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Abstract. A spatial logic consists of four groups of operators: stan-
dard propositional connectives; spatial operators; a temporal modality;
calculus-specific operators. The calculus-specific operators talk about the
capabilities of the processes of the calculus, that is, the process construc-
tors through which a process can interact with its environment. We prove
some minimality results for spatial logics. The main results show that in
the logics for π-calculus and asynchronous π-calculus the calculus-specific
operators can be eliminated. The results are presented under both the
strong and the weak interpretations of the temportal modality. Our proof
techniques are applicable to other spatial logics, so to eliminate some of
– if not all – the calculus-specific operators. As an example of this, we
consider the logic for the Ambient calculus, with the strong semantics.

1 Introduction

Over the last 15 years, a lot of research has gone into calculi of mobile pro-
cesses. Among these, the π-calculus is the best known. A number of other calculi
have been put forward to study aspects of mobility not directly covered by the
π-calculus. Examples are: the Asynchronous π-calculus (Aπ), which uses asyn-
chronous communications, that are more common in distributed systems than
the synchronous communications of the π-calculus; the Ambient calculus and all
its variants, which extend the π-calculus with localities and movements of these.

At present, one of the most active research directions in the area of process
mobility is that of spatial logics [2, 3, 5, 6]. These logics are used to reason about,
and express properties of, systems of mobile processes. The logics can describe
both the spatial distribution of the processes and their temporal evolutions. A
spatial logic consists of four groups of operators: standard propositional con-
nectives; spatial operators; a temporal modality; calculus-specific operators. We
briefly comment on them below.

The spatial operators allow us to express properties of the structure of a
process. These operators include tensor, |, and linear implication, .. The former
is used to separate a spatial structure into two parts: thus a process satisfies
formula A1 | A2 if the process can be decomposed into two subsystems satisfying
respectively A1 and A2. Operator . is the adjunct of |: a process satisfies formula
A1 . A2 if, whenever put in parallel with a process satisfying A1, the resulting
system satisfies A2. Other spatial operators are the revelation operator r and
the freshness operator, I; a combination of these operators give us the logical



counterpart of restriction, the construct used in calculi of mobile processes to
create fresh names. Note that as an alternative to I, the standard universal
quantifier on names, which is more powerful than I, can be included in L. This
is not needed for our purposes (except in Section 4 — see below).

The temporal modality, ♦, can be interpreted strongly or weakly: in the
former case the number of reductions a process can perform is visible, in the
latter case it is not. Calculus-specific operators talk about the capabilities of the
processes of the calculus, that is, the process constructs through which a process
can interact with its environment. In the π-calculus, input and output are the
only capabilities. The output capability is the only primitive operator in the
spatial logic for the π-calculus [2], the input capability formula being derivable.

An important property of a formalism is conciseness: the formalism should
have a small set of independent operators. Conciseness helps when developing
the theory of the formalism and when studying its expressiveness. We call a result
that reduces the number of operators – in a logic, or in a calculus – a minimality
result, in the sense that it helps going in the direction of a minimal language. This
terminology should not be misunderstood: we are interested in getting a smaller
language, without necessarily proving that we obtain the smallest possible one.
A minimality result can be useful in tools and implementations. For instance,
the possibility of encoding the operator of sum in the π-calculus [9] justifies its
absence in Picts’ abstract machine [10].

In this paper we prove some minimality results for spatial logics. Our main
results show that, surprisingly, in the logics for π-calculus and Aπ all calculus-
specific operators can be eliminated. These results hold both under the strong
and under the weak semantics for ♦. The resulting common core spatial logic,
L, has the following grammar:

A ::= A1 ∧ A2

∣∣ ¬A ∣∣ 0
∣∣ A1 | A2

∣∣ A1 .A2

∣∣ nrA
∣∣ In.A

∣∣ ♦A .

