Self-Stabilizing Scheduling Algorithm for Cooperating Robots

Joyce El Haddad

Lamsade, Université Paris Dauphine
75775 Paris Cedex 16, France
elhaddad @lamsade.dauphine.fr

Abstract

We address the problem of autonomous robots which alter-
nate between execution of individual tasks and peer-to-peer
communication. Each robot keeps in its permanent memory
a set of locations where it can meet some of the other robots.
The proposed self-stabilizing algorithm solves the manage-
ment of visits to these locations ensuring that after the sta-
bilizing phase, every visit to a location will lead to a com-
munication. We model the untimed behaviour of a robot by
a Petri net and the timed behaviour by an (infinite) Discrete
Time Markov Chain. Theoretical results in this area are then
combined in order to establish the proof of the algorithm.

Keywords
Self-stabilizing systems, randomized distributed algorithms,
autonomous robots, Petri net theory, Markov Chain.

INTRODUCTION

In the field of multi-robot cooperation, it is useful to make a
distinction between two main issues : the first issue involves
the achievement of some global tasks, the second issue in-
volves the simultaneous operations of several autonomous
robots, each one seeking to achieve its own task. Our contri-
bution is focused on the first issue. More precisely, we study
cooperation between robots that requires communication be-
tween them in order to perform global applications. For in-
stance, it would be much better to deploy several robots for
the maintenance of nuclear reactors where one robot leads
a way to locate the fault component and another follows to
replace it with a new one. In such an environment, there are
two kinds of protocols to design : a synchronization protocol
between neighboring robots in order to establish (temporary)
point to point communications and a routing protocol in or-
der to exchange packets between two robots (and in particu-
lar distant ones). In this work, we will focus on the synchro-
nization problem between robots as a base for routing.

The robot we consider are homogeneous (they all follow
the same set of rules), autonomous and anonymous (they
are a priori indistinguishable). Each robot is constraint to
move in a limited area and to visit its locations in such a
way that every location is infinitely often visited. The obvi-
ous requirement is that a robot cannot leave a location with-
out establishing a communication with the other robot asso-
ciated with this location. When two or more autonomous

Serge Haddad

Lamsade, Université Paris Dauphine
75775 Paris Cedex 16, France
haddad @lamsade.dauphine.fr

robots must interact, communication between them is essen-
tial. However, in our system communication take place indi-
rectly without help of a global communication mean. There-
fore, each robot communicates via the other robots, also par-
ticipating to the network, to transmit its collected data or
to exchange messages. Thus, communications have limited
life-time : time needed to forward the packets from one robot
to the other. In such environnement, many communication
protocols [5, 7, 8] have been designed but they suppose re-
liable robots.

Although there has been significant work related to co-
operating robots, very few researchers have expanded their
approaches to incorporate fault tolerance. Our research focus
is to introduce self-stabilization as an efficient property that
makes the system tolerant to faults and takes into account the
limited resources of the robots in term of processor, memory
and energy. Roughly speaking, a self-stabilizing protocol is
designed to recover from an unsafe state caused by a fault to
a safe state by itself. The study of self-stabilization started
with the fundamental paper of Dijkstra [2]. Following the pi-
oneering work of Dijkstra a great amount of works has been
done in this area [3, 10]. However, with the presence of mo-
bility and dynamic changes, these traditional communication
protocols meant for self-stabilizing networks are no more ap-
propriate.

This paper describes the design of a uniform self-stabilizing
scheduling protocol upon which a self-stabilizing communi-
cation protocol could be derived using standard self-stabilizing
algorithms. This protocol solves the management of visits to
the locations ensuring that after the stabilizing phase, every
visit to a location will lead to a communication.

The rest of the paper is organized as follows. In sec-
tion 2, we briefly describe the original algorithm and we
model it with a Petri net giving a new proof of its correct-
ness and showing how it can be generalized. In section 3, we
give a detailed description of its transformation into a self-
stabilizing protocol. Its correctness is proved in section 4.
We conclude in section 5.

