
Branching-Time Model Checking of
One-Counter Processes and Timed Automata⋆

Stefan G̈oller1 and Markus Lohrey2,⋆⋆

1 Universiẗat Bremen, Fachbereich Mathematik und Informatik, Germany
2 Universiẗat Leipzig, Institut f̈ur Informatik, Germany

goeller@informatik.uni-bremen.de lohrey@informatik.uni-leipzig.de

Abstract. One-counter automata (OCA) are pushdown automata which operate onlyon a unary stack
alphabet. We study the computational complexity of model checking computation tree logic (CTL)
on transition systems induced by one-counter automata. APSPACE upper bound is inherited from
the modalµ-calculus for this problem proven by Serre. First, we analyze the periodic behaviour of
CTL over OCA and derive a model checking algorithm whose running time is exponential only in the
number of control locations and a syntactic notion of the formula that we call leftward until depth.
In particular, model checking fixed OCA againstCTL formulas with a fixed leftward until depth is in
P. This generalizes a corresponding recent result of the first author,Mayr and To for the expression
complexity ofCTL’s fragmentEF. Second, we prove that already over some fixed OCA,CTL model
checking isPSPACE-hard, i.e., expression complexity isPSPACE-hard. Third, we show that there
already exists a fixedCTL formula for which model checking of OCA isPSPACE-hard, i.e., data
complexity isPSPACE-hard as well. To obtain the latter result, we employ two results from complexity
theory: (i) Converting a natural number in Chinese remainder presentation into binary presentation is in
logspace-uniformNC1 and (ii)PSPACE isAC0-serializable.We demonstrate that our approach can be
used to obtain further results. We show that model-checkingCTL’s fragmentEF over OCA is hard for
P
NP, thus establishing a matching lower bound. We moreover show that the following problem is hard

for PSPACE: Given a one-counter Markov decision process, a set of target states with counter value
zero each, and an initial state, to decide whether the probability that the initial state will eventually
reach one of the target states is arbitrarily close to1. This improves a recently proven lower bound for
every level of the boolean hierarchy shown by Brazdil et al. Finally, weprove that there is a fixedCTL
formula for which model checking 2-clock timed automata isPSPACE-hard, generalizing aPSPACE-
hardness result for the combined complexity by Laroussinie et al.

1 Introduction

Pushdown automata (PDA) (or recursive state machines, RSMs) are a natural model for sequential pro-
grams with recursive procedure calls, and their verification problems have been studied extensively. The
reachability problem for PDA can be solved in polynomial time [6, 14]. The complexity of model checking
problems for PDA is quite well understood in terms of combined complexity, data complexity, and expres-
sion complexity:3 The combined complexity of the model checking problem for the modalµ-calculus over
PDA was shown to beEXPTIME-complete in [37], and the global version of the model checking problem
has been considered in [29, 9, 28]. Moreover, theEXPTIME lower bound even holds for both the data and
expression complexity for the simpler logicCTL and its fragmentEG over PDA [36]. On the other hand, the
combined complexity of the model checking problem for the logic EF (another natural fragment ofCTL)
over PDA isPSPACE-complete [36], and again the lower bound still holds for both the data and expres-
sion complexity [6]. Model checking problems for various fragments and extensions of PDL (propositional
dynamic logic) over PDA were studied in [16].
⋆ An extended abstract of this paper has appeared in the proceedings ofSTACS 2010 [17].
⋆⋆ The second author would like to acknowledge the support by DFG research project GELO.

3 For a given class of systems (structures)C and a logicL one distinguishes three settings for the model-checking
problem forC andL, i.e., the question whether a formulaϕ ∈ C holds in a structureA ∈ C: (i) the input consists
of ϕ andA, (ii) ϕ is fixed, and the input only consists ofA, and (iii) A is fixed, and the input only consists of
ϕ. The combined complexity of the model-checking problem is the complexity insetting (i), whereas the data
(resp. expression) complexity is the complexity in setting (ii) (resp. (iii)). The main motivation for studying the data
complexity is that in many applications the formulaϕ is small.

1.1 One-Counter Automata

One-counter automata (OCA) are Minsky counter machines with just one counter and action labels on
the transitions. They can also be seen as a special case of PDAwith just one stack symbol, plus a non-
removable bottom symbol which indicates an empty stack (andthus allows to test the counter for zero) and
hence constitute a natural and fundamental computational model. In recent years, model checking problems
for OCA received increasing attention [18, 19, 30, 32]. Clearly, all upper complexity bounds carry over from
PDA. The question, whether these upper bounds can be matchedby lower bounds was just recently solved
for several important logics: Model checkingµ-calculus on OCA isPSPACE-complete. ThePSPACE
upper bound was shown in [30], and a matching lower bound can easily be shown by a reduction from
emptiness of alternating unary finite automata, which was shown to bePSPACE-complete in [23, 24]. This
lower bound even holds if either the OCA or the formula is fixed. The situation becomes different for the
fragmentEF. In [18], it was shown that model checkingEF over OCA is in the complexity classPNP

(the class of all problems that can be solved on a deterministic polynomial time machine with access to
an oracle fromNP). Moreover, if the input formula is represented succinctlyas a DAG (directed acyclic
graph), then model checkingEF over OCA is also hard forPNP. For the standard (and less succinct) tree
representation for formulas, only hardness for the classPNP[log] (the class of all problems that can be solved
on a deterministic polynomial time machine which is allowedto makeO(log n) many queries to an oracle
fromNP) was shown in [18]. In fact, there already exists a fixedEF formula such that model checking this
formula over a given OCA is hard forPNP[log], i.e., the data complexity isPNP[log]-hard.

In this paper we consider the model checking problem forCTL on OCA. By the known upper bound
for the modalµ-calculus [30] this problem belongs toPSPACE. First, we analyze the combinatorics of
CTL model checking over OCA. More precisely, we analyze the periodic behaviour of the set of natural
numbers that satisfy a givenCTL formula in a given control location of the OCA (Theorem 1). Bymaking
use of Theorem 1, we can derive a model checking algorithm whose running time is exponential only in
the number of control locations and a syntactic measure onCTL formulas that we call leftward until depth
(Theorem 2). As a corollary, we obtain that model checking a fixed OCA againstCTL formulas of fixed
leftward until depth lies inP (Corollary 3). This generalizes a recent result from [18], where it was shown
that the expression complexity ofEF over OCA lies inP. Next, we focus on lower bounds. We show that
model checkingCTL over OCA isPSPACE-complete, even if we fix either the OCA (Theorem 11) or
theCTL formula (Theorem 18). The proof for Theorem 11 uses a subtle reduction from QBF. We have
to construct a fixed OCA for which we can construct for a given unary encoded numberi CTL formulas
that express, when interpreted over our fixed OCA, whether the current counter value is divisible by2i and
whether theith bit in the binary representation of the current counter value is1, respectively. For the proof
of Theorem 18 (PSPACE-hardness of data complexity forCTL) we use two techniques from complexity
theory, which to our knowledge have not been applied in the context of verification so far:

– the existence of small depth circuits for converting a number from Chinese remainder representation
to binary representation (see Section 6.1 for details) and

– the fact thatPSPACE-computations are serializable in a certain sense (see Section 6.2 for details).

One of the main obstructions in getting lower bounds for OCA is the fact that OCA are well suited for
testing divisibility properties of the counter value and hence can deal with numbers in Chinese remainder
representation, but it is not clear how to deal with numbers in binary representation. Small depth circuits for
converting a number from Chinese remainder representationto binary representation are the key in order
to overcome this obstruction.

We are confident that our new lower bound techniques described above can be used for proving further
lower bounds for OCA and related models. We present three other applications of our techniques:

– We show that model checkingEF over OCA is complete forPNP even if the input formula is repre-
sented by a tree (Theorem 21) and thereby solve an open problem from [18]. Figure 1 summarizes the
picture on the complexity of model checking for PDA and OCA.

– We improve a lower bound on a decision problem for one-counter Markov decision processes from [8]
(Theorem 25). More details on this problem are provided below.

2

Logic PDA OCA
µ-calculus EXPTIME PSPACE

µ-calculus, fixed formula EXPTIME PSPACE

µ-calculus, fixed system EXPTIME PSPACE

CTL, fixed formula EXPTIME PSPACE (*)
CTL, fixed system EXPTIME PSPACE (*)
CTL, fixed system, fixed leftward until depthEXPTIME in P (*)
EF PSPACE P

NP (*)
EF, fixed formula PSPACE P

NP[log] hard
EF, fixed system PSPACE in P

Table 1.Model checking over PDA and OCA; our new results are marked with (*).

– We prove that there is a fixedCTL formula for which model checking 2-clock timed automata is
PSPACE-complete. This improves aPSPACE lower bound for the combined complexity of model
checkingCTL on 2-clock timed automata from [25]. Furthermore, we show that reachability for very
restricted 2-clock timed automata that allow modulo tests in the transitions is alreadyPSPACE-hard,
improving a

1.2 Markov Decision Processes

Markov decision processes(MDPs) extend classical Markov chains by allowing so callednondeterministic
vertices. In these vertices, no probability distribution on the outgoing transitions is specified. The other ver-
tices are calledprobabilistic vertices; in these vertices a probability distribution on the outgoing transitions
is given. The idea is that in an MDP a player Eve plays against nature (represented by the probabilistic
vertices). In each nondeterministic vertexv, Eve chooses a probability distribution on the outgoing transi-
tions ofv; this choice may depend on the past of the play (which is a pathin the underlying graph ending
in v) and is formally represented by a strategy for Eve. An MDP together with a strategy for Eve defines
an ordinary Markov chain, whose state space is the unfoldingof the graph underlying the MDP. In Sec-
tion 9, we consider infinite MDPs, which are finitely represented by one-counter automata; this formalism
was introduced in [8] under the nameone-counter Markov decision process(OC-MDP). For a given OC-
MDPM and a setR of control locations ofM (a so calledreachability constraint) the following two sets
ValOne(R) andOptValOne(R) were considered in [8]:ValOne(R) is the set of all statess of the MDP
defined byM such that for everyε > 0 there exists a strategyσ for Eve under which the probability of
finally reaching froms a control location inR and at the same time having counter value0 is at least1− ε.
OptValOne(R) is the set of all statess of the MDP defined byM for which there exists a specific strategy
for Eve under which this probability becomes1. It was shown in [8] that for a given OC-MDPM, a set of
control locationsR, and a states of the MDP defined byM,

– the question whethers ∈ OptValOne(R) is PSPACE-hard and inEXPTIME, and
– the question whethers ∈ ValOne(R) is hard for every level of the boolean hierarchyBH.

The boolean hierarchy is a hierarchy of complexity classes betweenNP andPNP[log], see Section 6 for
a definition. We use our lower bound techniques (based on the serializability of PSPACE + small depth
circuits for converting numbers from Chinese remainder representation to binary representation) in order
to improve the second hardness result for the levels ofBH to PSPACE-hardness. As a byproduct, we also
reprovePSPACE-hardness forOptValOne(R). Currently, it is open, whetherValOne(R) is decidable; the
corresponding problem for MDPs defined by pushdown automatais undecidable [15].

1.3 Timed Automata

Timed automatawere introduced by Alur and Dill [1] and can be seen as an extension of finite automata
by allowing the usage of real-time clocks. Timed automata are one of the most important formalisms for

3

modeling real-time systems. In [1] it was shown that the reachability (i.e. emptiness) problem for timed
automata isPSPACE-complete.PSPACE-hardness already holds when only three clocks are present as
shown by Courcoubetis and Yannakakis [13]. The precise computational complexity of reachability for
2-clock timed automata is still a major open problem. The best-known lower bound isNP-hardness [25],
whereasPSPACE the the best-known upper bound for this problem. It is interesting to note that concern-
ing the reachability problem, there is a close connection between bounded counter automata and timed
automata as recently shown by Haase et al. [20]: the reachability problem ofn-clock timed automata is
equivalent to the the reachability problem of bounded(n−1)-counter automata with respect to logarithmic
space reductions.

It was shown in [27] that the reachability problem for 2-clock timed automata with modulo tests on
counter values isPSPACE-hard. For the lower bound proof in [27] it is crucial that thenumerical constants
that appear in the transitions of the timed automaton are encoded in binary. We improve the lower bound
from [27] by showing that the reachability problem for 2-clock timed automata with modulo tests is already
PSPACE-hard when the occuring numbers are encoded in unary. It shows that very simple extensions of
the reachability problem of timed automata with two clocks arePSPACE-hard. In [25] it has been shown
that model checkingCTL on timed automata with two clocks (but without modulo tests)is PSPACE-hard
(andPSPACE-complete). We prove that already the data complexity of this problem isPSPACE-hard.

1.4 Organization

The paper is organized as follows. In Section 2 we introduce general notation. In Section 3 we define
one-counter automata and the branching-time logicCTL. Periodicity ofCTL on OCA and a derived model
checking algorithm is the content of Section 4. In Section 5 we give a fixed zero-test-free one-counter
automaton (which is basically a one-counter automaton thatcannot test if the counter is zero) for which
CTL model checking isPSPACE-hard. Section 6 recalls tools from complexity theory that we need in
subsequent sections. We show that there already exists a fixed CTL formula for which model checking
over zero-test-free one-counter automata isPSPACE-hard in Section 7. The proof technique for this re-
sult is applied in the subsequent section and yields the following further results: (i) Model checking the
CTL fragmentEF over zero-test-free one-counter automata isPNP-hard (Section 8), (ii) membership in
ValOne(R) over one-counter Markov decision processes isPSPACE-hard. (Section 9), (iii) model check-
ing CTL over timed automata with only two clocks isPSPACE-hard already for a fixedCTL formula
(Section 10.1), and (iv) reachability for 2-clock timed automata that allow modulo tests in the transitions is
PSPACE-hard (Section 10.2). Finally, we reformulateAC0-serializability ofPSPACE in the appendix.

An extended abstract of this paper has appeared as [17].

2 Preliminaries

We denote the naturals byN = {0, 1, 2, . . .} and the rational numbers byQ. Let R+ be the positive real
numbers (0 is included). For eachi, j ∈ N we define[i, j] = {k ∈ N | i ≤ k ≤ j} and [j] = [1, j].
In particular[0] = ∅. For eachn ∈ N and each positioni ≥ 1, let biti(n) denote theith least significant
bit of the binary representation ofn, i.e.,n =

∑
i≥1 2

i−1 · biti(n). For every finite and non-empty subset
M ⊆ N \ {0}, defineLCM(M) to be theleast common multipleof all numbers inM . Due to a result of
Nair [26] it is known that2k ≤ LCM([k]) ≤ 4k for all k ≥ 9. As usual, for (a possibly infinite) alphabet
A, A∗ denotes the set of all finite words overA, A+ denotes the set of all finite non-empty words over
A, andAω denotes the set of all infinite words overA. LetA∞ = A∗ ∪ Aω. The length of a finite word
w is denoted by|w|. For a wordw = a1a2 · · · an ∈ A∗ (resp.w = a1a2 · · · ∈ Aω) with ai ∈ A and
i ∈ [n] (resp.i ≥ 1), we denote bywi the ith letterai. A (possibly infinite) directed graphG = (V,E)
(with E ⊆ V × V) is calleddeadlock-freeif for all v ∈ V there existsv′ ∈ V with (v, v′) ∈ E. If for
all v ∈ V there are only finitely manyv′ ∈ V with (v, v′) ∈ E, thenG is calledimage-finite. The set of
all finite paths inG is the setpath+(G) = {π ∈ V + | ∀i ∈ [|π| − 1] : (πi, πi+1) ∈ E}. The set of all
infinite paths inG is the setpathω(G) = {π ∈ V

ω | ∀i ≥ 1 : (πi, πi+1) ∈ E}. A nondeterministic finite
automaton (NFA) is a tupleA = (S,Σ, δ, s0, Sf), whereS is a finite set ofstates, Σ is afinite alphabet,
δ ⊆ S ×Σ × S is thetransition relation, s0 ∈ S is theinitial state, andSf ⊆ S is a set offinal states. We
assume that the reader has some basic knowledge in complexity theory, see e.g. [2] for more details.