Note that the operators of this logic give no information about the nature of
computation (whether it is based on synchronisation, what values are exchanged,
etc.). Further, it may be puzzling to see the same logic – same operators, same
interpretation – for π-calculus and Aπ, because their behavioural theories are
rather different. The point is that spatial logics are rather intensional, and do not
agree with the standard behavioural theories. These logics allow us to observe
the internal structure of the processes at a very fine-grained detail, much in the
same way as structural congruence does [11, 7].

We do not claim that the common core logic L is universal, i.e., that it
can be used on many or all calculi of mobile processes. We think that, usually,
some calculus-specific operators are necessary. However we believe that our proof
techniques are applicable to other spatial logics, so to eliminate some of – if not
all – the calculus-specific operators. As an example of this, we consider also the
case of Ambient-like calculi, under the strong semantics. The spatial logics for
Ambients [5, 6] have two calculus-specific operators, called ambient and ambient
adjunct. We can derive some of, but not all, the capability formulas of Ambients
in L. We can derive all of them if we add the ambient adjunct to L: thus the
ambient formula can be eliminated from the logic in [5].



Our results suggest that spatial logics are more expressive than standard
modal logics. The latter do not have the spatial connectives. However, these
logics have more precise temporal connectives, the modalities. The only modality
of the spatial logics talks about the evolution of a system on its own. In standard
modal logics, by contrast, modalities also talk about the potential interactions
between a process and its environment. For instance, in the Hennessy-Milner
logic the modality 〈α〉.A is satisfied by the processes that can perform the action
α and become a process that satisfiesA. The action α can be a reduction, but also
an input or an output. The formulas for the modalities are similar to those for
the capabilities discussed above; in general, in a spatial logic, they are derivable
from the capability formulas. (In the paper we focus on the capability formulas,
since they are more important in a spatial logic.)

For lack of space we do not present all the details of the proofs, and illustrate
them only in the case of the π-calculus (detailed justifications can be found
in [8]). When characterising a capability construct, we exploit operator . to
build a scenario that allows the capability to show its effect. This approach
works rather smoothly under the strong interpretation of ♦, the constructions
becoming more involved under a weak interpretation. In the latter case, we rely
on some non-trivial properties, specific to each calculus we consider, to isolate
some kind of composite constituents of interactions, that we call threads. In π,
threads are sequences of input and output prefixes, while in Ambients they are
sequences of nesting of open prefixes and ambients. The use of operators r and
I is crucial to derive formulas characterising threads.

Paper outline. In Section 2, we introduce our core spatial logic. We then present
our results on the π-calculus (Section 3), and explain how we derive them. We
also mention, in less detail, our results on the asynchronous π-calculus and on
Mobile Ambients in Section 4. Section 5 gives some concluding remarks.

2 A Minimal Spatial Logic

A spatial logic is defined on spatial calculi, that is, calculi of processes that have
the familiar constructs of parallel composition, restriction, and 0. These calculi
are equipped with the usual relations: structural congruence, ≡ (with the usual
axioms for parallel composition, restriction, and 0), the one-step reduction rela-
tion −→, and the multistep reduction relation −→? (the reflexive and transitive
closure of −→). Restriction is a binder, therefore notions of free and bound names
of processes are also defined (for each process, the sets of free and bound names
are finite). fn(P ) stands for the set of free names of P . For two sets S1, S2 of
names, S1 \ S2 stands for the set of names that belong to S1 and not to S2.

We give some properties, definitions, and notations for spatial calculi. We use
P,Q, . . . to range over the processes, and a, b, n,m, . . . to range over the infinite
set N of names. A process P

– has normalised restrictions if, for any occurrence of a subterm (νn) P ′ in P ,
name n occurs free in P ′ (that is, P has no useless restriction);



– has a toplevel normalised restriction if P ≡ (νn) P ′ and n ∈ fn(P ′).
– is non-trivial if it is not structurally congruent to 0;
– is tight if, up to structural congruence, it only has one component; in other

words, it is non-trivial and is not the composition of two non-trivial processes.
For example, in the π-calculus, a(n). b〈n〉 and (νa) (a〈b〉 | a(n). c〈n〉) are
tight, while c〈a〉 | b〈d〉 is not.