A NON SELF-STABILIZING SCHEDULING PROTOCOL
The current work is based on Bracka et al. [1] scheduling
protocol for a robotic network. Let us first describe the hy-
potheses :

e There is a set of anonymous robots (i.e., identities are
not used in the protocol). We will denote it by:

{7"1,...,7“7n}.

e There is a set of locations, each one with a unique nu-
meric identifier. We will denote this set: {l1,...,In}
in increasing order. A pair of robots is associated to
each location that can go to this location and establish
a temporary communication if they are both present.

e Any robot r; has in its permanent memory an array
of the locations where it can go. This array is sorted
in increasing order of the identifiers. n; will denote
its size and f(i,j) for 1 < i < mand 0 < j <
n; — 1, will denote the identifier of the j th 1ocation of
the robot ;.

e Between any pair of robots r; and r;/, there is a se-
quence of robots r; = 74,,74,,...,Ti, = Ty such
that for all 0 < k < K, 1y, and ry, , share a loca-
tion. This hypothesis ensures that there is a (potential)
global connectivity between robots.

The goal of the algorithm is to schedule the visit of the
locations for each robot in such a way that every location
is infinitely often visited. The obvious requirement is that
a robot cannot leave a location without establishing a com-
munication with the other robot associated with this location
(we will call its partner, a peer). The proposed scheduling
is for each robot to infinitely visit its locations following the
order of its array.

In [1], the authors develop a specific (and rather lengthy)
proof that no (partial or global) deadlock can occur. With the
help of Petri net theory, we give a short and simple proof of
the algorithm. In fact, this new proof will be the basis of the
self-stabilizing version of this protocol. We assume a basic
knowledge of Petri nets syntax and semantics; otherwise, a
good introduction to this topic can be found in [9].

We model the behaviour of each robot by a local Petri
net. Then the whole protocol is modelized by the union
of these nets where transitions with the same identity are
merged.Figure 1 represents the local Petri net associated with
the robot r;. We denoteitby N; = (P;, T;, Pre;, Post;, M0,)
where :

[] PZ = {p(i,())7 e 7p(i,j)) . 7p(i,ni71)} iS the set Of
places. When p; ;) is marked, r; is going to its jth
location, or waiting there for the other robot.

[) TZ = {tf(@o), ceey tf(l,])? ceey tf(lﬂhfl)} iS the set Of
transitions. When ¢ £(i,7) is fired, the communication
has happened at the j** location and the robot goes to
its next location.

P .
Plinn Q @1

£(i,1)

(1,2)

I - O tf(l,Z)
D

P(1,3)

Figure 1: The cycle of visits for robot r;

e Pre; is the precondition matrix, Pre; : P, x T; —
{0, 1} defined, according to the behaviour, i.e.,

L if p=pg) andt =ty ;)
for some j
0 otherwise

Pre;(p,t) =

e Post; is the postcondition matrix, Post; : P; x T; —
{0, 1} defined, according to the behaviour, i.e.,

L if P = P(i,(j+1) modulo n;) and
t =1t forsomej
0 otherwise

Post;(p,t) =

e MO, is the initial marking defined, according to the
behaviour, i.e.,

1 g=0
MOi(pg.j) = { 0 otherwise

Then the scheduling protocol is modelled by the global Petri
net N = (P, T, Pre, Post, M0) where:

e P =4 P,, is the disjoint union of places of local Petri
nets.

e T = |JT;, is the (non disjoint) union of transitions of
local Petri nets.

e Pre, Post are the Precondition and Postcondition ma-
trices, defined from P x T over {0, 1}, by:

Pre;(p,t) if pe P, and t€T;
Pre(p,t) = for somei

0 otherwise

Post;(p,t) if pe P, and t € T;
Post(p,t) = for somei

0 otherwise

o MO the initial matrix is defined by M0(p) = MO,(p)
ifpe P,

Figure 2: A global Petri net model for an instance of the pro-
tocol

For instance, consider a system consisting of five robots
with seven locations. The following table represents the ar-
ray of locations for each robot.

