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Abstract. One-counter automata (OCA) are pushdown automata which operateroalynary stack
alphabet. We study the computational complexity of model checking ctatipa tree logic CTL)

on transition systems induced by one-counter automatBSRACE upper bound is inherited from
the modalu-calculus for this problem proven by Serre. First, we analyze the perimhaviour of
CTL over OCA and derive a model checking algorithm whose running timegerential only in the
number of control locations and a syntactic notion of the formula that Weefavard until depth.

In particular, model checking fixed OCA agairtStL formulas with a fixed leftward until depth is in
P. This generalizes a corresponding recent result of the first alttayr and To for the expression
complexity of CTL'’s fragmentEF. Second, we prove that already over some fixed OCRAl,. model
checking isPSPACE-hard, i.e., expression complexity RSPACE-hard. Third, we show that there
already exists a fixed TL formula for which model checking of OCA IBSPACE-hard, i.e., data
complexity iISPSPACE-hard as well. To obtain the latter result, we employ two results from complexity
theory: (i) Converting a natural number in Chinese remainder pregantato binary presentation is in
logspace-unifornNC' and (i) PSPACE is AC°-serializable.We demonstrate that our approach can be
used to obtain further results. We show that model-checkifiy's fragmentEF over OCA is hard for
PNP| thus establishing a matching lower bound. We moreover show that theviiagjgoroblem is hard
for PSPACE: Given a one-counter Markov decision process, a set of targes stétte counter value
zero each, and an initial state, to decide whether the probability that the indgttal\sill eventually
reach one of the target states is arbitrarily closg.t®his improves a recently proven lower bound for
every level of the boolean hierarchy shown by Brazdil et al. Finallyprave that there is a fixedTL
formula for which model checking 2-clock timed automat& ®#PACE-hard, generalizing RSPACE-
hardness result for the combined complexity by Laroussinie et al.

1 Introduction

Pushdown automata (PDA) (or recursive state machines, R8Msa natural model for sequential pro-
grams with recursive procedure calls, and their verificapooblems have been studied extensively. The
reachability problem for PDA can be solved in polynomialdiff, 14]. The complexity of model checking
problems for PDA is quite well understood in terms of comdinemplexity, data complexity, and expres-
sion complexity? The combined complexity of the model checking problem ferrtrodali:-calculus over
PDA was shown to beXPTIME-complete in [37], and the global version of the model cheglproblem
has been considered in [29, 9, 28]. Moreover,EX® TIME lower bound even holds for both the data and
expression complexity for the simpler lodid L and its fragmenEG over PDA [36]. On the other hand, the
combined complexity of the model checking problem for thgiddF (another natural fragment &fTL)
over PDA isPSPACE-complete [36], and again the lower bound still holds fortbibte data and expres-
sion complexity [6]. Model checking problems for variouadments and extensions of PDL (propositional
dynamic logic) over PDA were studied in [16].

* An extended abstract of this paper has appeared in the proceedi@§806E 2010 [17].
** The second author would like to acknowledge the support by DFG @spasject GELO.

3 For a given class of systems (structurésind a logicL one distinguishes three settings for the model-checking
problem forC andZ, i.e., the question whether a formutac C holds in a structurel € C: (i) the input consists
of ¢ and A, (ii) ¢ is fixed, and the input only consists df, and (iii) A is fixed, and the input only consists of
. The combined complexity of the model-checking problem is the complexigetting (i), whereas the data
(resp. expression) complexity is the complexity in setting (ii) (resp. (iiifje Tain motivation for studying the data
complexity is that in many applications the formylas small.



1.1 One-Counter Automata

One-counter automata (OCA) are Minsky counter machinels juit one counter and action labels on
the transitions. They can also be seen as a special case ofMtbBAust one stack symbol, plus a non-
removable bottom symbol which indicates an empty stack flamsi allows to test the counter for zero) and
hence constitute a natural and fundamental computatioodémin recent years, model checking problems
for OCA received increasing attention [18, 19, 30, 32]. @ieall upper complexity bounds carry over from
PDA. The question, whether these upper bounds can be mdtgHedier bounds was just recently solved
for several important logics: Model checkingcalculus on OCA isPSPACE-complete. ThePSPACE
upper bound was shown in [30], and a matching lower bound eaityebe shown by a reduction from
emptiness of alternating unary finite automata, which wasvsito bePSPACE-complete in [23, 24]. This
lower bound even holds if either the OCA or the formula is fiX€de situation becomes different for the
fragmentEF. In [18], it was shown that model checkirfgF over OCA is in the complexity clasiNP
(the class of all problems that can be solved on a deterr@mstynomial time machine with access to
an oracle fronNP). Moreover, if the input formula is represented succinettya DAG (directed acyclic
graph), then model checkirigF over OCA is also hard foPNP. For the standard (and less succinct) tree
representation for formulas, only hardness for the dPA$8°s! (the class of all problems that can be solved
on a deterministic polynomial time machine which is allovteanakeO (log n) many queries to an oracle
from NP) was shown in [18]. In fact, there already exists a fikgdformula such that model checking this
formula over a given OCA is hard f&"Fl°gl j.e., the data complexity BNPlgl-hard.

In this paper we consider the model checking problemd®t. on OCA. By the known upper bound
for the modaly-calculus [30] this problem belongs RSPACE. First, we analyze the combinatorics of
CTL model checking over OCA. More precisely, we analyze theogokéeibehaviour of the set of natural
numbers that satisfy a givefir L formula in a given control location of the OCA (Theorem 1). lBgking
use of Theorem 1, we can derive a model checking algorithmse/lnenning time is exponential only in
the number of control locations and a syntactic measur€ldnformulas that we call leftward until depth
(Theorem 2). As a corollary, we obtain that model checkingkedfiOCA agains€TL formulas of fixed
leftward until depth lies irP (Corollary 3). This generalizes a recent result from [18}eve it was shown
that the expression complexity &F over OCA lies inP. Next, we focus on lower bounds. We show that
model checkingCTL over OCA isPSPACE-complete, even if we fix either the OCA (Theorem 11) or
the CTL formula (Theorem 18). The proof for Theorem 11 uses a subteation from QBF. We have
to construct a fixed OCA for which we can construct for a givearny encoded numberCTL formulas
that express, when interpreted over our fixed OCA, whethectinrent counter value is divisible By and
whether the™ bit in the binary representation of the current counter @@ , respectively. For the proof
of Theorem 18 PSPACE-hardness of data complexity f@TL) we use two techniques from complexity
theory, which to our knowledge have not been applied in thntesd of verification so far:

— the existence of small depth circuits for converting a nunftmm Chinese remainder representation
to binary representation (see Section 6.1 for details) and
— the fact thaPSPACE-computations are serializable in a certain sense (se@8&cP for details).

One of the main obstructions in getting lower bounds for OGAhie fact that OCA are well suited for
testing divisibility properties of the counter value anahée can deal with numbers in Chinese remainder
representation, but it is not clear how to deal with numhetsnary representation. Small depth circuits for
converting a number from Chinese remainder representtdibinary representation are the key in order
to overcome this obstruction.

We are confident that our new lower bound techniques destabeve can be used for proving further
lower bounds for OCA and related models. We present threzr afbplications of our techniques:

— We show that model checkingF over OCA is complete foPNP even if the input formula is repre-
sented by a tree (Theorem 21) and thereby solve an open prdtden [18]. Figure 1 summarizes the
picture on the complexity of model checking for PDA and OCA.

