thatl < I'. Sincel’ = IvI(E’), the result follows from Def. 3.



e SubcaseA4] x[l]: I Uy~ junk(up) : E/
By the induction hypothesis, - sencf, up) ~| junk(sencg, ug)) : enc(E’) and
so it follows from Def. 3 thaf” - uy ~ junk(uy) : E'.

e Subcasesd,C,D,§x[G,H,IJ: I F junk(up) ~ junk(up) : E'
The result follows immediately from Def. 3.

SubcaseB] x[F] is similar to subcaseq] x[G]; subcases(,E] x[F] are similar to
subcases] x[H,J], and subcasel]] x[F] is similar to subcased] x[I].

e Case T-/8SIGN c:C=ad:=e:cmd & :Eloc e:E
(@:=e @) — (g, ¢[a—V]) wheree—y v, and(@ :=e, @) — (g, @[a' — V])
wheree — V. By the induction hypothesis for part (f),- v~ vV : E and thus, in
conjunction withl" - @ ~ @, andl" F v ~ v» : T, the result follows from Def. 4.

e Case T-@uDs: c:C=cp;c:cmd  ci:cmd Cp:cmd
(C1;C2, @) = (e;C2, @) —(C2, @) = (&, @) where(cy, @) — (&, ¢') and
(Crico, @) =i (€:C2, @) —(Co, @) = (€, ¢) where(c, @) = (e, ¢'). The

result then follows by two applications of the induction bytpesis. a

Theorem 3 guarantees that well-typed expressions and cachsegjuences are non-
interferent. As an example, consider the following preatoh of an API function for
encrypting low security data stored insgloc with a key that is itself encrypted (by a
master keyk,) and stored in a low security locatioskeyloc:*

- km : T key, ekeyloc: enc(_L key) loc,
keyloc: | keyloc, msgloc: | dataloc, resloc: enc(_L data)loc

keyloc: = sdeck.,, 'ekeyloc) ; resloc: = senc(keyloc, Imsgloc) : cmd

The non-interference theorem tells us that the above wpltd command sequence
will not leak any information about the valueslgf and keyloc into the low security
locations.

7 Example: Wrap/Decrypt Attack

The wrap/decrypt attack ([11], Sec. 2.3) is one of the mostdattacks which a key

management API can be susceptible to. In short, a sensiyaskaltered in such a

way as to be able to wrap (encrypt) other sensitive keys asw @gcrypt public data.

This typically involves altering the key’s ‘type’ so thatistaccepted by each of the two
required API functions. Alternatively, two copies of theykean be obtained such that
each copy has one of the two necessary types. Both of thegearents can be quite
straightforward to achieve (e.g., as discussed in [7]).dutteome is that a sensitive key
can be discovered by first wrapping it, then decrypting ttsailte

X =sencky, ko) ...‘wrap’ ko with kg
y: = sdecky, x) ...recoverk;

4 Recall that we treat all keys as high security values, andséterity level associated with a
key’s type denotes the level of data that it may encrypt.



[=1=T] [= E' = Tkey]

k:Tkeyel kp:Tkeyer L1O-DS]
[SE=enc(Tkey)] T ey Frk:e  M@E)=l LHODs]
x:enc(T key)loc € T I - senck, ko) : enc(E') enc(E') <:E
= X:Eloc I+ sencky, ko) E

I - x: = sencky, ko) : cmd

Fig. 5. Successful typing derivation for the wrap command

[= E' = Tkey]
[=1=T] x:enc(T key)loc € " DoEs
. - [HoLDS] NoT
ki:Tkeyel Tk x:enc(T key)loc HoLD
[= E = Ldata] - - ; N

I ky:lkey I = Ix:enc(E) IVI(E') =1

y: L dataloc el I+ sdecky, !x) : E’ E<E
M-y:Eloc I+ sdecky, !X):E
I+ y: =sdecks, !X):cmd

Fig. 6. Failed typing derivation for the decrypt command

Our type system can be applied to these commands as follows:

_ ki: T key, ko : T key, X: = sencki, kg) :cmd
x:enc(T key) loc, y: | dataloc y: = sdecky, IX) : cmd

Figure 5 shows the typing derivation for the wrap command Biy. 6 shows the
typing derivation for the decrypt command (unnecessartaimces of the T-8B rule
have been omitted in both cases).

The first command type-checks, singgE’) = | andenc(E’) <: E both hold, but
the second command does not, sifi¢e: E does not hold. The flaw is that a sensitive
piece of data is written to a public location — the failed sydet condition indicates
that the security level of the data is greater than that ofdbation. Note that using the
definition x: enc(_L data) loc instead ofx: enc(T key) loc in the above example makes
the second command type-check, but it prevents the first aomdritom type-checking,
sinceenc(E’) <: E no longer holds.