Robots Ty | T2 | T3 | T4 | TS

1 2 1 3 4

Locations | 3 4 2 5 6
5 6
7 7

Then the corresponding global Petri net of the above system
is shown in Figure 2.

By construction, the global net N belongs to a particu-
lar subclass of Petri nets called event graphs defined by the
restriction that each place has exactly one input transition
and one output transition. In Petri nets, the absence of (par-
tial) deadlock is called liveness and its definition states that
whatever a reachable marking and a transition, there is a fir-
ing sequence starting from this marking and ended by this
transition. In other words, whatever the state of the net, ev-
ery transition is potentially fireable in the future of this state.
Many behavioural properties of nets are structurally charac-
terized in the case of the event graphs. However the follow-
ing lemma will be sufficient for our purposes. We recall the
proof since the associated constructions will be used in the
proof of self-stabilization.

Lemma 1 Let N be an event graph such that every cycle has
an initially marked place, then N is live.

Proof : Given a cycle in an event graph, the only transitions
that produce or consume tokens of the places of the cycle are
the transitions of the cycle. Thus, the number of tokens of
every cycle remains constant.

Let us suppose that every cycle is initially marked. The pre-
vious remark shows that in every reachable marking, every
cycle is marked.

Now we fix a reachable marking M and we define a binary
relation helps; between transitions. ¢ helpsyy t' if and only
if there exists a place p with M (p) = 0 which is an output
of t and a input of ¢’. Let us denote precedes; the transitive
closure of helpsy;.

We claim that precedes; is a partial order. Let us suppose
that this is not the case. Then we have two transitions ¢ and
t’ such that ¢ precedesy; t' and t' precedesy; t. From the
definition of precedes;, it means that there is a path from ¢
to t' and a path from ¢’ to ¢ where every place is unmarked
for M. Concatenating them, we obtain an unmarked cycle,
which is impossible. Every partial order on a finite set can be
extended in at least one total order. Let ¢y, ..., %, the ordered
list of the transitions (by this order).

We claim that ¢; - ... - t, is a firing sequence starting from
M. Indeed, t; is fireable since all its input places are marked
(for M). Now by induction, let us suppose thatt; - ... - ¢; is
a firing sequence for M leading to M. Then all input places
of ;11 are marked for M’ since such a place was already
marked for M, or has been marked by the firing of some
t; with j < 4 (recall that in event graphs, a transition does
not share its input places). So the firing sequence can be
extended to ¢;4;. Thus the net is live. O

Now we can easily establish the correctness of the protocol.

Proposition 2 Let N be a net modelling the protocol for
some network of robots.Then N is live.

Proof : Consider a cycle of N and let ¢;, be the transition
with smallest identifier occurring in this cycle. Let p(; ;) be
the input place of ¢, inside the cycle, and let {5+ be the input
transition of p(; ;) inside the cycle. By construction of N,
k= f(i,j) and ¥ = f(i,(j — 1) modn;). The choice of
tr, implies that & < &/, but f is increasing w.r.t. its second
argument. Thus the only possibility for j is 0. As p(; o)
is initially marked, we have proved that every cycle has an
initially marked place and we conclude with the help of the
previous lemma. (|

This result can be straightforwardly generalized to the
case of n-ary rendez-vous between robots. However, the net-
works we study are useful due to their flexibility. Introducing
n-ary rendez-vous with n > 2 decreases such flexibility. So
for sake of simplicity, we will restrict ourselves to the initial
case of binary synchronization.

A SELF-STABILIZING SCHEDULING PROTOCOL

In this section, we present a randomized self-stabilizing schedul-

ing protocol adapted from the previous algorithm. At first,
we make some additional assumptions.

e Each robot has a timer that wakes up the robot on ex-
piration. In the rest of the paper, we suppose that the

timers are exact. In section 5, we will discuss about
this hypothesis. For the robot r;, this timer is denoted
timeout;. The range of the timer is the real interval
[0...N+1].

e A travel between two locations takes at most 1 tu (time
unit). This hypothesis can always be fulfilled by an
appropriate choice of the time unit.

e Each robot has a sensor giving it its current position.
For the robot 7;, this sensor is denoted position;. This
sensor takes its value in the set {0, . . ., n;— 1 }Unowhere,
indicating either the local index of the location where
r; 1S waiting, or in the case of nowhere, indicating
that r; is between two locations.

e MP;[0...n;—1] denotes the array of locations sorted
by increasing order, present in a permanent memory of
the robot.

