
Model Checking Probabilistic Timed Automata
with One or Two Clocks ?

Marcin Jurdzínski1, François Laroussinie2, and Jeremy Sproston3

1Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
2Lab. Sṕecification & Verification, ENS Cachan – CNRS UMR 8643, France

3Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy
mju@dcs.warwick.ac.uk, fl@lsv.ens-cachan.fr,

sproston@di.unito.it

Abstract. Probabilistic timed automata are an extension of timed automata with
discrete probability distributions. We consider model-checking algorithms for the
subclasses of probabilistic timed automata which have one or two clocks. Firstly,
we show that PCTL probabilistic model-checking problems (such as determining
whether a set of target states can be reached with probability at least 0.99 re-
gardless of how nondeterminism is resolved) are PTIME-complete for one clock
probabilistic timed automata, and are EXPTIME-complete for probabilistic timed
automata with two clocks. Secondly, we show that the model-checking problem
for the probabilistic timed temporal logic PTCTL is EXPTIME-complete for one
clock probabilistic timed automata. However, the corresponding model-checking
problem for the subclass of PTCTL which does not permit both (1) punctual tim-
ing bounds, which require the occurrence of an event at an exact time point, and
(2) comparisons with probability bounds other than 0 or 1, is PTIME-complete.

1 Introduction

Model checking is an automatic method for guaranteeing that a mathematical model
of a system satisfies a formally-described property [8]. Many real-life systems, such as
multimedia equipment, communication protocols, networks and fault-tolerant systems,
exhibit probabilisticbehaviour. This leads to the study ofprobabilistic model checking
of probabilistic models based on Markov chains or Markov decision processes [25, 12,
9, 7, 10, 6]. Similarly, it is common to observe complexreal-timebehaviour in systems.
Model checking of (non-probabilistic) continuous-time systems against properties of
timed temporal logics, which can refer to the time elapsed along system behaviours, has
been studied extensively in, for example, the context oftimed automata[3, 4], which are
automata extended withclocksthat progress synchronously with time. Finally, certain
systems exhibit both probabilisticand timed behaviour, leading to the development of
model-checking algorithms for such systems [2, 12, 10, 15, 5, 19].

In this paper, we aim to study model-checking algorithms forprobabilistic timed au-
tomata[13, 15], a variant of timed automata extended with discrete probability distribu-
tions, or (equivalently) Markov decision processes extended with clocks. Probabilistic

? Supported in part by EPSRC project EP/E022030/1, Miur project Firb-Perf, and EEC project
Crutial.

Table 1.Complexity results for model checking probabilistic timed automata

One clock Two clocks
Reachability, PCTL P-complete EXPTIME-complete
PTCTL0/1[≤,≥] P-complete EXPTIME-complete

PTCTL0/1 EXPTIME-completeEXPTIME-complete
PTCTL[≤,≥] P-hard, in EXPTIMEEXPTIME-complete

PTCTL EXPTIME-completeEXPTIME-complete

timed automata have been used to model systems such as the IEEE 1394 root contention
protocol, the backoff procedure in the IEEE 802.11 Wireless LANs, and the IPv4 link
local address resolution protocol [14]. The temporal logic that we use to describe prop-
erties of probabilistic timed automata is PTCTL (Probabilistic Timed Computation Tree
Logic) [15]. The logic PTCTL includes operators that can refer to bounds on exact time
and on the probability of the occurrence of events. For example, the property “a request
is followed by a response within 5 time units with probability 0.99 or greater” can be
expressed by the PTCTL propertyrequest ⇒ P≥0.99(F≤5response). The logic PTCTL

extends the probabilistic temporal logic PCTL [12, 7], and the real-time temporal logic
TCTL [3].

In the non-probabilistic setting, timed automata with one clock have recently been
studied extensively [17, 21, 1]. In this paper we consider the subclasses of probabilistic
timed automata with one or two clocks. While probabilistic timed automata with a re-
stricted number of clocks are less expressive than their counterparts with an arbitrary
number of clocks, they can be used to model systems with simple timing constraints,
such as probabilistic systems in which the time of a transition depends only on the time
elapsed since the last transition. Conversely, one clock probabilistic timed automata are
more natural and expressive than Markov decision processes in which durations are as-
sociated with transitions (for example, in [11, 19]). We note that the IEEE 802.11 Wire-
less LAN case study has two clocks [14], and that an abstract model of the IEEE 1394
root contention protocol can be obtained with one clock [23].

After introducing probabilistic timed automata and PTCTL in Section 2 and Sec-
tion 3, respectively, in Section 4 we show that model-checking properties of PCTL, such
as the propertyP≥0.99(Ftarget) (“a set of target states is reached with probability at
least 0.99 regardless of how nondeterminism is resolved”), is PTIME-complete for one
clock probabilistic timed automata, which is the same as for probabilistic reachability
properties on (untimed) Markov decision processes [22]. We also show that, in general,
model checking of PTCTL on one clock probabilistic timed automata is EXPTIME-
complete. However, inspired by the efficient algorithms obtained for non-probabilistic
one clock timed automata [17], we also show that, restricting the syntax of PTCTL to
the sub-logic in which (1) punctual timing bounds and (2) comparisons with probability
bounds other than 0 or 1, are disallowed, results in a PTIME-complete model-checking
problem. In Section 5, we show that reachability properties with probability bounds
of 0 or 1 are EXPTIME-complete for probabilistic timed automata with two or more

clocks, implying EXPTIME-completeness of all the model-checking problems that we
consider for this class of models. Our results are summarized in Table 1, where0/1
denotes the sub-logics of PTCTL with probability bounds of 0 and 1 only, and[≤,≥]
denotes the sub-logics of PTCTL in which punctual timing bounds are disallowed. The
EXPTIME-hardness results are based on the concept ofcountdown games, which are
two-player games operating in discrete time in which one player wins if it is able to
make a state transition afterexactlyc time units have elapsed, regardless of the strategy
of the other player. We believe that countdown games may be of independent interest.
Note that we restrict our attention to probabilistic timed automata in which positive
durations elapse in all loops of the system.

2 Probabilistic Timed Automata

Preliminaries. We useR≥0 to denote the set of non-negative real numbers,N to denote
the set of natural numbers, andAP to denote a set of atomic propositions. A (discrete)
probability distribution over a countable setQ is a functionµ : Q → [0, 1] such that∑

q∈Q µ(q) = 1. For a functionµ : Q → R≥0 we definesupport(µ) = {q ∈ Q |
µ(q) > 0}. Then for an uncountable setQ we defineDist(Q) to be the set of functions
µ : Q → [0, 1], such thatsupport(µ) is a countable set andµ restricted tosupport(µ)
is a (discrete) probability distribution.