4

3 One-counter automata and computation tree logic

Fix some countable setP of atomic propositions. A transition systemis a tripleT = (S, {Sp | p ∈ P},→),
where(S,→) is a directed graph andSp ⊆ S for all p ∈ P with Sp = ∅ for all but finitely manyp ∈ P.
Elements ofS (resp.→) are also calledstates(resp.transitions). In cases ∈ Sp, we also say thats
is p-labeled. We prefer to use the infix notations1 → s2 instead of(s1, s2) ∈→. For x ∈ {+, ω} let
pathx(T) = pathx(S,→). For a subsetU ⊆ S of states, a (finite or infinite) pathπ is called aU -path if
π ∈ U∞.

A one-counter automaton(OCA) is a tupleO = (Q, {Qp | p ∈ P}, δ0, δ>0), whereQ is a finite set of
control locations,Qp ⊆ Q for eachp ∈ P butQp = ∅ for all but finitely manyp ∈ P, δ0 ⊆ Q×{0, 1}×Q
is a finite set ofzero transitions, andδ>0 ⊆ Q × {−1, 0, 1} ×Q is a finite set ofpositive transitions. The
sizeof this OCA is defined as|O| = |Q| +

∑
p∈P |Qp| + |δ0| + |δ>0|. We say thatO is zero-test-freeif

δ0 = δ>0 ∩ (Q×{0, 1}×Q). Hence, for a zero-test-free OCAO the setδ0 is implicitly defined by the set
δ>0. Therefore, we will write a zero-test-free OCA as a tuple(Q, {Qp | p ∈ P}, δ) and identify this tuple
with the OCA(Q, {Qp | p ∈ P}, δ ∩ (Q× {0, 1} ×Q), δ). A one-counter automatonO = (Q, {Qp | p ∈
P}, δ0, δ>0) defines a (one-counter) transition systemT (O) = (Q × N, {Qp × N | p ∈ P},→), where
(q, n)→ (q′, n+ k) if and only if eithern = 0 and(q, k, q′) ∈ δ0, orn > 0 and(q, k, q′) ∈ δ>0.

More details onCTL andEF can be found for instance in [3].Formulasϕ of the logicCTL are given
by the following grammar, wherep ∈ P:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EXϕ | EϕUϕ | EϕWUϕ.

Given a transition systemT = (S, {Sp | p ∈ P},→) and aCTL formulaϕ, we define the semantics
[[ϕ]]T ⊆ S by induction on the structure ofϕ as follows:

[[p]]T = Sp for eachp ∈ P

[[¬ϕ]]T = S \ [[ϕ]]T

[[ϕ1 ∧ ϕ2]]T = [[ϕ1]]T ∩ [[ϕ2]]T

[[EXϕ]]T = {s ∈ S | ∃s′ ∈ [[ϕ]]T : s→ s′}

[[Eϕ1Uϕ2]]T = {s ∈ S | ∃π ∈ path+(T) : π1 = s, π|π| ∈ [[ϕ2]]T , ∀i ∈ [|π| − 1] : πi ∈ [[ϕ1]]T }

[[Eϕ1WUϕ2]]T = [[Eϕ1Uϕ2]]T ∪ {s ∈ S | ∃π ∈ pathω(T) : π1 = s, ∀i ≥ 1 : πi ∈ [[ϕ1]]T }

We write(T , s) |= ϕ as an abbreviation fors ∈ [[ϕ]]T . When additionallyT is clear from the context, we
just writes |= ϕ. We introduce the usual abbreviationsϕ1∨ϕ2 = ¬(¬ϕ1∧¬ϕ2), true = p∨¬p for some
p ∈ P, AXϕ = ¬EX¬ϕ, EFϕ = EtrueUϕ, andEGϕ = EϕWUfalse. Formulas of theCTL-fragment
EF are given by the following grammar, wherep ∈ P:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EXϕ | EFϕ.

Define thesize|ϕ| of CTL formulasϕ inductively as follows:|p| = 1, |¬ϕ| = |ϕ| + 1, |ϕ1 ∧ ϕ2| =
|ϕ1|+ |ϕ2|+ 1, |EXϕ| = |ϕ|+ 1, and|Eϕ1Uϕ2| = |Eϕ1WUϕ2| = |ϕ1|+ |ϕ2|+ 1.

4 CTL on OCA: Periodic behaviour and upper bounds

The goal of this section is to prove a periodicity property ofCTL over one-counter transition systems.
We will use this property in order to establish an upper boundfor CTL on OCA, see Theorem 2. As a
corollary, we show that for a fixed one-counter automaton,CTL model checking restricted to formulas of
fixed leftward until depth (see the definition below) can be done in polynomial time, see Corollary 3. For

5

this, let us define theleftward until depthlud of CTL formulas inductively as follows:

lud(p) = 0 for eachp ∈ P

lud(¬ϕ) = lud(ϕ)

lud(ϕ1 ∧ ϕ2) = max{lud(ϕ1), lud(ϕ2)}

lud(EXϕ) = lud(ϕ)

lud(Eϕ1Uϕ2) = max{lud(ϕ1) + 1, lud(ϕ2)}

lud(Eϕ1WUϕ2) = max{lud(ϕ1) + 1, lud(ϕ2)}

A similar definition of the until depth can be found in [31], but there the until depth ofEϕ1Uϕ2 is 1 plus
the maximum of the until depths ofϕ1 andϕ2. Note thatlud(ϕ) ≤ 1 for eachEF formulaϕ.

Let us fix some one-counter automatonO = (Q, {Qp | p ∈ P}, δ0, δ>0) for the rest of this section.
Let us introduce a bit more notation. Let⊙ ∈ {+,−}, let ξ ∈ N, and letπ = (q1, n1) → (q2, n2) · · · →
(qk, nk) (resp.π = (q1, n1)→ (q2, n2)→ · · ·) be a finite (resp. infinite) path inT (O) such that moreover
ni, ni ⊙ ξ > 0 for all i. Defineπ ⊙ ξ to be the path that emerges fromπ by replacing eachni by ni ⊙ ξ.
For each positioni andj of π with i ≤ j, defineπ[i, j] to be the subpath ofπ that begins in(qi, ni) and
that ends in(qj , nj).

We aim to prove the following: For eachCTL formulaϕwe can compute some thresholdt(ϕ) and some
periodKϕ, wheret(ϕ),Kϕ ≤ 2(|O|·|ϕ|)O(1)

, such that for alln ∈ N with n > t(ϕ) only n’s residue class
moduloKϕ determines whether(q, n) ∈ [[ϕ]]T (O) or not, whereq ∈ Q is an arbitrary control location. The
goal of this section is to give rather precise bounds on the size of the thresholdt(ϕ) and the periodKϕ

embracing the notion of leftward until depth from above.
Let us assume that|Q| = k. DefineK = LCM([k]) andKϕ = K lud(ϕ) for eachCTL formulaϕ.

Theorem 1. Letϕ be aCTL formula. Then we can compute in polynomial time a threshold

t(ϕ) ≤ 2 · |ϕ| · k2 ·Kϕ

such that for alln, n′ > t(ϕ) that satisfyn ≡ n′ modKϕ we have

(q, n) ∈ [[ϕ]]T (O) if and only if (q, n′) ∈ [[ϕ]]T (O) (1)

for each control locationq ∈ Q.

Proof. We prove the theorem by induction on the structure ofϕ. Thatt(ϕ) can be computed in polynomial
time will be obvious.

Assumeϕ ∈ P. Then we putt(ϕ) = 0. Recall thatKϕ = K lud(ϕ) = 1. Trivially, (1) holds.

Assumeϕ = ¬ψ. Then we putt(ϕ) = t(ψ). Note thatKϕ = Kψ. Equation (1) follows immediately by
induction hypothesis.

Assumeϕ = ψ1 ∧ ψ2. Then we putt(ϕ) = max{t(ψ1), t(ψ2)}. We have

t(ϕ) = max{t(ψ1), t(ψ2)}
IH
≤ max{2 · |ψi| · k

2 ·Kψi | i ∈ {1, 2}}

≤ 2 · |ϕ| · k2 ·Kϕ

and hencet(ϕ) satisfies the requirement of the theorem. Note thatKϕ = LCM{Kψ1
,Kψ2

} by definition.
By choice oft(ϕ), Equation (1) holds immediately due to induction hypothesis.

Assumeϕ = EXψ. Then we putt(ϕ) = t(ψ) +Kψ. Thus we get

t(ϕ) = t(ψ) +Kψ

IH
≤ 2 · |ψ| · k2 ·Kψ +Kψ

≤ 2 · (|ψ|+ 1) · k2 ·Kψ

= 2 · |ϕ| · k2 ·Kϕ

6

counter value

0

}

Kϕ

...

O’s control locations

}

Kϕ

...

}

Kϕ

• n

• n′

ξ















T = max{t(ψ1), t(ψ2)}

t(ϕ) = T + 2 · k2 ·Kϕ

q

Fig. 1.The until case.

and hencet(ϕ) satisfies the requirement of the theorem. Sincet(ϕ) − t(ψ) = Kψ ≥ 1, we have that (1)
follows immediately by induction hypothesis.

Assumeϕ = Eψ1Uψ2. Let us first define the threshold. LetT = max{t(ψ1), t(ψ2)}. We putt(ϕ) =
T + 2 · k2 ·Kϕ. Hence we have

t(ϕ) = T + 2 · k2 ·Kϕ

IH
≤ max{2 · |ψi| · k

2 ·Kψi | i ∈ {1, 2}}+ 2 · k2 ·Kϕ

≤ 2 · ((|ϕ| − 1) + 1) · k2 ·Kϕ

= 2 · |ϕ| · k2 ·Kϕ

and thust(ϕ) satisfies the requirement of the theorem. It remains to prove(1).
Recall thatKϕ = LCM{K · Kψ1

,Kψ2
} by definition. Let us fix an arbitrary control locationq ∈ Q

and naturalsn, n′ ∈ N such thatt(ϕ) < n < n′ andn ≡ n′ modKϕ. We have to prove that (1) holds, i.e.,
(q, n) ∈ [[ϕ]]T (O) if and only if (q, n′) ∈ [[ϕ]]T (O). For this, letξ = n′ − n, which is a multiple ofKϕ. The
current situation is shown in Figure 1.

’Only-if’: Let us assume that(q, n) ∈ [[ϕ]]T (O). Hence, there exists a finite path

π = (q1, n1)→ (q2, n2) · · · → (ql, nl),

wherel ≥ 1, π[1, l − 1] is a [[ψ1]]T (O)-path,(q, n) = (q1, n1), and(ql, nl) ∈ [[ψ2]]T (O). Now we make a
case distinction.

Case A:nj > T for eachj ∈ [l]. SinceKψ1
|ξ andKψ2

|ξ we obtain that the pathπ + ξ witnesses
(q, n′) ∈ [[ϕ]]T (O) by induction hypothesis. This is depicted in Figure 2.

7

counter value

O’s control locations

0

}

Kϕ

...

}

Kϕ

...

}

Kϕ

• n

• n′

π

π + ξ

q

T = max{t(ψ1), t(ψ2)}

t(ϕ) = T + 2 · k2 ·Kϕ

Fig. 2.The pathπ + ξ witnesses(q, n′) ∈ [[ϕ]]T (O).

Case B:nj ≤ T for somej ∈ [l]. For each ofπ’s counter valuesh ∈ {ni | i ∈ [l]}, define

µ(h) = min{i ∈ [l] | ni = h}

to be the minimal position inπ whose corresponding state has counter valueh. We are interested inπ’s
first states of counter valuen, n−Kψ1

, n− 2 ·Kψ1
, and so on. For this, definem(i) = µ(n− i ·Kψ1

) for
every appropriatei ∈ N. By the pigeonhole principle, there are distincti1, i2 ∈ [0, k] such thati1 < i2 and
qm(i1) = qm(i2). Note thati1 andi2 are well-defined since

n− i1 ·Kψ1
> n− i2 ·Kψ1

≥ n− k ·Kψ1
≥ T + 2 · k2 ·Kϕ − k ·Kψ1

> T.

Let p = qm(i1) = qm(i2) and d = i1 − i2 ∈ [k]. Hence,d dividesK. Moreover, letσ denoteπ’s
subpath from(qm(i1), nm(i1)) = (p, n − i1 · Kψ1

) down to (qm(i2), nm(i2)) = (p, n − i2 · Kψ1
) =

(p, n− i1 ·Kψ1
−d ·Kψ1

), i.e., formallyσ = π[m(i1),m(i2)]. Note thatσ is a[[ψ1]]T (O)-path. The current
situation is depicted in Figure 3. The pathσ is indicated thick.

We have to prove(q, n′) ∈ [[ϕ]]T (O). For this, we show that there exists a[[ψ1]]T (O)-pathπ↓ from
(q, n′) down to(qm(i1), nm(i1)) = (p, n− i1 ·Kψ1

). Thus, sinceπ↓ meetsπ in (p, n− i1 ·Kψ1
), it follows

(q, n′) ∈ [[ϕ]]T (O). The pathπ↓ is indicated by a dashed curve in Figure 3. Our pathπ↓ consists of two
concatenated paths. First recall that the pathσ loses a counter height of preciselyd·Kψ1

. The first part ofπ↓
is the[[ψ1]]T (O)-pathπ[1,m(i1)] shifted upwards by the offsetξ (i.e.,π[1,m(i1)] + ξ). The second part of
π↓ is the path from(qm(i1), nm(i1)+ξ) = (p, n−i1 ·Kψ1

+ξ) down to(qm(i1), nm(i1)) = (p, n−i1 ·Kψ1
)

that we can obtain by first shiftingσ up by the offsetξ and then downward pumping it preciselyξ
d·Kψ1

many
times. Formally, this is the path

(σ + ξ)(σ + ξ − d ·Kψ1
)(σ + ξ − 2d ·Kψ1

) · · · (σ + d ·Kψ1
) =

ξ
d·Kψ1

−1
∏

i=0

(σ + ξ − i · d ·Kψ1
).

8

counter value

0

}

Kϕ

...

}

Kϕ

...

}

Kϕ

• n

• n′

O’s control locations

qp

•
nm(i1) = n− i1Kψ1

•
nm(i1) + ξ

•
nm(i2) = n− i2Kψ1

T = max{t(ψ1), t(ψ2)}

t(ϕ) = T + 2 · k2 ·Kϕ

Fig. 3.The path from(q, n) can be merged from(q, n′).

Note thatξ is a multiple ofKϕ, which is in turn a multiple ofK ·Kψ1
, hence ξ

d·Kψ1
∈ N.

’If’: Assume that(q, n′) ∈ [[ϕ]]T (O). To prove that(q, n) ∈ [[ϕ]]T (O), we will use the following claim.

Claim: Assume some[[ψ1]]T (O)-path(q1, n1) → (q2, n2) → · · · → (ql, nl) whose counter values are all
strictly aboveT and wheren1 − nl ≥ k2 · K · Kψ1

. Then there exists a[[ψ1]]T (O)-path from(q1, n1) to
(ql, nl +K ·Kψ1

) strictly aboveT +K ·Kψ1
. The statement of the claim is depicted in Figure 4.

Thus, the claim tells us that paths that lose height at leastk2 ·K ·Kψ1
and whose states all have counter

values strictly aboveT can be lifted by a height preciselyK ·Kψ1
.

Let us postpone the proof of the claim and first finish the proofof the if-direction. Since by assumption
(q, n′) ∈ [[ϕ]]T (O), there exists a finite path

π = (q1, n1)→ (q2, n2) · · · → (ql, nl),

whereπ[1, l− 1] is a[[ψ1]]T (O)-path,(q, n′) = (q1, n1), and where(ql, nl) ∈ [[ψ2]]T (O). To prove(q, n) ∈
[[ϕ]]T (O), we make a case distinction.