The behaviour of the robot is event-driven: the occur-
rence of an event triggers the execution of a code depending
also on its current state. In our case, there are two events: the
timer expiration and the detection of another robot. We de-
note such an event a peer detection with the obvious meaning
that the two robots are both present at some location. We do
not consider that the arrival to a location is an event; instead
when a robot reaches a location, it just stops. As a robot re-
fills its timer to 1 tu before going to a new location, the timer
will expire after the end of the trip, and then the robot will
execute the actions corresponding to the arrival. The cru-
cial point here is that, with this mechanism, the duration of a
trip between two locations becomes exactly 1 tu. A variable
status;, that takes as value either moving or waiting, has
a special role on the behaviour of the robot w.r.t. the events
handling. When this variable is set to moving, the robot can
neither detect another robot, nor can it be detected by another
one. Looking at the program of figure 3, it means that even
if a robot arrives at a destination where its peer is already
waiting, the communication between them will happen only
after the timer of the arriving robot expires.

As shown in the program, a robot has four actions: SY NC,
WAIT, RECOVER and MISS. SYNC and WAIT
correspond to the actions of the original algorithm. In or-
der to recognize that a timer expiration corresponds to an ar-
rival, we use the variable status;. It is set to moving when
the robot goes to a new location, and set to waiting when
the timer of a robot arriving at a location expires. However,
W AIT is different from the corresponding action of the pre-
vious algorithm as the robot sets its timer to /N +1 (recall that
N is the number of the locations). When the timer of a robot
arriving at a location expires and a peer is already waiting
then it will firstly execute its W AIT action, and as its status
is becoming waiting both will execute their SY NC action.

When recovering from a crash, the timer of a robot trig-
gers an action. The action RECOV ER is executed by a

Constant
N,ng;
MPL[O oy — 1],
Timer
timeout; € [0...N +1];
Sensor
position; € {0,...,n; — 1} U {nowhere};
Variables
status; € {waiting, moving};
choice; € {0,1};

ON PEER DETECTION // SYNC
/l on r; arrival or on peer arrival while the other is already waiting
/I Necessarily status; is waiting

Exchange messages;

Refill(timeout;,1);

status; = moving;

Go to M P;[(position; + 1) modulo n;);

ON TIMER EXPIRATION
If (position;! = nowhere) And (status; == moving) Then
I WAIT
// r; arrives at the location
Refill(timeout;, N + 1);
status; = waiting;
Endif

If (position; == nowhere) Then
/I RECOVER
/I recovery from a crash while the robot were between
// two locations
Refill(timeout;,1);
status; = moving;
Go to M F;[0];
Endif

If (position;! = nowhere) And (status; == waiting) Then
I MISS
/I expiration of the timer while r; is waiting for a peer
Uniform-Choice(choice;);
Case (choice;)
0 : Refill(timeout;,1);
1 : Refill(timeout;,1);
status; = moving;
Go to M P;[0];
Endcase
Endif

Figure 3: Protocol for robot ;

robot at most once in our protocol (depending on the initial
state), and necessarily as the first action of the robot. It hap-
pens if the robot is between two locations after the crash.
Then the robot goes to its first location.

The key action for the stabilization is M IS S. It happens
either initially, or when the robot is waiting for a peer at a
location and its timer has expired. Then the robot makes a
(uniform) random choice between two behaviours :

e it waits again for 1 tu;
e it goes to its first location.

When it is called, the random function Uniform-Choice sets
its single parameter to a value among {0, 1}.

An execution of this algorithm can be seen as an infi-
nite timed sequence {t,, A, }, .\, where {t,,} is a strictly
increasing sequence of times going to infinity and each A,
is the non-empty set of actions that have been triggered at
time ¢, (at most two actions per robot in the case when it
executes W AIT and immediately after SY NC). With this
formalization, we can state what is a stabilizing execution.