We now introducetimed Markov decision processes, which are Markov decision
processes in which rewards associated with transitions are interpreted as time durations.

Definition 1. A timed Markov decision process(TMDP) T = (S, sinit ,→, lab) com-
prises a (possibly uncountable) set ofstatesS with an initial statesinit ∈ S; a (possibly
uncountable)timed probabilistic, nondeterministic transition relation→⊆ S × R≥0 ×
Dist(S) such that, for each states ∈ S, there exists at least one tuple(s, ,) ∈→; and
a labelling functionlab : S → 2AP .

The transitions from state to state of a TMDP are performed in two steps: given that
the current state iss, the first step concerns a nondeterministic selection of(s, d, ν) ∈→,
whered corresponds to the duration of the transition; the second step comprises a prob-
abilistic choice, made according to the distributionν, as to which state to make the
transition to (that is, we make a transition to a states′ ∈ S with probabilityν(s′)). We

often denote such a transition bys
d,ν−−→ s′.

An infinite or finitepathof the TMDPT is defined as an infinite or finite sequence
of transitions, respectively, such that the target state of one transition is the source state
of the next. We usePathfin to denote the set of finite paths ofT, andPathful the set
of infinite paths ofT. If ω is a finite path, we denote bylast(ω) the last state ofω. For
any pathω, letω(i) be its(i+1)th state. LetPathful(s) refer to the set of infinite paths
commencing in states ∈ S.

In contrast to a path, which corresponds to a resolution of nondeterministic and
probabilistic choice, anadversaryrepresents a resolution of nondeterminismonly. For-
mally, an adversary of a TMDPT is a functionAmapping every finite pathω ∈ Pathfin

to a transition(last(ω), d, ν) ∈→. Let Adv be the set of adversaries ofT. For any ad-
versaryA ∈ Adv , let PathA

ful denote the set of infinite paths resulting from the choices

of distributions ofA, and, for a states ∈ S, let PathA
ful(s) = PathA

ful ∩ Pathful(s).
Then we can define the probability measureProbA

s over PathA
ful(s) (for details, see,

for example, [15]). Note that, by defining adversaries as functions from finite paths, we
permit adversaries to be dependent on the history of the system. Hence, the choice made
by an adversary at a certain point in system execution can depend on the sequence of
states visited, the nondeterministic choices taken, and the time elapsed from each state,
up to that point.

We distinguish the two classes of TMDP.Discrete TMDPsare TMDPs in which
(1) the state spaceS is finite, and (2) the transition relation→ is finite and of the
form→⊆ S × N × Dist(S). In discrete TMDPs, the delays are interpreted as discrete
jumps, with no notion of a continuously changing state as time elapses. The size|T|
of a discrete TMDPT is |S| + | → |, where| → | includes the size of the encoding
of the timing constants and probabilities used in→: the timing constants are written
in binary, and, for anys, s′ ∈ S and(s, d, ν), the probabilityν(s′) is expressed as a
ratio between two natural numbers, each written in binary. We letTu be the untimed
Markov decision process (MDP) corresponding to the discrete TMDPT, in which each
transition(s, d, ν) ∈→ is represented by a transition(s, ν). We define the accumulated

durationDiscDur(ω, i) along the infinite pathω = s0
d0,ν0−−−→ s1

d1,ν1−−−→ · · · of T until
the(i+1)-th state to be the sum

∑
0≤k<i dk. A discrete TMDP isstructurally non-Zeno

when any finite path of the forms0
d0,ν0−−−→ s1 · · ·

dn,νn−−−−→ sn+1, such thatsn+1 = s0,
satisfies

∑
0≤i≤n di > 0. Continuous TMDPsare infinite-state TMDPs in which any

transitions
d,ν−−→ s′ describes the continuous passage of time, and thus a pathω =

s0
d0,ν0−−−→ s1

d1,ν1−−−→ · · · describes implicitly an infinite set of visited states. In the sequel,
we use continuous TMDPs to give the semantics of probabilistic timed automata.

Syntax of probabilistic timed automata. LetX be a finite set of real-valued variables
calledclocks, the values of which increase at the same rate as real-time. The setΨX of
clock constraintsoverX is defined as the set of conjunctions over atomic formulae of
the formx ∼ c, wherex, y ∈ X ,∼∈ {<,≤, >,≥,=}, andc ∈ N.

Definition 2. A probabilistic timed automaton(PTA)P = (L, l̄,X , inv , prob,L) is a
tuple consisting of a finite setL of locationswith the initial location l̄ ∈ L; a finite
setX of clocks; a functioninv : L → ΨX associating aninvariant conditionwith
each location; a finite setprob ⊆ L× ΨX × Dist(2X × L) of probabilistic edgessuch
that, for eachl ∈ L, there exists at least one(l, ,) ∈ prob; and a labelling function
L : L→ 2AP .

A probabilistic edge(l, g, p) ∈ prob is a triple containing (1) a source location
l, (2) a clock constraintg, called aguard, and (3) a probability distributionp which
assigns probability to pairs of the form(X, l′) for some clock setX and target location
l′. The behaviour of a probabilistic timed automaton takes a similar form to that of a
timed automaton [4]: in any location time can advance as long as the invariant holds,
and a probabilistic edge can be taken if its guard is satisfied by the current values of the
clocks. However, probabilistic timed automata generalize timed automata in the sense

that, once a probabilistic edge is nondeterministically selected, then the choice of which
clocks to reset and which target location to make the transition to isprobabilistic.

The size|P| of the PTAP is |L| + |X | + |inv | + |prob|, where|inv | represents
the size of the binary encoding of the constants used in the invariant condition, and
|prob| includes the size of the binary encoding of the constants used in guards and the
probabilities used in probabilistic edges. As in the case of TMDPs, probabilities are
expressed as a ratio between two natural numbers, each written in binary.

A PTA is structurally non-Zeno[24] if, for every sequenceX0, (l0, g0, p0), X1,
(l1, g1, p1), · · · , Xn, (ln, gn, pn), such thatpi(Xi+1, li+1) > 0 for 0 ≤ i < n, and
pn(X0, l0) > 0, there exists a clockx ∈ X and0 ≤ i, j ≤ n such thatx ∈ Xi and
gj ⇒ x ≥ 1 (that is,gj contains a conjunct of the formx ≥ c for somec ≥ 1). We use
1C-PTA (resp. 2C-PTA) to denote the set of structurally non-Zeno PTA with only one
(resp. two) clock(s).