As a consequence of the axioms of structural congruence for restriction, n ∈
fn(P ) holds iff P 6≡ (νn) P ′ for all P ′. A (possibly empty) sequence of restric-
tions will be written (νñ) P .

Definition 1 (Core spatial logic L). Formulas of the spatial logic L, ranged
over by A,B, are defined by the following grammar:

A ::= A1 ∧ A1

∣∣ ¬A ∣∣ 0
∣∣ A1 | A2

∣∣ A1 .A2

∣∣ nrA
∣∣ In.A

∣∣ ♦A .

The set of free names of a formula A (written fn(A)) is defined by saying
that the only binding operator is I. We write A(n ↔ m) for the permutation
of names n and m in formula A. Given a spatial calculus C, the temporal con-
struct of the logic can be interpreted both strongly, that is, using the one-step
reduction relation of the calculus, or weakly, that is, using multistep reduction.
We write P |=s

C A for the strong interpretation of A, and P |=w
C A for the weak

interpretation. We use sw as a variable that ranges over {s, w}.

Definition 2 (Satisfaction in the spatial logic). On a spatial calculus C,
satisfaction is defined by induction over the formulas as follows:

– P |=sw
C A1 ∧ A2 if P |=sw

C A1 and P |=sw
C A2;

– P |=sw
C ¬A if it is not the case that P |=sw

C A;
– P |=sw

C 0 if P ≡ 0;
– P |=sw

C A1 | A2 if there are P1, P2 s.t. P ≡ P1 | P2 and Pi|=sw
C Ai for i = 1, 2;

– P |=sw
C A1 .A2 if for all Q s.t. Q |=sw

C A1, P | Q |=sw
C A2;

– P |=sw
C nrA if there is P ′ such that P ≡ (νn)P ′ and P ′ |=sw

C A;
– P |=sw

C In.A if for any n′ ∈ N \ (fn(P ) ∪ fn(A)), P |=sw
C A(n ↔ n′);

– P |=s
C ♦A if there is P ′ such that P −→ P ′ and P ′ |=s

C A (we write this
P −→ P ′ |=s

C A);
– P |=w

C ♦A if there is P ′ such that P −→∗ P ′ and P ′ |=w
C A (we write this

P −→∗ P ′ |=w
C A).

Figure 1 presents some known formulas. ∨ and > are ‘or’ and ‘true’ oper-
ators; � is the ‘always’ operator, the dual of ♦; and I is the dual of . (thus
P |=sw

C A1 I A2 if there is Q such that Q |=sw
C A1 and P | Q |=sw

C A2). The mod-
els of formula 1 are tight terms. 2 is satisfied by the parallel composition of two
processes satisfying 1. Formula Free(a) says that a occurs free. We sometimes
write Free(ã,¬ b̃) to abbreviate∧

Free(a) ∧
∧
¬Free(b) for a ∈ ã and b ∈ b̃,



A1 ∨ A2
def
= ¬(¬A1 ∧ ¬A2) �A def

= ¬♦¬A A1 I A2
def
= ¬(A1 . ¬A2)

> def
= 0 ∨ ¬0 1

def
= ¬0 ∧ ¬ (¬0 | ¬0) 2

def
= (¬0 | ¬0) ∧ ¬(¬0 | ¬0 | ¬0)

Free(a)
def
= ¬ ar> public

def
= ¬Ia. ar(¬ar>) single

def
= 1 ∧ public

Fig. 1. Some spatial formulas

that is, names ã are free, and b̃ are not. The models of public are the processes
that are not structurally congruent to a process of the form (νn) P with n ∈
fn(P ), in other words processes having no toplevel normalised restriction. We call
such terms public processes. Finally, the models of single are those processes
that are tight and do not exhibit a normalised restriction at toplevel. We call
these the single processes. In the π-calculus, they are prefixed terms (Lemma 2).