Case A:nj > T for eachj ∈ [l]. Assume that the pathπ[1, l − 1] contains two states whose counter
difference is at leastk2 ·K ·Kψ1

+Kϕ which is (strictly) greater thank2 ·K ·Kψ1
. SinceKϕ is a multiple

9

counter value

0

T = max{t(ψ1), t(ψ2)}

t(ϕ) = T + 2 · k2 ·Kϕ

•

n1

•

nl

•

nl +K ·Kψ1

q1 ql

O’s control locations

}

K ·Kψ1

}

K ·Kψ1

≥ k2 ·K ·Kψ1























































































Fig. 4.Shortening paths aboveT of height difference at leastk2 ·K ·Kψ1 by heightK ·Kψ1 .

of K ·Kψ1
by definition, we can shortenπ[1, l − 1] by a height preciselyKϕ by applying the above claim

Kϕ
K·Kψ1

∈ N many times. We repeat this shortening process ofπ[1, l− 1] by heightKϕ as long as this is no

longer possible, i.e., until there are no two states whose counter difference is at leastk2 ·K ·Kψ1
+Kϕ. Let

σ denote the[[ψ1]]T (O)-path starting in(q, n′) that we obtain fromπ[1, l − 1] until the before mentioned
shortening is no longer possible. Thus,σ ends in some state with a counter value that is congruentnl−1

moduloKϕ (since we shortenedπ[1, l − 1] by a multiple ofKϕ). SinceKϕ is in turn a multiple ofKψ2
,

we can build a pathσ′ which extends the pathσ by a single transition to some state that satisfiesψ2 by
induction hypothesis. Moreover, by our shortening process, the counter difference between any two states
in σ′ is at most

k2 ·K ·Kψ1
+Kϕ ≤ 2 · k2 ·Kϕ.

Sincen > T+2·k2 ·Kϕ, it follows that the pathσ′−ξ (which starts in(q, n)) is strictly aboveT . Moreover,
sinceξ is a multiple ofKψ1

andKψ2
, this path witnesses(q, n) ∈ [[ϕ]]T (O) by induction hypothesis.

Case B:nj = T for somej ∈ [l]. Let j0 ∈ [l] be minimal such thatnj0 = T . Note thatπ[1, j0 − 1] is a
[[ψ1]]T (O)-path whose counter values are all strictly aboveT . Moreover, we have

n′ − nj = n′ − T = (n′ − n) + (n− T) = ξ + n− T > ξ + t(ϕ)− T = ξ + 2k2Kϕ.

Hence, the maximal counter difference between two states ofπ[1, j0 − 1] is at least

2 · k2 ·Kϕ + ξ ≥ k2 ·K ·Kψ1
+ ξ.

Hence, in analogy to case A, we can shortenπ[1, j0 − 1] precisely by heightξ. Let σ denote the resulting
path. Thenσ− ξ is a[[ψ1]]T (O)-path that ends in(qj0−1, nj0−1) and starts in(q, n). We can appendπ[j0−
1, l] to this path. The resulting path witnesses(q, n) ∈ [[ϕ]]T (O).

It remains to prove the above claim.

10

Proof of the claim.For each counter valueh ∈ {ni | i ∈ [l]} that appears inπ, let

µ(h) = min{i ∈ [l] | ni = h}

denote the minimal position inπ whose corresponding state has counter valueh. Define∆ = k ·Kψ1
. We

will be interested ink ·K many consecutive intervals (of counter values) each of size∆ – we will call these
intervals blocks. Define the bottomb = n1−(k ·K) ·∆. A blockis an intervalBi = [b+(i−1) ·∆, b+i ·∆]
for somei ∈ [k ·K]. Since each block has size∆ = k ·Kψ1

, we can think of each blockBi to consist of
k consecutivesubblocksof sizeKψ1

each. Note that each subblock has two extremal elements, namely its
upperandlower boundary. Thus allk subblocks havek + 1 boundaries in total. Hence, by the pigeonhole
principle, for each blockBi, there exists some distancedi ∈ [k] and two distinct boundariesβ(i, 1) and
β(i, 2) of distancedi ·Kψ1

such that the control location ofπ’s earliest state of counter valueβ(i, 1) agrees
with the control location ofπ’s earliest state of counter valueβ(i, 2), i.e., formally

qµ(β(i,1)) = qµ(β(i,2)).

The situation is depicted in Figure 5. Observe that shortening the pathπ by gluing togetherπ’s states
at positionµ(β(i, 1)) andµ(β(i, 2)) still results in a[[ψ1]]T (O)-path by induction hypothesis, since we
shorten the height ofπ by a multiple ofKψ1

. Our overall goal is to shortenπ by gluing together states only
of certain blocks such that we obtain a path whose height is intotal preciselyK ·Kψ1

smaller thanπ’s.
Recall that there arek · K many blocks. By the pigeonhole principle there is somed ∈ [k] such that

di = d for at leastK many blocksBi. By gluing togetherK
d
∈ N pairs of states of distanced ·Kψ1

each,
we shortenπ by a height ofK

d
· d ·Kψ1

= K ·Kψ1
. This proves the claim.

Assumeϕ = Eψ1WUψ2. This can easily seen to be proven analogously to the case whenϕ = Eψ1Uψ2.
⊓⊔

Theorem 2. The following problem can be solved in timeO(log(n) + |Q|3 · |ϕ|2 · 4|Q|·lud(ϕ) · |δ0 ∪ δ>0|):
INPUT: A one-counter automatonO = (Q, {Qp | p ∈ P}, δ0, δ>0), aCTL formulaϕ, a control location
q ∈ Q and some naturaln ∈ N given in binary.
QUESTION:(q, n) ∈ [[ϕ]]T (O)?

Proof. Let k = |Q|. We first compute the thresholdt(ϕ) ≤ 2 · |ϕ| · k2 · Kϕ from Theorem 1. Then we
have(q, n) ∈ [[ϕ]]T (O) if and only if (q,m) ∈ [[ϕ]]T (O), where eithern = m ≤ t(ϕ) or n > t(ϕ) and
m is the unique number in the interval[t(ϕ) + 1, t(ϕ) +Kϕ], which is congruentn moduloKϕ. We can
find this number in timeO(log n). Now we check(q,m) ∈ [[ϕ]]T (O) using the standard algorithm for
model checkingCTL on finite transition systems. The only difference is that if we reach a counter value of
t(ϕ) +Kϕ + 1, then we replace this value byt(ϕ) + 1. More precisely, we compute inductively for every
subformulaψ of ϕ the set

S(ψ) = [[ψ]]T (O) ∩ (Q× [t(ϕ) +Kϕ]).

Let us sketch the case of an until formulaψ = Eψ1Uψ2. By induction, we have already computed the sets
S(ψ1) andS(ψ2). The setS(ψ) is computed by a fixpoint iteration. Initially, we put all elements from
S(ψ2) into S(ψ). Then, we perform the following fixpoint iteration process as long as possible. Assume
that(p, k) ∈ S(ψ1) is a state, which does not belong to the currentS(ψ). Assume that(p, k) has aT (O)-
successor (where a counter value oft(ϕ) +Kϕ + 1 is reduced tot(ϕ) + 1) in S(ψ). Then we add(p, k) to
S(ψ). The correctness of this fixpoint iteration process followsfrom Theorem 1. The size of each setS(ψ)
is bounded byO(|Q| · |ϕ| · k2 · Kϕ) ⊆ O(|Q|3 · |ϕ| · 4|Q|·lud(ϕ)). ComputingS(ψ) can be done in time
O(|Q|3 · |ϕ| · 4|Q|·lud(ϕ) · |δ0 ∪ δ>0|). Hence, the total time bound isO(log(n) + |Q|3 · |ϕ|2 · 4|Q|·lud(ϕ) ·
|δ0 ∪ δ>0|). ⊓⊔

The following corollary generalizes a result from [18], stating that the expression complexity ofEF
over one-counter automata is inP.

Corollary 3. For every fixed one-counter automatonO = (Q, {Qp | p ∈ P}, δ0, δ>0) and every fixedk
the following problem is inP:
INPUT: ACTL formulaϕ with lud(ϕ) ≤ k, a control locationq ∈ Q and some naturaln ∈ N given in
binary.
QUESTION:(q, n) ∈ [[ϕ]]T (O)?

11

counter value

0

•

n1

blockB1







































∆ = k ·Kψ1











d1 ·Kψ1































d2 ·Kψ1

}

Kψ1

blockB2







































O’s control locations

...

Fig. 5.Repeating control locations in blocks

5 Expression complexity forCTL is hard for PSPACE

The goal of this section is to prove that model checkingCTL is PSPACE-hard already over a fixed zero-
test-free one-counter automaton. We show this via a reduction from the well-knownPSPACE-complete
problem QBF. Our lower bound proof is separated into three steps. In step one, we define a family of
CTL formulas(ϕi)i≥1 such that over the fixed zero-test-free one-counter automatonO that is depicted in
Figure 6 (states inO will be identified with atomic propositions) we can express (non-)divisibility by 2i.
In step two, we define a family ofCTL formulas(ψi)i≥1 such that overO we can express if theith bit in
the binary representation of a natural number is set to1. In our final step, we give the reduction from QBF.

For step one, we need the following simple fact which characterizes divisibility by powers of two.
Recall that[n] = {1, . . . , n}, in particular[0] = ∅.

Fact 4 Letn ≥ 0 andi ≥ 1. Then the following two statements are equivalent:

– 2i dividesn.
– 2i−1 dividesn and|{n′ ∈ [n] | 2i−1 dividesn′}| is even.

The set of atomic propositions ofO in Figure 6 coincides with its control locations. Note that both t andt
are control locations ofO. Now we define a family ofCTL formulas(ϕi)i≥1 such that for eachn ∈ N we
have that

12

t

t

q0

q2

q1 −1q3

−1 −1

−1−1

−1
f

g

0

0

0

0

0

0

−1

−1

p0 p1

+1
00

+1

Fig. 6. The zero-test-free one-counter automatonO for whichCTL model checking isPSPACE-hard

– (t, n) |= ϕi if and only if 2i dividesn and
– (t, n) |= ϕi if and only if 2i doesnot dividen.

On first sight, it might seem superfluous to let the control location t represent divisibility by powers of
two and the control locationt to represent non-divisibility by powers of two sinceCTL allows negation.
However the fact that we haveonly onefamily of formulas(ϕi)i≥1 to express both divisibility and non-
divisibility is a crucial technical subtlety that is necessary in order to avoid an exponential blowup in
formula size. By making use of Fact 4, we construct the formulasϕi inductively. First, let us define the
auxiliary formulas test= t ∨ t andϕ⋄ = q0 ∨ q1 ∨ q2 ∨ q3. Think ofϕ⋄ to hold in those control locations
that altogether are situated in the “diamond” in Figure 6. Wedefine

ϕ1 = test ∧ EX (f ∧ EF(f ∧ ¬EXg)) .

Now assumei > 1. Then we define

ϕi = test ∧ EXµi, where

µi = E(ϕ⋄ ∧ EXϕi−1)U(q0 ∧ ¬EXq1).

Before we formally prove thatϕi indeed expresses (non-)divisibility in Lemma 6, let us provide some
informal explanation. Observe thatϕi can only be true either in control locationt or t. Note that the
formula right to the until symbol expresses that we are inq0 and that the current counter value is zero.
Also note that the formula left to the until symbol requires thatϕ⋄ holds, i.e., we are always in one of the
four “diamond control locations”. In other words, we decrement the counter by moving along the diamond
control locations (by possibly looping) and always check ifEXϕi−1 holds, just until we are inq0 and the
counter value is zero. Sinceϕi−1 is only used once inϕi, we get:

Fact 5 |ϕi| ∈ O(i).

The following lemma shows the correctness of the construction.

Lemma 6. Letn ≥ 0 andi ≥ 1. Then

(1) (t, n) |= ϕi if and only if2i dividesn.
(2) (t, n) |= ϕi if and only if2i does not dividen.

Proof. We prove statements (1) and (2) simultaneously by inductionon i. For the induction base, assume
i = 1. We only show (2), i.e.(t, n) ∈ [[ϕ1]]T (O) if and only ifn is odd. We have the following equivalences:

(t, n) |= ϕ1 ⇐⇒ n ≥ 1 and(f, n− 1) |= EF(f ∧ ¬EXg)

⇐⇒ n ≥ 1 and(f, n− 1)→∗ (f, 0)

⇐⇒ n ≥ 1 andn− 1 is even

⇐⇒ n is odd

13

Point (1) can be shown analogously fori = 1.

For the induction step, assumei ≥ 2 and that the statement in the lemma holds fori− 1. It is easy to verify
by the construction ofO and by induction hypothesis that the following claim holds.

Claim A: For everyn ≥ 1 the following equivalences hold:

(q0, n) |= ϕ⋄ ∧ EXϕi−1 ⇐⇒ (q2, n) |= ϕ⋄ ∧ EXϕi−1 ⇐⇒ 2i−1 dividesn

(q1, n) |= ϕ⋄ ∧ EXϕi−1 ⇐⇒ (q3, n) |= ϕ⋄ ∧ EXϕi−1 ⇐⇒ 2i−1 does not dividen

Using Claim A, one can easily show the following (recall thatµi = E(ϕ⋄ ∧ EXϕi−1)U(q0 ∧ ¬EXq1)):

Claim B: For everyn ≥ 0 the following equivalences hold:

(q0, n) |= µi ⇐⇒ 2i−1 dividesn and|{n′ ∈ [n] | 2i−1 dividesn′}| is even

(q1, n) |= µi ⇐⇒ 2i−1 does not dividen and|{n′ ∈ [n] | 2i−1 dividesn′}| is odd

(q2, n) |= µi ⇐⇒ 2i−1 dividesn and|{n′ ∈ [n] | 2i−1 dividesn′}| is odd

(q3, n) |= µi ⇐⇒ 2i−1 does not dividen and|{n′ ∈ [n] | 2i−1 dividesn′}| is even

Let us now prove Point (1) from the lemma fori ≥ 2. We have the following equivalences:

(t, n) |= ϕi ⇐⇒ (q0, n) |= µi
Claim B
⇐⇒ 2i−1 dividesn and|{n′ ∈ [n] | 2i−1 dividesn′}| is even
Fact 4
⇐⇒ 2i dividesn

For Point (2), we have the following equivalences:

(t, n) |= ϕi ⇐⇒ ∃j ∈ {1, 2, 3} : (qj , n) |= µi
Claim B
⇐⇒ either2i−1 does not dividen and|{n′ ∈ [n] | 2i−1 dividesn′}| is odd (i.e.j = 1),

or 2i−1 does not dividen and|{n′ ∈ [n] | 2i−1 dividesn′}| is even (i.e.j = 3),

or 2i−1 dividesn and|{n′ ∈ [n] | 2i−1 dividesn′}| is odd (i.e.j = 2)

⇐⇒ 2i−1 does not dividen or (2i−1 dividesn and|{n′ ∈ [n] | 2i−1 dividesn′}| is odd)
Fact 4
⇐⇒ 2i does not dividen

⊓⊔

For checking if theith bit of a natural number is set to1, we make use of the following fact.

Fact 7 Letn ≥ 0 andi ≥ 1. Thenbiti(n) = 1 if and only if|{n′ ∈ [n] | 2i−1 dividesn′}| is odd.

Proof. We have

biti(n) = 1 ⇐⇒ n mod2i ∈ [2i−1, 2i − 1]

⇐⇒ ∃r ∈ [0, 2i−1 − 1], k ≥ 0 : n = r + (2k + 1) · 2i−1

⇐⇒ |{n′ ∈ [n] | 2i−1 dividesn′}| is odd.