Semantics of probabilistic timed automata. We refer to a mappingv : X → R≥0

as aclock valuation. Let RX≥0 denote the set of clock valuations. Let0 ∈ RX≥0 be the
clock valuation which assigns 0 to all clocks inX . For a clock valuationv ∈ RX≥0

and a valued ∈ R≥0, we usev + d to denote the clock valuation obtained by letting
(v + d)(x) = v(x) + d for all clocksx ∈ X . For a clock setX ⊆ X , we letv[X := 0]
be the clock valuation obtained fromv by resetting all clocks withinX to 0; more
precisely, we letv[X := 0](x) = 0 for all x ∈ X, and letv[X := 0](x) = v(x) for
all x ∈ X \ X. The clock valuationv satisfiesthe clock constraintψ ∈ ΨX , written
v |= ψ, if and only if ψ resolves to true after substituting each clockx ∈ X with the
corresponding clock valuev(x).

Definition 3. The semantics of the probabilistic timed automatonP = (L, l̄,X , inv ,
prob,L) is the continuous TMDPT[P] = (S, sinit ,→, lab) where:

– S = {(l, v) | l ∈ L andv ∈ RX≥0 s.t.v |= inv(l)} andsinit = (l̄,0);
– → is the smallest set such that((l, v), d, µ) ∈→ if there existd ∈ R≥0 and a

probabilistic edge(l, g, p) ∈ prob such that:
1. v + d |= g, andv + d′ |= inv(l) for all 0 ≤ d′ ≤ d;
2. for any(X, l′) ∈ 2X × L, we have thatp(X, l′) > 0 implies(v + d)[X :=

0] |= inv(l′);
3. for any(l′, v′) ∈ S, we have thatµ(l′, v′) =

∑
X∈Reset(v,d,v′) p(X, l

′), where
Reset(v, d, v′) = {X ⊆ X | (v + d)[X := 0] = v′}.

– lab is such thatlab(l, v) = L(l) for each state(l, v) ∈ S.

Given a pathω = (l0, v0)
d0,ν0−−−→ (l1, v1)

d1,ν1−−−→ · · · of T[P], for everyi, we use
ω(i, d), with 0 ≤ d ≤ di, to denote the state(li, vi + d) reached from(li, vi) after
delayingd time units. Such a pair(i, d) is called aposition of ω. We define a total
order on positions: given two positions(i, d), (j, d′) of ω, the position(i, d) precedes
(j, d′) — denoted(i, d) ≺ω (j, d′) — if and only if eitheri < j, or i = j andd < d′.
Furthermore, we define the accumulated durationCtsDur(ω, i, d) along the pathω until
position(i, d) to be the sumd+

∑
0≤k<i dk.

3 Probabilistic timed temporal logic

We now proceed to describe aprobabilistic, timedtemporal logic which can be used to
specify properties of probabilistic timed automata [15].

Definition 4. The formulae ofPTCTL (Probabilistic Timed Computation Tree Logic)
are given by the following grammar:

φ ::= a | φ ∧ φ | ¬φ | P./ζ(φU∼cφ)

wherea ∈ AP is an atomic proposition,./∈ {<,≤,≥, >}, ∼∈ {≤,=,≥}, ζ ∈ [0, 1]
is a probability, andc ∈ N is a natural number.

We use standard abbreviations such astrue , false , φ1 ∨ φ2, φ1 ⇒ φ2, and
P./ζ(F∼cφ) (for P./ζ(true U∼cφ)). Formulae with “always” temporal operatorsG∼c

can also be written; for exampleP≥ζ(G∼cφ) can be expressed byP≤1−ζ(F∼c¬φ)).
The modalitiesU, F andG without subscripts abbreviateU≥0, F≥0 andG≥0, respec-
tively. We refer to PTCTL properties of the formP./ζ(Fa) or ¬P./ζ(Fa) as(untimed)
reachability properties. Whenζ ∈ {0, 1}, these properties are referred to asqualitative
reachability properties.

We define PTCTL[≤,≥] as the sub-logic of PTCTL in which subscripts of the form
= c are not allowed in modalitiesU∼c,F∼c,G∼c. We define PTCTL0/1[≤,≥] and
PTCTL0/1 as the qualitative restrictions in which probability thresholdsζ belong to
{0, 1}. Furthermore PCTL is the sub-logic in which there is no timing subscript∼ c
associated with the modalitiesU,F,G. The size|Φ| of Φ is defined in the standard way
as the number of symbols inΦ, with each occurrence of the same subformula ofΦ as a
single symbol.

We now define the satisfaction relation of PTCTL for discrete and continuous TMDPs.

Definition 5. Given a discrete TMDPT = (S, sinit ,→, lab) and aPTCTL formulaΦ,
we define the satisfaction relation|=T of PTCTL as follows:

s |=T a iff a ∈ lab(s)
s |=T Φ1 ∧ Φ2 iff s |=T Φ1 ands |=T Φ2

s |=T ¬Φ iff s 6|=T Φ

s |=T P./ζ(ϕ) iff ProbA
s {ω ∈ PathA

ful(s) | ω |=T ϕ} ./ ζ, ∀A ∈ Adv
ω |=T Φ1U∼cΦ2 iff ∃i ∈ N s.t.ω(i) |=T φ2, DiscDur(ω, i) ∼ c,

andω(j) |=T φ1, ∀j < i .

Definition 6. Given a continuous TMDPT = (S, sinit ,→, lab) and aPTCTL formula
Φ, we define the satisfaction relation|=T of PTCTL as in Definition 5, except for the
following rule forΦ1U∼cΦ2:

ω |=T Φ1U∼cΦ2 iff ∃ position(i, δ) of ω s.t.ω(i, δ) |=T φ2, CtsDur(ω, i, δ) ∼ c,
andω(j, δ′) |=T φ1, ∀ positions(j, δ′) of ω s.t.(j, δ′) ≺ω (i, δ) .

When clear from the context, we omit theT subscript from|=T. We say that the
TMDP T = (S, sinit ,→, lab) satisfies the PTCTL formula Φ, denoted byT |= Φ,

if and only if sinit |= Φ. Furthermore, the PTAP satisfiesΦ, denoted byP |= Φ,
if and only if T[P] |= Φ. Given an arbitrary structurally non-Zeno PTAP, model
checking PTCTL formulae is in EXPTIME [15] (the algorithm consists of executing
a standard polynomial-time model-checking algorithm for finite-state probabilistic sys-
tems [7, 6] on the exponential-size region graph ofP). Qualitative reachability problems
are EXPTIME-complete for PTA with an arbitrary number of clocks [20].

4 Model Checking One Clock Probabilistic Timed Automata

In this section we consider the case of 1C-PTA. We will see that model checking PCTL

and PTCTL0/1[≤,≥] over 1C-PTA is P-complete (where the lower bound follows from
the fact that qualitative reachability properties are P-hard for MDPs [22]), but remains
EXPTIME-complete for the logic PTCTL0/1. First we have the following result about
the model-checking of PCTL formulae.