3 The Logic in the π-calculus

3.1 The Process Calculus

Definition 3. This is the grammar for the processes of the π-calculus:

P ::= 0
∣∣ P1 | P2

∣∣ (νn)P
∣∣ !P

∣∣ α.P, α ::= a(b)
∣∣ a〈b〉 .

Here and in the remainder of the paper, we sometimes call this the synchronous
π-calculus, to distinguish it from the asynchronous π-calculus studied below.

The subject of a prefix m〈a〉.P or m(a).P is m. We omit the trailing 0 in α.0.
The set of free names of a process P is defined by saying that restriction and input
are binding operators. We write P{b:=a} for the capture-avoiding substitution of
name b with name a in P . Figure 2 presents the structural congruence and
reduction relations for the π-calculus.

Definition 4. A thread is a process given by the following grammar:

Thr ::= α.Thr | α.0 (α is as by Definition 3) .

If α̃ is a (possibly empty) sequence of prefixed actions, such as α1.α2. . . . .αn,
and P is a thread α̃.P ′, then P can perform actions α̃ and then become P ′. We
indicate this using the notation P

α̃−→ P ′. We define a dualisation operation
over prefixes by setting a(b) def= a〈b〉 and a〈b〉 def= a(b). This induces a similar
operation P on processes.

Lemma 1 (Properties of π-calculus reductions).

1. Let P,Q be single and s.t. P | Q −→ 0; then there are names a, b s.t. either
P ≡ a〈b〉.0 and Q ≡ a(b).0, or vice versa (Q ≡ a〈b〉.0 and P ≡ a(b).0).

2. For any thread P we have P | P −→∗ 0.

We write |=sw
π for the satisfaction relations in the synchronous π-calculus (we

recall that sw ranges over {s, w}).



P | 0 ≡ P P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

!P ≡ !P | P !(P | Q) ≡ !P | !Q !!P ≡ !P !0 ≡ 0

(νn)0 ≡ 0 (νn)(νm)P ≡ (νm)(νn)P (νn)(P | Q) ≡ P | (νn)Q if n /∈ fn(P )

a(b). P | a〈c〉. Q −→ P{b:=c} | Q

P ≡ P ′ P −→ Q Q ≡ Q′

P ′ −→ Q′
P −→ P ′

P | Q −→ P ′ | Q

P −→ P ′

(νn) P −→ (νn) P ′

Fig. 2. π-calculus: structural congruence and reduction

3.2 Main Results

We show the derivability of the logical formulas for the capabilities of the π-
calculus (the input and output prefixes), as expressed by the following theorems:

Theorem 1 (Capabilities, strong case). For any A, n,m, there exist formu-
las ins(m,n).A (with n 6= m) and outs(m,n).A such that, for any P :

– P |=s
π ins(m,n).A iff there are P ′, n′, n′ 6∈ fn(A). s.t. P ≡ m(n′).P ′ and

P ′ |=s
π A(n ↔ n′);

– P |=s
π outs(m,n).A iff there is P ′ s.t. P ≡ m〈n〉.P ′ and P ′ |=s

π A.

Theorem 2 (Capabilities, weak case). For any A, n,m, there exist formulas
inw(m,n).A (for n 6= m) and outw(m,n).A such that, for any P :

– P |=w
π inw(m,n).A iff there are P ′, P ′′, n′, n′ /∈ fn(A), s.t. P ≡ m(n′).P ′

and P ′ −→∗ P ′′ |=w
πA(n ↔ n′);

– P |=w
π outw(m,n).A iff there are P ′, P ′′ s.t. P ≡ m〈n〉.P ′ and P ′ −→∗

P ′′|=w
π A.

These formulas easily allow us to define, in the strong and weak cases:

– the characteristic formulas for finite terms w.r.t. logical equivalence;
– the modality formulas for the input and output actions. For instance, in the

weak case, the formula for the output modality
〈
a〈b〉

〉
.A is satisfied by any

process that is liable to perform some reduction steps, emit name b along a,
and then perform some other reductions to reach a state where A is satisfied.

We do not present these constructions in detail, because either they are variations
on existing work [7], or they are simple on their own.