— We improve a lower bound on a decision problem for one-cauisekov decision processes from [8]
(Theorem 25). More details on this problem are providedwelo



Logic PDA OCA
p-calculus EXPTIME|PSPACE
u-calculus, fixed formula EXPTIME|PSPACE
u-calculus, fixed system EXPTIME|PSPACE
CTL, fixed formula EXPTIME|PSPACE (*)
CTL, fixed system EXPTIME|PSPACE (*)
CTL, fixed system, fixed leftward until depEXPTIME|in P (*)

EF PSPACE [P"F (%)

EF, fixed formula PSPACE |PNPToel hard
EF, fixed system PSPACE |inP

Table 1. Model checking over PDA and OCA; our new results are marked with (*)

— We prove that there is a fixedTL formula for which model checking 2-clock timed automata is
PSPACE-complete. This improves BSPACE lower bound for the combined complexity of model
checkingCTL on 2-clock timed automata from [25]. Furthermore, we shoat teachability for very
restricted 2-clock timed automata that allow modulo testdhe transitions is alreadySPACE-hard,
improving a

1.2 Markov Decision Processes

Markov decision process¢sIDPs) extend classical Markov chains by allowing so calleddeterministic
vertices In these vertices, no probability distribution on the airg transitions is specified. The other ver-
tices are calleghrobabilistic verticesin these vertices a probability distribution on the outgpiransitions

is given. The idea is that in an MDP a player Eve plays agaiagira (represented by the probabilistic
vertices). In each nondeterministic vertexEve chooses a probability distribution on the outgoinggsia
tions of v; this choice may depend on the past of the play (which is aipathe underlying graph ending
in v) and is formally represented by a strategy for Eve. An MDRetbgr with a strategy for Eve defines
an ordinary Markov chain, whose state space is the unfoldirthe graph underlying the MDP. In Sec-
tion 9, we consider infinite MDPs, which are finitely represeinby one-counter automata; this formalism
was introduced in [8] under the nameae-counter Markov decision proce€C-MDP). For a given OC-
MDP M and a sef? of control locations ofM (a so calledeachability constrainjtthe following two sets
ValOne(R) andOptValOne(R) were considered in [8ValOne(R) is the set of all states of the MDP
defined by M such that for every > 0 there exists a strategy for Eve under which the probability of
finally reaching froms a control location ink and at the same time having counter valus at leastl — e.
OptValOne(R) is the set of all statesof the MDP defined byM for which there exists a specific strategy
for Eve under which this probability becomeslt was shown in [8] that for a given OC-MDP1, a set of
control locationsR, and a state of the MDP defined by\,

— the question whether € OptValOne(R) is PSPACE-hard and irEXPTIME, and
— the question whether € ValOne(R) is hard for every level of the boolean hierardbi.

The boolean hierarchy is a hierarchy of complexity classss/@enNP and PNPl°gl see Section 6 for

a definition. We use our lower bound techniques (based onetializability of PSPACE + small depth
circuits for converting numbers from Chinese remainderaggntation to binary representation) in order
to improve the second hardness result for the leveBtbto PSPACE-hardness. As a byproduct, we also
reprovePSPACE-hardness foOptValOne(R). Currently, it is open, whethearalOne(R) is decidable; the
corresponding problem for MDPs defined by pushdown automatadecidable [15].

1.3 Timed Automata

Timed automatavere introduced by Alur and Dill [1] and can be seen as an sibanof finite automata
by allowing the usage of real-time clocks. Timed automatacare of the most important formalisms for



modeling real-time systems. In [1] it was shown that the hehdity (i.e. emptiness) problem for timed
automata isPSPACE-complete.PSPACE-hardness already holds when only three clocks are present a
shown by Courcoubetis and Yannakakis [13]. The precise atetipnal complexity of reachability for
2-clock timed automata is still a major open problem. The-kaswn lower bound iNP-hardness [25],
whereasPSPACE the the best-known upper bound for this problem. It is irgtng to note that concern-
ing the reachability problem, there is a close connectiawéen bounded counter automata and timed
automata as recently shown by Haase et al. [20]: the reditiigirioblem of n-clock timed automata is
equivalent to the the reachability problem of boundee- 1)-counter automata with respect to logarithmic
space reductions.

It was shown in [27] that the reachability problem for 2-ddimed automata with modulo tests on
counter values iBSPACE-hard. For the lower bound proof in [27] it is crucial that tinemerical constants
that appear in the transitions of the timed automaton aredsttin binary. We improve the lower bound
from [27] by showing that the reachability problem for 2-gkdimed automata with modulo tests is already
PSPACE-hard when the occuring numbers are encoded in unary. Itstioat very simple extensions of
the reachability problem of timed automata with two clocksRSPACE-hard. In [25] it has been shown
that model checkin@ TL on timed automata with two clocks (but without modulo te&$)SPACE-hard
(andPSPACE-complete). We prove that already the data complexity &f pinoblem iSPSPACE-hard.

1.4 Organization

The paper is organized as follows. In Section 2 we introdusmeegal notation. In Section 3 we define
one-counter automata and the branching-time Iagit. Periodicity of CTL on OCA and a derived model
checking algorithm is the content of Section 4. In Sectioné&give a fixed zero-test-free one-counter
automaton (which is basically a one-counter automatondaanot test if the counter is zero) for which
CTL model checking iPSPACE-hard. Section 6 recalls tools from complexity theory tha meed in
subsequent sections. We show that there already existscadike formula for which model checking
over zero-test-free one-counter automat&3$ACE-hard in Section 7. The proof technique for this re-
sult is applied in the subsequent section and yields theviilg further results: (i) Model checking the
CTL fragmentEF over zero-test-free one-counter automat®%¥§-hard (Section 8), (i) membership in
ValOne(R) over one-counter Markov decision processeBSBACE-hard. (Section 9), (iii) model check-
ing CTL over timed automata with only two clocks RSPACE-hard already for a fixed TL formula
(Section 10.1), and (iv) reachability for 2-clock timed @ufata that allow modulo tests in the transitions is
PSPACE-hard (Section 10.2). Finally, we reformulai€°-serializability of PSPACE in the appendix.

An extended abstract of this paper has appeared as [17].

2 Preliminaries

We denote the naturals By = {0, 1,2, ...} and the rational numbers Ify. Let R, be the positive real
numbers ( is included). For each, j € N we definei,j] = {k € N | i < k < j} and[j] = [1,].

In particular[0] = (). For eachn € N and each position > 1, let bit;(n) denote the™ least significant
bit of the binary representation ef i.e.,n = >~,., 2~! - bit;(n). For every finite and non-empty subset
M C N\ {0}, defineLCM(M) to be theleast common multiplef all numbers inM. Due to a result of
Nair [26] it is known that* < LCM([k]) < 4* for all k > 9. As usual, for (a possibly infinite) alphabet
A, A* denotes the set of all finite words ovdr A™ denotes the set of all finite non-empty words over
A, and A denotes the set of all infinite words ovér Let A~ = A* U A“. The length of a finite word
w is denoted byw|. For a wordw = ajas---a, € A* (resp.w = ajay--- € A¥) with a; € A and

i € [n] (resp.i > 1), we denote byw; the i lettera;. A (possibly infinite) directed grapt’ = (V, E)
(with E C V x V) is calleddeadlock-fredf for all v € V there exista/ € V with (v,v') € E. If for

all v € V there are only finitely many’ € V with (v,v’) € E, thenG is calledimage-finite The set of
all finite paths inG is the setpath, (G) = {7 € VT | Vi € [|n| — 1] : (m, m41) € E}. The set of all
infinite paths inG is the sepath,,(G) = {mr € V¥ | Vi > 1 : (m;, 1) € E}. A nondeterministic finite
automaton (NFA) is a tuplel = (S, X, 4, s, Sy), whereS is a finite set oftates X' is afinite alphabet

0 C § x ¥ x Sisthetransition relation sy € S is theinitial state, andS; C S is a set ofinal states\We
assume that the reader has some basic knowledge in comledtry, see e.g. [2] for more details.



3 One-counter automata and computation tree logic

Fix some countable s&t of atomic propositionsA transition systens a triple7 = (S,{S, | p € P}, =),
where(S, —) is a directed graph anfl, C S for all p € P with S, = 0 for all but finitely manyp € P.
Elements ofS (resp.—) are also calledstates(resp.transitiong. In cases € S,, we also say that
is p-labeled We prefer to use the infix notation — s, instead of(s1, s2) € —. Forz € {+,w} let
path,(T) = path, (S, —). For a subselU C S of states, a (finite or infinite) path is called al/-pathif
e U™.

A one-counter automatof©CA) is a tupleO = (Q,{Q, | p € P}, do,9>0), WhereQ is a finite set of
control locations @, C @ for eachp € P but@,, = () for all but finitely manyp € P, d0 C @ x{0,1} xQ
is a finite set okzero transitionsandd~, C Q x {—1,0,1} x Q is a finite set opositive transitionsThe
sizeof this OCA is defined afO| = |Q[ + >_ cp |@p| + [do] + [6>0]. We say thaD is zero-test-freef
do = 00N (Q x {0,1} x @). Hence, for a zero-test-free OGA the set, is implicitly defined by the set
d>0. Therefore, we will write a zero-test-free OCA as a tu@le {@, | p € P}, ) and identify this tuple
with the OCA(Q,{Q, | p € P},6 N (Q x {0,1} x Q),d). A one-counter automatdfl = (Q,{Q, | p €
P}, d0,0>0) defines a (one-counter) transition systgrf©0) = (Q x N,{Q, x N | p € P}, —), where
(g,n) = (¢’,n + k) if and only if eithern = 0 and(q, k, ¢’) € &g, orn > 0 and(q, k,q’) € 0.