Definition 3 An execution {t,, An}, (N of the protocol is
stabilizing if the number of occurrences of RECOV ER and
MISS is finite.

In other words, after a finite time, the protocol behaves like
the original algorithm. Let us remind that RECOV ER can
occur at most once per robot. The next section will be de-
voted to show the following proposition.

Proposition 4 Given any initial state, the probability that an
execution will stabilize is 1.

PROOF OF STABILIZATION

Without loss of generality, we consider that the initial state
is a state obtained after each robot has executed at least one
action. Thus we do not have to take into account the action
RECOV ER. With this hypothesis and for a better under-
standing of the protocol, a state graph of a robot is presented
in figure 4.

Probabilistic Semantics of the Protocol

‘We assume that the code execution is instantaneous: indeed,
it is neglictible w.r.t. the travels of the robots. Thus in our
protocol, the single source of indeterminism is the random
choice of the M 1SS action since all trips take exactly 1 tu.
Consequently, the probabilistic semantics of our protocol is
a Markov chain whose description is given below.

A state of this Markov chain is composed by the speci-
fication of a state for each robot. The state of a robot r; is
defined by its vector < s;, ;,to;, oy >, where :

e s;: the robot’s status that takes value in the set {waiting,
moving} depending on whether the robot is waiting at
a location or moving to it,

waiting
SYNC : ? Peer-detected —> exchange
messages;

on —> ~“Random
ice

timeoutI =1;

timeoutI =1;

Go to the next
meeting point;

WAIT : ? Expiration %timeout‘ = N+1;

")

t‘\meout.‘ =1;
Go to first meeting point;

Notation : ? Condition —> Actions

Figure 4: A state graph for r;

e [; : the location where the robot is waiting or moving
to,

e to; is given by the formula [timeout; — 1] where [z]
denotes the least integer greater than, or or equal to x.
to; takes its value in {0,..., N},

e «; is given by the formula o; = timeout; — to;. It
takes its value in]0...1]. We will call it the residual
value.

The last attributes deserve some attention. As we con-
sider states after the execution of the actions, the variables
timeout; are never null: this explains the range of these at-
tributes. Moreover, these attributes are simply a decomposi-
tion of timeout;. However the interest of this decomposition
will become clear in the next paragraph. So, a state e will be
defined by: e = [~ < 8,13, t0;, 0 >.

Let us note that the set of states is infinite and even un-
countable since the «;’s take their values in an interval of R.
However, we show that we can lump this chain into a finite
Markov chain with the help of an equivalence relation that
fulfills the conditions of strong lumpability [6].

s 1_ 1™ 171 41 1
D2eﬁn1t10n 5 Two states e' = [[;", < s;,l;,to;,of > and

e? =TI%, < s2,12,to?,a? > are equivalent if :

177

1. Vi st = 2,1} =12, to} = to?

197 79

2. Vi, j, of <a} <= ai <ai

An equivalence class (denoted by c) of this relation is
characterized by: ¢ = [[I~, < s;,l;,to; > X position,
where position represents the relative positions of the a;’s.
It is easy to show that there are at most m/! - 2~ ! distinct
positions. Thus, the number of equivalence classes is finite.

The next proposition establishes the conditions of strong lumpa-

bility.

Proposition 6 Ler ¢ and ¢ two equivalence classes,let el
and €2 be two states of the class c, then :

Z Plet,e] = Z Ple?, €]

ecc’ ecc’

where P denotes the transition matrix of the Markov chain.