Proposition 1. ThePCTL model-checking problem for 1C-PTA is P-complete.

4.1 Model checkingPTCTL0/1[≤, ≥] on 1C-PTA

In this section, inspired by related work on timed concurrent game structures [16], we
first show that model-checking PTCTL0/1[≤,≥] properties of discrete TMDPs can be
done efficiently. Then, in Theorem 1, using ideas from the TMDP case, we show that
model checking PTCTL0/1[≤,≥] on 1C-PTA can also be done in polynomial time.

Proposition 2. Let T = (S, sinit ,→, lab) be a structurally non-Zeno discrete TMDP
andΦ be aPTCTL0/1[≤,≥] formula. Deciding whetherT |= Φ can be done in time
O(|Φ| · |S| · | → |).

Proof (sketch).The model-checking algorithm is based on several procedures to deal
with each modality of PTCTL0/1[≤,≥]. The boolean operators and the PCTL modalities
(without timed subscripts) can be handled in the standard manner, with the PCTL prop-
erties verified on the untimed MDPTu corresponding toT. For formulaeP./ζ(Φ1U∼cΦ2),
we assume that the truth values of subformulaeΦ1 andΦ2 are known for any states
of T. First, given that the TMDP is structurally non-Zeno, we have the equivalences
P≤0(Φ1U∼cΦ2) ≡ ¬EΦ1U∼cΦ2 andP≥1(Φ1U∼cΦ2) ≡ AΦ1U∼c(P≥1(Φ1UΦ2)), where
E (resp.A) stands for the existential (resp. universal) quantification over paths which
exist in the logic TCTL. Thus we can apply the procedure proposed for model checking
TCTL formulae – running in timeO(|S|·| → |) – over weighted graphs [18] (in the case
of P≥1(Φ1U∼cΦ2), by first obtaining the set of states satisfyingP≥1(Φ1UΦ2), which
can be done onTu in timeO(

∑
(s,d,ν)∈→ |support(ν)|)).

The problem of verifying the remaining temporal properties of PTCTL0/1[≤,≥] can
be considered in terms of turn-based 2-player games. Such a game is played over the
spaceS ∪ →, and play proceeds as follows: from a states ∈ S, playerPn chooses
a transition(s, d, ν) ∈→; then, from the transition(s, d, ν), playerPp chooses a state
s′ ∈ support(ν). The duration of the move froms to s′ via (s, d, ν) is d. Notions of

strategy of each player, and winning with respect to (untimed) path formulae of the
formΦ1UΦ2, are defined as usual for 2-player games.

For the four remaining formulae, namelyP./ζ(Φ1U∼cΦ2) for ./ζ ∈ {> 0, < 1},
and∼∈ {≤,≥}, we consider the functionsα, β, γ, δ : S → N, for representing min-
imal and maximal durations of interest. Intuitively, for a states ∈ S, the valueα(s)
(resp.γ(s)) is the minimal (resp. maximal) duration that playerPp can ensure, regard-
less of the counter-strategy ofPn, along a path prefix froms satisfyingΦ1UΦ2 (resp.
Φ1U(P>0(Φ1UΦ2))). Similarly, the valueβ(s) (resp.δ(s)) is the minimal (resp. maxi-
mal) duration that playerPn can ensure, regardless of the counter-strategy ofPp, along
a path prefix froms satisfyingΦ1UΦ2 (resp.Φ1U(¬P<1(Φ1UΦ2))). 1

Using the fact that the TMDP is structurally non-Zeno, for any states ∈ S, we
can obtain the following equivalences:s |= P>0(Φ1U≤cΦ2) if and only if α(s) ≤ c;
s |= P<1(Φ1U≤cΦ2) if and only if β(s) > c; s |= P>0(Φ1U≥cΦ2) if and only if
γ(s) ≥ c; s |= P<1(Φ1U≥cΦ2) if and only if δ(s) < c. The functionsα, β, γ, δ can
be computed on the 2-player game by applying the results of [16] on timed concurrent
game structures: for each temporal operatorP./ζ(Φ1U∼cΦ2), this computation runs in
timeO(|S| · | → |). ut

We use Proposition 2 to obtain an efficient model-checking algorithm for 1C-PTA.

Theorem 1. LetP = (L, l̄,X , inv , prob,L) be a 1C-PTA andΦ be aPTCTL0/1[≤,≥]
formula. Deciding whetherP |= Φ can be done in polynomial time.

Proof (sketch).Our aim is to label every state(l, v) of T[P] with the set of subformulae
of Φ which it satisfies (as|X | = 1, recall thatv is a single real value). For each location
l ∈ L and subformulaΨ of Φ, we construct a setSat[l, Ψ] ⊆ R≥0 of intervals such that
v ∈ Sat[l, Ψ] if and only if (l, v) |= Ψ . We writeSat[l, Ψ] =

⋃
j=1,...,k〈cj ; c′j〉 with

〈∈ {[, (} and〉 ∈ {],)}. We consider intervals which conform to the following rules:
for 1 ≤ j ≤ k, we havecj < c′j andcj , c′j ∈ N ∪ {∞}, and for1 ≤ j < k, we have
c′j < cj+1. We will see that|Sat[l, Ψ]| – i.e. the number of intervals corresponding to a
particular location – is bounded by|Ψ | · 2 · |prob|.

The cases of obtaining the setsSat[l, Ψ] for boolean operators and atomic propo-
sitions are straightforward, and therefore we concentrate on the verification of subfor-
mulaeΨ of the formP./ζ(Φ1U∼cΦ2). Assume that we have already computed the sets
Sat[,] for Φ1 andΦ2. Our aim is to computeSat[l, Ψ] for each locationl ∈ L.

There are several cases depending on the constraint “./ ζ”. The equivalence
P≤0(Φ1U∼cΦ2) ≡ ¬EΦ1U∼cΦ2 can be used to reduce the “≤ 0” case to the appropriate
polynomial-time labeling procedure for¬EΦ1U∼cΦ2 on one clock timed automata [17].
In the “≥ 1” case, the equivalenceP≥1(Φ1U∼cΦ2) ≡ AΦ1U∼c(P≥1(Φ1UΦ2)) relies
on first computing the state set satisfyingP≥1(Φ1UΦ2), which can be handled using a
qualitative PCTL model-checking algorithm, applied to a discrete TMDP built fromP,

1 If there is no strategy for playerPp (resp. playerPn) to guarantee the satisfaction ofΦ1UΦ2

along a path prefix froms, then we letα(s) = ∞ (resp.β(s) = ∞). Similarly, if there is no
strategy for playerPp (resp. playerPn) to guarantee the satisfaction ofΦ1U(P>0(Φ1UΦ2))
(resp.Φ1U(¬P<1(Φ1UΦ2))) along a path prefix froms, then we letγ(s) = −∞ (resp.δ(s) =
−∞).