More details onCTL andEF can be found for instance in [3formulasy of the logicCTL are given
by the following grammar, wherg € P:

p u= pl | oA | EXp | EpUp | EpWU.

Given a transition systeri = (S,{S, | p € P},—) and aCTL formula ¢, we define the semantics
[#]+ C S by induction on the structure of as follows:

[p]

7 =S, foreachp eP
[elr = S\ [elr
o1 A2l = [ealr Nw2]T
[EXe]r = {se€S|3s €p]r:s— s}
[Ep1Upo]r = {s €S| 3 € path, (T) : m1 = 8,7z € [p2]7,Vi € [|7] = 1] : m; € [p1]7}
[EpiWUgs]7r = [Ee1Ups]rU{s € S| Ir € path,(T):m =s,Vi > 1:m € [p1]7}

We write (T, s) = ¢ as an abbreviation for € [¢] . When additionally7 is clear from the context, we
justwrites = . We introduce the usual abbreviatiopsV 2 = —(—¢1 A—p2),t rue = pVv—p for some
p € P, AXp = -EX—p, EFp = Et rueUyp, andEGy = EpWUTf al se. Formulas of theCTL-fragment
EF are given by the following grammar, whepses P:

o u= pl-p | eNe | EXp | EFe.

Define thesize|y| of CTL formulase inductively as follows:|p| = 1, |-¢| = |p] + 1, |p1 A @2] =
lo| + 2] + 1, [EXp| = || + 1, and[Ep1Upz| = [Ep1WUps| = [p1] + |p2| + 1.

4 CTL on OCA: Periodic behaviour and upper bounds

The goal of this section is to prove a periodicity propertyCafL over one-counter transition systems.
We will use this property in order to establish an upper bofondCTL on OCA, see Theorem 2. As a
corollary, we show that for a fixed one-counter automanl. model checking restricted to formulas of
fixed leftward until depth (see the definition below) can baa&m polynomial time, see Corollary 3. For



this, let us define thieftward until depthud of CTL formulas inductively as follows:

lud(p) = 0 foreachp € P
lud(—p) = lud(p)
lud(p1 A p2) = max{lud(p1), lud(p2)}
lud(EXyp) = lud(p)
lud(Ep1Ups) = max{lud(p1) + 1, lud(p2)}
lud(Ep1WUp2) = max{lud(p1) + 1, lud(p2)}

A similar definition of the until depth can be found in [31],thibere the until depth oEy;Uys is 1 plus
the maximum of the until depths @f; andp,. Note thatud(y) < 1 for eachEF formulae.

Let us fix some one-counter automaton= (Q,{Q, | p € P}, do, d>0) for the rest of this section.
Let us introduce a bit more notation. Lete {+,—}, let{ € N, and letr = (¢1,n1) — (g2,n2) --- —
(gr, k) (resp.m = (q1,n1) — (g2, n2) — ---) be afinite (resp. infinite) path i (O) such that moreover
n;,n; © & > 0 for all i. Definenr © £ to be the path that emerges frotrby replacing each; by n; ® &.
For each position andj of = with ¢ < j, definer([i, j] to be the subpath of that begins in(¢;, n;) and
that ends in(g;, n;).

We aim to prove the following: For eaclT L formulay we can compute some thresho{g) and some
period K., wheret(p), K, < 2(°1eD°™ 'such that for alh € N with n. > £(y) only n’s residue class
modulo K, determines whethdr;, n) € [¢] (o) Or not, where; € @ is an arbitrary control location. The
goal of this section is to give rather precise bounds on the sf the threshold(y) and the periods,
embracing the notion of leftward until depth from above.

Let us assume tha@)| = k. Define K = LCM([k]) and K, = K'4(¥) for eachCTL formulap.

Theorem 1. Letyp be aCTL formula. Then we can compute in polynomial time a threshold
t(p) < 2-[p|- K- K,
such that for alln, n" > t(y) that satisfyn = n’ mod K, we have
(¢:n) € [plTo) ifandonlyif (q,7') € [¢]70) 1)
for each control locatiory € Q.

Proof. We prove the theorem by induction on the structure dfhatt(y) can be computed in polynomial
time will be obvious.

Assumep € P. Then we put(p) = 0. Recall thati(, = K"4(¥) = 1. Trivially, (1) holds.

Assumey = —p. Then we put(yp) = t(¢). Note thatK, = K. Equation (1) follows immediately by
induction hypothesis.

Assumep = 11 A 1. Then we put(p) = max{t(1), t(12)}. We have
() max{t(¥1), t(¢2)}

max{2 - || - k* - Ky, | i € {1,2}}
2 |o| - k* K,

INIANT I

and hence(y) satisfies the requirement of the theorem. Note fhigt= LCM{ K, , K, } by definition.
By choice oft(y), Equation (1) holds immediately due to induction hypotbesi

Assumep = EXy. Then we put(p) = t(¢) + K. Thus we get

t(e) ty) + Ky

2|k Ky + Ky
2 (|| +1)- k- Ky
2ol k* - Ky

IN INT
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.n' }K<p

ol }K¢

)
tp)=T+2-k* K,

T = max{t(v1),t(¢2)}

' 0
q

O's control locations

Fig. 1. The until case.

and hence(y) satisfies the requirement of the theorem. Sit{ge — ¢(v) = K, > 1, we have that (1)
follows immediately by induction hypothesis.

Assumep = EyUtp. Let us first define the threshold. L& = max{t(v1),t(12)}. We putt(p) =
T +2-k*- K,. Hence we have

t(y) T+2 kK,

max{2 - |¢;| - k* - Ky, | i€ {1,2}} +2-k* K,

2- (el - D+ 1) k- K,
2-J¢l- k- K,

IN INT

and thust(p) satisfies the requirement of the theorem. It remains to pfbye

Recall thatK, = LCM{K - K, , Ky, } by definition. Let us fix an arbitrary control locatigne @
and naturals:, n’ € N such that(y) < n < n’ andn = n’ mod K,. We have to prove that (1) holds, i.e.,
(g,n) € [¢]7 (o) ifand only if (¢, n') € [p]7 (o). For this, lett = n’ —n, which is a multiple ofK’,,. The
current situation is shown in Figure 1.

'Only-if": Let us assume thatg, n) € [¢]10). Hence, there exists a finite path

T = (q1,n1) = (q2,n2) - = (@, ),

wherel > 1, n[1,1 — 1] is a[¢1] 7 oy-path,(g,n) = (q1,n1), and(q;, ) € [¢2]7(0). Now we make a
case distinction.

Case Ain; > T for eachj € [l]. Since Ky, |¢ and K, |¢ we obtain that the path + ¢ witnesses
(g,n") € [¢]1(0) by induction hypothesis. This is depicted in Figure 2.
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b
tp)=T+2-k* K,

T = max{t(¢1), t(¢2)}

I 0
q

(O’s control locations

Fig. 2. The pathr + £ witnessegq, n’) € [¢]r (o).

Case B:n; < T for somej € [I]. For each ofr's counter valueé € {n; | i € [I|}, define
w(h) = min{i € [l] | n; = h}

to be the minimal position i whose corresponding state has counter valué/e are interested in’s
first states of counter value n — Ky, ,n — 2 - Ky, , and so on. For this, define(i) = u(n —i- Ky, ) for
every appropriaté € N. By the pigeonhole principle, there are distingtio € [0, k] such that; < i and
Tm(in) = dm(i)- NOt€ thati; andi, are well-defined since

n—iy Ky >n—ig Ky, >n—k Ky >T+2-k K,—k Ky >T.

Letp = Gm,) = @m(,) @Ndd = i1 — iy € [k]. Hence,d divides K. Moreover, leto denoten’s
Sprath from(qm(il),nm(il)) = (p,n — 41 - le) down to (qm(i2),nm(7;2)) = (p,n — 49 - le) =
(p,n—i1-Ky, —d-Ky,),i.e., formallyc = w[m(i), m(iz)]. Note thatr is a[+1 ] r(o)-path. The current
situation is depicted in Figure 3. The patlis indicated thick.