3.3 Proofs

We sketch the proofs of Theorems 1 and 2. We consider the strong case first,
since it is (much) simpler. The following formula will be useful: it shows that



in the π-calculus the single processes are precisely the prefixed terms. The crux
of the proof of the theorems, however, especially in the weak case, will be the
definition of formulas to distinguish among different prefixes (whether the prefix
is an input or an output, which channels it uses, what is its continuation, etc.).

Lemma 2. For any P , P |=sw
π single iff P ≡ m(n).P ′ or P ≡ m〈n〉.P ′ for

some m,n, P ′.

The strong case. In the strong case, the key formula is the following one.

test(m,n) def= Free(m,n) ∧ (single I ♦0)

Proposition 1. For any P, n, m such that n 6= m, P |=s
π test(m,n) iff P ≡ m〈n〉

or P ≡ n〈m〉.

Proof. We focus on the direct implication, the reverse direction being trivial.
By Lemma 1, P is either of the form a〈b〉.0 or a(x).0. Having two distinct free
names, P must be an output particle.

We can now define, using test(m,n), the formulas of Theorem 1:

ins(m,n).A def= single ∧ In.
(
test(m,n) I ♦ A

)
outs(m,n).A def= single ∧ Im′.

(
ins(m,a). test(m′, a) . ♦(test(m′, n) | A)

)
The formula for ins(m,n) requires a process to be single, and moreover

the prefix should disappear in one step when in parallel with a certain tester
test(m,n). The formula for outs(m,n).A is similar, exploiting the previous for-
mula ins(m,n).A; a test test(m′, a) is required to observe the emitted name;
this name instantiates a and is different from m′ by construction.

The weak case. We first introduce formulas to isolate threads. This is achieved
using a ‘testing scenario’, where the candidate process for being a thread is tested
by putting in parallel a tester process. The latter should consume the tested part
in a reduction sequence along which no more than two single components are
observed. A subtle point is the ability, along the experiment, to distinguish the
tested from the tester; we use the following property of π-calculus reductions:

Lemma 3. Suppose that the following conditions hold: P,Q,R1, R2 are single
processes such that P | Q −→ R1 | R2, and there exist two distinct names n
and m s.t. {m,n} ⊆ fn(P ) \ fn(Q), {m,n} ⊆ fn(R1) \ fn(R2). Then there exists
a prefix α s.t. P ≡ α.R1 and Q ≡ α.R2.



In our case, the tester process will be identified using two distinct names
(n, m below), that do not appear in the tested process, and that act as markers.

tested(m,n) def= single ∧ Free(¬m,¬n)
tester(m,n) def= single ∧ Free(m,n)
dial(m,n,A) def= ♦(tester(m,n) | A) ∧ �

(
tester(m,n) | (tested(m,n) ∨ A)

)
The formula dial (for dialog) is supposed to be satisfied by the composition

of the tester and the tested processes. Intuitively, dial requires that the compu-
tation leads to a state where the tested process ‘has disappeared’, and that at
any moment along the computation either the tested process is still present, or
formula A is satisfied. (This actually does not prevent the tester process from
‘playing the role of the tested’, once the tested has been consumed, but this will
be of no harm for our purposes.)

For m,n,A fixed (m 6= n), we say that (P,Q) is a pair tested/tester for
A, and write this P nA Q, if P |=w

π tested(m,n) ∨ A, Q |=w
π tester(m,n), and

P | Q |=w
π dial(m,n,A). The following technical lemma, whose proof is based on

Lemma 3, describes the execution scenario: as long asA is not satisfied, the tested
process cannot contribute to the ‘tester’ component; that is, it cannot fork into
two components one of which is used for the satisfaction of a ‘tester’ subformula
of dial. We write (P,Q) −→ (P ′, Q′) if either P ≡ a(x).P1, Q ≡ a〈b〉.Q′,
P | Q −→ P ′ | Q′, and P ′ ≡ P1{b/x}, or the symmetric configuration.