The wrap/decrypt attack is one of a number of attacks whidhally require the
type of a key to be altered, therefore our type system shoeilddbe to identify when
an APl command may allow this to occur. One such command israp, which takes
an existing key and ciphertext corresponding to a seconctkeyypted under the first
one, and then decrypts the ciphertext before storing thdtrésdgure 7 shows that our
type system is indeed able to identify that the followingamsiation of that command
is insecure:

_ key: T key, . _ .
r= :=sd ywkey) : cmd
{Wkey enc(l key), res: I’ keyloc} res: = sdeckey wkey : cm



[=1"=T] [= E=lkey] MAY
. key: Tkey e ' wkey:enc(l key) € ' [Hotps] HNOOLTD
FE=Ue] T ey ikey T+ wkeyenc(®)  WI(E)=1"
res: |’ keyloc € I - sdeckey wkey : E E<FE
I Fres: E' loc I - sdeckey, wkey) : E/
I I res: = sdeckey, wkey) : cmd

Fig. 7. The unwrap command is only secure whéey <: |’ key (i.e., whenl =1)

Since the security level associated with the type of a kefrices what that key can

be used to encrypt and decrypt, and the instantiation ofuherfap’ command given
above allows this level to be changed (i.e., whehl’), then it is clearly insecure. This
particular flaw can be prevented in practice by includinggesaformation for the key
within the ciphertext, thereby making it possible to camy @ check which is equivalent

to ensuring that andl’ are equal. However, it is then necessary to ensure that no API
command allows this usage information to be modified unindeally.

8 Related Work

Vaughan and Zdancewic [12] give a security typed languagehiich valid programs
are guaranteed to be non-interfering; a result which iseaad via a combination of
static and dynamic checks. However, they require that griedymessages adhere to
a strict format which prevents their system from being usedrtalyse many existing
security APIs.

Laud [13] presents a weakened variant of non-interfereeicadd ‘computational
independence, using static analysis to track dependehe®veen variables. Security
is guaranteed when the public outputs are computationadlgpendent from all of the
sensitive inputs. Encryption is probabilistic and assurttelde secure with respect to
a polynomially-bounded adversary. Key cycles are pernhitis the rules will identify
the resulting cyclic dependencies.

Focardi and Centenaro [14] give a type system for enforcimig-interference in
multi-threaded distributed programs which share commomaorg locations. They use
confoundergunique values associated with each new ciphertext) as stnaabion of
probabilistic encryption, and give a definition of equivade for low security values
based on the notion gfatterns[10]. If the confounder is uniquely determined by the
message, then their definition of indistinguishability égphertexts is equivalent to the
one given in this paper. Their definition for memories is sgyer than our one since
we do not distinguish between copies of the same ciphertektdéferent ciphertexts
created from the same key and message (doing so is only aeg&gsen considering
conditionals). However, because they deal with distribiggstems where restrictions
on key usage cannot be enforced, they do not associate adseg@ecurity level with
cryptographic keys which means that if a high security kaysisd to encrypt some low
security data, the result of the subsequent decryptiorréetbto be high.



Bengtson et al. [15] have developed an extended typechémké&# code that is
annotated withrefinement typesA refinement type includes a logical formula which
places restrictions upon the associated term. They canasidactive adversary and use
a generalised version of the symbolic cryptography mode. focus of their research is
on authentication and authorisation properties for se¢gcpriotocols, but the flexibility
afforded by refinement types means that the technique mayplécable to related
domains such as security API analysis. However, due to tfierelnt target domain,
the underlying type system that Bengtson et al. employ igeddifferent from the one
which we give in this paper.

9 Conclusions and Future Work

Using typing rules for analysing the security propertiestyptographic systems is not
new (e.g., [16]), but it is common for restrictions to be @dapon the use of encryption
and decryption, as well as on any keys involved. Conseqyergftain security APIs
cannot be analysed using some of these existing systemexa&omple, the IBM 4758
[3] has one internal master key that is used to encrypt akmokieys which are then
stored on the attached host, therefore rule sets in whictethdt of a decryption cannot
be used as a key (e.g., [17]) are unable to analyse the seafitfor that device.

In this paper, we have presented the foundations of a tydersythat is designed
to deal with common features of security APIs such as ened/fieys and nested
encryptions. We gave a definition of indistinguishabilithieh captures the potential
for an adversary to determine that the keys used in two cipkirare different, even
though their actual values remain unknown. We then provatiell-typed command
sequences are non-interferent with respect to this definitive also proved the type-
safety of our system meaning that the type information caigihered at run-time.

The next stage of our research is to extend our type systemehiade additional fea-
tures present in Volpano, Smith and Irvine’s original tygstem [1] and Volpano and
Smith’s extension [18] — specifically procedures, pringtivperations and conditional
statements. This will allow us to analyse more accurateasgrtations of functions in
widely used security APIs such as PKCS#11 [20]. Adding ciooaials will require
a modified definition of the indistinguishability of storessmilar to the one given by
Focardi and Centenaro [14]. It should be noted that such agehwill not affect our
results for the indistinguishability of expressions.

Further ahead, we plan to extend our type system to deal vaith idtegrity, since
this is equally as important as data confidentiality for kegnaggement APIs, as well
as permitting explicit declassification thus allowing oystem to analyse an additional
class of security APIs.
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