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Abstract. Probabilistic timed automata are an extension of timed automata with
discrete probability distributions. We consider model-checking algorithms for the
subclasses of probabilistic timed automata which have one or two clocks. Firstly,
we show that BTL probabilistic model-checking problems (such as determining
whether a set of target states can be reached with probability at least 0.99 re-
gardless of how nondeterminism is resolved) are PTIME-complete for one clock
probabilistic timed automata, and are EXPTIME-complete for probabilistic timed
automata with two clocks. Secondly, we show that the model-checking problem
for the probabilistic timed temporal logicteTL is EXPTIME-complete for one
clock probabilistic timed automata. However, the corresponding model-checking
problem for the subclass offeTL which does not permit both (1) punctual tim-

ing bounds, which require the occurrence of an event at an exact time point, and
(2) comparisons with probability bounds other than 0 or 1, is PTIME-complete.

1 Introduction

Model checking is an automatic method for guaranteeing that a mathematical model
of a system satisfies a formally-described property [8]. Many real-life systems, such as
multimedia equipment, communication protocols, networks and fault-tolerant systems,
exhibit probabilisticbehaviour. This leads to the studymbbabilistic model checking
of probabilistic models based on Markov chains or Markov decision processes [25, 12,
9,7, 10, 6]. Similarly, it is common to observe compteal-timebehaviour in systems.
Model checking of (non-probabilistic) continuous-time systems against properties of
timed temporal logics, which can refer to the time elapsed along system behaviours, has
been studied extensively in, for example, the contetineéd automat§3, 4], which are
automata extended wittlocksthat progress synchronously with time. Finally, certain
systems exhibit both probabilistand timed behaviour, leading to the development of
model-checking algorithms for such systems [2,12, 10, 15,5, 19].

In this paper, we aim to study model-checking algorithmgfobabilistic timed au-
tomata[13, 15], a variant of timed automata extended with discrete probability distribu-
tions, or (equivalently) Markov decision processes extended with clocks. Probabilistic
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Table 1. Complexity results for model checking probabilistic timed automata

One clock Two clocks
Reachability, BTL P-complete EXPTIME-complete
PTcTLYt[<, >) P-complete  |[EXPTIME-complete

PrcTL! EXPTIME-completeEXPTIME-complete
PrcTL[<,>] |P-hard, in EXPTIMEEXPTIME-complete
PTCTL EXPTIME-completeEXPTIME-complete

timed automata have been used to model systems such as the IEEE 1394 root contention
protocol, the backoff procedure in the IEEE 802.11 Wireless LANs, and the IPv4 link
local address resolution protocol [14]. The temporal logic that we use to describe prop-
erties of probabilistic timed automata is®rL (Probabilistic Timed Computation Tree
Logic) [15]. The logic B CTL includes operators that can refer to bounds on exact time
and on the probability of the occurrence of events. For example, the property “a request
is followed by a response within 5 time units with probability 0.99 or greater” can be
expressed by theTTL propertyrequest = Px>q.99(F<sresponse). The logic ArcTL

extends the probabilistic temporal logicR. [12, 7], and the real-time temporal logic

TcTL [3].

In the non-probabilistic setting, timed automata with one clock have recently been
studied extensively [17, 21, 1]. In this paper we consider the subclasses of probabilistic
timed automata with one or two clocks. While probabilistic timed automata with a re-
stricted number of clocks are less expressive than their counterparts with an arbitrary
number of clocks, they can be used to model systems with simple timing constraints,
such as probabilistic systems in which the time of a transition depends only on the time
elapsed since the last transition. Conversely, one clock probabilistic timed automata are
more natural and expressive than Markov decision processes in which durations are as-
sociated with transitions (for example, in [11, 19]). We note that the IEEE 802.11 Wire-
less LAN case study has two clocks [14], and that an abstract model of the IEEE 1394
root contention protocol can be obtained with one clock [23].

After introducing probabilistic timed automata anadtd@L in Section 2 and Sec-
tion 3, respectively, in Section 4 we show that model-checking propertiestf,Buch
as the property’>g.99(Ftarget) (“a set of target states is reached with probability at
least 0.99 regardless of how nondeterminism is resolved”), is PTIME-complete for one
clock probabilistic timed automata, which is the same as for probabilistic reachability
properties on (untimed) Markov decision processes [22]. We also show that, in general,
model checking of PCTL on one clock probabilistic timed automata is EXPTIME-
complete. However, inspired by the efficient algorithms obtained for non-probabilistic
one clock timed automata [17], we also show that, restricting the syntax©fiPto
the sub-logic in which (1) punctual timing bounds and (2) comparisons with probability
bounds other than 0 or 1, are disallowed, results in a PTIME-complete model-checking
problem. In Section 5, we show that reachability properties with probability bounds
of 0 or 1 are EXPTIME-complete for probabilistic timed automata with two or more



clocks, implying EXPTIME-completeness of all the model-checking problems that we
consider for this class of models. Our results are summarized in Table 1, Where
denotes the sub-logics offBTL with probability bounds of 0 and 1 only, and, >|
denotes the sub-logics offBTL in which punctual timing bounds are disallowed. The
EXPTIME-hardness results are based on the concepbufitdown gamesvhich are
two-player games operating in discrete time in which one player wins if it is able to
make a state transition aftexactlyc time units have elapsed, regardless of the strategy
of the other player. We believe that countdown games may be of independent interest.
Note that we restrict our attention to probabilistic timed automata in which positive
durations elapse in all loops of the system.