Proof : Consider any two equivalent states e! = [, <
Siyliytoj,af > and €2 = [, < s;,lito;,af >. Let

I be the subset of indices ¢ such that v} is minimal among
the residual values; we denote this value ol . . Let J be
the subset of indices j such that 04? is minimal among the
residual values a; we denote this value a?,;,,. Since e' and
e? are equivalent, I = J,andV k, . ;, < o} and a2,;, <
2. We denote t0,,;n, = Min(to; |i € I). Let us now elapse
al .. tufrome® tolead to f! and a2 ;, tu from €? to lead
f2. f! and f? are just intermediate states since no action has
happened (see above the formalization of an execution). We

now study two cases :

1. tomin > 0. The state of r; for ¢ € I becomes <
si,li,to; — 1,1 > in both f! and f2. The state of
another robot remains unchanged, except for its resid-
ual value that has decreased by ol . tuin f!, and by
a? . tuin f2. Thus, the new relative positions of the

residual values are identical in f! and in f2. There-

fore, the intermediate states f! and f? are equivalent.

So, we apply again the same operation until the second

situation will happen (and it will happen since, during

each iteration, at least one to; is decreased and none is
increased).

2. tomin = 0. Let us denote I’ = {i € I|to, = 0}.
Then the set of robots r; for ¢ € I’ is exactly the
set of robots for which their timer expire in both f!
and f2. Thus, their states are identical in f! and f2.
They will execute either the W AIT, or the MISS
action. The set of these new states reached from f!
(resp., f?) is obtained as the randomized effect of the
MISS actions. If k robots execute their M 1SS ac-
tion, there will be 2% such states associated with f1
(resp., f?) each one with the probability 1/2%. We
call g* and g2 such new intermediate states where the
Uniform-choice has given the same result in g* and
gQ. Then, some 7;’s for ¢ € I’ after the W AIT action
may execute a SY NC action with some peer. This
peer is in the same state in ¢g' and g2, except possi-
bly for the value of its timer. But the condition for the
SY NC action is independent of the value timer. So,
the SY NC' actions will happen, both in g' and g2,
leading to the new states k' and h? that are each one
of the 2% successors of e! and €2, respectively, in the
Markov chain. It remains to prove that ' and h? are
equivalent. Since the same actions with the same ef-
fect have been executed, h' and h? may only differ in
the timer value. Let us examine the different cases. A
robot r; that has executed a single action W AIT has
its timer set to N + 1 in both 2! and h? (o; = 1). A
robot that has executed at leasta SYNC,ora MI1SS
action has its timer set to 1 in both 2! and h2 (o; = 1).
A robot that has not executed an action has its timer

1ol 2 32
decreased by «,,,;,, in h* and a7, in h°. Conse-
quently, the new relative positions of residual values

are the same in A' and h2. O

A Markov chain can be viewed as a graph where there
is an edge between one state s and another s’ iff there is a
non null probability to go from the former to the latter (i.e.,
PJ[s, s'] # 0). The edge is labelled by this probability. The
following lemma (only valid for finite chains) will make the
proof of correctness easier.

Lemma 7 (See [4]) Ler S’ be a subset of states of a finite
Markov chain. Let us suppose that for any state s, there is a
path from s to some s’ € S’. Then whatever the initial state,
the probability to reach (some state of) S’ is 1.

Stable States

In this subsection, we exhibit a condition on states that en-
sures that, in an execution starting from a state fulfilling such
a condition, the M 1SS action will never occur. We need
some preliminary definitions based on the Petri net mod-
elling of the original protocol.

Definition 8 Let e = [, < s;,l;,t0;, ; > be a state of
the system. Then the marking M(e) of the net N modelling
the protocol is defined by: M(e)(pi;) = LIf I; = f(i,7)
Else 0.

In fact, the marking M (e) is an abstraction of the state e
where the timed informations and the status of the robot are
forgotten.

Definition 9 Let N be a net modelling the protocol and M
be a marking of N, then M is said to be deadlock-free if for
the marking M, all the cycles of N are marked.

In a state modelled by a deadlock-free marking, if we ex-
ecute the original protocol, then no deadlock will never hap-
pen. However, due to the values of the timer, it may happen
that for a state e with M (e) being deadlock-free, a M 1SS
action happens (for instance, on timer expiration of a waiting
robot while its peer is still moving). Thus we must add timed
constraints to the state e.