We have to proveg,n') € [¢]r (o). For this, we show that there exists[@; ] )-pathm from
(g,n") dOWN tO(Grm (i), Mm(iy)) = (P;n — i1 - Ky, ). Thus, sincer) meetsr in (p,n — iy - Ky, ), it follows
(g,n") € [¢]7(0)- The pathr, is indicated by a dashed curve in Figure 3. Our patfconsists of two
concatenated paths. First recall that the palthses a counter height of preciselyiK’,, . The first part ofr|
is the[v1 ] 7(o)-pathr[1, m(i1)] shifted upwards by the offsét(i.e., w[1,m(i1)] + &). The second part of
T is the path fron{Qm(h)v M (iy) +§) = (p’ n—iy- Ky, +£) down to(Qm(h)’ nm(il)) = (pv n—1i 'K'l/h)
that we can obtain by first shiftingup by the offset and then downward pumping it precis% many
times. Formally, this is the path '

_& 4
4Ky

(0+§)(U+€—d'K¢1)(U+€—2d'K¢1)"~(U+d'le): H (J+£_i'd'K¢1)'
=0
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" Mm(iy) + 5

)
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tp)=T+2-k* K,
1

Nim(iy) = N — 12Ky,

T = max{t(¢1), t(12)}

| | 0
p q

O'’s control locations

Fig. 3. The path from(q, n) can be merged frorfy, n’).

Note that¢ is a multiple of K, which is in turn a multiple of< - K, , henced_% e N.
w1

'If": Assume that(q, ') € [o]1 (o). To prove thatq, n) € [¢]7 (o), we will use the following claim.

Claim: Assume somé; | (o)-path(qi,n1) — (g2,m2) — --- — (q,7;) whose counter values are all
strictly aboveT” and wheren; — n; > k2 - K - Ky, . Then there exists @)1]7(0)-path from(qi,n1) to
(g1, + K - Ky, ) strictly abovel” + K - Ky, . The statement of the claim is depicted in Figure 4.

Thus, the claim tells us that paths that lose height at leasts - K,,, and whose states all have counter
values strictly abové™ can be lifted by a height precisely - K, .

Let us postpone the proof of the claim and first finish the padafie if-direction. Since by assumption
(g,n") € [@l1(0), there exists a finite path

T = (q1,n1) = (q2,n2) -+ = (@1, ),

wherer[1,1 — 1] is a[¢1] 7 (oy-path,(¢, n') = (¢1,71), and wherdq;, n;) € [2]7(0). To prove(q,n) €
[¢] 7o), we make a case distinction.

Case Ain; > T for eachj < [l]. Assume that the path([l,! — 1] contains two states whose counter
difference is at least? - K - K, + K, Which is (strictly) greater thah? - K - K, . SinceK, is a multiple



counter value

sz'K'le

tp)=T+2-k* K,

T = max{t(v1),t(¢2)}

O's control locations

Fig. 4. Shortening paths abov of height difference at leagf’ - K - K, by heightK - Ky, .

of K - Ky, by definition, we can shorten[1,! — 1] by a height precisely<,, by applying the above claim

K%wl € N many times. We repeat this shortening process[dfl — 1] by heightX, as long as this is no

longer possible, i.e., until there are no two states whoaeteo difference is at least - K - K, + K. Let

o denote thef+)1](0)-path starting ing, n’) that we obtain fromr(1,7 — 1] until the before mentioned
shortening is no longer possible. Thusends in some state with a counter value that is congragnt
modulo K, (since we shortened(1, ! — 1] by a multiple ofK,,). SinceK,, is in turn a multiple ofK,,

we can build a patlr’ which extends the path by a single transition to some state that satisfiey
induction hypothesis. Moreover, by our shortening proctmscounter difference between any two states
in o’ is at most

K- -Ky +K, < 2k K,

Sincen > T+2-k*- K., it follows that the patly’ — & (which starts in(¢, n)) is strictly abovel'. Moreover,
since¢ is a multiple of K, and K, this path witnesseg;, n) € [¢]7 (o) by induction hypothesis.

Case B:n; = T for somej € [I]. Let j, € [I] be minimal such that;, = T'. Note thatr[1, jo — 1] is a
[¥1]7(0)-path whose counter values are all strictly ab@vevioreover, we have

n—nj=n"-T=0-n)+n-T)=E+n—-T>E+t(p) — T =€+ 2K°K,.
Hence, the maximal counter difference between two state§lofi, — 1] is at least
2.k K, +¢& > KK Ky +¢&

Hence, in analogy to case A, we can short¢h j, — 1] precisely by height. Let o denote the resulting
path. Therr — ¢ is a[y1 ] (o)-path that ends ig;, -1, nj,—1) and starts irfg, n). We can append{[j, —
1,1] to this path. The resulting path witnesgesn) < [¢] (o).

It remains to prove the above claim.

10



Proof of the claimFor each counter value € {n; | i € [I]} that appears i, let
w(h) =min{i € [I] | n;, = h}

denote the minimal position im whose corresponding state has counter valuefineA = k - K, . We
will be interested irk - K many consecutive intervals (of counter values) each of4izeve will call these
intervals blocks. Define the bottobn= n; — (k- K)- A. A blockis an intervalB; = [b+ (i —1)- A, b+1i- 4]

for somei € [k - K]. Since each block has sizé = k - K, , we can think of each block; to consist of

k consecutivesubblocksf size K, each. Note that each subblock has two extremal elementgIném
upperandlower boundary Thus allk subblocks havé + 1 boundaries in total. Hence, by the pigeonhole
principle, for each blockB;, there exists some distandg € [k] and two distinct boundaries(i, 1) and
B(i,2) of distanced, - K, such that the control location afs earliest state of counter valgg:, 1) agrees
with the control location oft's earliest state of counter valygi, 2), i.e., formally

qu(B(i,1) = 9u(B(i,2))

The situation is depicted in Figure 5. Observe that shantgtie pathr by gluing togetherr’s states
at positionu(5(i, 1)) and u(3(i, 2)) still results in a1 ] o)-path by induction hypothesis, since we
shorten the height of by a multiple of K, . Our overall goal is to shortenby gluing together states only
of certain blocks such that we obtain a path whose heighttistét preciselyk - K, smaller thanr's.

Recall that there ark - K many blocks. By the pigeonhole principle there is saine [k] such that
d; = d for at leastK’ many blocksB;. By gluing together’% € N pairs of states of distanek K, each,
we shortenr by a height ofg -d- Ky, = K- Ky,. This proves the claim.

Assumep = Ey; WU1,. This can easily seen to be proven analogously to the case gwheE); Uis.
O

Theorem 2. The following problem can be solved in ti@log(n) + |Q|? - || - 41Q11d) |55 U 5 )):
INPUT: A one-counter automatafl = (Q,{Q, | p € P},do,0>0), a CTL formula, a control location
q € @ and some naturat € N given in binary.

QUESTION:(g, 1) € [¢]7(0)?

Proof. Let k = |Q|. We first compute the threshol@y) < 2 - |¢| - k* - K, from Theorem 1. Then we
have(q,n) € [¢]7(o) if and only if (¢, m) € [p]7 (o), where eithem = m < t(p) orn > t(y) and
m is the unique number in the intervialy) + 1,t(¢) + K], which is congruent. modulo K,. We can
find this number in timeD(logn). Now we check(q,m) € [¢]1 () using the standard algorithm for
model checking TL on finite transition systems. The only difference is thatéfr@ach a counter value of
t(y) + K, + 1, then we replace this value byp) + 1. More precisely, we compute inductively for every
subformulay of ¢ the set

S() = [l N (@ x [tle) + Ky)).
Let us sketch the case of an until formuyla= Ev;Uvs. By induction, we have already computed the sets
S(y1) and S(s). The setS(w) is computed by a fixpoint iteration. Initially, we put all elents from
S (1) into S(v). Then, we perform the following fixpoint iteration processlang as possible. Assume
that(p, k) € S(1) is a state, which does not belong to the curigfit). Assume thatp, k) has a7 (O)-
successor (where a counter valug @f) + K, + 1 is reduced ta(y) + 1) in S(¢0). Then we addp, k) to
S(1). The correctness of this fixpoint iteration process folléssn Theorem 1. The size of each $&t))
is bounded byO(|Q| - o] - k% - K,) € O(|Q - |¢| - 41Q1ud(@)) ComputingS(+) can be done in time
O(|Q]? - || - 41Q1ud(@) . |55 U 6.0]). Hence, the total time bound @(log(n) + |Q|? - |p|? - 4/Q1ud(e) .
|60 U dso)- O

The following corollary generalizes a result from [18],tBtg that the expression complexity &F
over one-counter automata isfn

Corollary 3. For every fixed one-counter automatéh= (Q,{Q, | p € P},do,d>0) and every fixed:
the following problem is irP;

INPUT: A CTL formulay with lud(¢) < k, a control locationg € @ and some naturak € N given in
binary.