Lemma 4. Assume P nA Q for some m,n,A. Then:

1. either (P,Q) −→ (P1, Q1 | Q2) for some P1, Q1, Q2, and P1 | Q1 nA Q2,
2. or P |=w

π A.

In the above scenario, taking A = 0 amounts to say that the tested process
can disappear. We use this fact to define characteristic formulas for the threads.

Lemma 5. Take A = 0 in Lemma 4. For any single P s.t. {m,n} ∩ fn(P ) = ∅,
there is Q s.t. P n0 Q iff P is a thread.

Proof. The proof relies on the fact that the scenario prevents the tested process
from forking into two subcomponents.

We now define the formula that captures threads. We also need two auxiliary
formulas to express existential and universal properties of suffixes of threads.

Thread def= single ∧ Im,n. tester(m,n)I dial(m,n, 0)
〈〈 〉〉.A def= Thread ∧Im,n.

(
Thread ∧ tester(m,n)

)
I dial(m,n,A)

[[ ]].A def= Thread ∧ ¬ 〈〈 〉〉.¬A



Lemma 6. The formulas above have the following interpretation:
– P |=w

π Thread iff P is a thread.

– P |=w
π 〈〈 〉〉.A iff P is a thread such that there are P ′ and some α̃ with P

α̃−→ P ′

and P ′ |=w
π A.

– P |=w
π [[ ]].A iff P is a thread s.t. whenever P

α̃−→ P ′ for some P ′, α̃, P ′ |=w
π A.

Proof. The first property is a direct consequence of Lemma 5. The other two are
proved by induction on the size of the thread process being considered.

A thread ends with α if α is the last prefix in the thread. A thread is located at
m if the subject of all its prefixes is m. We now refine our analysis of threads, by
introducing formulas that isolate located threads that end with a special prefix.

Barb(m) def= single ∧
(
(single ∧ ¬Free(m)) . �2

)
.

EndO(m,n) def= [[ ]].
(
0 ∨ (Barb(m) ∧ Free(n))

)
EndI(m) def= In. [[ ]].

(
0 ∨ (EndO(m,n)I♦0)

)
OutOnly(m,n) def= EndO(m,n) ∧ In′. [[ ]].

(
EndO(m,n′) . �¬EndO(m,n)

)
Formula Barb(m) captures single terms whose initial prefix has subject m.

This is obtained by requiring that such processes cannot interact with single
processes that do not know m. Formula EndO(m,n) is satisfied by located
threads that end with the particle m〈n〉. With a ‘dualisation argument’ we define
EndI(n) in terms of EndO(m,n). Finally, formula OutOnly(m,n) captures the
processes that satisfy EndO(m,n) and that have no input prefix. For this, we
require that such processes are not able to ‘consume’ a thread having at least
one output (cf. the EndO(m,n′) subformula).

Lemma 7. The formulas above have the following interpretation:

– P |=w
π Barb(m) iff P ≡ m(n).P ′ or P ≡ m〈n〉.P ′ for some n and P ′.

– For n 6= m, P |=w
π EndO(m,n) iff P is a thread located at m ending with

m〈n〉 with n not bound in P .
– P |=w

π EndI(m) iff P is a thread located at m and ending with m(x).
– For n 6= m, P |=w

π OutOnly(m,n) iff P is of the form m〈c1〉 . . .m〈cr〉.m〈n〉
for some r ≥ 0 and (ci)1≤i≤r.

The last important step before defining the formula for Theorem 2 is the
definition of some formulas that characterise certain ‘particle’ terms (Lemma 8).
We use the same notation for these processes and the corresponding formulas:

m〈n〉 def= OutOnly(m,n) ∧
(
EndI(m) . �¬EndO(m,n)

)



m(n) def= Thread ∧ In.
(
m〈n〉 . ♦0

)
m(n). p〈q〉 def= Thread ∧ In.