Sat[l, Φ1] andSat[l, Φ2], in timeO(|P| · |prob| · (|Φ1|+ |Φ2|)), and second verifying the
formulaAΦ1U∼c(P≥1(Φ1UΦ2)) using the aforementioned method for one clock timed
automata.

For the remaining cases, our aim is to construct a (finite) discrete TMDPTr =
(Sr, ,→r, labr), which represents partially the semantic TMDPT[P], for which the
values of the functionsα, β, γ andδ of the proof of Proposition 2 can be computed, and
then use these functions to obtain the required setsSat[, Ψ] (the initial state ofTr is
irrelevant for the model-checking procedure, and is therefore omitted). The TMDPTr

will take a similar form to the region graph MDP of PTA [15], but will be of reduced
size (the size will be independent of the magnitude of the constants used in invariants
and guards): this will ensure a procedure running in time polynomial in|P|.

We now describe the construction ofTr. In the following we assume that the
setsSat[l, Φi] contain only closed intervals and that the guards and invariant of the
PTA contain non-strict comparisons (and possibly intervals of the form[b;∞)). The
general case is omitted for reasons of space. Formally we letB = {0} ∪ Cst(P) ∪⋃

i∈{1,2}
⋃

l∈L Cst(Sat[l, Φi]), whereCst(P) is the set of constants occurring in the
clock constraints ofP, and whereCst(Sat[l, Φi]) is the set of constants occurring as end-
points of the intervals inSat[l, Φi]. Moreover for any right-open interval[b;∞) occur-
ring in someSat[l,], we add the constantb+c+1 in B. We enumerateB asb0, b1, ...bM
with b0 = 0 andbi < bi+1 for i < |B|. Note that|B| is bounded by4 · |Ψ | · |prob|. For
any interval(bi; bi+1) and clock constraintψ ∈ ΨX , we let(bi; bi+1) |= ψ if v |= ψ for
all v ∈ (bi; bi+1).

Considering the discrete TMDP corresponding toT[P] restricted to states(l, bi),
with bi ∈ B, is sufficient to compute the values of functionsα, β, γ and δ in any
state(l, bi). However, this does not allows us to deduce the value for any intermediate
states in(bi; bi+1): indeed some probabilistic edges enabled frombi may be disabled
inside the interval. Therefore, inTr, we have to consider also(l, b+i) and(l, b−i+1) corre-
sponding respectively to the leftmost and rightmost points in(bi; bi+1) (wheni < M).
ThenSr is defined as the pairs(l, bi) with bi ∈ B andbi |= inv(l), and(l, b+i) and
(l, b−i+1) with bi ∈ B, i < M and(bi; bi+1) |= inv(l). Note that the truth value of any
invariant is constant over such intervals(bi; bi+1). Moreover note that allT[P] states
of the form (l, v) with v ∈ (bi; bi+1) satisfy the same boolean combinations ofΦ1

andΦ2, andenable the same probabilistic edges. For any(l, g, p) ∈ prob, we write
b+i |= g (andb−i+1 |= g) when(bi; bi+1) |= g. Similarly, we writeb+i |= inv(l) (and
b−i+1 |= inv(l)) when (bi; bi+1) |= inv(l). We also consider the following ordering
b0 < b+0 < b−1 < b1 < b+1 < · · · < b−M < bM < b+M . We now define the set→r of
transitions ofTr as the smallest set such that((l, λ), d, ν) ∈→r, whereλ ∈ {b−i , bi, b

+
i }

for somebi ∈ B, if there existsλ′ ≥ λ, whereλ′ ∈ {b−j , bj , b
+
j } for somebj ∈ B, and

(l, g, p) ∈ prob such that:

– d = bj − bi, λ′ |= g, andλ′′ |= inv(l) for anyλ ≤ λ′′ ≤ λ′;
– for each(X, l′) ∈ support(p), we have0 |= inv(l′) if X = {x}, andλ′ |= inv(l′)

if X = ∅;
– for each (l′, λ′′) ∈ Sr, we haveν(l′, λ′′) = ν0(l′, λ′′) + νλ(l′, λ′′), where
ν0(l′, λ′′) = p(l′, {x}) if λ′′ = [0, 0] and ν0(l′, λ′′) = 0 otherwise, and
νλ(l′, λ′′) = p(l′, ∅) if λ′′ = λ′ andνλ(l′, λ′′) = 0 otherwise.

Finally, to definelabr, for a state(l, bi), we let aΦj
∈ labr(l, bi) if and only if

bi ∈ Sat[l, Φj], for j ∈ {1, 2}. The states(l, b+i) and(l, b−i+1) are labeled depending on
the truth value of theΦj ’s in the interval(bi; bi+1): if (bi; bi+1) ⊆ Sat[l, Φj], thenaΦj

∈
labr(l, b+i) andaΦj

∈ labr(l, b−i+1). Note that given the “closed intervals” assumption
made onSat[l, Φj], we havelabr(l, b+i) ⊆ labr(l, bi) and labr(l, b−i+1) ⊆ labr(l, bi).
Note that the fact thatP is structurally non-Zeno means thatTr is structurally non-Zeno.
The size ofTr is inO(|P|2 · |Ψ |).

Now we can apply the algorithms defined in the proof of Proposition 2 and ob-
tain the value of the coefficientsα, β, γ or δ for the states ofTr. Our next task is to
define functionsα, β, γ, δ : S → R≥0, whereS is the set of states ofT[P], which
are analogues ofα, β, γ or δ defined onT[P]. Our intuition is that we are now con-
sidering an infinite-state 2-player game, with playersPn andPp, as in the proof of
Proposition 2, over the state space ofT[P]. Consider locationl ∈ L. For b ∈ B, we
haveα(l, b) = α(l, b), β(l, b) = β(l, b), γ(l, b) = γ(l, b) andδ(l, b) = δ(l, b). For
intervals of the form(bi; bi+1), the functionsα andδ will be decreasing (with slope
-1) throughout the interval, because, for all states of the interval, the optimal choice of
playerPn is to delay as much as possible inside any interval. Hence, the valueα(l, v)
for v ∈ (bi; bi+1) is defined entirely byα(l, b−i+1) asα(l, v) = α(l, b−i+1)−bi+1+bi+v.
Similarly, δ(l, v) = δ(l, b−i+1)− bi+1 + bi + v.