QUESTION:(q,n) € [¢]71(0)?

11



counter value

block By
A=k Ky,

block Bz

0
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Fig. 5. Repeating control locations in blocks

5 Expression complexity forCTL is hard for PSPACE

The goal of this section is to prove that model checkifig- is PSPACE-hard already over a fixed zero-
test-free one-counter automaton. We show this via a regtuétom the well-knownPSPACE-complete
problem QBF. Our lower bound proof is separated into threpsstin step one, we define a family of
CTL formulas(y;);>1 such that over the fixed zero-test-free one-counter autam@atthat is depicted in
Figure 6 (states il will be identified with atomic propositions) we can expresesr(-)divisibility by 2¢.
In step two, we define a family & TL formulas(t;);>1 such that oveD we can express if thé" bit in
the binary representation of a natural number is sét to our final step, we give the reduction from QBF.
For step one, we need the following simple fact which char@ds divisibility by powers of two.
Recall thafn] = {1,...,n}, in particular{0] = 0.

Fact 4 Letn > 0 andi > 1. Then the following two statements are equivalent:

— 2¢ dividesn.
— 2i=1 dividesn and|{n’ € [n] | 2/~ dividesn'}| is even.

The set of atomic propositions @ in Figure 6 coincides with its control locations. Note thattot and
are control locations af). Now we define a family o€ TL formulas(y;);>1 such that for each € N we
have that

12
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Fig. 6. The zero-test-free one-counter automatdfor which CTL model checking i®SPACE-hard

— (t,n) = ¢; if and only if 2¢ dividesn and

— (t,n) & ¢; if and only if 2! doesnot divide n.
On first sight, it might seem superfluous to let the controhtan ¢ represent divisibility by powers of
two and the control locationto represent non-divisibility by powers of two sin€d L allows negation.
However the fact that we havanly onefamily of formulas(y;);>1 to express both divisibility and non-
divisibility is a crucial technical subtlety that is necassin order to avoid an exponential blowup in
formula size. By making use of Fact 4, we construct the foa®syl inductively. First, let us define the
auxiliary formulas test ¢t vVt andy, = qo V q1 V g2 V g3. Think of ¢, to hold in those control locations
that altogether are situated in the “diamond” in Figure 6.d&8ne

Now assumeé > 1. Then we define

p; =test A EXp;, where

i = E(po A EXpi—1)U(go A =EXqy).
Before we formally prove thap; indeed expresses (non-)divisibility in Lemma 6, let us levsome
informal explanation. Observe that; can only be true either in control locatignor 7. Note that the
formula right to the until symbol expresses that we ar@grand that the current counter value is zero.
Also note that the formula left to the until symbol requirbatty,, holds, i.e., we are always in one of the
four “diamond control locations”. In other words, we deceshthe counter by moving along the diamond
control locations (by possibly looping) and always checkXfp; 1 holds, just until we are iy and the
counter value is zero. Singg_; is only used once i;, we get:

Fact5 |p;| € O(i).
The following lemma shows the correctness of the conswucti

Lemma 6. Letn > 0 andi > 1. Then

(1) (t,n) |= ¢; if and only if2 dividesn.

(2) (t,n) E ¢, if and only if2* does not divide:.

Proof. We prove statements (1) and (2) simultaneously by induaiion For the induction base, assume

i = 1. We only show (2), i.e(t,n) € [¢1]7(0) if and only if n is odd. We have the following equivalences:
(t,n) £ o1 n>land(f,n - 1) | EF(f A ~EXg)

n>Tland(f,n—1) =" (f,0)

n > 1andn — 1is even

n is odd

1ot

13



Point (1) can be shown analogously foe 1.

For the induction step, assurhe 2 and that the statement in the lemma holdsiferl. It is easy to verify
by the construction o and by induction hypothesis that the following claim holds.

Claim A:For everyn > 1 the following equivalences hold:

(qo,n) = 0o NEX@i—1 <= (q2,n) = 0o NEXp;_1 <= 2i~!dividesn
(q1,n) E 0o NEX@i_1 <= (g3,n) = o NEX@;_1 <= 2'"! does not divider

Using Claim A, one can easily show the following (recall that= E(p, A EXp;—1)U(go A ~EXq1)):
Claim B: For everyn > 0 the following equivalences hold:

(qo,n) = pi <= 2! dividesn and|{n’ € [n] | 2'! dividesn'}| is even

(qi,n) =i <= 27! does notdivide: and|{n’ € [n] | 2'~! dividesn'}| is odd
(qa,n) =p; < 27 !dividesn and|{n’ € [n] | 2°~* dividesn'}| is odd

(g3,n) = pi <= 2" does not divide: and|{n’ € [n] | 2°* dividesn'}| is even

Let us now prove Point (1) from the lemma for 2. We have the following equivalences:

(t,n) Ewi <= (q0,n) F p

CamB  9i~1 dividesn and|{n’ € [n] | 2" dividesn'}| is even
Fact 4 AT
< 2'dividesn

For Point (2), we have the following equivalences:

(Ev n) |: pi = dJje€ {17273} : (Qjan) =

LME - either2:~! does not dividex and|{n’ € [n] | 2'~" dividesn'}| is odd (i.e.j = 1),
or2~* does not divide: and|{n’ € [n] | 2°"* dividesn'}| is even (i.ej = 3),
or 2~ dividesn and|{n’ € [n] | 2°~" dividesn'}| is odd (i.e.j = 2)
<= 2! does not divide: or (2° ! dividesn and|{n’ € [n] | 2~! dividesn’}| is odd)
24 9 does not dividen
O
For checking if the™ bit of a natural number is set g we make use of the following fact.
Fact 7 Letn > 0 andi > 1. Thenbit;(n) = 1 if and only if|{n’ € [n] | 2¢~! dividesn’}| is odd.
Proof. We have
bit;(n) =1 <= nmod2’ e [2071 2" —1]
= FIre0,27t—1,k>0:n=r+2k+1) 271
— |{n' €[n]|2"" dividesn'}| is odd
0

Let us now define a family of TL formulas(«;);>1 such that for each € N we havebit;(n) = 1 if and
only if (¢£,n) E ;. We set

Y1 = ¢ and
i = t ANEX((@1Vaq2) A p;) foreachi > 1.

Fact 5 and the construction ¢f immediately yield the following fact.

14



Fact 8 |v;| € O(3).

The following lemma shows the correctness of the constracti

Lemma 9. Letn > 0 and leti > 1. Then(¢,n) |= «; if and only ifbit;(n) = 1.

Proof. The casé = 1 is covered by Lemma 6. For> 2, the following equivalences hold:

(t,n) Evi <= (q,n) F i or(gz,n) = p

CBME  gither2i~! does not divide: and|{n’ € [n] | 2 dividesn'}| is odd
or2~* dividesn and|{n’ € [n] | 2'~* dividesn'}| is odd

«— |{n/ €[n]| 2" dividesn'}| is odd

47 pity(n) =1

O
For our final step, let us give a reduction from QBF. hdte the following quantified boolean formula

a = Qrry Qp_1xp—1 - Qixr B(x1,...,Tp),

whereg is a boolean formula over variabl¢s,, . ..,z } andQ; € {3, V} is a quantifier for each e [£].
Our overall goal is to give &TL formula# such that our QBF formula is valid if and only if (¢, 0) |= 6.
A truth assignment) : {z;,..., 7} — {0,1} corresponds to the natural numbef) < [0,2% — 1],
where for each € [k], bit;(n(9)) = 1 if and only if ¥(x;) = 1. First, let3 be theCTL formula that is
obtained from the boolean formufaby replacing every occurrence of every variabjeby ;. Hence we
obtain that for eachd : {1, ...z} — {0,1} we havey = 8 if and only if (,n(v)) = 3 by Lemma 9.