2 Probabilistic Timed Automata

Preliminaries. We useR >, to denote the set of non-negative real numhirs denote
the set of natural numbers, add® to denote a set of atomic propositions. A (discrete)
probability distribution over a countable s&) is a functiony : @ — [0, 1] such that
> qeqi(g) = 1. For a functionu : @ — Rxo we definesupport(u) = {qg € Q |
w(g) > 0}. Then for an uncountable s@twe defineDist(()) to be the set of functions
i @ — [0,1], such thasupport() is a countable set andrestricted tosupport(u)
is a (discrete) probability distribution.
We now introducetimed Markov decision processeshich are Markov decision
processes in which rewards associated with transitions are interpreted as time durations.

Definition 1. A timed Markov decision proce§3MDP) T = (S, snit, —, lab) com-
prises a (possibly uncountable) setathtesS with an initial states;,,;; € .S; a (possibly
uncountable}imed probabilistic, nondeterministic transition relatierC S x R x

Dist(.S) such that, for each statec S, there exists at least one tuple, _, ) €—; and
alabelling functionlab : S — 247,

The transitions from state to state of a TMDP are performed in two steps: given that
the current state i the first step concerns a nondeterministic selectidn,@f, v) €—,
whered corresponds to the duration of the transition; the second step comprises a prob-
abilistic choice, made according to the distributionas to which state to make the
transition to (that is, we make a transition to a stéte .S with probability v (s")). We

often denote such a transition byd’—”> s

An infinite or finite pathof the TMDPT is defined as an infinite or finite sequence
of transitions, respectively, such that the target state of one transition is the source state
of the next. We uséath g, to denote the set of finite paths ®f and Pathy,; the set
of infinite paths ofT. If w is a finite path, we denote Byst(w) the last state ab. For
any pathw, letw(7) be its(i + 1)th state. LetPath s, (s) refer to the set of infinite paths
commencing in state € S.

In contrast to a path, which corresponds to a resolution of nondeterministic and
probabilistic choice, andversaryrepresents a resolution of nondeterminisnty. For-
mally, an adversary of a TMDP is a functionA mapping every finite path € Path sy,
to a transition(last(w), d, v) €—. Let Adv be the set of adversaries ®f For any ad-
versaryA € Adv, let Pathﬁl denote the set of infinite paths resulting from the choices



of distributions ofA, and, for a state € S, let Pathj,,(s) = Pathjy, N Pathg,(s).

Then we can define the probability measute b’ overPath}‘Ll(s) (for details, see,
for example, [15]). Note that, by defining adversaries as functions from finite paths, we
permit adversaries to be dependent on the history of the system. Hence, the choice made
by an adversary at a certain point in system execution can depend on the sequence of
states visited, the nondeterministic choices taken, and the time elapsed from each state,
up to that point.

We distinguish the two classes of TMDPBiscrete TMDPsare TMDPs in which
(1) the state spac§ is finite, and (2) the transition relation is finite and of the
form —C S x N x Dist(S). In discrete TMDPs, the delays are interpreted as discrete
jumps, with no notion of a continuously changing state as time elapses. Th@ kize
of a discrete TMDPT is |S| + | — |, where| — | includes the size of the encoding
of the timing constants and probabilities used-in the timing constants are written
in binary, and, for any, s’ € S and(s,d, v), the probability~(s’) is expressed as a
ratio between two natural numbers, each written in binary. W& febe the untimed
Markov decision process (MDP) corresponding to the discrete TNIBR which each
transition(s, d,v) €— is represented by a transiti¢s, ). We define the accumulated

durationDiscDur(w, i) along the infinite patly = s “2%% s, 224 ... of T until
the (i+1)-th state to be the sudn ., d.. A discrete TMDP isstructurally non-Zeno

dosVn

when any finite path of the form, oo, o ... Gnitm, Spt1, Such thats,,; = sq,
satisfies) ;-,, d; > 0. Continuous TMDPsure infinite-state TMDPs in which any

transitions 2 s’ describes the continuous passage of time, and thus aupath

do,v di,1

sp —=2 51 — ... describes implicitly an infinite set of visited states. In the sequel,
we use continuous TMDPs to give the semantics of probabilistic timed automata.

Syntax of probabilistic timed automata. Let X be a finite set of real-valued variables
calledclocks the values of which increase at the same rate as real-time. Tl st
clock constraintover X' is defined as the set of conjunctions over atomic formulae of
the formz ~ ¢, wherez,y € X, ~€ {<,<,>, >, =}, andc € N.

Definition 2. A probabilistic timed automatoPTA)P = (L,[, X, inv, prob, L) is a
tuple consisting of a finite sdt of locationswith the initial location! € L; a finite
set X of clocks; a functioninv : L — W5 associating arinvariant conditionwith
each location; a finite sgirob C L x W x Dist(2* x L) of probabilistic edgesuch
that, for eachl € L, there exists at least on@, _, ) € prob; and alabelling function
L:L— 247,

A probabilistic edge(l, g,p) € prob is a triple containing (1) a source location
[, (2) a clock constraing, called aguard and (3) a probability distributiop which
assigns probability to pairs of the forfiX, I’) for some clock seX and target location
I’. The behaviour of a probabilistic timed automaton takes a similar form to that of a
timed automaton [4]: in any location time can advance as long as the invariant holds,
and a probabilistic edge can be taken if its guard is satisfied by the current values of the
clocks. However, probabilistic timed automata generalize timed automata in the sense



that, once a probabilistic edge is hondeterministically selected, then the choice of which
clocks to reset and which target location to make the transitiongmizabilistic

The size|P| of the PTAP is |L| + |X| + [inv| + |prob|, where|inv| represents
the size of the binary encoding of the constants used in the invariant condition, and
|prob| includes the size of the binary encoding of the constants used in guards and the
probabilities used in probabilistic edges. As in the case of TMDPs, probabilities are
expressed as a ratio between two natural numbers, each written in binary.