(
m〈n〉 . ♦p〈q〉

)
m〈n〉. p〈q〉 def= Thread ∧

(
m(n) . ♦p〈q〉

)
The definition of formula m〈n〉 imposes that a process satisfying formula

OutOnly(m,n) has only one prefix: if this is not the case, then there exists a
‘EndI(m) process’ that can be consumed, leading to a EndO(m,n) term.

Lemma 8. Let A be one of the formulas above, where m,n, p, q are distinct
names, and QA be the corresponding term. Then for any P , P |=w

π A iff P ≡ QA.

outw(m,n).A def= Ip, q.
(

m(n). p〈q〉 . ♦(p〈q〉 | A)
)

inw(m,n).A def= In, p, q.
(

m〈n〉. p〈q〉 . ♦(p〈q〉 | A)
)

In both cases a flag process p〈q〉 is used to detect when the ‘revealing’ reduc-
tion step has occurred, since in the weak semantics the number of reductions is
not observable.

4 The Logic in Other Calculi

The constructions we have shown above can be adapted to obtain similar results
for two calculi that are quite different from the (synchronous) π-calculus: the
asynchronous π-calculus and Mobile Ambients.

When moving to a different language, we cannot directly apply the formulas
and the proofs examined on the π-calculus. The main reason is that the syntax
changes, which affects our constructions, for instance when a formula A1 . A2

is used (operator . talks about contexts of the calculus). Indeed, there are for
example processes that cannot be distinguished in the logic (i.e., they satisfy the
same sets of formulas of L) when they are taken as processes of Aπ, but that
can be distinguished when they are taken as processes of the π-calculus. This is
the case for instance for processes a(x). (a〈x〉 | a(x).P ) and a(x).P .

In this section, we present our results on Aπ and on Mobile Ambients. For lack
of space, we only briefly hint on some aspects of the derivation of the formulas.
Detailed constructions and proofs are available in [8].

4.1 Results in the Asychronous π-calculus

In Aπ there is no continuation underneath the output prefix:

P ::= 0
∣∣ P1 | P2

∣∣ (νn) P
∣∣ !P

∣∣ n(m).P
∣∣ n〈m〉 .

We omit the resulting modifications to the operational semantics. We write |=sw
Aπ

for the satisfaction relations in Aπ. Below are the main results for Aπ, showing
the derivability of the capability formulas for the strong and the weak semantics.



Theorem 3 (Capabilities, strong case). For any A, n,m, there exist formu-
las ins(m,n).A (with the additional requirement n 6= m) and outs(m,n) such
that, for any P :

– P |=s
Aπ ins(m,n).A iff there are P ′, n′, n′ 6∈ fn(A). s.t. P ≡ m(n′).P ′ and

P ′ |=s
Aπ A(n ↔ n′);

– P |=s
Aπ outs(m,n) iff P ≡ m〈n〉.

Theorem 4 (Capabilities, weak case). For any A, n,m, there exist formulas
inw(m,n).A (for n 6= m) and out(m,n) such that, for any P :

– P |=w
Aπ inw(m,n).A iff there are P ′, P ′′, n′, n′ /∈ fn(A) s.t. P ≡ m(x).P ′

and P | m〈n′〉 −→∗ P ′′ |=w
Aπ A(n ↔ n′);

– P |=w
Aπ outw(m,n) iff P ≡ m〈n〉.

As a consequence of Theorem 3, the output capability can be removed from
the logic in [2]. To derive the capability formulas in Aπ, we proceed in a way that
is quite similar to what we did in the π-calculus. It turns out that asynchrony
actually simplifies our proofs: certain constructions become simpler, and certain
results sharper. For instance, formula Thread from Section 3 directly captures
output particles (intuitively because output particles cannot play the role of the
tester in the scenario explained above).

4.2 Results in Mobile Ambients

The calculus of Mobile Ambients [4] is a model where the basic computational
mechanism is movement, rather than communication as in π. The calculus of [4]
also includes communications, which for simplicity we have omitted here.

Definition 5. The grammar of Mobile Ambients is the following:

P ::= 0
∣∣ P1 | P2

∣∣ (νn)P
∣∣ !P

∣∣ n[P ]
∣∣ α.P , α ::= openn

∣∣ inn
∣∣ outn .