⊓⊔

Let us now define a family ofCTL formulas(ψi)i≥1 such that for eachn ∈ N we havebiti(n) = 1 if and
only if (t, n) |= ψi. We set

ψ1 = ϕ1 and

ψi = t ∧ EX ((q1 ∨ q2) ∧ µi) for eachi > 1.

Fact 5 and the construction ofψi immediately yield the following fact.

14

Fact 8 |ψi| ∈ O(i).

The following lemma shows the correctness of the construction.

Lemma 9. Letn ≥ 0 and leti ≥ 1. Then(t, n) |= ψi if and only ifbiti(n) = 1.

Proof. The casei = 1 is covered by Lemma 6. Fori ≥ 2, the following equivalences hold:

(t, n) |= ψi ⇐⇒ (q1, n) |= µi or (q2, n) |= µi
Claim B
⇐⇒ either2i−1 does not dividen and|{n′ ∈ [n] | 2i−1 dividesn′}| is odd

or 2i−1 dividesn and|{n′ ∈ [n] | 2i−1 dividesn′}| is odd

⇐⇒ |{n′ ∈ [n] | 2i−1 dividesn′}| is odd
Fact 7
⇐⇒ biti(n) = 1

⊓⊔

For our final step, let us give a reduction from QBF. Letα be the following quantified boolean formula

α = Qkxk Qk−1xk−1 · · · Q1x1 β(x1, . . . , xk),

whereβ is a boolean formula over variables{x1, . . . , xk} andQi ∈ {∃, ∀} is a quantifier for eachi ∈ [k].
Our overall goal is to give aCTL formulaθ such that our QBF formulaα is valid if and only if(t, 0) |= θ.
A truth assignmentϑ : {x1, . . . , xk} → {0, 1} corresponds to the natural numbern(ϑ) ∈ [0, 2k − 1],
where for eachi ∈ [k], biti(n(ϑ)) = 1 if and only if ϑ(xi) = 1. First, let β̂ be theCTL formula that is
obtained from the boolean formulaβ by replacing every occurrence of every variablexi by ψi. Hence we
obtain that for eachϑ : {x1, . . . , xk} → {0, 1} we haveϑ |= β if and only if (t, n(ϑ)) |= β̂ by Lemma 9.

It remains to defineθ. Recall thatθ will be evaluated in(t, 0). Let us parse our quantified boolean
formulaα from left to right. Setting the variablexk to 1 will correspond to adding2k−1 to the counter
and getting to state(t, 2k−1). Settingxk to 0 on the other hand will correspond to adding0 to the counter
and hence remaining in state(t, 0). Next, settingxk−1 to 1 corresponds to adding to the current counter
value2k−2, whereas settingxk−1 to 0 corresponds to adding0, as expected. Adding zero to the counter
will be realized by the finite path that jumps from control locationt to p0 and then back tot. Adding2i−1

to the counter, on the other hand, will be realized by a finite path that jumps from control locationt to p1
(and thereby adds1 to the counter), then loops atp1 as long as the counter value is not divisible by2i−1

(which can be ensured by checking if(p1, n) |= EX(t ∧ ϕi−1) by Lemma 6) and finally jumps back tot
when the counter value is divisible by2i−1 for the first time again. We repeat this process until we have
to setx1 either to1 or to 0. Eventually settingx1 to 1 will correspond to go fromt to p1 (hence adding1
to the counter) and then getting back tot, whereas settingx1 to 0 will correspond to go fromt to p0 and
then back tot. After that, we finally check if̂β holds. Recall thatQk, . . . , Q1 are the quantifiers of our
quantified boolean formulaα. For eachi ∈ [2, k], let us define formulaθi as

θi = RiX

(
(p0 ∨ p1)©i E

(
(p0 ∨ EX(t ∧ ϕi−1)) U (t ∧ ¬ϕi−1 ∧ θi−1))

))
and

θ1 = R1X
(
(p0 ∨ p1)©1 EX(t ∧ β̂)

)

with ©i = ∧ andRi = E in caseQi = ∃ and©i =→ andRi = A in caseQi = ∀ for eachi ∈ [k].
As expected, we putθ = θk. Observe that the size ofθ is polynomial in the size ofα and thatθ can be
computed in logarithmic space fromα. We finally obtain the following easy equivalence.

Lemma 10. The formulaα is valid if and only if(t, 0) ∈ [[θ]]T (O).

This finishes ourPSPACE lower bound proof for expression complexity ofCTL over zero-test-free one-
counter automata. We have the following theorem.

Theorem 11. CTL model checking of the fixed zero-test-free one-counter automatonO from Figure 6 is
PSPACE-hard.

Note that the formulaθ in our reduction necessarily has a leftward until depth thatdepends on the size of
α. By Corollary 3 this cannot be avoided unlessP = PSPACE. Observe that in order to express divisibility
by powers of two, ourCTL formulas(ϕi)i≥0 have a linearly growing leftward until depth.

15

6 Tools from complexity theory

For Sections 7–9 we need some concepts from complexity theory. Theith levelBHi of the boolean hierarchy
is defined as follows:BH1 = NP, BH2i = {L1 ∩ L2 | L1 ∈ BH2i−1, L2 ∈ coNP}, andBH2i+1 =
{L1 ∪ L2 | L1 ∈ BH2i, L2 ∈ NP}. Theboolean hierarchyBH is defined as∪i≥1BHi. The classPNP is
the class of all problems that can be solved on a polynomiallytime bounded deterministic Turing machine
with access to an oracle fromNP. By PNP[log] we denote the class of all problems that can be solved on
a polynomially time bounded deterministic Turing machineswhich can have access to anNP-oracle only
logarithmically many times. It is known thatBH ⊆ PNP[log].

For naturalsm ≥ 1 and0 ≤M ≤ 2m−1 letBINm(M) = bit1(M) · · · bitm(M) ∈ {0, 1}m denote the
m-bit binary representation ofM . For proving aPNP lower bound model checkingEF over zero-test-free
one-counter automata, we will need the following theorem.

Theorem 12 ([35]).The following problem is complete forPNP:
INPUT: A boolean formulaψ(x1, . . . , xm)?
QUESTION: Isψ satisfiable and is the maximal numberM ∈ [0, 2m − 1] with ψ(BINm(M)) = 1 even
(i.e. is the lexicographically maximal satisfying assignment even)?

6.1 Circuit complexity

More details on circuit complexity can be found in [34]. A boolean circuitC = C(x1, . . . , xn) is a directed
acyclic graph (DAG) with the following properties (in the following, nodes ofC are calledgates, the in-
degree (resp. out-degree) of a gate is called itsfan-in (resp.fan-out)):

– The gates with fan-in0 (they are calledinput gatesin the following) are labeled with one of the symbols
x1, ¬x1, . . . , xn, ¬xn.

– Every gate with fan-in at least one is labeled with either ANDor with OR.
– The gates of fan-out 0 (they are calledoutput gatesin the following) are linearly ordered, we denote

this order byo1, . . . , om in the following.

Such a circuit computes a functionfC : {0, 1}n → {0, 1}m in the obvious way.Threshold circuitsmay in
addition to boolean circuits containmajority gates. Such a gate outputs1 if and only if at least half of its
input gates evaluate to1. The fan-in of a circuit is the maximal fan-in of a gate in the circuit. Thesize of
a circuit is the number of gates in the circuit. Thedepth of a circuitis the number of gates along a longest
path from an input gate to an output gate. AnAC0-circuit family (resp.TC0-circuit family) is a sequence
(Cn)n≥1 of boolean circuits (resp. threshold circuits) such that for some polynomialp(n) and constantc:

– the size ofCn is at mostp(n),
– the depth ofCn is at mostc, and
– for eachk ≥ 0 there is at most one circuit in(Cn)n≥1 with exactlyk input gates.

An NC1-circuit family is a sequence(Cn)n≥1 of boolean circuits such that for some polynomialp(n) and
constantc:

– the size ofCn is at mostp(n),
– the depth ofCn is at mostc · log n,
– the fan-in ofCn is at most2, and
– for eachk ≥ 0 there is at most one circuit in(Cn)n≥1 with exactlyk input gates.

Circuit families of these types compute partial mappings on{0, 1}∗ in the obvious way.4 Finally, a circuit
family (Cn)n≥0 is calledlogspace-uniformif there exists a logspace transducer that computes on input
1n a representation (e.g. as a node-labeled DAG) of the circuitCn. In the literature on circuit complexity
one can find more restrictive notions of uniformity, see e.g.[34], but logspace uniformity suffices for our

4 Note that we do not require to have for everyn ≥ 0 a circuit with exactlyn input gates in the family, therefore the
computed mapping is in general only partially defined.

16

purposes. In fact, polynomial time uniformity suffices for proving our lower bounds w.r.t. polynomial time
reductions. We recall thatAC0 ⊆ NC1.

For our lower bound on the data complexity ofCTL, we use a deep result from [11, 22]. First, we need
a few definitions. Letpi denote theith prime number. It is well-known thatpi is polynomially bounded in
i; hence theith prime requiresO(log i) bits in its binary representation. Moreover, we need the following
proposition, see e.g. [11]:

Proposition 13. A list (p1, . . . , pm) of the firstm prime numbers in unary notation can be computed in
spaceO(logm).

For a number0 ≤ M <
∏m
i=1 pi we define theChinese remainder representationCRRm(M) as the

boolean tuple

CRRm(M) = (xi,r)i∈[m],0≤r<pi with xi,r =

{
1 if M modpi = r

0 else

By the following theorem, we can transform a CRR-representation very efficiently into binary representa-
tion.

Theorem 14 ([11, Thm. 3.3]).There is a logspace-uniformNC1-circuit family(Bm((xi,r)i∈[m],0≤r<pi))m≥1

such that for everym ≥ 1,Bm hasm output gates and

∀ 0 ≤M <

m∏

i=1

pi : Bm(CRRm(M)) = BINm(M mod2m).

By [22], we could replace logspace-uniformNC1-circuits in Theorem 14 even byDLOGTIME-uniform
TC0-circuits. The existence of aP-uniformNC1-circuit family for converting from CRR-representation to
binary representation was already shown in [5].

Usually the Chinese remainder representation ofM is the tuple(ri)i∈[m], whereri = M modpi.
Since the primespi will be always given in unary notation, there is no essentialdifference between this
representation and our Chinese remainder representation.The latter is more suitable for our purpose.

6.2 Serializability

Intuitively, a complexity classC1 is calledC2-serializable (whereC2 is another complexity class) if every
languageL ∈ C1 can be accepted in the following way: There exists a polynomial p(n) and aC2-machine
(or C2-circuit family)A such thatx ∈ L is checked in2p(|x|) many stages, which are indexed by the strings
from {0, 1}p(|x|). In stagey ∈ {0, 1}p(|x|),A gets from the stage indexed by the lexicographic predecessor
of y a constant number of bitsb1, . . . , bc and computes from these bits, the indexy and the original inputx
new bitsb′1, . . . , b

′
c which are delivered to the lexicographic next stage. In [10]it was shown thatPSPACE

is P-serializable; in [21] this result was sharpened toAC0-serializability, see also [33]. It is not stated in
[21, 33] but easy to see from the proofs thatlogspace-uniformAC0 suffices for serializingPSPACE, see
the appendix for more details.

For our purpose, a slightly different definition ofAC0-serializability is useful: A languageL is AC0-
serializable if there exists an nondeterministic finite automatonA over the alphabet{0, 1}, a polynomial
p(n), and a logspace-uniformAC0-circuit family (Cn)n≥0, whereCn has exactlyn + p(n) many inputs
and one output, such that for everyx ∈ {0, 1}n we have:

x ∈ L ⇐⇒
∏

y∈{0,1}p(n)

Cn(x, y) ∈ L(A),

where “· · · ” refers to the lexicographic order on{0, 1}p(n) and for everyy ∈ {0, 1}p(n),Cn(x, y) is either0
or 1 (hence,

∏
y∈{0,1}p(n) Cn(x, y) is a binary string of length2p(n)). This definition ofAC0-serializability

is equivalent to the one in [21]. A proof that every language in PSPACE is AC0-serializable in the above
sense can be found in the appendix.

17

6.3 Combining serializability and small-depth circuits

In this section, we will combine Theorem 14 with theAC0-serializability ofPSPACE to get a new charac-
terization ofPSPACE that will be suitable for our lower bound proofs in the rest ofthe paper. Again, letpi
denote theith prime number. Note that

∏m
i=1 pi ≥ 2m for all m ≥ 1. Also note that a boolean formula can

be seen as a boolean circuit, where every gate that is neitheran input gate nor the output gate has fan-out
1 (i.e., is input gate for exactly one other gate). We only consider boolean formulas, where AND and OR
are binary, i.e, every AND-expression and every OR-expression has exactly two arguments. In this case,
we write∧ (resp.,∨) for AND (resp. OR).

Proposition 15. For every languageL ⊆ {0, 1}∗ from PSPACE there exists a polynomialp(n) and an
NFAA over the alphabet{0, 1} such that the following holds: From a given inputx ∈ {0, 1}∗ with |x| = n

one can construct in logspace a boolean formulaF with propositional variablesxi,r (i ∈ [p(n)] and
0 ≤ r < pi) such that:

x ∈ L ⇐⇒
2m−1∏

M=0

F (CRRm(M)) ∈ L(A). (2)

Proof. Let us fix a languageL ⊆ {0, 1}∗ from PSPACE. Recall from Section 6.2 thatPSPACE is AC0-
serializable [21] and henceNC1-serializable. Thus, there exists an NFAA over the alphabet{0, 1}, a
polynomial p(n), and a logspace-uniformNC1-circuit family (Cn)n≥0, whereCn hasn + p(n) many
inputs, such that for everyx ∈ {0, 1}n we have

x ∈ L ⇐⇒
∏

y∈{0,1}p(n)

Cn(x, y) ∈ L(A), (3)

where the order in the concatenation
∏

is the lexicographic order on{0, 1}p(n). Fix an inputx ∈ {0, 1}n.
Our construction of the boolean formulaF can be split into three steps:

Step 1.Construct in spaceO(log n) the circuitCn. Fix the firstn inputs ofCn to the bits inx, and denote
the resulting circuit byC; it has onlym := p(n) many inputs. Equivalence (3) can be written as

x ∈ L ⇐⇒
2m−1∏

M=0

C(BINm(M)) ∈ L(A). (4)

Step 2.Compute in spaceO(logm) = O(log n) the circuitB = Bm((xi,r)i∈[m],0≤r<pi) from Theo-
rem 14. Thus,B is a boolean circuit of fan-in 2 and depthO(logm) = O(log n) with

B(CRRm(M)) = BINm(M mod2m)

for every0 ≤M <
∏m
i=1 pi.

Step 3.Now we compose the circuitsB andC: For everyi ∈ [m], connect theith input of the circuit
C(x1, . . . , xm) with theith output of the circuitB. The result is a circuit with fan-in 2 and depthO(log n).
We can unfold this circuit into a boolean formulaF = F ((xi,r)i∈[m],0≤r<pi). The resulting formula (or
tree) has the same depth as the circuit, i.e., depthO(log n) and every tree node has at most 2 children.
Hence,F has polynomial size. For every0 ≤ M < 2m we haveF (CRRm(M)) = C(BINm(M)) and
equivalence (4) can be written as

x ∈ L ⇐⇒
2m−1∏

M=0

F (CRRm(M)) ∈ L(A).

The unfolding of the circuit can be done in spaceO(log n), since the circuit has depthO(log n) and fan-in
2 (this implies that a path in the circuit from the output gatedown to a certain node can be stored in space
O(log n)). This proves the proposition. ⊓⊔

18

Proposition 15 can be used forPSPACE lower bound proofs for OCA. The idea is to store the numberM

in (2) on the counter. To check whetherF (CRRm(M)) evaluates to true, the OCA traverses the boolean
formulaF . Each time, a variablexi,r is reached, it has to be checked whether the current counter value is
congruentr modulopi. An OCA can do this. Recall thatpi can be constructed in spaceO(log i). Hence,
we can also construct in spaceO(log i) an OCA that checks whether the current counter value is congruent
r modulopi. When doing this modulo check, the original counter value is of course lost. In the context of
CTL, which we discuss in the next section, this is not a problem, since a fixedCTL-formula can control a
second computation path (on which the modulo test is done) that branches off the main computation path
(which traverses the boolean formula).