If M is deadlock-free, then the relation helpsys intro-
duced in lemma 1 defines a directed acyclic graph (DAG)
between transitions. We define levely,(t) as the length of
the longest path of this DAG ending in ¢. Here the length of
a path is the number of vertices of this path. In figure 5, we
have represented the level of transitions for the initial mark-
ing of the net of figure 2. We are now ready to define our
condition on states.

Definition 10 Let ¢ = H:Zl < 8i,l;,to;, c; > be a state
of the system. Then e is stable if M(e) is deadlock-free and,
Vi, s; = waiting = to; > levelpr(e)(t1,).

ONO)

e
(o

Level 1 2 3 4 5

Figure 5: The level of transitions of a deadlock-free marking

The next lemma shows that the definition of stable states is
appropriate.

Lemma 11 In an execution starting from a stable state, the
action M 1SS will never happen.

Proof : We will proceed by induction on the states of the
system at times 0,1,2,.... We note e” the state of the sys-
tem at time n. e is the initial stable state. Be aware that
these states do not correspond to the successive states of the
Markov chain, but it does not matter since we will not use
here any probabilistic argument. Our induction hypothesis is
that until time n no M 1SS action has happened, and e” is
stable. For n = 0, it is just the hypothesis of the lemma. Let
us examine what happens between time n and n + 1.

Let us look at a robot waiting at a location at time n. Since
its timer is greater than 1 (by the stability hypothesis and the
fact that a; > 0), it will not expire until n 4+ 1. Let us now
look at a robot moving to a location at time n. It will arrive
during the interval [n...n + 1] and will refill its timer to
N + 1. In both cases, either a SY NC will happen and the
robot will be moving at time n + 1, or it will still be waiting.
Thus we have proved that no M I.SS action happens during
this interval.

It remains to show that e"T! is a stable state. Since no
M IS S action happens during the interval, the execution (with-
out taking into account the timer values) corresponds to the
execution of the non self-stabilizing protocol. Thus M (e"*1)
is a marking reached by a firing sequence from M (e™), and
so all the cycles are marked in this new marking.

Let ¢ be a transition of level 1 for M (e™). ¢ has its two places
marked, meaning that the two associated robots are either
waiting at the corresponding location, or moving to it. Thus
the synchronization will happen before time n + 1.

Let ¢ be a transition of level > 1 for M(e™). ¢ has one of
its places unmarked, that means that one of the robots asso-
ciated with the corresponding location is neither waiting at
this location, nor it is moving to. Thus a synchronization at
the location is impossible during this interval. So ¢ will not
be fired during the interval.

Suppose now that a robot r; is waiting at time n + 1 at a
location. If this robot has arrived during the interval, it has

set its timer to IV + 1, and thus at time n + 1, to; is still equal
to N, which is an upper bound for the level.

Finally, suppose that this robot has been waiting during the
whole interval. Then its timer (and so to;) is decreased by
one at time n+-1, but the level of the corresponding transition
was greater than one at time n and has not been fired. All the
transitions of level 1 have been fired, so its level at time n+ 1
is also decreased by 1 (since the paths to this transition in the
new DAG are exactly the paths to it in the old DAG truncated
by their origin). Thus the timed constraints are still verified
and e" ! is a stable state. O

From an Initial State to a Stable State

In this section, we show that given any initial state, there is
a path from this state to a stable state in the Markov chain.
Thus the proposition 4 will follow almost directly from lem-
mas 7 and 11. The single non trivial observation to make is
that given two equivalent states s and s’ (see definition 5),
then s is stable iff s’ is stable since the stability does not in-
volve the residual times. Thus the path found below gives
a path in the finite aggregated Markov chain where the final
state is a set of stable states.

Lemma 12 Given any initial state, there is a path in the
Markov chain from this state to a stable state.

Proof : As we look for a path in the Markov chain, each
time the M 1SS action happens, we can choose its random
output. So, when in what follows we will choose, during a
part of execution, the first choice (staying at the location),
we will say that we simulate the original algorithm.