A PTA is structurally non-Zend24] if, for every sequenceXy, (o, 9o, Po), X1,
(l1,91,P1)5 -+ 5 Xy (Ins Gns Pn ), SUCh thatp; (X1, 1;41) > 0for 0 < 4 < n, and
pn(Xo,lo) > 0, there exists a clock € X and0 < i, < n such thatr € X; and
g; = = > 1 (that is,g; contains a conjunct of the form > c for somec > 1). We use
1C-PTA (resp. 2C-PTA) to denote the set of structurally non-Zeno PTA with only one
(resp. two) clock(s).

Semantics of probabilistic timed automata. We refer to a mapping : X — Rxg

as aclock valuation Let R<,, denote the set of clock valuations. L@te R<, be the
clock valuation which assigns 0 to all clocks M. For a clock valuation € R,
and a valuel € R>(, we usev + d to denote the clock valuation obtained by letting
(v +d)(z) = v(z) + d for all clocksz € X. For a clock seiX C X, we letv[X := 0]

be the clock valuation obtained fromby resetting all clocks withinX to 0; more
precisely, we leb[X := 0](x) = 0 for all z € X, and letv[X := 0](z) = v(x) for

all z € X\ X. The clock valuation satisfiesthe clock constrainty € Wy, written

v | 4, if and only if ¢ resolves to true after substituting each clack X with the
corresponding clock valug(x).

Definition 3. The semantics of the probabilistic timed automakor= (L, [, X, inv,
prob, L) is the continuous TMDH [P] = (S, Snit, —, lab) where:

- S={(l,v) |l € Landv € RY;s.t.v = inv(l)} ands,i; = (I,0);
— — is the smallest set such thél,v),d, 1) €— if there existd € R>o and a
probabilistic edg€!, g, p) € prob such that:
1l v+dEg andv+d =iinv(l)forall 0 < d <d;
2. forany(X,1') € 2% x L, we have thap(X,l’) > 0 implies (v + d)[X :=
0] & inv(l');
3. forany(l’,v") € S, we have that(l',v') = 3 x creset(v, 4,0 P(X '), Where
Reset(v,d,v") ={X C X | (v+ d)[X :=0] =v'}.
— lab is such thatab(l,v) = L(I) for each statdl,v) € S.

Given a pathu = (lp,v0) 222 (11, v1) 2% ... of T[P], for everyi, we use
w(i,d), with 0 < d < d;, to denote the staté;, v; + d) reached from(l;,v;) after
delayingd time units. Such a paifi, d) is called aposition of w. We define a total
order on positions: given two positiolis d), (4, d’) of w, the position(i, d) precedes
(4,d’) — denoted(s, d) <, (j,d') — if and only if eitheri < j, ori = j andd < d'.
Furthermore, we define the accumulated dura@ie®ur(w, i, d) along the pathv until
position(i, d) to be the sund + >, _, dx.



3 Probabilistic timed temporal logic

We now proceed to describepaobabilistic timedtemporal logic which can be used to
specify properties of probabilistic timed automata [15].

Definition 4. The formulae ofPTcTL (Probabilistic Timed Computation Tree Logic)
are given by the following grammar:

¢=aldNd| 20| Po(PUncd)

wherea € AP is an atomic propositionxe {<, <, >, >}, ~¢ {<,=,>},( € [0,1]
is a probability, and- € N is a natural number.

We use standard abbreviations suchtrag , false , ¢1 V ¢2, ¢1 = ¢9, and
Poac (Foc) (for Puge(true U.o.¢)). Formulae with “always” temporal operato@s..
can also be written; for exampls.(G..¢) can be expressed W<;_¢(Fucm¢)).
The modalitiesU, F and G without subscripts abbreviaté-,, F>o and G, respec-
tively. We refer to RcTL properties of the fornfP.. (Fa) or =Piqc (Fa) as(untimed)
reachability propertieswhen¢ € {0, 1}, these properties are referred togasilitative
reachability properties.

We define RCTL[<, >] as the sub-logic of RcTL in which subscripts of the form
= ¢ are not allowed in modalitie$) ., F., G... We define PcTL?/![<,>] and
PrcTLY! as the qualitative restrictions in which probability threshojdselong to
{0,1}. Furthermore BTL is the sub-logic in which there is no timing subscriptc
associated with the modalitiés F, G. The sizel®| of @ is defined in the standard way
as the number of symbols ip, with each occurrence of the same subformule afs a
single symbol.

We now define the satisfaction relation af@rL for discrete and continuous TMDPs.

Definition 5. Given a discrete TMDH = (S, Sinit, —, lab) and aPTCTL formula®,
we define the satisfaction relati¢ar of PTcTL as follows:

sETa iff a € lab(s)
S |:T @1 A @2 iff s ‘:T @1 ands |:T @2
S ':T P iff s %T P

s =1 Poac () iff Prob{w € Pathﬁl(s) |w =T @}, VA € Adv
w T @1UPs iff Fi € Ns.it.w(i) =1 ¢2, DiscDur(w, i) ~ ¢,
andw(j) E1 é1, Vj <1i.