For ourPSPACE lower bound proof for timed automata in Section 10.1 we need the following variant
of Proposition 15. The proof is the same as for Proposition 15, we just skip Step 2, i.e., the use of small
depth circuits for transforming CRR-representations intobinary representations.

Proposition 16. For every languageL ⊆ {0, 1}∗ from PSPACE there exists a polynomialp(n) and an
NFAA over the alphabet{0, 1} such that the following holds: From a given inputx ∈ {0, 1}∗ with |x| = n

one can construct in logspace a boolean formulaF with propositional variablesxi (i ∈ [p(n)]) such that:

x ∈ L ⇐⇒
2m−1∏

M=0

F (BINm(M)) ∈ L(A).

7 Data complexity forCTL is hard for PSPACE

In this section, we prove that also the data complexity ofCTL over zero-test-free one-counter automata is
hard forPSPACE and thereforePSPACE-complete by the known upper bounds for the modalµ-calculus
[30]. We will use Proposition 15 for this. Let us fix the set of propositionsP = {α, β, γ} for this section. In
the following, we allow in the transition relationδ of a zero-test-free OCA transitions of the kind(q, k, q′),
wherek ∈ Z is given in unary representation with the expected intuitive meaning. Clearly, such transitions
can be eliminated with a logspace transformation.

The following proposition formalizes the idea explained after the proof of Propositon 15.

Proposition 17. For the fixedEF formulaϕ = (α → EX(β ∧ EF(¬EXγ))) the following problem can be
solved with a logspace transducer:
INPUT: A list of the firstm consecutive (unary encoded) prime numbersp1, . . . , pm and a boolean formula
F = F ((xi,r)i∈[m],0≤r<pi)

OUTPUT: A zero-test-free OCAOF with distinguished control locationsin and out such that for every
number0 ≤M <

∏m
i=1 pi the following are equivalent:

– F (CRRm(M)) = 1

– There exists a[[ϕ]]T (OF)-path from(in,M) to (out,M) in T (OF).

Proof. We first transform in logspace the input formulaF into apositive boolean formula(i.e., a boolean
formula that is built up from propositional variables and the binary operators∧ and∨). For this we first push
negations down so that they only occur in front of propositional variablesxi,r. Then, a negated variable
¬xi,r can be replaced by the disjunction

∨
{xi,k | 0 ≤ k < pi, r 6= k}. Note that this can be done in

logspace, since the primespi are given in unary representation. The
∨

can be replaced by binary∨’s. We
denote the resulting formula withF again.

Now, the idea is to traverse the positive boolean formulaF with the zero-test-free OCAOF in a depth
first manner. Each time a variablexi,r is seen, the zero-test-free OCA may also enter another branch, where
it is checked, whether the current counter value is congruent r modulopi. LetSF be the syntax tree of the
formulaF , which is a binary, rooted, and node-labeled tree. Each nodeof SF is labeled with one of the
symbols∧, ∨, or xi,r (1 ≤ i ≤ m, 0 ≤ r < pi). SetVF be the set of nodes of the treeSF . ThenOF is

19

v0 : ∨

v1 : ∧ v2 : ∧

v3 : x1,0 v4 : x2,1 v5 : x1,0 v6 : x2,2

in(v0)

in(v1)

in(v2)

out(v0)

in(v3) out(v3) in(v4) out(v4) out(v1)

in(v5) out(v5) in(v6) out(v6) out(v2)

div(2) div(3)

−1

−2

−2 −3⊥
−1 −1

α

α

α

α

ββ
γ

Fig. 7.The syntax treeSF and the OCAOF for the formulaF = (x1,0 ∧ x2,1) ∨ (x1,0 ∧ x2,0). Unlabeled transitions
are implicitly labeled with0.

defined as

OF = (Q, {Qα, Qβ , Qγ}, δ), where

Q = {in(v), out(v) | v ∈ VF } ∪ {div(p1), . . . , div(pm),⊥}

Qα = {in(v) | v ∈ VF is labeled with a variablexi,r(i ∈ [m], 0 ≤ r < pi)}

Qβ = {div(p1), . . . , div(pm)}

Qγ = {⊥}.

Form = 2 (and hence the primesp1 = 2 andp2 = 3) and the formulaF = (x1,0 ∧ x2,1) ∨ (x1,0 ∧ x2,2)
the construction is shown in Figure 7. As an exampleM = 4 corresponds to the residue class0 modulo
p1 = 2 and the residue class1 modulop2 = 3, thusM assigns to the variablesx1,0 andx2,1 the truth value
1 and to the other variables the truth value0. A corresponding[[ϕ]]T (OF)-path is displayed with dashed
lines in Figure 7. We setin = in(v0) andout = out(v0), wherev0 is the root ofSF . Let us now define the
transition setδ. Let v be a node ofSF , which is not a leaf, and letv1 andv2 be the children ofv. If v is
labeled with∨, then we add the transitions

(in(v), 0, in(vi)) and(out(vi), 0, out(v)) for i ∈ {1, 2}

to δ. If v is labeled with∧, we add the transitions

(in(v), 0, in(v1)), (out(v1), 0, in(v2)), and(out(v2), 0, out(v))

to δ. If v is a leaf ofSF that is labeled with the variablexi,r, we add the transitions

(in(v), 0, out(v)) and(in(v),−r, div(pi))

to δ. For the control locationsdiv(pi) we add toδ the transitions

(div(pi),−pi, div(pi)) and(div(pi),−1,⊥).

This concludes the description of the zero-test-free OCAOF . Correctness of the construction can be easily
checked by induction on the structure of the formulaF . ⊓⊔

We are now ready to provePSPACE-hardness of the data complexity.

Theorem 18. There exists a fixedCTL formula of the formEϕ1Uϕ2, whereϕ1 andϕ2 areEF formulas,
such that the following problem isPSPACE-complete:
INPUT: A zero-test-free OCAO and a control locationq ofO.
QUESTION:(T (O), (q, 0)) |= Eϕ1Uϕ2?

Proof. ThePSPACE upper bound is already known and even holds for the combined complexity of model
checking OCA against formulas of the modalµ-calculus as shown in [30]. It thus remains to prove
PSPACE-hardness. For this, let us take an arbitraryPSPACE-complete languageL ⊆ {0, 1}∗. Fix the
polynomialp(n) and the NFAA = (S, {0, 1}, δ, s0, Sf) over the alphabet{0, 1} from Proposition 15. Let
x ∈ {0, 1}∗ be an input of lengthn, and letm := p(n), where w.l.o.g.m > 1. By Proposition 15 one can

20

construct in spacelog n a boolean formula with propositional variablesxi,r (i ∈ [m] and0 ≤ r < pi) such
that:

x ∈ L ⇐⇒
2m−1∏

M=0

F (CRRm(M)) ∈ L(A). (5)

By Proposition 13 we can compute in spaceO(logm) = O(log n) a list p1, . . . , pm of the firstm prime
numbers in unary notation. Note that

∏m
i=1 pi > 2m sincem > 1.

We now apply our construction from Proposition 17 to the formula F . More precisely, letG be the
boolean formula

∧
i∈[m] xi,ri wereri = 2m modpi for i ∈ [m] (these remainders can be computed in

logarithmic space). For every1-labeled transitionτ ∈ δ of the NFAA let O(τ) be a copy of the zero-
test-free OCAO(F ∧ ¬G). For every0-labeled transitionτ ∈ δ let Oτ be a copy of the zero-test-free
OCA O¬F∧¬G. In both cases we writeOτ as(Q(τ), {Qα(τ), Qβ(τ), Qγ(τ)}, δ(τ)). Denote within(τ)
(resp.out(τ)) the control location of this copy that corresponds toin (resp.out) in OF . Hence, for every
b-labeled transitionτ ∈ δ (b ∈ {0, 1}) and every0 ≤ M <

∏m
i=1 pi there exists a[[ϕ]]T (Oτ)-path (ϕ is

from Proposition 17) from(in(τ),M) to (out(τ),M) if and only ifF (CRRm(M)) = b andM 6= 2m.
We now define a zero-test-free OCAO = (Q, {Qα, Qβ , Qγ}, δ

′) as follows: We take the disjoint union
of all the OCAOτ for τ ∈ δ. Moreover, every states ∈ S of the automatonA becomes a control location
of O:

Q = S ∪
⋃

τ∈δ

Q(τ)

Qp =
⋃

τ∈δ

Qp(τ) for p ∈ {α, β, γ}

We add toδ′ for every NFA-transitionτ = (s, b, t) ∈ δ the following transitions:

(s, 0, in(τ)), (out(τ),+1, t).

Then, by Proposition 17 and (5) we havex ∈ L if and only if there exists a[[ϕ]]T (O)-path inT (O) from
(s0, 0) to (s, 2m) for somes ∈ Sf . Also note that there is no[[ϕ]]T (O)-path inT (O) from (s0, 0) to some
configuration(s,M) with s ∈ S andM > 2m. It remains to add toO some structure that enablesO to
check that the counter has reached the value2m.

For this, use Proposition 17 to construct the zero-test-free OCAOG (whereG is from above) and add
it disjointly to O. Moreover, add toδ′ the transitions(s, 0, in) for all s ∈ Sf , wherein is the in control
location ofOG. Finally, introduce a new propositionρ and setQρ = {out}, whereout is the out control
location ofOG. By puttingq = s0 we obtain:

x ∈ L ⇐⇒ (T (O), (q, 0)) |= E (α→ EX(β ∧ EF(¬EXγ)))︸ ︷︷ ︸
ϕ from Proposition 17

U ρ.

This concludes the proof of the theorem. ⊓⊔

By slightly modifying the proof of Theorem 18, the followingcorollary can be shown.

Corollary 19. There exists a fixedCTL formula of the formEGψ, whereψ is anEF formula, such that the
following problem isPSPACE-complete:
INPUT: A zero-test-free OCAO and a control locationq ofO.
QUESTION:(T (O), (q, 0)) |= EGψ?

Proof. The proof is almost identical to the proof of Theorem 18, except that we do not introduce the atomic
propositionρ. We rather add toδ′ the transition(out, 0, in), whereout is the out control location ofOG and
in is the in control location ofOG. We defineψ = ϕ, where againϕ is the formula from Proposition 17.⊓⊔

21

8 Combined complexity ofEF is hard for PNP

In this section, we will apply the efficient transformation from Chinese remainder representation to binary
representation (Theorem 14) in order to prove that the combined complexity forEF over zero-test-free one-
counter automata is hard forPNP. For formulas represented succinctly by DAGs (directed acyclic graphs)
this was already shown in [18]. The point here is that we use the standard tree representation for formulas.
The following proposition states that evaluating a booleanformula whose variables are given in Chinese
remainder representation can in fact be reduced toEF model checking an appropriate OCA whose counter
value we assume to encode this Chinese remainder representation.

Proposition 20. The following problem can be solved by a logspace transducer:
INPUT: A list of the firstm consecutive (unary encoded) prime numbers and a boolean circuit C =
C((xi,r)i∈[m],0≤r<pi) (with a single output gate)
OUTPUT: A zero-test-free OCAOC with a distinguished statein and anEF formulaϕ(C) such that for
every number0 ≤M <

∏m
i=1 pi we have:

C(CRRm(M)) = 1 ⇐⇒ (T (OC), (in,M)) |= ϕ(C).

Proof. As in the proof of Proposition 17 we can eliminate inC negated input gates¬xi,r by disjunctions
of positive input gates. Moreover, we can w.l.o.g. assume that the circuitC is organized ink + 1 layers,
where each layer either contains only AND- or OR-gates. All children of a node in layeri belong to layer
i + 1. Layer1 contains only the unique output gate of the circuit, whereaslayerk + 1 contains the input
gates. Fori ∈ [k], let ℓi = AND (resp.ℓi = OR) if layer i consists of AND-gates (resp. OR-gates).

The set of control locations of the zero-test-free OCAOC contains all gates of the circuitC; the unique
output gate becomes the distinguished statein. We add the transition(g1, 0, g2) toOC if gateg2 is a child
of gateg1. If gateg is an input gate labeled withxi,r then we add the transition(g,−r, div(pi)) to OC .
Finally, for the statesdiv(pi) we have the same transitions as in the proof of Proposition 17. This concludes
the description of the zero-test-free OCAOC .

In order to describe theEF formulaϕ(C) let Mi = EX (resp.Mi = AX) if ℓi = OR (resp.ℓi = AND)
for i ∈ [k]. Then let

ϕ(C) = M1M2 · · ·MkEXEF(¬EXγ), (6)

where the propositionγ is used in the same way as in the proof of Proposition 17 to allow to test if the
counter value is zero. It is clear that this formula fulfills the requirements of the theorem. ⊓⊔

We now prove that model checkingEF on zero-test-free OCA is hard forPNP.

Theorem 21. The following problem isPNP-hard:
INPUT: A zero-test-free OCAO, a stateq0 ofO, and anEF formulaϕ.
QUESTION:(T (O), (q0, 0)) |= ϕ?

Proof. Let us take a boolean formulaψ(x1, . . . , xm). By Theorem 12 it suffices to construct (in logspace)
a zero-test-free OCAOψ with a distinguished stateq0 and anEF formulaϕψ such that(T (Oψ), (q0, 0)) |=
ϕψ if and only if ψ is satisfiable and the maximal numberM ∈ [0, 2m − 1] with ψ(BINm(M)) = 1 is
even.

By Proposition 13 we can compute in spacelogm a list p1, . . . , pm of the firstm consecutive primes.
Moreover, let us compute in spacelogm the circuitB = Bm((xi,r)i∈[m],0≤r<pi) of logarithmic depth and
fan-in at most two from Theorem 14. We combineB with the boolean formulaψ(x1, . . . , xm) and obtain
a boolean circuitC = C((xi,r)i∈[m],0≤r<pi) such that for every number0 ≤M ≤ 2m − 1:

ψ(BINm(M)) = 1 ⇐⇒ C(CRRm(M)) = 1. (7)

As in the proof of Theorem 18 letG be the boolean formula
∧
i∈[m] xi,ri wereri = 2m modpi for i ∈ [m].

The main structure of the zero-test-free OCAOψ is described by the following diagram:

22

q0q

+1

+1

p0

−1

r+1

+1

s0

−1

From the statesq0, p, r, ands some further0-labeled transitions emanate to zero-test-free OCA of the form
constructed in Proposition 20:

– Fromq0 a transition into the initial statein of a copy ofOC .
– Fromp ands a transition into the initial statein of a copy ofOG.
– Fromr a transition into the initial statein of a copy ofO¬C .

Now ourEF formulaϕψ expresses the following: We can reach a configuration(q0,M1) from (q0, 0) in
the zero-test-free OCAOψ such that the following holds:

– C(CRRm(M1)) = 1,
– from (q0,M1) we cannot reach a configuration(p,M0) with 0 ≤M0 ≤M1 andG(CRRm(M0)) = 1

(i.e.,M0 = 2m mod
∏m
i=1 pi), and

– for all configurations(r,M2) that are reachable from(q0,M1) (henceM2 > M1) the following
holds: If we cannot reach a configuration(s,M3) from (r,M2) with G(CRRm(M3)) = 1 then
C(CRRm(M2)) = 0.