Next we consider the values ofβ andγ over intervals(bi; bi+1). In this case, the
functions will be constant over a portion of the interval (possibly an empty portion,
or possibly the entire interval), then decreasing with slope -1. The constant part cor-
responds to those states in which the optimal choice of playerPn is to take a prob-
abilistic edge, whereas the decreasing part corresponds to those states in which it is
optimal for playerPn to delay until the end of the interval. The valueβ(l, v) for
v ∈ (bi; bi+1) is defined both byβ(l, b+i) and β(l, b−i+1) as β(l, v) = β(l, b+i) if
bi < v ≤ bi+1 − (β(l, b+i)− β(l, β−i+1)), and asβ(l, v) = β(l, β−i+1)− (v − β(l, b+i))
otherwise. An analogous definition holds also forγ.

From the functionsα, β, γ and δ defined above, it becomes possible to define
Sat[l, Ψ] by keeping in this set of intervals only the parts satisfying the thresholds
≤ c, > c, ≥ c and< c, respectively, as in the proof of Proposition 2. We can show
that the number of intervals inSat[l, Ψ] is bounded by2 · |Ψ | · |prob|. For the case in
which a functionα, β, γ or δ is decreasing throughout an interval, then an interval in
Sat[l, Φ1] which corresponds to several consecutive intervals inTr can provide at most
one (sub)interval inSat[l, Ψ], because the threshold can cross at most once the function
in at most one interval. For the case in which a functionβ or γ combines a constant
part and a part with slope -1 within an interval, the threshold can cross the function
in several intervals(bi; bi+1) contained in a common interval ofSat[l, Φ1]. However,
such a cut is due to a guardx ≥ k of a given transition, and thus the number of cuts in
bounded by|prob|. Moreover a guardx ≤ k may also add an interval. Thus the number
of new intervals inSat[q, Ψ] is bounded by2 · |prob|.

In addition to these cuts, any interval inSat[l, Φ2] may provide an interval in
Sat[l, Ψ]. This gives the2 · |Ψ | · |prob| bound for the size ofSat[l, Ψ]. ut

Corollary 1. ThePTCTL0/1[≤,≥] model-checking problem for 1C-PTA is P-complete.

4.2 Model checkingPTCTL0/1 on 1C-PTA

We now consider the problem of model-checking PTCTL0/1 properties on 1C-PTA. An
EXPTIME algorithm for this problem exists by the definition of a MDP analogous to
the region graph used in non-probabilistic timed automata verification [15]. We now
show that the problem is also EXPTIME-hard by the following three steps. First we
introducecountdown games, which are a simple class of turn-based 2-player games
with discrete timing, and show that the problem of deciding the winner in a countdown
game is EXPTIME-complete. Secondly, we reduce the countdown game problem to the
PTCTL0/1 problem on TMDPs. Finally, we adapt the reduction to TMDPs to reduce
also the countdown game problem to the PTCTL0/1 problem on 1C-PTA.

A countdown gameC consists of a weighted graph(S, T), whereS is the set ofstates
andT ⊆ S × N \ {0} × S is thetransition relation. If t = (s, d, s′) ∈ T then we say
that theduration of the transitiont is d. A configuration of a countdown game is a
pair (s, c), wheres ∈ S is a state andc ∈ N. A moveof a countdown game from a
configuration(s, c) is performed in the following way: first player 1 chooses a number
d, such that0 < d ≤ c and(s, d, s′) ∈ T, for some states′ ∈ S; then player 2 chooses
a transition(s, d, s′) ∈ T of durationd. The resulting new configuration is(s′, c − d).
There are two types ofterminal configurations, i.e., configurations(s, c) in which no
moves are available. Ifc = 0 then the configuration(s, c) is terminal and is awinning
configuration for player 1. If for all transitions(s, d, s′) ∈ T from the states, we have
thatd > c, then the configuration(s, c) is terminal and it is awinning configuration for
player 2. The algorithmic problem ofdeciding the winnerin countdown games is, given
a weighted graph(S, T) and a configuration(s, c), where all the durations of transitions
in C and the numberc are given in binary, to determine whether player 1 has a winning
strategy from the configuration(s, c). If the state from which the game is started is
clear from the context then we sometimes specify the initial configuration by giving the
numberc alone.

Theorem 2. Deciding the winner in countdown games isEXPTIME-complete.

Proof (sketch).Observe that every configuration of a countdown game played from a
given initial configuration can be written down in polynomial space and every move can
be computed in polynomial time; hence the winner in the game can be determined by a
straightforward alternating PSPACE algorithm. Therefore the problem is in EXPTIME
because APSPACE= EXPTIME.

We now prove EXPTIME-hardness by a reduction from the acceptance of a word by
a linearly-bounded alternating Turing machine. LetM = (Σ,Q, q0, qacc , Q∃, Q∀,∆)
be an alternating Turing machine, whereΣ is a finite alphabet,Q = Q∃ ∪Q∀ is a finite
set of states partitioned into existential statesQ∃ and universal statesQ∀, q0 ∈ Q is an
initial state,qacc ∈ Q is an accepting state, and∆ ⊆ Q × Σ × Q × Σ × {L,R} is a
transition relation. LetB > 2 · |Q × Σ| be an integer constant and letw ∈ Σn be an
input word. W.l.o.g. we can assume thatM uses exactlyn tape cells when started on
the wordw, and hence a configuration ofM is a wordb0b1 · · ·bn−1 ∈ (Σ∪Q×Σ)n.
Let 〈·〉 : (Σ ∪Q×Σ) → {0, 1, . . . , B−1} be an injection. For everya ∈ Σ ∪Q×Σ,
it is convenient to think of〈a〉 as aB-ary digit, and we can encode a configuration
u = b0b1 · · ·bn−1 ∈ (Σ ∪Q×Σ)n of M as the numberN(u) =

∑n−1
i=0 〈bi〉 ·Bi.

Let i ∈ N, 0 ≤ i < n, be a tape cell position, and leta ∈ Σ ∪ Q × Σ. We
define a countdown gameChecki,a, such that for every configurationu = b0 · · ·bn−1

of M , player 1 has a winning strategy from the configuration(si,a
0 , N(u)) of the game

Checki,a if and only if bi = a. The gameChecki,a has statesS = { si,a
0 , . . . , si,a

n },
and for everyk, 0 ≤ k < n, we have a transition(si,a

k , d, si,a
k+1) ∈ T, if:

d =

{
〈a〉 ·Bk if k = i,

〈b〉 ·Bk if k 6= i andb ∈ Σ ∪ S ×Σ.