Definition 6. Given a continuous TMDF = (S, s;:¢, —, lab) and aPTCTL formula
@, we define the satisfaction relatigat of PTcTL as in Definition 5, except for the
following rule for®, U .P5:

w =1 ¢1U P2 iff I position(i, §) of w s.t.w(i,d) =1 P2, CtsDur(w,i,6) ~ ¢,
andw(j,d") =1 ¢1, V positions(j, §') of w s.t.(j,0") <. (4,9) .

When clear from the context, we omit tAesubscript from=r. We say that the
TMDP T = (S, sinit, —, lab) satisfies the PcTL formula ¢, denoted byT E &,



if and only if s;,;; = @. Furthermore, the PT& satisfies®, denoted byP E &,

if and only if T[P] | &. Given an arbitrary structurally non-Zeno PTA model
checking RcTL formulae is in EXPTIME [15] (the algorithm consists of executing
a standard polynomial-time model-checking algorithm for finite-state probabilistic sys-
tems [7, 6] on the exponential-size region grapRpfQualitative reachability problems
are EXPTIME-complete for PTA with an arbitrary number of clocks [20].

4 Model Checking One Clock Probabilistic Timed Automata

In this section we consider the case of 1C-PTA. We will see that model checking P
and ﬁ'CTLO/l[S, >] over 1C-PTA is P-complete (where the lower bound follows from
the fact that qualitative reachability properties are P-hard for MDPs [22]), but remains
EXPTIME-complete for the logic cTL’/!. First we have the following result about
the model-checking of &1L formulae.

Proposition 1. ThePcTL model-checking problem for 1C-PTA is P-complete.

4.1 Model checkingPTcTL%/1[<, >] on 1C-PTA

In this section, inspired by related work on timed concurrent game structures [16], we
first show that model-checkingmeTL%/*[<, >] properties of discrete TMDPs can be
done efficiently. Then, in Theorem 1, using ideas from the TMDP case, we show that
model checking PCTLO/l[g, >] on 1C-PTA can also be done in polynomial time.

Proposition 2. Let T = (5, sinit, —, lab) be a structurally non-Zeno discrete TMDP
and @ be aPtcTL?/![<, >] formula. Deciding whetheT = & can be done in time
O(|2| - 5] - [ = 1)-

Proof (sketch)The model-checking algorithm is based on several procedures to deal
with each modality of pcTLY/! [<, >]. The boolean operators and the1® modalities
(without timed subscripts) can be handled in the standard manner, wittcthedPop-
erties verified on the untimed MDP* corresponding t@ . For formula€Pq. (91 U~.P2),

we assume that the truth values of subformulgaeand @, are known for any states

of T. First, given that the TMDP is structurally non-Zeno, we have the equivalences
PSO (41)1 UNCQQ) = _‘E¢1UNC®2 andPZl(Qpl UNC¢2) = A@lUNC(le(Q)l U@Q)), where

E (resp.A) stands for the existential (resp. universal) quantification over paths which
exist in the logic TTL. Thus we can apply the procedure proposed for model checking
TcTL formulae —running in timé(|.S|-| — |) — over weighted graphs [18] (in the case

of P>1(P1U~.P2), by first obtaining the set of states satisfyifig; ($;UP,), which

can be done ofi* intime O(3_; ;). [support(v)])).

The problem of verifying the remaining temporal properties o L/ [<,>]can
be considered in terms of turn-based 2-player games. Such a game is played over the
spaceS U —, and play proceeds as follows: from a state S, player P,, chooses
a transition(s, d,v) €—; then, from the transitiotts, d, v), player P, chooses a state
s’ € support(v). The duration of the move fromto s’ via (s, d, ) is d. Notions of



strategy of each player, and winning with respect to (untimed) path formulae of the
form &, U, are defined as usual for 2-player games.

For the four remaining formulae, nameh. (9,1 U...$2) for ¢ € {> 0,< 1},
and~e€ {<, >}, we consider the functions, 3,v,d : S — N, for representing min-
imal and maximal durations of interest. Intuitively, for a state S, the valuex(s)
(resp.v(s)) is the minimal (resp. maximal) duration that play@ycan ensure, regard-
less of the counter-strategy &f,, along a path prefix from satisfying®, U®, (resp.
D1U(Pso(P1UPy))). Similarly, the values(s) (resp.d(s)) is the minimal (resp. maxi-
mal) duration that playeP,, can ensure, regardless of the counter-stratedy, phlong
a path prefix frons satisfying®, U®, (resp.®@,U(=P . (dUd,))).

Using the fact that the TMDP is structurally non-Zeno, for any state .S, we
can obtain the following equivalences:= P~ o(®1U<.P5) if and only if a(s) < ¢;

s = Poq1(P1U<.Po) if and only if B(s) > ¢; s = Pso(P1UsPo) if and only if

v(s) > ¢ s = Py (P1Us.P2) if and only if §(s) < e. The functionsa, 3,~,d can

be computed on the 2-player game by applying the results of [16] on timed concurrent
game structures: for each temporal oper&@gaf (9, U...P2), this computation runs in
timeO(|S|-| — |)- 0

We use Proposition 2 to obtain an efficient model-checking algorithm for 1C-PTA.

Theorem 1. LetP = (L,I, X, inv, prob, L) be a 1C-PTA and be aPTcTLY![<, >]
formula. Deciding whethelP = ¢ can be done in polynomial time.