Using the formulas constructed in Proposition 20, it is straightforward to transform this description into a
realEF formula. This concludes the proof. ⊓⊔

At the moment we cannot provePNP-hardness for the data complexity ofEF over OCA. For this, it would
be sufficient to have a fixedEF formulaϕ(C) in (6). Note that this formula only depends on the number of
layersk of the circuitC. Hence, ifC is from anAC0-circuit family, thenϕ(C) is in fact a fixed formula.
In our case, the circuit is the composition of two circuits, one from anNC1-circuit family (coming from
Theorem 14, where we could even assume aTC0-circuit family) and a boolean formula, which can be
assumed to be in conjunctive normal form. Hence, the main obstacle for getting a fixed formula is the fact
that converting from Chinese remainder representation to binary representation is not possible inAC0 (this
is provably the case).

9 Reachability objectives on one-counter Markov decision processes

In this section we show that the techniques developed in the previous sections can be used to improve a
lower bound on verifying reachability objectives on one-counter Markov decision processes from [8].

A probability distributionon a non-empty finite setS is a functionf : S → {x ∈ Q | 0 ≤ x ≤ 1}
such that

∑
s∈S f(s) = 1. We restrict here to rational probabilities, in order to getfinite representations

for probability distributions. A (image-finite)Markov chainis a tripleC = (S,→, f), where(S,→) is an
image-finite and deadlock-free directed graph (S is also called the set of states ofC) andf assigns to each
s ∈ S a probability distributionf(s) over all (the finitely many) successors ofs w.r.t.→. If s → t, then
we also use the notationsf(s, t) = x or s

x
−→ t for (f(s))(t) = x ∈ Q. A (image-finite)Markov decision

process(MDP) is a tripleD = (V, →֒, f), where(V, →֒) is again an image-finite and deadlock-free directed
graph, the setV of vertices is partitioned asV = VN ⊎VP (VN is the set ofnondeterministicvertices,VP is
the set ofprobabilisticvertices), andf assigns to each probabilistic vertexv ∈ VP a probability distribution
onv’s successors. Astrategyσ is a function that assigns to eachwv with w ∈ V ∗ andv ∈ VN a probability
distribution onv’s successors. Ifσ assigns towv andv′ (wherev →֒ v′) the probabilityx, then we write
σ(wv, v′) = x. Every strategyσ determines a Markov chainD(σ) = (V +,→, f), wherewv

x
−→ wvv′ if

23

and only ifv →֒ v′ and moreover eitherv ∈ VP andf(v, v′) = x, or v ∈ VN andσ(wv, v′) = x. Let
pathω(D) = pathω(V, →֒) andpathω(D(σ)) = pathω(V

+,→); paths in these sets will be calledruns in
D orD(σ), respectively. Note that every run inD corresponds to a unique run inD(σ) and vice versa in a
natural way. In order to simplify notation, we will quite often identify these corresponding runs. Let us fix
a set oftarget verticesT ⊆ V of the MDPD. For each strategyσ and each vertexv ∈ V of D, let

ReachσT (v) = {w1w2 · · · ∈ pathω(D(σ)) | w1 = v and∃i ≥ 1 : wi ∈ V
∗T}

denote all runs inD(σ) that start inv and that satisfy the reachability objectiveT in D. For eachT , eachσ
and eachv, the set ReachσT (v) is measurable [4]. The probabilityP(ReachσT (v)) for the set ReachσT (v) can
be obtained as follows: Take all finite pathsw ∈ path+(D(σ)) that start inv and such that the last state of
w is from V ∗T but no previous state inw is from V ∗T (this set is prefix free). For each such finite path
w = w1 · · ·wn such thatwi

xi−→ wi+1 in D(σ) the probability isx1 · x2 · · ·xn−1. Finally, the probability
for ReachσT (v) is the (possibly infinite) sum of all these probabilities. Now, let us define theT -reachability
value inv by

ValReachT (v) = sup{P(ReachσT (v)) | σ is a strategy inD}.

Observe that it is not required that this supremum is actually reached by a certain strategyσ. If however
a strategyσ does reach theT -reachability value, i.e.,P(ReachσT (v)) = ValReachT (v), thenσ is called
optimal.

A one-counter Markov decision process (OC-MDP) is a tupleM = (Q, δ0, δ>0, f0, f>0), whereQ =
QN ⊎ QP is a finite set ofcontrol locationswhich is partitioned intonondeterministic control locations
QN andprobabilistic control locationsQP , δ0 ⊆ Q × {0, 1} × Q is a set ofzero transitionsandδ>0 ⊆
Q × {−1, 0, 1} × Q is a set ofpositive transitionssuch that eachq ∈ Q has at least one outgoing zero
transition and at least one outgoing positive transition, and finallyf0 (resp.f>0) assigns to eachq ∈ QP a
probability distribution over all outgoing zero (resp. positive) transitions ofq. The MDP thatM describes
isD(M) = (V, →֒, f), where

– VN = QN × N andVP = QP × N, and
– (q, n) →֒ (q′, n+ i) if and only if one of the following two conditions holds:
• n = 0 and (q, i, q′) ∈ δ0. If furthermoreq ∈ QP , thenf assigns to(q, n) →֒ (q′, n + i) the

probabilityf0(q, i, q′).
• n > 0 and(q, i, q′) ∈ δ>0. If furthermoreq ∈ QP , thenf assigns to(q, n) →֒ (q′, n + i) the

probabilityf>0(q, i, q
′).

Given an OC-MDPM = (Q, δ0, δ>0, f0, f>0) and a set of control locationsR ⊆ Q, define

ValOne(R) = {(q, n) ∈ Q× N | ValReachR×{0}(q, n) = 1}

and
OptValOne(R) = {(q, n) ∈ Q× N | ∃ strategyσ : P(ReachσR×{0}(q, n)) = 1}

(both sets are defined w.r.tD(M)). In other words:ValOne(R) is the set of all states(q, n) of the MDP
D(M) such that for everyε > 0 there exists a strategyσε under which the probability of reaching from
(q, n) a control location inR and at the same time having counter value0 is at least1− ε. OptValOne(R)
is the set of all states(q, n) of the MDPD(M) for which there exists a specific strategy under which this
probability becomes1. The following theorem recalls the complexity bounds that are known for the latter
variant.

Theorem 22 ([8]).The following problem isPSPACE-hard and inEXPTIME:
INPUT: An OCA-MDPM = (Q, δ0, δ>0, f0, f>0),R ⊆ Q, andq ∈ Q.
QUESTION:(q, 0) ∈ OptValOne(R)?

The lower bound in Theorem 22 was proven by a reduction from thePSPACE-complete emptiness prob-
lem for alternating finite word automata over a singleton alphabet ([23], see also [24] for a simplified
presentation).

24

Theorem 23 ([8]).The following problem is hard for every level ofBH:
INPUT: An OC-MDPM = (Q, δ0, δ>0, f0, f>0),R ⊆ Q, andq ∈ Q.
QUESTION:(q, 0) ∈ ValOne(R)?

Currently, it is open whether the problem stated in Theorem 23 is decidable; the corresponding problem
for MDPs defined by pushdown automata is undecidable [15].

From the proof of Theorem 23 it can be seen that the authors prove actually hardness forPNP[log].
Moreover, it is pointed out in [8] that various difficulties arise when trying to improve the latter lower
bound. In this section, we will improve the lower bound for membership inValOne(R) to PSPACE. We
aim at demonstrating that the tools from computational complexity that we have used so far, can again
be applied for theValOne(R) problem, rather than emphasizing that one can prove thatValOne(R) is
indeedPSPACE-hard: as mentioned above,ValOne(R) is not known to be decidable. From our proof one
can easily see that we reprovePSPACE-hardness ofOptValOne as a byproduct. But first, we need the
following proposition.

Proposition 24. The following problem can be solved by a logspace transducer:
INPUT: A list of the firstm consecutive (unary encoded) prime numbers and a boolean formula F =
F ((xi,r)i∈[m],0≤r<pi).
OUTPUT: An OC-MDPM =M(F) with control locationsQ, a setR = R(F) ⊆ Q, and some control
locationqF ∈ Q such that for every number0 ≤M <

∏m
i=1 pi the following holds:

– If F (CRRm(M)) = 1, then there exists a strategyσ such thatP(ReachσR×{0}(qF ,M)) = 1.

– If F (CRRm(M)) = 0, then for every strategyσ we haveP(ReachσR×{0}(qF ,M)) ≤ 1− 2−|F |.

Proof. As in the proof of Proposition 17, we can assume thatF is a positive boolean formula. The OC-
MDPM = M(F) = (Q, δ0, δ>0, f0, f>0) will have for each subformulaG of F a control locationqG.
If G is of the formG = G1 ∨ G2, thenqG will be nondeterministic and both inδ0 and in δ>0 there
is a transition fromqG to bothqG1

andqG2
that does not change the counter value. IfG is of the form

G = G1 ∧G2, thenqG will be probabilistic and both inδ0 and inδ>0 there will be a transition to bothqG1

andqG2
that does not change the counter value and which will be chosen with probability 1

2 each. Now
assume thatG is a variablexi,r. Recall thatxi,r is set to1 if and only ifM modpi = r. We introduce in
M further (deterministically behaving) control locationsq(j, pi) for 0 ≤ j < pi that allow to test ifM is
congruentr modulopi by allowing the following transitions inδ>0 for each0 ≤ j < pi:

(q(j, pi),−1, q(j − 1 modpi, pi))

Since eachq(j, pi) must have an outgoing transition both inδ0 andδ>0, we add the transition

(q(j, pi), 0, q(j, pi))

to δ0 for each0 ≤ j < pi. We putqxi,r to be nondeterministic with a transition both inδ0 and inδ>0 from
qxi,r to q(r, pi) that does not change the counter value. Finally we putR = {q(0, pi) | i ∈ [m]}.

Assume first thatF (CRRm(M)) = 1. We prove that there exists a strategyσ such that

P(ReachσR×{0}(qF ,M)) = 1

inD(M). Note that the only nondeterministic states inD(M) that have more than one successor are states
which correspond to a disjunctive subformulaG = G1 ∨G2 of F . If G(CRRm(M)) = 1, then there exists
somei ∈ {1, 2} such thatGi(CRRm(M)) = 1. Our strategyσ will choose(qG,M)’s successor(qGi ,M)
with probability1. If G(CRRm(M)) = 0, then the choice ofσ is irrelevant and we letσ choose(qG,M)’s
successor uniformly distributed, say. It is now easy to verify thatP(ReachσR×{0}(qF ,M)) = 1.

On the other hand, assume thatF (CRRm(M)) = 0 and consider an arbitrary strategyσ. The question
is how close canP(ReachσR×{0}(qF ,M)) reach1. We prove by induction on the structure of the formula
F that

P(ReachσR×{0}(qF ,M)) ≤ 1− 2−k, (8)

25

wherek is the number of conjunctions that appear inF . If F is a variablexi,r, then

P(ReachσR×{0}(qF ,M)) = 0 = 1− 20.

If F = F1 ∨F2 thenF1(CRRm(M)) = F2(CRRm(M)) = 0. Assume thatσ assigns to the transition from
(qF ,M) to (qFi ,M) the probabilityxi, wherex1 + x2 = 1. With the induction hypothesis, we get

P(ReachσR×{0}(qF ,M)) = x1 · P(ReachσR×{0}(qF1
,M)) + x2 · P(ReachσR×{0}(qF2

,M))

≤ x1(1− 2−k1) + x2(1− 2−k2),

whereki the number of conjunctions that appear inFi. Sinceki ≤ k, we get (8). Finally, assume thatF =
F1∧F2 and letki be the number of conjunctions that appear inFi. Hence,ki ≤ k−1. If F1(CRRm(M)) =
F2(CRRm(M)) = 0 then we getP(ReachσR×{0}(qF ,M)) ≤ 1− 2−k+1 ≤ 1− 2−k. On the other hand, if
e.g.F1(CRRm(M)) = 0 butF2(CRRm(M)) = 1 (the other case is symmetric), then we get

P(ReachσR×{0}(qF ,M)) =
1

2
· P(ReachσR×{0}(qF1

,M)) +
1

2
· P(ReachσR×{0}(qF2

,M))

≤
1

2
· (1− 2−k+1) +

1

2
= 1− 2−k.

This concludes the proof of (8). Sincek ≤ |F | we obtainP(ReachσR×{0}(qF ,M)) ≤ 1 − 2−|F |. This
concludes the proof of Proposition 24. ⊓⊔

Theorem 25. The following problem isPSPACE-hard:
INPUT: An OC-MDPM = (Q, δ0, δ>0, f0, f>0),R ⊆ Q, andq ∈ Q.
QUESTION:(q, 0) ∈ ValOne(R)?

Proof. Take an arbitraryPSPACE-complete languageL ⊆ {0, 1}∗. Fix the polynomialp(n) and the NFA
A = (S, {0, 1}, δ, s0, Sf) over the alphabet{0, 1} from Proposition 15. Letx ∈ {0, 1}∗ be an input of
lengthn, and letm := p(n), where w.l.o.g.m > 1. By Proposition 15 one can construct in spaceO(log n)
a boolean formulaF with propositional variablesxi,r (i ∈ [m] and0 ≤ r < pi) such that

x ∈ L ⇐⇒
2m−1∏

M=0

F (CRRm(M)) ∈ L(A). (9)

By Proposition 13 we can compute in spaceO(logm) = O(log n) a list p1, . . . , pm of the firstm prime
numbers in unary notation. Note that

∏m
i=1 pi > 2m sincem > 1.

By doubling, if necessary, the set of final states ofA we can assume that states fromSf do not have
outgoing transitions but every state fromS \ Sf has at least one outgoing transition. This assumption will
slightly simplify our construction.

Let G =
∧
i∈[m] xi,ri with ri = 2m modpi for eachi ∈ [m] be the boolean formula that tests ifM

equals2m. We will build an OC-MDPM = (Q, δ0, δ>0, f0, f>0) with S ⊆ Q and a target set of control
locationsR ⊆ Q such that

2m−1∏

M=0

F (CRRm(M)) ∈ L(A) ⇐⇒ ValReachR×{0}(s0, 0) = 1.

Moreover, our reduction will have the additional property that

ValReachR×{0}(s0, 0) = 1 ⇐⇒ ∃ strategyσ : P(ReachσR×{0}(s0, 0)) = 1.

Hence, we provePSPACE-hardness ofOptValOne as a byproduct. The control locations inS \ Sf are
nondeterministic inM (M will hence behave nondeterministically in control locations fromS \ Sf).
The NFAA on inputF (CRRm(0)) · · ·F (CRRm(2m − 1)) will be simulated byM from state(s0, 0) by
consecutively incrementing the counter and checking if forthe current counter valueM and for the current

26

(to be simulated)b-labeled transition ofA we haveF (CRRm(M)) = b. This simulation will be done
until a state(s, 2m) with s ∈ Sf is reached. Recall that by Proposition 24 we can compute OC-MDPs
M(F ∧¬G),M(¬F ∧¬G), andM(G) together with sets of control locationsR(F ∧¬G),R(¬F ∧¬G),
andR(G), and control locationsqF∧¬G, q¬F∧¬G, andqG such that, e.g.,M(F ∧ ¬G) satisfies for each
0 ≤M <

∏m
i=1 pi:

F (CRRm(M)) = 1 ∧M 6= 2m ⇒ ∃ strategyσ : P(ReachσR(F∧¬G)×{0}(qF∧¬G,M)) = 1

F (CRRm(M)) = 0 ∨M = 2m ⇒ ∀ strategiesσ : P(ReachσR(F∧¬G)×{0}(qF∧¬G,M)) ≤ 1− 2−|F∧¬G|

The OC-MDPsM(¬F ∧ ¬G) andM(G) have analogous properties.
In the following diagrams we draw transitions that donotmodify the counter value by dashed lines and

we draw transitions that increase the counter value by one innormal width. We realize each NFA-transition
(s, 1, t) ∈ δ (where necessarilys ∈ S \ Sf) both inδ0 and inδ>0 by

s (s, 1, t) t

qF∧¬G

1
2

1
2

whereas each transition(s, 0, t) ∈ δ (where necessarilys ∈ S \ Sf) is realized inM by

s (s, 0, t) t

q¬F∧¬G

1
2

1
2

i.e. we connect the intermediate control location(s, b, t) ∈ δ toM(F ∧ ¬G) (if b = 1) orM(¬F ∧ ¬G)
(if b = 0) for checking ifF (CRRm(M)) = b andM < 2m for the current counter valueM . Moreover,

for all final statess ∈ Sf we add a transitions
1
−→ qG to bothδ0 andδ>0 that does not change the counter

value. As expected, we putR = R(F ∧ ¬G) ∪ R(¬F ∧ ¬G) ∪ R(G). LetD = D(M) in the following.
Note that since every non-final state has at least one outgoing transition inA,D is indeed an MDP, i.e., the
underlying graph is deadlock-free.