It remains to defind. Recall that? will be evaluated in(Z,0). Let us parse our quantified boolean
formula a from left to right. Setting the variable,, to 1 will correspond to adding@*~! to the counter
and getting to staté, 2¢—1). Settingz;, to 0 on the other hand will correspond to addingp the counter
and hence remaining in statg 0). Next, settingr,_; to 1 corresponds to adding to the current counter
value2F—2, whereas setting,_; to 0 corresponds to adding as expected. Adding zero to the counter
will be realized by the finite path that jumps from controldtion? to p, and then back té. Adding 2¢—!
to the counter, on the other hand, will be realized by a finéh ghat jumps from control locatianto p;
(and thereby adds to the counter), then loops at as long as the counter value is not divisible iy !
(which can be ensured by checking(if,,n) E EX(f A ¢;_1) by Lemma 6) and finally jumps back to
when the counter value is divisible 12y~ for the first time again. We repeat this process until we have
to setz; either tol or to 0. Eventually setting:; to 1 will correspond to go front to p; (hence adding
to the counter) and then getting back¢tavhereas setting; to 0 will correspond to go front to p, and
then back tat. After that, we finally check it@ holds. Recall tha)y, ..., Q; are the quantifiers of our
quantified boolean formula. For eachi € [2, k], let us define formuld; as

0; = R)X ((po \/pl) Ol E <(p0 Vv EX(E/\ (pifl)) U (f/\ —i—1 N 911))>) and

0 = RiX ((po Vp1) O EX(TA B))

with O; = A andR; = Ein case@; = 3and(); =— andR; = Ain case; = V for eachi € [k].
As expected, we put = ;. Observe that the size éfis polynomial in the size ofv and that? can be
computed in logarithmic space from We finally obtain the following easy equivalence.

Lemma 10. The formulaa is valid if and only if(Z, 0) € [0] (o).

This finishes ouPSPACE lower bound proof for expression complexity G L over zero-test-free one-
counter automata. We have the following theorem.

Theorem 11. CTL model checking of the fixed zero-test-free one-countemazaiten© from Figure 6 is
PSPACE-hard.

Note that the formul# in our reduction necessarily has a leftward until depth tegdtends on the size of
«. By Corollary 3 this cannot be avoided unléss- PSPACE. Observe that in order to express divisibility
by powers of two, ouCTL formulas(y;);>¢ have a linearly growing leftward until depth.
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6 Tools from complexity theory

For Sections 7-9 we need some concepts from complexityythEioe: ™" levelBH; of the boolean hierarchy
is defined as followsBH; = NP, BHy; = {L1 N Ly | Ly € BHg;—1,Ls € coNP}, andBHy;11 =
{Ly ULy | Ly € BHy;, Ly € NP}. Theboolean hierarchyBH is defined asJ;>1BH;. The clasP™P is
the class of all problems that can be solved on a polynomiiatlg bounded deterministic Turing machine
with access to an oracle frohP. By PNPl°gl we denote the class of all problems that can be solved on
a polynomially time bounded deterministic Turing machimdgch can have access to AifP-oracle only
logarithmically many times. It is known th&tH C PNPlloe],

For naturalsn > 1and0 < M < 2™ —1letBIN,,, (M) = bity (M) - - - bit,, (M) € {0,1}"™ denote the
m-bit binary representation a¥/. For proving aPNP lower bound model checkingF over zero-test-free
one-counter automata, we will need the following theorem.

Theorem 12 ([35]).The following problem is complete f8f":

INPUT: A boolean formula)(x1, . .., xm,)?

QUESTION: Isy satisfiable and is the maximal numh&f € [0,2™ — 1] with ¢(BIN,,(M)) = 1 even
(i.e. is the lexicographically maximal satisfying assigmineven)?

6.1 Circuit complexity

More details on circuit complexity can be found in [34]. A been circuitC = C(z4, ..., z,) is a directed
acyclic graph (DAG) with the following properties (in thellfawing, nodes ofC are calledgates the in-
degree (resp. out-degree) of a gate is callethitsin (resp.fan-oud):

— The gates with fan-if (they are calleihput gatesn the following) are labeled with one of the symbols
L1, 71y 3 Ty Tn-

— Every gate with fan-in at least one is labeled with either Adivith OR.

— The gates of fan-out O (they are calledtput gatesn the following) are linearly ordered, we denote
this order byoy, . .., o,,, in the following.

Such a circuit computes a functigia : {0,1}™ — {0, 1} in the obvious wayThreshold circuitsnay in
addition to boolean circuits contamajority gates Such a gate outputsif and only if at least half of its
input gates evaluate tb Thefan-in of a circuitis the maximal fan-in of a gate in the circuit. Thize of

a circuit is the number of gates in the circuit. THepth of a circuitis the number of gates along a longest
path from an input gate to an output gate. A@"-circuit family (resp.TC-circuit family) is a sequence
(Cn)n>1 Of boolean circuits (resp. threshold circuits) such thasfime polynomiap(n) and constant:

— the size ofC), is at mosip(n),
— the depth of’,, is at moste, and
— for eachk > 0 there is at most one circuit ifC), ),,>1 with exactlyk input gates.

An NC!-circuit family is a sequencéC,,),>1 of boolean circuits such that for some polynoniéh) and
constant:

— the size ofC), is at mosip(n),

— the depth of’,, is at most: - log n,

— the fan-in ofC,, is at most2, and

— for eachk > 0 there is at most one circuit ifC,, ),,>1 with exactlyk input gates.

Circuit families of these types compute partial mappingg@ }* in the obvious way. Finally, a circuit
family (C,,),>0 is calledlogspace-uniformif there exists a logspace transducer that computes on input
1™ a representation (e.g. as a node-labeled DAG) of the ci€guitn the literature on circuit complexity
one can find more restrictive notions of uniformity, see gd], but logspace uniformity suffices for our

4 Note that we do not require to have for every> 0 a circuit with exactlyn input gates in the family, therefore the
computed mapping is in general only partially defined.
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purposes. In fact, polynomial time uniformity suffices feoyping our lower bounds w.r.t. polynomial time
reductions. We recall thatC® € NC*.

For our lower bound on the data complexity®fL, we use a deep result from [11, 22]. First, we need
a few definitions. Lep; denote the™ prime number. It is well-known that; is polynomially bounded in
i; hence the'" prime requireg)(log i) bits in its binary representation. Moreover, we need thieviahg
proposition, see e.g. [11]:

Proposition 13. A list (p1, ..., p.) Of the firstm prime numbers in unary notation can be computed in
spaceO(logm).

For a numbe0 < M < [[:*, p; we define theChinese remainder representati@RR,,,(}) as the
boolean tuple

1 if M modp; =7

(M) = (i, )ie(m),0<r<p; ;, {0 clse

By the following theorem, we can transform a CRR-represemtavery efficiently into binary representa-
tion.

Theorem 14 ([11, Thm. 3.3])Thereis a Iogspace-uniformcl-circuit family (B, ((zi,r)icm],0<r<p; ) Jm>1
such that for everyn > 1, B,,, hasm output gates and

V0 < M < [[pi : Bu(CRRy(M)) = BIN,, (M mod2™).
i=1

By [22], we could replace logspace-unifof¥C'-circuits in Theorem 14 even byLOGTIME-uniform
TC -circuits. The existence of R-uniform NC*-circuit family for converting from CRR-representation to
binary representation was already shown in [5].

Usually the Chinese remainder representation\bfis the tuple(r;);c(m), Wherer; = M modp;.
Since the primeg; will be always given in unary notation, there is no essertitierence between this
representation and our Chinese remainder representatieriatter is more suitable for our purpose.

6.2 Serializability

Intuitively, a complexity clas§; is calledC,-serializable (wher€, is another complexity class) if every
languagel. € C; can be accepted in the following way: There exists a polyabptin) and aC,-machine

(or Cy-circuit family) A such that: € L is checked ire?(1*l) many stages, which are indexed by the strings
from {0, 1}7(=D In stagey € {0,1}?(*D), A gets from the stage indexed by the lexicographic predecesso
of y a constant number of bits, . . ., b. and computes from these bits, the indeand the original inpui

new bhitst), ..., b, which are delivered to the lexicographic next stage. In [il@fs shown thaPSPACE

is P-serializable; in [21] this result was sharpenedM@’-serializability, see also [33]. It is not stated in
[21,33] but easy to see from the proofs thagspace-uniformAC’ suffices for serializind®SPACE, see

the appendix for more details.

For our purpose, a slightly different definition AL -serializability is useful: A languagé is AC°-
serializable if there exists an nondeterministic finiteoawutonA over the alphabef0, 1}, a polynomial
p(n), and a logspace-uniforiC-circuit family (C,,),>0, whereC,, has exactlyn + p(n) many inputs
and one output, such that for everye {0, 1} we have:

rel — H Cn(z,y) € L(A),
y€e{0,1}r(n)

where “ - . " refers to the lexicographic order g, 1}7(™) and for everyy < {0, 1}*("), C,,(z, ) is either)
or 1 (hence[], o1y Cn(z,y) is a binary string of lengt? (™). This definition ofAC’-serializability

is equivalent to the one in [21]. A proof that every languag@$PACE is AC’-serializable in the above
sense can be found in the appendix.
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6.3 Combining serializability and small-depth circuits

In this section, we will combine Theorem 14 with tA&€°-serializability of PSPACE to get a new charac-
terization ofPSPACE that will be suitable for our lower bound proofs in the restha paper. Again, lep;
denote the" prime number. Note thqf[?;pi > 2™ for all m > 1. Also note that a boolean formula can
be seen as a boolean circuit, where every gate that is neithieiput gate nor the output gate has fan-out
1 (i.e., is input gate for exactly one other gate). We only abersboolean formulas, where AND and OR
are binary, i.e, every AND-expression and every OR-exjadsas exactly two arguments. In this case,
we write A (resp.,Vv) for AND (resp. OR).