Proof (sketch)Our aim is to label every staté, v) of T[P] with the set of subformulae
of @ which it satisfies (ag¥| = 1, recall thaw is a single real value). For each location
! € L and subformul@ of ¢, we construct a séat[l, ¥] C Rx( of intervals such that

v € Sat[l,¥] if and only if (I,v) = ¥. We writeSat[l,¥] = (J,;_; _,(c;;c;) with

(e {[, (} and) € {],)}. We consider intervals which conform to the following rules:
for 1 < j <k, we havec; < ¢ andc;,c; € NU {oo}, and forl < j < k, we have
i < cjy1. We will see thatSat[l, 7| —i.e. the number of intervals corresponding to a
particular location — is bounded | - 2 - |prob|.

The cases of obtaining the s&st[l, 7] for boolean operators and atomic propo-
sitions are straightforward, and therefore we concentrate on the verification of subfor-
mulae¥ of the formPuq. (91 U~.P2). Assume that we have already computed the sets
Sat[., ] for ¢, and®,. Our aim is to comput8at[l, ¥] for each locatiori € L.

There are several cases depending on the constraint™ The equivalence
P<o(P1UcP2) = ~EP1 UL, can be used to reduce the ‘0" case to the appropriate
polynomial-time labeling procedure feite®, U...®2 on one clock timed automata [17].

In the “> 1" case, the equivalend®s;(®1U . P2) = AP1U (P>1(P1UDy)) relies
on first computing the state set satisfyifig, (¥, U®;), which can be handled using a
qualitative R TL model-checking algorithm, applied to a discrete TMDP built frem

L If there is no strategy for playe?, (resp. playetP,) to guarantee the satisfaction &f U®
along a path prefix froms, then we letn(s) = oo (resp.3(s) = oo). Similarly, if there is no
strategy for playerP, (resp. playerP,) to guarantee the satisfaction &f U(P~o(®1UP2))
(resp®1U(—P<1(21UP,))) along a path prefix from, then we lety(s) = —oo (respd(s) =
—00).



Sat[l, #1] andSat[l, §o], in time O(|P| - |probd| - (|P1|+ |P2|)), and second verifying the
formulaA®,U..(P>1(91UP2)) using the aforementioned method for one clock timed
automata.

For the remaining cases, our aim is to construct a (finite) discrete TMDP-
(S",_,—",lab"™), which represents partially the semantic TMDIP], for which the
values of the functions, 3, v andé of the proof of Proposition 2 can be computed, and
then use these functions to obtain the required Setl, ¥| (the initial state ofT” is
irrelevant for the model-checking procedure, and is therefore omitted). The TMDP
will take a similar form to the region graph MDP of PTA [15], but will be of reduced
size (the size will be independent of the magnitude of the constants used in invariants
and guards): this will ensure a procedure running in time polynomig|in

We now describe the construction @f. In the following we assume that the
setsSat[l, ®;] contain only closed intervals and that the guards and invariant of the
PTA contain non-strict comparisons (and possibly intervals of the férmv)). The
general case is omitted for reasons of space. Formally wi let {0} U Cst(P) U
Uieq1,2y Uier Cst(Sat[l, #;]), whereCst(P) is the set of constants occurring in the
clock constraints o, and whereCst(Sat[l, ®;]) is the set of constants occurring as end-
points of the intervals i%at[l, #;]. Moreover for any right-open interv@ll; co) occur-
ring in someSat[l, |, we add the constaht-c+1 in B. We enumerat® asbg, by, ...bas
with by = 0 andb; < b;4; for i < |B|. Note that|B| is bounded byt - |¥| - |prob|. For
any interval(b;; b;11) and clock constrainp € W, we let(b;; b,41) = ¢ if v = ¢ for
allv e (b“ bi+1).

Considering the discrete TMDP correspondingTi®] restricted to state§, b;),
with b; € B, is sufficient to compute the values of functions 3, v and§ in any
state(l, b;). However, this does not allows us to deduce the value for any intermediate
states in(b;; b;+1): indeed some probabilistic edges enabled figrmay be disabled
inside the interval. Therefore, i, we have to consider al§6 b;") and(l, b;, ;) corre-
sponding respectively to the leftmost and rightmost point®irb; 1) (wheni < M).
ThenS" is defined as the pair@, b;) with b; € B andb; = inv(l), and(l,b;) and
(I,bi 1) with b; € B, i < M and(b;; bi1) = inv(l). Note that the truth value of any
invariant is constant over such intervdls; b;.1). Moreover note that all'[P] states
of the form ({,v) with v € (b;;b;11) satisfy the same boolean combinationsZaf
and @,, andenable the same probabilistic edgé®r any(l,g,p) € prob, we write
b7 E g (andb;,, = g) when(b;;bi41) = g. Similarly, we writeb, |= inv(l) (and
b, = inv(l)) when(b;b1) = inv(l). We also consider the following ordering
bo < b < by <bi <bf <. <by < by < b}, We now define the set" of
transitions ofT” as the smallest set such ttiét, \), d, v) EH where) € {b;, b;, b}
for someb; € B, if there exists\ > A, where)\" € {b;,b +1 for someb; € B, and
(1,g,p) € prob such that:

]’]

—d=0b; — b, N = g,and\’ = inv(l) forany A <\’ < X

— for each(X,1") € support(p), we haved = inv(l’) if X = {z}, andX = inv(l’)
if X =10

— for each (l’ Ay e ST, we havev(l',N") = vo(I', N') + va(l'; \'), where
vo(l', Ny = p(l',{x}) if X = [0,0] and vo(I’,\’) = 0 otherwise, and
va(l', /\”) =p(l’,0) if X = X andv,(I', \") = 0 otherwise.