Now assume thatx ∈ L. We show that there exists a strategyσ such thatP(ReachσR×{0}(s0, 0)) = 1.

Sincex ∈ L, we have
∏2m−1
M=0 F (CRRm(M)) ∈ L(A) along with some accepting run

s0
b0−→ s1

b1−→ · · · s2m−1
b2m−1
−−−−→ s2m ∈ Sf ,

wheresM 6∈ Sf andbM = F (CRRm(M)) for all M ∈ [0, 2m− 1]. For eachM ∈ [0, 2m− 1] our strategy
σ will assign to(sM ,M)’s successor((sM , bM , sM+1),M) probability 1. Moreover, by Proposition 24
we can choose the strategyσ such that:

bM = 1 =⇒ P(ReachσR×{0}(qF∧¬G,M)) = 1

bM = 0 =⇒ P(ReachσR×{0}(q¬F∧¬G,M)) = 1

for each0 ≤M < 2m andP(ReachσR×{0}(qG, 2
m)) = 1. It follows

P(ReachσR×{0}(s0, 0)) = 1.

Conversely, assume now thatx 6∈ L. Recall that all states fromSf have no outgoing transitions inA and all
states fromS \Sf have at least one outgoing transition. Hence, every maximalpath inA (a path is maximal
if it cannot be extended) is either infinite or terminates in afinal state. Withx 6∈ L and (9) we obtain the
following claim:

Claim 1.Every maximal path in the automatonA that starts in the initial states0 has exactly one prefix

s0
c0−→ s1

c1−→ · · · sM
cM−−→ sM+1

that satisfies one of the following three mutually exclusivecases (recall that every state inSf has no
outgoing transitions):

27

(a) M ≤ 2m − 1, cM 6= F (CRRm(M)), andcN = F (CRRm(N)) for all N ∈ [0,M − 1]
(b) M < 2m − 1, cN = F (CRRm(N)) for all N ∈ [0,M], andsM+1 ∈ Sf
(c) M = 2m − 1, cN = F (CRRm(N)) for all N ∈ [0,M], andsM+1 6∈ Sf

Our goal is to prove a global non-zero lower bound on the probability of runs inD(σ) that begin in(s0, 0)
and that donot reachR× {0}, whereσ is an arbitrary strategy. For this, let us first fix an arbitrary strategy
σ in D. We distinguish the following three types(A), (B) and(C) of finite pathsπ in the Markov chain
D(σ) (type (X) corresponds to case (x) from Claim 1):

Case (A): π is of the form

(s0, 0)
α0−→ ((s0, c0, s1), 0)

1
2−→ (s1, 1)

α1−→ ((s1, c1, s2), 1) · · ·

((sM−1, cM−1, sM),M − 1)
1
2−→ (sM ,M)

αM−−→ ((sM , cM , sM+1),M),

whereM ≤ 2m − 1, cM 6= F (CRRm(M)), andcN = F (CRRm(N)) for all N ∈ [0,M − 1]. TheαN
are probabilities that result from the strategyσ. Let α =

∏
N∈[0,M] αN . The probability for the set of all

runs from(s0, 0) that (i) start withπ, then (ii) proceed to(qF∧¬G,M) (if cM = 1) or to (q¬F∧¬G,M) (if
cM = 0), and (iii) donot visit R× {0} is at least

α · 2−(M+1) · 2−|¬F∧¬G| ≥ α · 2−(2m+|¬F∧¬G|).

Case (B): π is of the form

(s0, 0)
β0
−→ ((s0, c0, s1), 0)

1
2−→ (s1, 1)

β1
−→ ((s1, c1, s2), 1)

1
2−→ (s2, 2) · · ·

(sM ,M)
βM
−−→ ((sM , cM , sM+1),M)

1
2−→ (sM+1,M + 1)

1
−→ (qG, 1),

whereM < 2m − 1, cN = F (CRRm(N)) for all N ∈ [0,M], andsM+1 ∈ Sf . Let β =
∏
N∈[0,M] βN .

The probability for the set of all runs from(s0, 0) that (i) start withπ and (ii) donotvisitR×{0} is at least

β · 2−(M+1) · 2−|G| ≥ β · 2−(2m+|¬F∧¬G|).

Case (C): π is of the form

(s0, 0)
γ0
−→ ((s0, c0, s1), 0)

1
2−→ (s1, 1)

γ1
−→ ((s1, c1, s2), 1) · · ·

(s2m−1, 2
m − 1)

γ2m−1
−−−−→ ((s2m−1, c2m−1, s2m), 2

m − 1)
1
2−→ (s2m , 2

m),

wherecN = F (CRRm(N)) for all N ∈ [0, 2m − 1] and s2m 6∈ Sf . Let γ =
∏
N∈[0,2m−1] γN . The

probability of the set of runs inD(σ) that (i) begin withπ, then (ii) proceed (via an intermediate control
location of the form(s2m , b, t)) to either(qF∧¬G, 2

m) or (q¬F∧¬G, 2
m) and (iii) that donot reachR×{0}

is at least

γ · 2−(2m+1) · 2−|¬F∧¬G| = γ · 2−(2m+1+|¬F∧¬G|).

Now, the crucial point is that the sum of all valuesα from (A), all valuesβ from (B), and all valuesγ from
(C) is 1. This is a consequence of Claim 1 and the fact that the nondeterministic choices inD correspond
exactly to the selection of transitions of the NFAA. Since moreover the set of paths in (A), (B), and (C)
are pairwise disjoint, it follows that the probability of the set of runs that donot reachR × {0} is at least
2−(2m+1+|¬F∧¬G|). This concludes the proof of the theorem. ⊓⊔

10 Timed automata

In this section, we present an application of the serializability technique to timed automata. Let us start
with the definition of timed automata, see e.g. [7] for more details.

28

As usual, we fix a countable setP of atomic propositions. LetC be a finite set, whose elements are
calledclocks. A mappingt ∈ RC+ from C to the setR+ of positive real numbers is also called aclock
valuation. The setB(C) of clock constraintsoverC is the set of all boolean formulas with atomic formulas
of the formc ∼ k, wherec ∈ C, k ∈ N and∼ ∈ {≤,≥}. We use the usual abbreviations, e.g., we write
c = k for c ≤ k ∧ c ≥ k. Let us define the size of the clock constraintc ∼ k as|c ∼ k| = ⌈log k⌉; it is
the length of the binary encoding of the numberk. A clock valuationt ∈ RC+ satisfies a clock constraint
γ ∈ B(C), if the formulaγ becomes true, when each clockc ∈ C is replaced by the valuet(c).

A timed automaton(TA) is a tupleA = (Q, {Qp | p ∈ P}, C, δ), where

– Q is a finite set ofcontrol locations,
– Qp ⊆ Q for eachp ∈ P butQp = ∅ for all but finitely manyp ∈ P,
– C is a finite set ofclocks, and
– δ ⊆ Q×B(C)× 2C ×Q is a finite set oftransitions.

Thesizeof the TAA is defined as|A| = |Q|+ |C|+
∑
p∈P |Qp|+

∑
(p,γ,R,q)∈δ |γ|. A timed automaton

A = (Q, {Qp | p ∈ P}, C, δ) defines a transition system

T (A) = (Q× RC+, {Qp × RC+ | p ∈ P},→),

where(q, t)→ (q′, t′) if and only if one of the following two cases holds:

– q = q′ and there existsd ∈ R+ such thatt′(c) = t(c) + d for all c ∈ C (timed elapses).
– There exists a transition(q, γ,R, q′) ∈ δ such that (i) the mappingt : C → R+ satisfies the clock

constraintγ, (ii) t′(c) = t(c) for all c ∈ C \ R, and (iii) t′(c) = 0 for all c ∈ R (i.e., all clocks from
the setR are reset).

10.1 CTL model checking on timed automata

In this section, we will only consider timed automata with only two clocksx andy. For a natural number
m let tm : {x, y} → R+ be the clock valuation withtm(x) = m andtm(y) = 0.

In [25], it was shown that model checkingCTL over 2-clock timed automata isPSPACE-complete. The
proof in [25] for PSPACE-hardness only works if the timed automaton and theCTL formula are part of
the input. Here we sharpen this result by showing that model checkingCTL over 2-clock timed automata
is PSPACE-hard already for a fixedCTL formula. Let us fix the set of propositionsP = {α, β, γ} for this
section. The following lemma is implicitly shown in [25], see Figure 4 in that paper.

Lemma 26 ([25]).There is a logspace transducer that computes from two unary encoded numbers1 ≤
i ≤ n and a bitb ∈ {0, 1} a 2-clock TAAn,i,b with a distinguished control locationinn,i,b such that for
every number0 ≤M ≤ 2n − 1 the following are equivalent:

– biti(M) = b

– In the transition systemT (An,i,b) there is a path from(inn,i,b, tM) to aγ-labeled state.

Proof. Let us first construct the TAAn,i,1. The set of control locations is{q0, q1, . . . , qn, p}, where
inn,i,b = q0 andp is the only control location labeled with propositionγ. We add the following transi-
tions:

– (qj−1, (y = 0), ∅, qj) for all 1 ≤ j ≤ n
– (qj−1, (y = 2j−1), {y}, qj) for all 1 ≤ j ≤ n with j 6= i

– (qn, (y = 0 ∧ x = 2n − 1), ∅, p)

For the TAAn,i,0 we replace the transition(qi−1, (y = 0), ∅, qi) by the transition(qi−1, (y = 2i−1), {y}, qi).
The intuition for the TAAn,i,1 is the following: Clearly, in the transition systemT (An,i,1) there is

a path from(inn,i,b, tM) to a γ-labeled state if and only if there is a path from(q0, tM) to (qn, t2n−1).
For each1 ≤ j ≤ n with i 6= j we can either decide to add2j−1 to the current value of clockx (using
the transition(qj−1, (y = 2j−1), {y}, qj)) or to add0 to the current value of clockx (using the transition
(qj−1, (y = 0), ∅, qj)). Moreover, forj = i, we are forced to add0. Using these transitions, we can move
from state(q0, tM) to (qn, t2n−1) if and only if theith bit of M is 1. ⊓⊔

29

The proof of Proposition 27 below is very similar to the proofof Proposition 17.

Proposition 27. For the fixedEF formulaϕ = (α→ EX(β∧EF(γ))) the following problem can be solved
with a logspace transducer:
INPUT: A boolean formulaF = F (x1, . . . , xn)
OUTPUT: A 2-clock TAA(F) with distinguished control locationsin andout such that for every number
0 ≤M ≤ 2n − 1 the following are equivalent:

– F (BINn(M)) = 1
– There exists a[[ϕ]]T (A(F))-path from(in, tM) to (out, tM) in T (A(F)).

Proof. W.l.o.g. we may assume that negations occur inF only in front of variables.5 Let SF be the syntax
tree ofF and letVF be the set of nodes ofSF . Analogously to the proof of Proposition 17, the treeSF
is traversed with the TAA(F) in a depth first manner. Each time a node that is labeled with a variablexi
(resp., a negated variable¬xi) is seen, the TA may also enter the TAAn,i,1 (resp.An,i,0) in order to check
whether theith bit of the current value of clockx (which isM) is 1 (resp.,0). We first construct all TAs
An,i,b from Lemma 26 for1 ≤ i ≤ n andb ∈ {0, 1}. LetAn be the disjoint union of all these TAs, where
in addition every control locationinn,i,b is labeled with the propositionβ. To constructA(F), we add to
An all control locationsin(v) andout(v) for v ∈ VF . We label every control locationin(v), wherev ∈ VF
is labeled with a variablexi or a negated variable¬xi (1 ≤ i ≤ n), with the propositionα. Moreover, we
setin = in(v0) andout = out(v0), wherev0 is the root ofSF . Let us finally add transitions as follows. Let
v ∈ SF with childrenv1 andv2. If v is labeled with∨, then we add the transitions

(in(v), (y = 0), ∅, in(vi)) and(out(vi), (y = 0), ∅, out(v)) for i ∈ {1, 2}.

If v is labeled with∧, then we add the transitions

(in(v), (y = 0), ∅, in(v1)), (out(v1), (y = 0), ∅, in(v2)), and(out(v2), (y = 0), ∅, out(v)).

For every leafv ∈ SF that is labeled withxi (1 ≤ i ≤ n) we add the transitions

(in(v), (y = 0), ∅, out(v)) and(in(v), (y = 0), ∅, inn,i,1).

For every leafv ∈ SF that is labeled with¬xi (1 ≤ i ≤ n) we add the transitions

(in(v), (y = 0), ∅, out(v)), and(in(v), (y = 0), ∅, inn,0,1).

This concludes the description of the TAA(F). Correctness of the construction can be easily checked by
induction on the structure of the formulaF . ⊓⊔

Theorem 28. There exists a fixedCTL formula of the formEϕ1Uϕ2, whereϕ1 andϕ2 areEF formulas,
such that the following problem isPSPACE-complete:
INPUT: A 2-clock TAA and a control locationq ofA.
QUESTION:(T (A), (q, t0)) |= Eϕ1Uϕ2?

Proof. The proof is analogous to the proof of Theorem 18 but simpler,since we do not need to work with
CRR-representations of natural numbers. Let us take an arbitraryPSPACE-complete languageL. Fix the
polynomialp(n) and the NFAA = (S, {0, 1}, δ, s0, Sf) over the alphabet{0, 1} from Proposition 16. Let
x ∈ {0, 1}∗ be an input of lengthn, and letm := p(n), where w.l.o.g.m > 1. By Proposition 16 one can
construct in spacelog n a boolean formula with propositional variablesxi (i ∈ [m]) such that:

x ∈ L ⇐⇒
2m−1∏

M=0

F (BINm(M)) ∈ L(A). (10)

5 In contrast to the proof of Proposition 17 (where we work with the CRR-representation) we cannot eliminate nega-
tions in front of propositional variablesxi here.

30

We now apply our construction from Proposition 27 to the formulaF . For every1-labeled transitionτ ∈ δ
of the NFAA letA(τ) be a copy of the TAA(F). For every0-labeled transitionτ ∈ δ letA(τ) be a copy
of the TAA(¬F). In both cases we writeA(τ) as(Q(τ), {Qα(τ), Qβ(τ), Qγ(τ)}, {x, y}, δ(τ)). Denote
with in(τ) (resp.out(τ)) the control location of this copy that corresponds toin (resp.out) in A(F). Thus,
for a b-labeled transitionτ ∈ δ (b ∈ {0, 1}) and0 ≤ M ≤ 2m − 1 there exists a[[ϕ]]T (A(τ))-path (ϕ is
from Proposition 27) from(in(τ), tM) to (out(τ), tM) if and only ifF (BINm(M)) = b.

We define a 2-clock TAA as follows: Take the disjoint union of all TAsA(τ) for τ ∈ δ and add all
statess ∈ S of the NFAA as well as the special control locationfinal to the set of control locations.
Moreover, we add to the set of transitions ofA for every NFA-transitionτ = (s, b, s′) ∈ δ the transitions

(s, (x ≤ 2m − 1 ∧ y = 1), {y}, in(τ)), (out(τ), (y = 0), ∅, s′).