Proposition 15. For every languagd. C {0,1}* from PSPACE there exists a polynomial(n) and an
NFA A over the alphabef0, 1} such that the following holds: From a given input {0, 1}* with |x| = n
one can construct in logspace a boolean form#lawith propositional variables:; . (i € [p(n)] and
0 <r < p;) such that:
2m_1
reL < [] F(CRR,(M)) € L(A). 2)
M=0

Proof. Let us fix a languagé. C {0, 1}* from PSPACE. Recall from Section 6.2 th@&SPACE is AC’-
serializable [21] and henckC'-serializable. Thus, there exists an NEAover the alphabef0,1}, a
polynomial p(n), and a logspace-uniformiC'-circuit family (C,,),>o, whereC,, hasn + p(n) many
inputs, such that for every € {0, 1}" we have

vel < [ Cula,y) €L(4), (3)
ye{0,1}3p(m

where the order in the concatenatippis the lexicographic order ofn, 1}7("). Fix an inputz € {0, 1}™.
Our construction of the boolean formutacan be split into three steps:

Step 1. Construct in spacé(logn) the circuitC,,. Fix the firstn inputs of C,, to the bits inz, and denote
the resulting circuit by”; it has onlym := p(n) many inputs. Equivalence (3) can be written as

2m_—1
zeL < [] C(BIN,(M)) e L(A). (4)
M=0

Step 2.Compute in spac®(logm) = O(logn) the circuit B = B, ((%4,)ie[m],0<r<p;) from Theo-
rem 14. ThuspB is a boolean circuit of fan-in 2 and depti{log m) = O(log n) with

B(CRR,,(M)) = BIN,,, (M mod2™)

for every0 < M < [T, p;.

Step 3.Now we compose the circuit® andC: For everyi € [m], connect the™ input of the circuit
C(21,...,T,) with thei™ output of the circuitB. The result is a circuit with fan-in 2 and dept{log n).

We can unfold this circuit into a boolean formuta= F((x;r)ic{m],0<r<p,)- The resulting formula (or
tree) has the same depth as the circuit, i.e., déjflog n) and every tree node has at most 2 children.
Hence,F has polynomial size. For evefy < M < 2™ we haveF' (CRR,,(M)) = C(BIN,,(M)) and
equivalence (4) can be written as

2m—1
reL < [] F(CRR,(M)) € L(A).
M=0

The unfolding of the circuit can be done in sp&2€og n), since the circuit has depth(logn) and fan-in
2 (this implies that a path in the circuit from the output gdd@/n to a certain node can be stored in space
O(logn)). This proves the proposition. O
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Proposition 15 can be used fBEPACE lower bound proofs for OCA. The idea is to store the numher
in (2) on the counter. To check whethB(CRR,,,(M)) evaluates to true, the OCA traverses the boolean
formula . Each time, a variable; , is reached, it has to be checked whether the current coualige is
congruent- modulop;. An OCA can do this. Recall that, can be constructed in spac¥logi). Hence,
we can also construct in spal&log i) an OCA that checks whether the current counter value is cemgr
r modulop;. When doing this modulo check, the original counter valud isonirse lost. In the context of
CTL, which we discuss in the next section, this is not a problentesa fixedCTL-formula can control a
second computation path (on which the modulo test is dora)attanches off the main computation path
(which traverses the boolean formula).

For ourPSPACE lower bound proof for timed automata in Section 10.1 we nbéeddllowing variant
of Proposition 15. The proof is the same as for Propositignabjust skip Step 2, i.e., the use of small
depth circuits for transforming CRR-representations bit@ry representations.

Proposition 16. For every languagd, C {0, 1}* from PSPACE there exists a polynomial(n) and an
NFA A over the alphabef0, 1} such that the following holds: From a given input {0, 1}* with |z| = n
one can construct in logspace a boolean formHlavith propositional variables:; (i € [p(n)]) such that:

rEL ﬂ F(BIN,,(M)) € L(A).
M=0

7 Data complexity for CTL is hard for PSPACE

In this section, we prove that also the data complexitZ ®f. over zero-test-free one-counter automata is
hard forPSPACE and thereforeSPACE-complete by the known upper bounds for the mqaaialculus
[30]. We will use Proposition 15 for this. Let us fix the set edpositionsP = {«, 3,~} for this section. In
the following, we allow in the transition relatiafnof a zero-test-free OCA transitions of the kifg &, ¢),
wherek € Z is given in unary representation with the expected intaitiveaning. Clearly, such transitions
can be eliminated with a logspace transformation.

The following proposition formalizes the idea explainetéathe proof of Propositon 15.

Proposition 17. For the fixedEF formulay = (o — EX(8 A EF(=EX~))) the following problem can be
solved with a logspace transducer:

INPUT: A list of the firstn consecutive (unary encoded) prime numbets . . , p,,, and a boolean formula
F= F((£i,r)ie[m],0§r<m)

OUTPUT: A zero-test-free OCAr with distinguished control location®s and out such that for every
number) < M < [, p; the following are equivalent:

— F(CRR,,(M)) =1
— There exists dy] 1o, -path from(in, M) to (out, M) in T(OF).

Proof. We first transform in logspace the input formufainto apositive boolean formulé.e., a boolean
formula that is built up from propositional variables and binary operators andv). For this we first push
negations down so that they only occur in front of propostiovariablesr; .. Then, a negated variable
—z;» can be replaced by the disjuncti§ff{z; . | 0 < k < p;,r # k}. Note that this can be done in
logspace, since the primgs are given in unary representation. Tifecan be replaced by binary's. We
denote the resulting formula with again.

Now, the idea is to traverse the positive boolean fornfulaith the zero-test-free OC&® in a depth
first manner. Each time a variahile,. is seen, the zero-test-free OCA may also enter another iramere
it is checked, whether the current counter value is congruerodulop;. Let Sr be the syntax tree of the
formula F, which is a binary, rooted, and node-labeled tree. Each nbdg- is labeled with one of the
symbolsA, v, orz; » (1 <i <m,0 < r < p;). SetVr be the set of nodes of the trég.. ThenOp is
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Y in(v2) — in(vs) — out(vs) — in(vg) — out(ve) = out(vz2)

A \

vt A v2 T A in(vou) —2@div(2)_—>J_<;div(3)©—3 out(vo)
AP

U3 :IT10 V421 Vs 1Z1,0 Ve :T22 in(vy) - in(vs) = out(vg) > in(va) > out(va) > out(zﬁ)
a a

Fig. 7. The syntax tre&Sr and the OCAO for the formulal’ = (1,0 A z2,1) V (21,0 A 2,0). Unlabeled transitions
are implicitly labeled withp.

defined as

OF = (Qa {QOH Qﬁa Q’y}7 6)7 where
Q = {in(v),out(v) | v € Vr} U {div(p1),...,div(pm), L}

Qo = {in(v) | v € Vp is labeled with a variable; ,.(i € [m],0 <r < p;)}

Qp = {div(p1),...,div(pn)}

Qy={L1}.
Form = 2 (and hence the primes = 2 andp, = 3) and the formulaF' = (21,0 A 221) V (21,0 A Z22)
the construction is shown in Figure 7. As an example= 4 corresponds to the residue clasmodulo
p1 = 2 and the residue clagsmodulop, = 3, thus)M assigns to the variablas ( andz, ; the truth value
1 and to the other variables the truth valiieA correspondingy]r(o,.)-path is displayed with dashed
lines in Figure 7. We séh = in(vg) andout = out(vg), Whereuy is the root ofSr. Let us now define the

transition seb. Let v be a node o5z, which is not a leaf, and lat; andv, be the children ob. If v is
labeled withv, then we add the transitions

(in(v), 0,in(v;)) and(out(v;), 0, out(v)) for i € {1, 2}
tod. If v is labeled withn\, we add the transitions
(in(v), 0,in(vy)), (out(vy),0,in(ve)), and(out(vs),0, out(v))
to . If v is a leaf of Sy that is labeled with the variable, ,., we add the transitions
(in(v), 0, out(v)) and(in(v), —r, div(p;))
to ¢. For the control locationdiv(p;) we add ta) the transitions
(div(pi), —ps, div(pi)) and(div(p;), -1, L).