Finally, to definelab”, for a state(l, b;), we letag, € lab"(I,b;) if and only if
b; € Sat[l,®;], for j € {1,2}. The stategl, b;") and(l, b ,) are labeled depending on
the truth value of the;’s in the interval(b;; b; 1) if (bs; bi11) C Sat[l, @], thenag, €
lab™(1,b)") andag, € lab"(1,b; ;). Note that given the “closed intervals” assumption
made onSat[l, ®;], we havelab” (I,b]) C lab"(1,b;) andlab”(I,b;,,) C lab"(,b;).

Note that the fact tha? is structurally non-Zeno means th#t is structurally non-Zeno.
The size ofT" is in O(|P|? - |¥|).

Now we can apply the algorithms defined in the proof of Proposition 2 and ob-
tain the value of the coefficients, 3, v or § for the states off”. Our next task is to
define functionsx, 3,%,5 : S — Rso, whereS is the set of states of[P], which
are analogues af, 3, v or ¢ defined onT[P]. Our intuition is that we are now con-
sidering an infinite-state 2-player game, with playé}sand P,, as in the proof of
Proposition 2, over the state spaceTdP]. Consider locatiod € L. Forb € B, we
havea(l,b) = a(l,b), B(1,b) = B(1,b), F(I,b) = ~(I,b) andd(l,b) = &(1,b). For
intervals of the form(b;; b; 1), the functionsa andd will be decreasing (with slope
-1) throughout the interval, because, for all states of the interval, the optimal choice of
player P, is to delay as much as possible inside any interval. Hence, the &alue)
forv € (bi; biy1) is defined entirely by(l, b;, ) asa(l,v) = a(l, b; | ;) —bit1+b;+v.
Similarly, 6(1,v) = 6(1,b;,1) — biy1 + b; + v.

Next we consider the values gfand7 over intervals(b;; b;11). In this case, the
functions will be constant over a portion of the interval (possibly an empty portion,
or possibly the entire interval), then decreasing with slope -1. The constant part cor-
responds to those states in which the optimal choice of pl&yeis to take a prob-
abilistic edge, whereas the decreasing part corresponds to those states in which it is
optimal for playerP, to delay until the end of the interval. The valwél,v) for
v € (b;biy1) is defined both by3(l,b]) and 8(1,b;, ;) as B(l,v) = B(, b)) if
bi <v < bis1 — (BLb]) — B B1y)), and as3(l,v) = B(L Bry,) — (v — AL b]))
otherwise. An analogous definition holds alsoFor

From the functionsy, 3, 7 and § defined above, it becomes possible to define
Sat[l,¥] by keeping in this set of intervals only the parts satisfying the thresholds
< ¢ > ¢, > cand< c, respectively, as in the proof of Proposition 2. We can show
that the number of intervals iBat[l, ¥] is bounded by2 - |¥| - |prob|. For the case in
which a functiona, 3, 7 or ¢ is decreasing throughout an interval, then an interval in
Sat[l, #,] which corresponds to several consecutive intervalEican provide at most
one (sub)interval i%at[l, ¥], because the threshold can cross at most once the function
in at most one interval. For the case in which a functibor 7 combines a constant
part and a part with slope -1 within an interval, the threshold can cross the function
in several intervalgb;; b;1) contained in a common interval 86t[l, #;]. However,
such a cut is due to a guagd> k of a given transition, and thus the number of cuts in
bounded byprob|. Moreover a guara < k may also add an interval. Thus the number
of new intervals irbat[q, ¥] is bounded by - |prob|.

In addition to these cuts, any interval Bat[l,$5] may provide an interval in
Sat[l, ¥]. This gives the2 - |¥| - |prob| bound for the size dbat[l, ¥]. O

Corollary 1. ThePTCTLO/l[g, >] model-checking problem for 1C-PTA is P-complete.



4.2 Model checkingPTcTL?/ on 1C-PTA

We now consider the problem of model-checkimpPL®/! properties on 1C-PTA. An

EXPTIME algorithm for this problem exists by the definition of a MDP analogous to
the region graph used in non-probabilistic timed automata verification [15]. We now
show that the problem is also EXPTIME-hard by the following three steps. First we
introducecountdown gameswvhich are a simple class of turn-based 2-player games
with discrete timing, and show that the problem of deciding the winner in a countdown
game is EXPTIME-complete. Secondly, we reduce the countdown game problem to the
PrcTLY! problem on TMDPs. Finally, we adapt the reduction to TMDPs to reduce
also the countdown game problem to tmec?L’/* problem on 1C-PTA.

A countdown gamé consists of a weighted gragh, T), wheres is the set obtates
andT C S x N\ {0} x s is thetransition relation If t = (s, d,s’) € T then we say
that theduration of the transitiont is d. A configuration of a countdown game is a
pair (s, c), wheres € S is a state and € N. A moveof a countdown game from a
configuration(s, ¢) is performed in the following way: first player 1 chooses a number
d, such that < d < cand(s,d,s’) € T, for some state’ € S; then player 2 chooses
a transition(s, d, s’) € T of durationd. The resulting new configuration {s’, ¢ — d).
There are two types derminal configurations, i.e., configuratioris, c¢) in which no
moves are available. if = 0 then the configuratiofs, c¢) is terminal and is avinning
configuration for player 1If for all transitions(s, d, s’) € T from the states, we have
thatd > ¢, then the configuratio(s, ¢) is terminal and it is avinning configuration for
player 2 The algorithmic problem adeciding the winnein countdown games is, given
a weighted grapks, T) and a configuratiofs, ¢), where all the durations of transitions
in C and the numbef are given in binary, to determine whether player 1 has a winning
strategy from the configuratiofx, ¢). If the state from which the game is started is
clear from the context then we sometimes specify the initial configuration by giving the
numberc alone.