Then, by Proposition 27 and (10) we havex ∈ L if and only if there exists a[[ϕ]]T (A)-path inT (A) from
(s0, t0) to (s, t2m−1) for somes ∈ Sf . Finally, introduce a new propositionρ, letfinal be the onlyρ-labeled
control location, and add for everyq ∈ Sf the transition

(q, (x = 2m − 1 ∧ y = 0), ∅, final).

By puttingq = s0 we obtain:

x ∈ L ⇐⇒ (T (A), (q, t0)) |= E (α→ EX(β ∧ EF(γ)))︸ ︷︷ ︸
ϕ from Proposition 27

U ρ.

This concludes the proof of the theorem. ⊓⊔

10.2 Reachability of timed automata with modulo tests

The final application of our lower bound technique concerns the control location reachability problem of
timed automata with two clocks but very simple modulo tests.The expressiveness of timed automata with
periodic clock constraints has already been studied in [12]. We refer to [27], where it has been shown
that the control location reachability problem (or equivalently the emptiness problem) for 2-clock timed
automata with modulo tests isPSPACE-hard (and in factPSPACE-complete). However, the lower bound
construction in [27] heavily requires the constants appearing in the clock constraints to be presented in
binary.

The set Mod(C) of modulo clock constraintsover a set of clocksC is the set of boolean formulas with
atomic formulas of the formc ≡ k modℓ andc ∼ k, wherec ∈ C, k, ℓ ∈ N and∼ ∈ {≤,≥}. A modulo
timed automaton (MTA)is a tupleA = (Q, {Qp | p ∈ P}, C, δ), where everything is the same as for
timed automata, but whereδ ⊆ Q×Mod(C)× 2C ×Q. Thesize|A| of an MTAA is defined in analogy
to TA. A clock valuationt : C → R+ satisfiesa modulo constraint of the formc ≡ k modℓ whenever
⌊t(c)⌋ ≡ k modℓ, where for eachr ∈ R+ we define⌊r⌋ to be the largest non-negative integern such that
n ≤ r. The transition systemT (A) of an MTAA is defined analogously as for timed automata (by taking
into account the above definition when a clock valuation satisfies a modulo constraint).

We only sketch the proof of the following theorem.

Theorem 29. The following problem isPSPACE-hard, even if all constants that occur in the input are
given in unary:
INPUT: An MTAA = (Q, {Qp | p ∈ P}, C, δ) with only two clocksx andy and two distinguished control
locationsq0, q1 ∈ Q such that every transition(q, γ,R, q′) ∈ δ satisfies

– γ does not contain any atomic formulas of the formx ∼ k,
– x 6∈ R (i.e.x is never reset),
– γ does not contain any atomic formulas of the formy ≡ k modℓ, and
– if y ∼ k is an atomic formula inγ, thenk = 1.

QUESTION: Does(q0, t0)→∗ (q1, t) hold for some clock valuationt ∈ R
{x,y}
+ in T (A)?

31

Proof sketch.The theorem is proven very similar as Theorem 18. Since we aimat presenting all constants
of the MTA in unary, we use the Chinese remainder representation of the current numberM ∈ [0, 2m− 1].
We represent the current value ofM by the clockx. The clocky is only used to incrementx by one.
Instead of using the formulaϕ from Proposition 17 to control the Chinese remainder representation ofM ,
we directly testx by using modulo tests in the transitions of the MTA. ⊓⊔

References

1. R. Alur and D.L. Dill. A theory of timed automataTheoretical Computer Science, 126(2):183–235, 1994.
2. S. Arora and B. Barak.Computational Complexity: A Modern Approach. Cambrdige University Press, 2009.
3. C. Baier and J. P. Katoen.Principles of Model Checking. MIT Press, 2009.
4. V. I. Bogachev.Measure theory. Springer, 2006.
5. P. W. Beame, S. A. Cook, and H. J. Hoover. Log depth circuits for division and related problems.SIAM Journal

on Computing, 15(4):994–1003, 1986.
6. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Application to model-

checking. InProceedings of the 8th International Conference on Concurrency Theory (CONCUR’97), number
1243 in Lecture Notes in Computer Science, pages 135–150. Springer,1997.

7. P. Bouyer and F. Laroussinie. Model checking timed automata. In S.Merz and N. Navet, editors,Modeling and
Verification of Real-Time Systems, pages 111–140. ISTE Ltd. – John Wiley & Sons, Ltd., 2008.

8. T. Bŕazdil, V. Brozek, K. Etessami, A. Kucera, and D. Wojtczak. One-counter markov decision processes. In
Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2010), pages
863–874. SIAM, 2010.

9. T. Cachat. Uniform solution of parity games on prefix-recognizable graphs. Electronic Notes in Theoretical
Computer Science, 68(6), 2002.

10. J.-Y. Cai and M. Furst. PSPACE survives constant-width bottlenecks. International Journal of Foundations of
Computer Science, 2(1):67–76, 1991.

11. A. Chiu, G. Davida, and B. Litow. Division in logspace-uniformNC1. RAIRO - Theoretical Informatics and
Applications. Informatique Th́eorique et Applications, 35(3):259–275, 2001.

12. C. Choffrut and M. Goldwurm. Timed automata with periodic clock constraints.Journal of Automata, Languages
and Combinatorics, 5(4):371–404, 2000.

13. C. Courcoubetis and M. Yannakakis. Minimum and Maximum Delay Problems in Real-Time Systems.Formal
Methods in System Design, 1(4):385–415, 1992.

14. J. Esparza, D. Hansel, P. Rossmanith, and S. Schwoon. Efficient algorithms for model checking pushdown systems.
In Proceedings of the 12th International Conference on Computer Aided Verification (CAV 2000), number 1855 in
Lecture Notes in Computer Science, pages 232–247. Springer, 2000.

15. K. Etessami and M. Yannakakis. Recursive markov decision processes and recursive stochastic games. InPro-
ceesing of the 32nd International Colloquium on Automata, Languages and Programming (ICALP 2005), number
3580 in Lecture Notes in Computer Science, pages 891–903, 2005.

16. S. G̈oller and M. Lohrey. Infinite state model-checking of propositional dynamic logics. InProceedings of the 20th
International Conference on Computer Science Logic (CSL 2006), number 4207 in Lecture Notes in Computer
Science, pages 349–364. Springer, 2006.

17. S. G̈oller and M. Lohrey. Branching-time model checking of one-counter processes. InProceedings of the 27th
International Symposium on Theoretical Aspects of Computer Science (STACS 2010), volume 5 ofLIPIcs, pages
405–416. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2010.

18. S. G̈oller, R. Mayr, and A. W. To. On the computational complexity of verifyingone-counter processes. In
Proceedings of the 24th Annual IEEE Symposium on Logic in Computer Science (LICS 2009), pages 235–244.
IEEE Computer Society Press, 2008.

19. C. Haase, S. Kreutzer, J. Ouaknine, and J. Worrell. Reachability insuccinct and parametric one-counter automata.
In Proceedings of the 20th International Conference on Concurrency Theory (CONCUR09), number 5710 in
Lecture Notes in Computer Science, pages 369–383. Springer, 2009.

20. C. Haase, J. Ouaknine, and J. Worrell. On the Relationship between Reachability Problems in Timed and Counter
Automata. InProceedings of the 6th International Workshop on Reachability Problems(RP 2012), number 7550
in Lecture Notes in Computer Science, pages 54–65. Springer, 2012.

21. U. Hertrampf, C. Lautemann, T. Schwentick, H. Vollmer, and K. W.Wagner. On the power of polynomial time
bit-reductions. InProceedings of the Eighth Annual Structure in Complexity Theory Conference, pages 200–207.
IEEE Computer Society Press, 1993.

22. W. Hesse, E. Allender, and D. A. M. Barrington. Uniform constant-depth threshold circuits for division and
iterated multiplication.Journal of Computer and System Sciences, 65:695–716, 2002.

32

23. M. Holzer. On emptiness and counting for alternating finite automata. InProceedings of the 2nd International
Conference on Developments in Language Theory (DLT 1995), pages 88–97. World Scientific, 1996.

24. P. Jaňcar and Z. Sawa. A note on emptiness for alternating finite automata with a one-letter alphabet.Information
Processing Letters, 104(5):164–167, 2007.

25. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata with one or two clocks.Pro-
ceedings of the 15th International Conference on Concurrency Theory (CONCUR’04), number 3170 in Lecture
Notes in Computer Science, pages 387–401. Springer, 2004.

26. M. Nair. On Chebyshev-type inequalities for primes.The American Mathematical Monthly, 89(2):126–129, 1982.
27. G. Naves. Accessibilité dans les automates temporisé à deux horloges.Memoire de Master 2, ENS Cachan

(France), 2006.
28. N. Piterman and M. Y. Vardi. Global model-checking of infinite-state systems. InProceedings of the 16th In-

ternational Conference on Computer Aided Verification (CAV 2004), number 3114 in Lecture Notes in Computer
Science, pages 387–400. Springer, 2004.

29. O. Serre. Note on winning positions on pushdown games withω-regular conditions.Inf. Process. Lett., 85(6):285–
291, 2003.

30. O. Serre. Parity games played on transition graphs of one-counterprocesses. InProceedings of the 9th Inter-
national Conference on Foundations of Software Science and ComputationStructures (FOSSACS 2006), number
3921 in Lecture Notes in Computer Science. Springer, 2006.

31. D. Th́erien and T. Wilke. Temporal logic and semidirect products: An effective characterization of the until
hierarchy. InIn Proceedings of the 37th Annual Symposium on Foundations of Computer Science (FOCS ’96),
pages 256–263. IEEE Computer Society Press, 1996.

32. A. W. To. Model checking FO(R) over one-counter processes and beyond. InProceedings of the 23rd International
Conference on Computer Science Logic (CSL 2009), number 5771 in Lecture Notes in Computer Science, pages
485–499. Springer Verlag, 2009.

33. H. Vollmer. A generalized quantifier concept in computational complexity theory. Technical report, arXiv.org,
1998. http://arxiv.org/abs/cs.CC/9809115.

34. H. Vollmer. Introduction to Circuit Complexity. Springer, 1999.
35. K. W. Wagner. More complicated questions about maxima and minima,and some closures of NP.Theoretical

Computer Science, 51:53–80, 1987.
36. I. Walukiewicz. Model checking CTL properties of pushdown systems. InProceedings of the 20th Conference

on Foundations of Software Technology and Theoretical Computer Science (FST&TCS 2000), number 1974 in
Lecture Notes in Computer Science, pages 127–138. Springer, 2000.

37. I. Walukiewicz. Pushdown processes: games and model-checking. Information and Computation, 164(2):234–
263, 2001.

Appendix

Let M be a nondeterministic Turing machine with a linear orderingon the set of all transition tuples.
Assume furthermore thatM does not contain infinite computation paths. Then, for everyinput x, the
computation treeT (x) of the machineM on inputx is a finite ordered tree. Letv1, v2, . . . , vn be a list
of all leafs ofT (x) in left-to-right enumeration. Then theleaf stringleaf(M,x) is the stringa1a2 · · · an,
whereai = 1 (resp.ai = 0) if vi is an accepting (resp. rejecting) configuration.

Theorem 30. Let A be a language inPSPACE. ThenA is AC0-serializable, i.e., there exists a regular
languageL ⊆ {0, 1}∗, a polynomialp(n), and a logspace-uniformAC0-circuit family(Bn)n≥0, whereBn
has exactlyn+ p(n) many inputs and one output, such that for everyx ∈ {0, 1}n we have:

x ∈ A ⇐⇒ Bn(x, 0
p(n)) · · ·Bn(x, 1

p(n)) ∈ L,

where “· · · ” refers to the lexicographic order on{0, 1}p(n).

Proof. Let A ⊆ {0, 1}∗ be a language inPSPACE. By the work of [21] there exists a nondeterministic
polynomial time Turing machine

M = (Q,Γ,∆, q0, qf ,�)

and a regular languageK ⊆ {0, 1}∗ such that

x ∈ A ⇐⇒ leaf(M,x) ∈ K. (11)

33

Here,Q is the set of states,Γ is the tape alphabet,∆ ⊆ Q× Γ ×Q× Γ ∪ {→,←} is the set of transition
tuples,q0 is the initial state,qf is the final (accepting) state, and� is the blank symbol. W.l.o.g. we can
assume that every computation path ofM on an input of lengthn has lengthq(n) for a polynomialq. This
can be enforced by introducing a counter. Note that the counter can be incremented deterministically, hence
the produced leaf string does not change. Assume that∆ = {δ1, . . . , δm}, whereδ1 < δ1 < · · · < δm is
the fixed order on the transition tuples ofM .

Let Ω = Q ∪ Γ ∪ ∆, where all three sets are assumed to be pairwise disjoint. Wewill encode a
computation ofM of lengthq(n), starting on inputx ∈ Σn, by a word from the language

C(x) = {c0t1c1t2 · · · cq(n)−1tq(n)cq(n) | t1, . . . , tq(n) ∈ ∆

c0 = q0x�
q(n)−n, c1, . . . , cq(n) ∈ Γ

∗QΓ+,

|c1| = · · · = |cq(n)| = q(n) + 1, ∀0 ≤ i < q(n) : ci ⊢ti+1
ci+1}.

Here,ci ⊢ti+1
ci+1 means that configurationci+1 results from configurationci by applying transitionti+1.

LetD(x) be the subset ofC(x) consisting of all successful computationsc0t1c1t2 · · · cq(n)−1tq(n)cq(n) ∈
C(x), where in additioncq(n) ∈ Γ ∗qfΓ

+.
Note that every word inC(x) has length(q(n) + 1)2 + q(n). We use some block encodingγ : Ω →

{0, 1}k such thatγ(δi+1) is lexicographically larger thanγ(δi) for i ∈ [m− 1]. This ensures that if we list
all bit strings of lengthk ·((q(n)+1)2+q(n)) in lexicographic order than the subsetC(x) of all (encodings
of) valid computations appears as a subsequence in the same order as in the computation treeT (x).

Let us next describe a logspace-uniformAC0-circuit family (Cn)n≥0, where thenth circuit Cn has
n+k · ((q(n)+1)2+ q(n)) many inputs and accepts exactly all strings of the formxw, wherex ∈ {0, 1}n

andw ∈ C(x). ConstructingCn is tedious but straightforward. The most difficult part is tocheckci ⊢ti+1

ci+1 for all 0 ≤ i < q(n). For this, we use an AND-gateg with q(n) many childreng0, . . . , gq(n)−1.
Gategi is an OR-gate withq(n) many childrengi,1, . . . , gi,q(n). Gategi,j evaluates to1 if and only if ci+1

results fromci by applying the transitionti+1 at positionj. To achieve this,gi,j becomes an AND-gate with
k(q(n) + 1) many input gates. Each of these gates compares two corresponding bits in theγ-encodings of
ci andci+1. It should be clear that such a circuitCn can be built in logarithmic space. Analogously we can
construct a logspace-uniformAC0-circuit family (Dn)n≥0 which accepts all strings of the formxw, where
x ∈ {0, 1}n andw ∈ D(x).

Finally, we construct from the two families(Cn)n≥0 and(Dn)n≥0 a new logspace-uniformAC0-circuit
family (Bn)n≥0, whereBn hasn+k · ((q(n)+1)2+q(n))+1 many inputs. On inputxw0 (with x ∈ Σn)
it outputsCn(xw). On inputxw1, Bn outputsDn(xw). Now, let us construct from the regular language
K ⊆ {0, 1}∗ the new regular languageL = ϕ(K� {a}∗), where� is the shuffle operator,a 6∈ {0, 1} is a
new symbol, andϕ is the homomorphism withϕ(a) = 00, ϕ(0) = 10, ϕ(1) = 11.

The regular languageL, the polynomialp(n) = k · ((q(n) + 1)2 + q(n)) + 1, and the circuit family
(Bn)n≥0 fulfill the requirements from the theorem. ⊓⊔

34