There are no transitions from the statesi,a
n . Observe that ifbi = a then the winning

strategy for player 1 in gameChecki,a fromN(u) is to choose the transitions(si,a
k ,bk ·

Bk, si,a
k+1), for all k, 0 ≤ k < n. If, however,bi 6= a then there is no way for player 1

to count down fromN(u) to 0 in the gameChecki,a.
Now we define a countdown gameCM , such thatM acceptsw = σ0σ1 . . . σn−1

if and only if player 1 has a winning strategy inCM from configuration(q0, N(u)),
whereu = (q0, σ0)σ1 . . . σn−1 is the initial configuration ofM with input w. The
main part of the countdown gameCM is a gadget that allows the game to simulate
one step ofM . Note that one step of a Turing machine makes only local changes to
the configuration of the machine: if the configuration is of the formu = a0 . . .an−1 =
σ0 . . . σi−1(q, σi)σi+1 . . . σn−1, then performing one step ofM can only change entries
in positionsi − 1, i, or i + 1 of the tape. For every tape positioni, 0 ≤ i < n, for
every tripleτ = (σi−1, (q, σi), σi+1) ∈ Σ × (Q × Σ) × Σ, and for every transition
t = (q, σ, q′, σ′, D) ∈ ∆ of machineM , we now define the numberdi,τ

t , such that if
σi = σ and performing transitiont at positioni of configurationu yields configuration
u′ = b0 . . .bn−1, thenN(u) − di,τ

t = N(u′). For example, assume thati > 0 and
thatD = L; we have thatbk = ak = σk, for all k 6∈ { i − 1, i, i + 1 } andbi+1 =
ai+1 = σi+1. Moreover we have thatbi−1 = (q′, σi−1), andbi = σ′. We definedi,τ

t

as follows:

di,τ
t = (〈bi−1〉 − 〈ai−1〉) ·Bi−1 + (〈bi〉 − 〈ai〉) ·Bi

= (〈(q′, σi−1)〉 − 〈σi−1〉) ·Bi−1 + (〈σ′〉 − 〈(q, σi)〉) ·Bi.

The gadget for simulating one transition ofM from a stateq ∈ Q \ { qacc } has
three layers. In the first layer, from a stateq ∈ Q \ { qacc }, player 1 chooses a pair
(i, τ), wherei, 0 ≤ i < n, is the position of the tape head, andτ = (a,b, c) ∈
Σ × (Q×Σ)×Σ is his guess for the contents of tape cellsi− 1, i, andi+ 1. In this
way the state(q, i, τ) of the gadget is reached, where the duration of this transition is 0.
Intuitively, in the first layer player 1 has to declare that he knows the positioni of the
head in the current configuration as well as the contentsτ = (a,b, c) of the three tape
cells in positionsi−1, i, andi+1. In the second layer, in a state(q, i, τ) player 2 chooses
between four successor states: the state(q, i, τ, ∗) and the three subgamesChecki−1,a,
Checki,b, andChecki+1,c. The four transitions are of duration 0. Intuitively, in the
second layer player 2 verifies that player 1 declared correctly the contents of the three
tape cells in positionsi − 1, i, andi + 1. Finally, in the third layer, ifq ∈ Q∃ (resp.,
q ∈ Q∀), then from a state(q, i, τ, ∗) player 1 (resp., player 2) chooses a transition

t = (q, σ, q′, σ′, D) of machineM , such thatb = (q, σ), reaching the stateq′ ∈ Q of
the gadget, with a transition of durationdi,τ

t .
Note that the gadget described above violates some conventions that we have adopted

for countdown games. Observe that durations of some transitions in the gadget are 0
and the durationdi,τ

t may even be negative, while in the definition of countdown games
we required that durations of all transitions are positive. In order to correct this we
add the numberBn to the durations of all transitions described above. This change
requires a minor modification to the subgamesChecki,a: we add an extra transition
(si,a

n , Bn, si,a
n). We need this extra transition because instead of starting from(q0, N(u))

as the initial configuration of the gameCM , whereu is the initial configuration ofM
running onw, we are going to start from the configuration(q0, B3n + N(u)). In this
way the countdown game can perform a simulation of at leastBn steps ofM ; note that
Bn is an upper bound on the number of all configurations ofM .

W.l.o.g., we can assume that whenever the alternating Turing machineM accepts
an input wordw then it finishes its computation with blanks in all tape cells, its head
in position 0, and in the unique accepting stateqacc ; we write uacc for this unique
accepting configuration of machineM . Moreover, assume that there are no transitions
from qacc in M . In order to complete the definition of the countdown gameGM , we
add a transition of durationN(uacc) from the stateqacc of gameCM . ut

Proposition 3. ThePTCTL0/1 model-checking problem for structurally non-Zeno dis-
crete TMDPs isEXPTIME-complete.

Proof. An EXPTIME algorithm can be obtained by employing the algorithms of [19].
We now prove EXPTIME-hardness of PTCTL0/1 model checking on discrete TMDPs
by a reduction from countdown games. LetC = (S, T) be a countdown game and(s, c)
be its initial configuration. We construct a TMDPTC,(s,c) = (S, sinit ,→, lab) such that
player 1 winsC from (s, c) if and only if TC,(s,c) |= ¬P<1(F=ctrue). LetS = S and
sinit = s. We define→ to be the smallest set satisfying the following: for eachs ∈ S
andd ∈ N>0, if (s, d, s′) ∈ T for somes′ ∈ T, we have(s, d, ν) ∈→, whereν is an
arbitrary distribution overS such thatsupport(ν) = {s′ | (s, d, s′) ∈ T}. The labelling
conditionlab is arbitrary. Then we can show that player 1 wins from the configuration
(s, c) if and only if there exists an adversary ofTC,(s,c) such that a state is reached
from sinit = s after exactlyc time units with probability 1. The latter is equivalent to
sinit |= ¬P<1(F=ctrue). ut

We now show that the proof of Proposition 3 can be adapted to show the EXPTIME-
completeness of the analogous model-checking problem on 1C-PTA.

Theorem 3. ThePTCTL0/1 model-checking problem for 1C-PTA isEXPTIME-complete.

Proof. Recall that there exists an EXPTIME algorithm for model-checking PTCTL0/1

properties on PTA; hence, it suffices to show EXPTIME-hardness for PTCTL0/1 and
1C-PTA. LetC be a countdown game with an initial configuration(s, c). We construct
the 1C-PTAP1C

C,(s,c) = (L, l̄, {x}, inv , prob,L) which simulates the behaviour of the
TMDP TC,(s,c) of the proof of Proposition 3 in the following way. Each states ∈ S of
TC,(s,c) corresponds to two distinct locationsl1s andl2s of P1C

C,(s,c), and we letLi = {lis |

s ∈ S} for i ∈ {1, 2}. Let l̄ = l1s . For every transition(s, d, ν) ∈→ of TC,(s,c), we have
the probabilistic edges(l1s , x = 0, p1), (l2s , x = d, p2) ∈ prob, wherep1({ x }, l2s) = 1,
andp2({ x }, l1s′) = ν(s′) for each locations′. For each states ∈ S, let inv(l1s) =
(x ≤ 0) andinv(l2s) = (x ≤ d). That is, the PTAP1C

C,(s,c) moves from the locationl1s
to l2s instantaneously. Locations inL1 are labelled by the atomic propositiona, whereas
locations inL2 are labelled by∅. Then we can observe thatP1C

C,(s,c) |= ¬P<1(F=ca)
if and only if TC,(s,c) |= ¬P<1(F=ctrue). As the latter problem has been shown to
be EXPTIME-hard in the proof of Proposition 3, we conclude that model checking
PTCTL0/1 on 1C-PTA is also EXPTIME-hard. ut

5 Model Checking Two Clocks Probabilistic Timed Automata

We now show EXPTIME-completeness of the simplest problems that we consider on
2C-PTA.