Theorem 2. Deciding the winner in countdown game&iXPTIME-complete.

Proof (sketch)Observe that every configuration of a countdown game played from a
given initial configuration can be written down in polynomial space and every move can
be computed in polynomial time; hence the winner in the game can be determined by a
straightforward alternating PSPACE algorithm. Therefore the problem is in EXPTIME
because APSPACE EXPTIME.

We now prove EXPTIME-hardness by a reduction from the acceptance of a word by
a linearly-bounded alternating Turing machine. Dét= (X, Q, g0, Gace, @3, Qv, 4A)
be an alternating Turing machine, wheras a finite alphabet) = Q3 U Qv is a finite
set of states partitioned into existential stafesand universal state@v, ¢o € @ is an
initial state,q,.. € @ is an accepting state, aml C @ x ¥ x Q x ¥ x {L,R}isa
transition relation. LeB > 2 - |@ x X| be an integer constant and lete X be an
input word. W.l.0.g. we can assume thit uses exactly, tape cells when started on
the wordw, and hence a configuration 8f is a wordbgb; ---b,_1 € (YUQ x X)™.
Let(:): (Yu@QxX)— {0,1,...,B—1}beaninjection. Forevely € JUQ x X,
it is convenient to think ofa) as aB-ary digit, and we can encode a configuration
uw="bgb; - b, 1 € (2UQ x X)" of M as the numbeN (u) = 3.7 '(b,) - B'.



Leti € N, 0 < ¢ < n, be a tape cell position, and lat € > U Q x Y. We
define a countdown gan@heck’?, such that for every configuratian=bg - - - b,,_;
of M, player 1 has a winning strategy from the configuratisi®, N (u)) of the game
Check™® if and only if b; = a. The gameCheck”® has states = { s;®,...,s52 },

and for everyk, 0 < k < n, we have a transitiots}®, d, ;%) € T, if:

g @ BY itk =i,
| ®)-B*F ifk#iandbe XUS x X.

There are no transitions from the statg*. Observe that ib; = a then the winning
strategy for player 1 in gam@heck”? from N (u) is to choose the transitioris}®, by, -
Bk, sZil), forall k, 0 < k < n. If, however,b; # a then there is no way for player 1
to count down fromV (u) to 0 in the gameCheck’?.

Now we define a countdown gandg,, such that\/ acceptsw = ogoy...0, 1
if and only if player 1 has a winning strategy éh, from configuration(go, N (u)),
whereu = (qo,00)01 ...0,—1 is the initial configuration of\/ with input w. The
main part of the countdown gant®, is a gadget that allows the game to simulate
one step ofM/. Note that one step of a Turing machine makes only local changes to
the configuration of the machine: if the configuration is of the farem ag...a,, 1 =
og...0i—1(q,0;)0:41 - ..opn_1, then performing one step 8f can only change entries
in positionsi — 1, i, or i 4+ 1 of the tape. For every tape position0 < i < n, for
every tripler = (0-1,(q,04),0i+1) € ¥ x (Q x X) x X, and for every transition
t = (¢,0,¢,0',D) € A of machineM, we now define the numbel’”, such that if
o; = o and performing transitionat position: of configurationu yields configuration
v =Dbgy...b,_1, thenN(u) —dy" = N(u'). For example, assume that- 0 and
thatD = L; we have thab, = a;, = o, forallk ¢ {i—1,4,i+ 1} andb;;; =
a; ;1 = 0;11. Moreover we have thdi; | = (¢’,0,_1), andb; = o’. We defined;”
as follows:

a7 = ((bimy) = {ai-1)) - B+ (b)) — (ai)) - B

({(¢",0i-1)) = (0i-1)) - B+ ({o) = {(q,09))) - B".

The gadget for simulating one transition df from a statey € Q \ { gacc } has
three layers. In the first layer, from a states @ \ { g.cc }, player 1 chooses a pair
(¢,7), wherei, 0 < i < n, is the position of the tape head, and= (a,b,c) €
X x (@ x X) x Xis his guess for the contents of tape célis 1, ¢, andi + 1. In this
way the statégq, i, 7) of the gadget is reached, where the duration of this transition is 0.
Intuitively, in the first layer player 1 has to declare that he knows the positidrihe
head in the current configuration as well as the contents(a, b, ¢) of the three tape
cellsin positions—1, ¢, andi+1. In the second layer, in a stdig i, 7) player 2 chooses
between four successor states: the sfgté 7, ) and the three subgaméheck’ 12,
Check®”P, and Check! ™', The four transitions are of duration 0. Intuitively, in the
second layer player 2 verifies that player 1 declared correctly the contents of the three
tape cells in positions — 1, 4, and: + 1. Finally, in the third layer, ify € Q3 (resp.,

q € Qv), then from a statéq, i, 7, x) player 1 (resp., player 2) chooses a transition



t = (q,0,¢',0', D) of machineM, such thab = (¢, ), reaching the stat¢ € Q of
the gadget, with a transition of duratiafi”.