The structural congruence rules for mobile ambients are the same as in π,
plus the following rule to allow restrictions to cross ambient boundaries:

n[(νm) P ] ≡ (νm) n[P ] if n 6= m . (1)

Instead of π’s communication rule, we have the following rules for ambients:

openn.P | n[Q] −→ P | Q

m[inn.P | Q] | n[R] −→ n[m[P | Q] | R]
n[m[outn.P | Q] | R] −→ n[R] | m[P | Q]

We write |=s
MA for strong satisfaction in MA. We only have a partial charac-

terisation for the capability formulas for Ambients:

Theorem 5 (Capabilities, strong case). For any A, n, there exist formulas
ambs(n,A) and opens(n).A such that, for any P :

– P |=s
MA ambs(n,A) iff there is P ′ public s.t. P ≡ n[P ′] with P ′ |=s

MAA;
– P |=s

MA opens(n).A iff there is P ′ s.t. P ≡ openn.P ′ with P ′ |=s
MAA.



The limitation about P ′ being public when deriving the ambient capability
is related to the ability for restrictions to cross ambients in the structural rule
(1) above. We believe that, on the other hand, the capability formulas for in and
out are not derivable in L. Theorem 5 allows us to obtain characteristic formulas
for the finite processes of the dialect of Ambients studied in [1], which does not
have the in and out capabilities.

We can derive the missing capability formulas for inn and outn, and remove
the constraints on the ambient capability formula from Theorem 5, in a variant
of L enriched with the operator of ambient adjunct, @, whose satisfaction rule
is:

P |=sw
MAA@n if n[P ] |=sw

MAA.

The logics for ambients in the literature [5, 6] include both an ambient conc-
sutruct and an ambient adjunct as primitive operators. As a consequence of
this result, the former operator can be removed, at least in the strong case.
(In the weak case, Theorem 5 remains valid, but we do not know whether the
construction that eliminates the ambient formula can be adapted).

It is worth pointing out that in L (that is, without the ambient adjunct) we
can derive the formulas for the modalities corresponding to the capability formu-
las of Theorem 5, without constraints on processes being public. For instance, the
‘ambient modality’ is a formula

〈
ambs(n)

〉
.A such that P |=s

MA

〈
ambs(n)

〉
.A

if P ≡ (νm̃) (n[P ] | Q) with n /∈ m̃ and (νm̃) (P | Q) |=s
MAA (the weak

modality is similar).
For lack of space we do not present the formal statement and the proofs of

these results (see [8]).

5 Conclusion

We have showed that with a minimal spatial logic, L, that has no calculus-
specific operators, we can derive the formulas for capabilities and modalities in
the π-calculus, both for the strong and for the weak semantics. Remarkably, the
logic L does not tell anything about the features of the underlying calculus, other
than saying that processes can be put in parallel and names can be restricted.
To test the robustness of our techniques we have also considered the calculi Aπ
and Ambients. As Ambients show, sometimes not all the capability and modality
operators are derivable from L: the addition of some calculus-specific constructs
may be needed for this. Still, our constructions may allow us to reduce the
number of such operators in the grammar of the logic.

The derivability of capability formulas is also useful for the definition of
characteristic formulas w.r.t. logical equivalence, along the lines of [7]. We have
not considered communication in Mobile Ambients, but reasoning as in [11]
would allow us to handle this extension. Similarly, the π-calculus syntax (in the
synchronous case) sometimes includes an operator of choice; we believe that we
could adapt our constructions to this extension.



We do not know whether our results can be useful in tools (for model check-
ing, for instance); perhaps our constructions are too complex for this at present.
However, since they allow us to reduce the number of operators, our results
should be important in the study of metatheoretical properties of the logics.

Our work shows that a logic with spatial constructions and the parallel com-
position adjunct (.) can express modalities. Conversely, it would be interesting
to see whether the adjunct is derivable when the capability or/and the modality
formulas are primitive in the logic.
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