Theorem 4. Qualitative probabilistic reachability problems for 2C-PTA areEXPTIME-
complete.

Proof. EXPTIME algorithms exist for probabilistic reachability problems on PTA, and
therefore it suffices to show EXPTIME-hardness. We proceed by reduction from count-
down games. LetC be a countdown game with initial configuration(s, c), and let
P1C
C,(s,c) = (L, l̄, {x}, inv , prob,L) be the 1C-PTA constructed in the proof of Theo-

rem 3. We define the 2C-PTAP2C
C,(s,c) = (L ∪ {l?}, l̄, {x, y}, inv ′, prob′,L′) in the

following way. The set of probabilistic edgesprob′ is obtained by adding toprob
the following: for each locationl ∈ L, we extend the set of outgoing probabilistic
edges ofl with (l, y = c, pl?), wherepl?(∅, l?) = 1; to makeprob′ total, we also add
(l?, true , pl?). For eachl ∈ L, let inv ′(l) = inv(l), and letinv ′(l?) = true . Fi-
nally, we letL′(l?) = a, andL(l) = ∅ for all l ∈ L. ThenP2C

C,(s,c) |= ¬P<1(Fa) if

and only ifP1C
C,(s,c) |= ¬P<1(F=ca). The EXPTIME-hardness of the latter problem has

been shown in the proof of Theorem 3, and hence checking qualitative probabilistic
reachability properties such as¬P<1(Fa) on 2C-PTA is EXPTIME-hard. ut

Corollary 2. ThePCTL, PTCTL0/1[≤,≥], PTCTL0/1, PTCTL[≤,≥] andPTCTL model-
checking problems for 2C-PTA areEXPTIME-complete.

References

1. P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and complexity results
for timed automata via channel machines. InProc. of the 32nd Int. Coll. on Aut., Lang. and
Progr. (ICALP’05), volume 3580 ofLNCS, pages 1089–1101. Springer, 2005.

2. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for probabilistic real-time systems.
In Proc. of the 18th Int. Coll. on Aut., Lang. and Progr. (ICALP’91), volume 510 ofLNCS,
pages 115–136. Springer, 1991.

3. R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time.Inf. and Comp.,
104(1):2–34, 1993.

4. R. Alur and D. L. Dill. A theory of timed automata.Theo. Comp. Sci., 126(2):183–235,
1994.

5. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time Markov chains.IEEE Trans. on Soft. Enginee., 29(6):524–541, 2003.

6. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with
fairness.Distributed Computing, 11(3):125–155, 1998.

7. A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic sys-
tems. InProc. of the 15th Conf. on Found. of Software Technol. and Theor. Comp. Sci.
(FSTTCS’95), volume 1026 ofLNCS, pages 499–513. Springer, 1995.

8. E. M. Clarke, O. Grumberg, and D. Peled.Model checking. MIT Press, 1999.
9. C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification.Journal

of the ACM, 42(4):857–907, 1995.
10. L. de Alfaro.Formal verification of probabilistic systems. PhD thesis, Stanford University,

Department of Computer Science, 1997.
11. L. de Alfaro. Temporal logics for the specification of performance and reliability. InProc.

of the 14th An. Symp. on Theor. Aspects of Comp. Sci. (STACS’97), volume 1200 ofLNCS,
pages 165–176. Springer, 1997.

12. H. A. Hansson and B. Jonsson. A logic for reasoning about time and reliability.Formal
Aspects of Computing, 6(5):512–535, 1994.

13. H. E. Jensen. Model checking probabilistic real time systems. InProc. of the 7th Nordic
Work. on Progr. Theory, pages 247–261. Chalmers Institute of Technology, 1996.

14. M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis of proba-
bilistic timed automata using digital clocks.Formal Meth. in Syst. Design, 29:33–78, 2006.

15. M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time
systems with discrete probability distributions.Theo. Comp. Sci., 286:101–150, 2002.

16. F. Laroussinie, N. Markey, and G. Oreiby. Model checking timed ATL for durational con-
current game structures. InProc. of the 4th Int. Conf. on Formal Modelling and Analysis of
Timed Systems (FORMATS’06), volume 4202 ofLNCS, pages 245–259. Springer, 2006.

17. F. Laroussinie, N. Markey, and P. Schnoebelen. Model checking timed automata with one or
two clocks. InProc. of the 15th Int. Conf. on Concurrency Theory (CONCUR’04), volume
3170 ofLNCS, pages 387–401. Springer, 2004.

18. F. Laroussinie, N. Markey, and P. Schnoebelen. Efficient timed model checking for discrete-
time systems.Theo. Comp. Sci., 353(1–3):249–271, 2005.

19. F. Laroussinie and J. Sproston. Model checking durational probabilistic systems. InProc.
of the 8th Int. Conf. on Foundations of Software Science and Computation Structures (FoS-
SaCS’05), volume 3441 ofLNCS, pages 140–154. Springer, 2005.

20. F. Laroussinie and J. Sproston. State explosion in almost-sure probabilistic reachability. To
appear inIPL, 2007.

21. S. Lasota and I. Walukiewicz. Alternating timed automata. InProc. of the 8th Int. Conf. on
Foundations of Software Science and Computation Structures (FoSSaCS’05), volume 3441
of LNCS, pages 299–314. Springer, 2005.

22. C. Papadimitriou and J. Tsitsiklis. The complexity of Markov decision processes.Mathe-
matics of Operations Research, 12(3):441–450, 1987.

23. M. Stoelinga.Alea Jacta est: Verification of probabilistic, real-time and parametric systems.
PhD thesis, Institute for Computing and Information Sciences, University of Nijmegen, 2002.

24. S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Büchi automata emptiness effi-
ciently. Formal Meth. in Syst. Design, 26(3):267–292, 2005.

25. M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In
Proc. of the 16th An. Symp. on Foundations of Computer Science (FOCS’85), pages 327–
338. IEEE Computer Society Press, 1985.