Note that the gadget described above violates some conventions that we have adopted
for countdown games. Observe that durations of some transitions in the gadget are 0
and the duratiow;” may even be negative, while in the definition of countdown games
we required that durations of all transitions are positive. In order to correct this we
add the numbe3" to the durations of all transitions described above. This change
requires a minor modification to the subgantéseck”®: we add an extra transition
(sih2, B, sv®). We need this extra transition because instead of starting(fgen (u))
as the initial configuration of the gandl,, wherew is the initial configuration of\/
running onw, we are going to start from the configuratiopy, B3 + N(u)). In this
way the countdown game can perform a simulation of at |B&ssteps ofM; note that
B™ is an upper bound on the number of all configurationg/of

W.l.o.g., we can assume that whenever the alternating Turing magtiaecepts
an input wordw then it finishes its computation with blanks in all tape cells, its head
in position 0, and in the unique accepting state.; we write u,.. for this unique
accepting configuration of machiré. Moreover, assume that there are no transitions
from q,.. in M. In order to complete the definition of the countdown gaig, we
add a transition of duratiotV (u,..) from the statey,.. of gameCy,. a

Proposition 3. ThePTcTL?/! model-checking problem for structurally non-Zeno dis-
crete TMDPs iEXPTIME-complete.

Proof. An EXPTIME algorithm can be obtained by employing the algorithms of [19].
We now prove EXPTIME-hardness ofrfBTL’/! model checking on discrete TMDPs
by a reduction from countdown games. ICet (S, T) be a countdown game at(d, ¢)

be its initial configuration. We constructa TMDR: 5 ) = (5, Sinit, —, lab) such that
player 1 winsC from (s, c) if and only if T¢ 5.c) = ~P<i(F=ctrue ).LetS = s and
sinit = S. We define— to be the smallest set satisfying the following: for each S
andd € Ny, if (s,d,s’) € T for somes’ € T, we have(s, d,v) €—, wherev is an
arbitrary distribution oves such thasupport(v) = {s’ | (s, d, s’) € T}. The labelling
conditionlab is arbitrary. Then we can show that player 1 wins from the configuration
(§,c) if and only if there exists an adversary of s, such that a state is reached
from s;,;; = § after exactlyc time units with probability 1. The latter is equivalent to
Sinit ': _‘P<1(F:Ctrue ) O

We now show that the proof of Proposition 3 can be adapted to show the EXPTIME-
completeness of the analogous model-checking problem on 1C-PTA.

Theorem 3. ThePtcTLY/? model-checking problem for 1C-PTAEXPTIME-complete.

Proof. Recall that there exists an EXPTIME algorithm for model-checkimgR.%/!
properties on PTA; hence, it suffices to show EXPTIME-hardness far®/! and
1C-PTA. LetC be a countdown game with an initial configurati@) c). We construct
the 1C-PTAP(13’C(§,C = (L,1,{x}, inv, prob, £) which simulates the behaviour of the
TMDP T¢ (5, Of t?1e proof of Proposition 3 in the following way. Each state S of
Te,(s,) COrresponds to two distinct locatiotisandi; of P ., and we letL’ = {I{ |



s € S} fori € {1,2}. Letl = I. For every transitioris, d, v) €— of Te,s,c), We have

the probabilistic edged’, > = 0,p'), (12,2 = d,p?) € prob, wherep*({ z },12) = 1,
andp?({ = },1L) = v(s’) for each locatiors’. For each state € s, let inv(ll) =

(z < 0) andinv(Z) = (z < d). Thatis, the PTAP; ., moves from the locatiof}

to [2 instantaneously. Locations in' are labelled by the atomic propositianwhereas
locations inL? are labelled by). Then we can observe thag%jc) E Py (F=ca)

if and only if T¢ 5.c) F ~P<i1(F=ctrue ). As the latter problem has been shown to
be EXPTIME-hard in the proof of Proposition 3, we conclude that model checking
PrcTL?! on 1C-PTA is also EXPTIME-hard. O

5 Model Checking Two Clocks Probabilistic Timed Automata

We now show EXPTIME-completeness of the simplest problems that we consider on
2C-PTA.

Theorem 4. Qualitative probabilistic reachability problems for 2C-PTA &XPTIME-
complete.

Proof. EXPTIME algorithms exist for probabilistic reachability problems on PTA, and
therefore it suffices to show EXPTIME-hardness. We proceed by reduction from count-
down games. Let be a countdown game with initial configuratidg, c¢), and let
PlCES 0 = = (L,l,{z}, inv, prob, L) be the 1C-PTA constructed in the proof of Theo-
rem 3. We define the 2C- PTR%CES o = LUl bz, y}, in’, prob’, L) in the
following way. The set of probabilistic edggsob’ is obtained by adding terob

the following: for each locatiori € L, we extend the set of outgoing probabilistic
edges of with (I,y = ¢,p'"), wherep!” (0, 1*) = 1; to makeprob’ total, we also add
(I*,true ,p'"). For eachl € L, letinv'(1) = inv(l), and letinv’(1*) = true . Fi-

nally, we let£'(I*) = a, andL(l) = @ forall [ € L. ThenPg)C(gAc) E —P.(Fa) if

and only |fPéCS o F "P<1(F=ca). The EXPTIME-hardness of the latter problem has
been shown in ti]e proof of Theorem 3, and hence checking qualitative probabilistic
reachability properties such a®_ (Fa) on 2C-PTA is EXPTIME-hard. ad

Corollary 2. ThePcTL, PTcTLYt[<, >], PrcTL?!, PTCTL[<, >] andPTCTL model-
checking problems for 2C-PTA aEEXPTIME-complete.
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