If the initial state is stable, then we are done. So we sup-
pose that the initial state e is not stable. We examine the two
following cases :

1. M(e) is deadlock-free.

Here the timed constraints of stability are not verified
by e. By simulating the original algorithm, we claim
that a stable state will be reached. First, all successive
markings associated with the states will be deadlock-
free since they are reachable from M (e) in the net N.

Second, we decompose time into intervals of 1 tu.
During each interval, all the locations corresponding
to the transitions of level 1 will be the supportof SY NC
actions. A robot that will execute such a SY NC' ac-
tion will have its timed constraint fulfilled since it is
moving. Moreover, using exactly the same proof as the
one of lemma 11, it can be shown that when a timed
constraint is fulfilled, it will always be fulfilled. Thus
after each robot has executed at least one SY NC' ac-
tion, we have reached a stable state.

2. M/(e) is not deadlock-free.

Since there is a chain of synchronization locations be-
tween any pair of robots, applying the original algo-
rithm would lead us to a global deadlock. Thus we

simulate the original algorithm until every robot is blocked

alone at a location, and then has executed at least once
its M IS S action. This means that all timers have their
values < 1.

Now we choose for every robot the second alternative
of the M 1SS action. All these actions happen in less
than 1 tu. So after the last M 1SS action has been ex-
ecuted, every robot is still moving to its first location.
In this state denoted by e/, M (¢’) is the initial marking
of the net modelling the original protocol. Thus M (e’)
is deadlock-free and we complete the current path by
the path of the first case. (|

CONCLUSION

We have designed a uniform self-stabilizing scheduling pro-
tocol for a network of robots. The interest of this work is
twofold. First, self-stabilization is an important and desir-
able feature of protocols for these environments. Second,
the use of formal models for proofs of stabilizing algorithms
is not so frequent. Here, with the help Petri nets theory, we
have simplified the proof of the non stabilizing version of the
algorithm. A part of the proof of stabilization is also based
on this model.

The hypothesis that the timers are exact is only important
during the stabilization step. Once the algorithm reaches a
stable state, we can show that the protocol still works if the
timers are prone to small deviations. Moreover in practice,
if the stabilization step is not too long, then the deviations of
the timers will not disturb it.

The next stage of our research is to explore how should
new robots be incorporate in the system without bringing it
down and how to compute shortest paths in order to imple-
ments a routing protocol.

REFERENCES

[1] P. Bracka, S. Midonnet, and G. Roussel. Scheduling
and routing in an ad hoc network of robots. IASTED In-
ternational Conference on Computer Science and Tech-
nology, Cancun, Mexico, May 2003.

[2] E. Dijkstra.
distributed control.
17(11):643-644,1974.

Self-stabilizing systems in spite of
Communications of the ACM,

[3] S. Dolev. Self-stabilization. MIT Press, 2000.

[4] W. Feller. An introduction to probability theory and
its applications. Volume 1. John Wiley & Sons, 1968.
(third edition).

[5]1 H. Hu, L. Kelly, D. Keating, and D. Vinagre. Coodina-
tion of multiple mobile robots via communication. Pro-
ceedings of SPIE. Mobile Robots XIII and Intelligent
Transportation Systems, pages 94—103, Boston, Mas-
sachusetts, Novembre 1998.

[6] J.G. Kemeny and J.L. Snell. Finite Markov Chains. Van
Nostrand, Princeton, NJ, 1960.

[7] V. Park and M. Corson. A highly adaptive distributed
routing algorithm for mobile wireless networks. Pro-
ceedings IEEE INFOCOM, The Conference on Com-
puter Communications, Sixteenth Annual Joint Confer-

ence of the IEEE Computer and Communications Soci-
eties, 3:1405-1413, Japan, April 1997.

[8] G.Prencipe. Corda: Distributed coordination of a set of
autonomous mobile robots. European Research Semi-
nar on Advances in Distributed Systems, Ersads, Italy,
May 2001.

[9]1 W. Reisig. Petri Nets: an Introduction. Springer Ver-
lag, 1985.

[10] M. Schneider. Self-stabilization. ACM Symposium
Computing Surveys, 25:45-67,1993.