This concludes the description of the zero-test-free @GA Correctness of the construction can be easily
checked by induction on the structure of the formila ad

We are now ready to proveSPACE-hardness of the data complexity.

Theorem 18. There exists a fixe@TL formula of the formEp; Uy, wherep; and ¢, are EF formulas,
such that the following problem RSPACE-complete:

INPUT: A zero-test-free OCA& and a control locatiory of O.

QUESTION:(T (0), (¢,0)) &= Ep1Ups?

Proof. The PSPACE upper bound is already known and even holds for the combiasgexity of model
checking OCA against formulas of the modalcalculus as shown in [30]. It thus remains to prove
PSPACE-hardness. For this, let us take an arbitr®SPACE-complete languagé C {0,1}*. Fix the
polynomialp(n) and the NFAA = (S, {0, 1}, 6, so, Sy) over the alphabef0, 1} from Proposition 15. Let

x € {0,1}* be an input of length, and letm := p(n), where w.l.o.gm > 1. By Proposition 15 one can
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construct in spackg n a boolean formula with propositional variables, (i € [m] and0 < r < p;) such

that:
gm_1

reL < [] F(CRR,(M)) € L(A). (5)
M=0
By Proposition 13 we can compute in spa@8ogm) = O(logn) a listpy, ..., p,, of the firstm prime

numbers in unary notation. Note thdt" , p; > 2™ sincemn > 1.

We now apply our construction from Proposition 17 to the folanF'. More precisely, letG be the
boolean formula/\ie[m] x;r, Werer; = 2™ modp; for i € [m] (these remainders can be computed in
logarithmic space). For everltlabeled transition- € § of the NFA A let O(7) be a copy of the zero-
test-free OCAO(F A —@G). For every0O-labeled transitionr € § let O, be a copy of the zero-test-free
OCA O_ g~ In both cases we writ&, as(Q(7),{Q(7), Qs(7),Q~(7)},d(7)). Denote within(r)
(resp.out(7)) the control location of this copy that correspondsntgresp.out) in Or. Hence, for every
b-labeled transition- € § (b € {0,1}) and every0 < M < []", p; there exists d¢]1(o.)-path (o is
from Proposition 17) fronfin(7), M) to (out(7), M) if and only if F(CRR,,,(M)) = bandM # 2™,

We now define a zero-test-free OCA= (Q,{Q., Qp, Q- }, ") as follows: We take the disjoint union
of all the OCAQ.. for 7 € §. Moreover, every state € S of the automatomd becomes a control location
of O:

Q=sulJem
TES

Qp = U Qp(T) fOfp S {Oé,ﬁﬁ}

TED

We add tod’ for every NFA-transitionr = (s, b, t) € 6 the following transitions:
(s,0,in(7)), (out(r),+1,1).

Then, by Proposition 17 and (5) we havec L if and only if there exists §y]7(o)-path in7(O) from
(s0,0) to (s,2™) for somes € Sy. Also note that there is nfy] -(0)-path in7(O) from (s, 0) to some
configuration(s, M) with s € S andM > 2™. It remains to add t@ some structure that enablésto
check that the counter has reached the valte

For this, use Proposition 17 to construct the zero-te&€-®E€A O (whereG is from above) and add
it disjointly to ©. Moreover, add t@’ the transitiongs, 0,in) for all s € Sy, wherein is the in control
location of O¢. Finally, introduce a new propositignand set?), = {out}, whereout is the out control
location of Og. By puttingg = sg we obtain:

zeL < (T(0),(¢,0)) EE (a = EX(8 AEF(-EX~))) U p.

« from Proposition 17

This concludes the proof of the theorem. O
By slightly modifying the proof of Theorem 18, the followirngrollary can be shown.

Corollary 19. There exists a fixe@TL formula of the formEG+, wherey is anEF formula, such that the
following problem isPSPACE-complete:

INPUT: A zero-test-free OCA and a control locationy of O.

QUESTION:(T7(0),(q,0)) E EGy?

Proof. The proof is almost identical to the proof of Theorem 18, @ttieat we do not introduce the atomic

propositionp. We rather add té’ the transitionout, 0, in), whereout is the out control location aP¢ and
in is the in control location o®«. We define = ¢, where againp is the formula from Proposition 17.0
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8 Combined complexity ofEF is hard for PNP

In this section, we will apply the efficient transformationr Chinese remainder representation to binary
representation (Theorem 14) in order to prove that the coetbcomplexity folEF over zero-test-free one-
counter automata is hard f@NP. For formulas represented succinctly by DAGs (directedtkcygraphs)
this was already shown in [18]. The point here is that we usestandard tree representation for formulas.
The following proposition states that evaluating a booltamula whose variables are given in Chinese
remainder representation can in fact be reducdeFtmodel checking an appropriate OCA whose counter
value we assume to encode this Chinese remainder reprégenta

Proposition 20. The following problem can be solved by a logspace transducer

INPUT: A list of the firstm consecutive (unary encoded) prime numbers and a booleanici =
C((wi,r)ieim),0<r<p,) (With a single output gate)

OUTPUT: A zero-test-free OC&¢ with a distinguished stats and anEF formula ¢(C') such that for
every numbef < M <[], p; we have:

C(CRR,(M)) =1 <= (T(Oc),(in,M)) = ¢(C).

Proof. As in the proof of Proposition 17 we can eliminateGhnegated input gatesz; - by disjunctions
of positive input gates. Moreover, we can w.l.0.g. assuragtthe circuitC' is organized ink + 1 layers,
where each layer either contains only AND- or OR-gates. Ailldren of a node in layer belong to layer
1 + 1. Layer1 contains only the unique output gate of the circuit, whetagsr k + 1 contains the input
gates. Foi € [k], let¢; = AND (resp.¢; = OR) if layer i consists of AND-gates (resp. OR-gates).

The set of control locations of the zero-test-free OQA contains all gates of the circuit; the unique
output gate becomes the distinguished stat&/e add the transitiofy, , 0, g2) to O¢ if gate g» is a child
of gateg;. If gate g is an input gate labeled with; ,. then we add the transitiofy, —r, div(p;)) to Oc.
Finally, for the statediv(p;) we have the same transitions as in the proof of Propositioffii§ concludes
the description of the zero-test-free OCX.

In order to describe thEF formulap(C) let M; = EX (resp.M; = AX) if ¢; = OR (resp.{; = AND)
for i € [k]. Then let

©(C) = MMy - - - MxEX EF(=EX~), (6)

where the propositiory is used in the same way as in the proof of Proposition 17 tavaitotest if the
counter value is zero. It is clear that this formula fulfiketrequirements of the theorem. O

We now prove that model checkiriE on zero-test-free OCA is hard f&NP.

Theorem 21. The following problem i®NP-hard:
INPUT: A zero-test-free OCA), a stategy of O, and anEF formula.
QUESTION:(T(0), (90,0)) [= ¢?

Proof. Let us take a boolean formul&(z1, . .., z,,). By Theorem 12 it suffices to construct (in logspace)
a zero-test-free OCA,, with a distinguished staig and arEF formulay,, such tha(7(Oy), (¢0,0))

@y if and only if ¢ is satisfiable and the maximal numbef € [0,2™ — 1] with ¢(BIN,,,(M)) = 1 is
even.

By Proposition 13 we can compute in spadegm a listpy, ..., p,, of the firstm consecutive primes.
Moreover, let us compute in spakg m the circuitB = B, (74, )ie[m],0<r<p, ) Of logarithmic depth and
fan-in at most two from Theorem 14. We combiBewith the boolean formul&(z1, ..., z,,) and obtain
a boolean circuiC = C((2i,r)ic[m],0<r<p; ) SUch that for every numbér< M < 2™ —1:

$(BIN, (M)) =1 < C(CRR,,(M)) = 1. ©)

As in the proof of Theorem 18 |&t be the boolean formulAie[m] x;r, Werer; = 2™ modp; for i € [m].
The main structure of the zero-test-free OCW is described by the following diagram:
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From the stateg, p, r, ands some furthed-labeled transitions emanate to zero-test-free OCA ofdhm f
constructed in Proposition 20:

— Fromgy a transition into the initial stat@ of a copy ofO¢.
— Fromp ands a transition into the initial stat@ of a copy ofO¢.
— Fromr a transition into the initial state of a copy ofO_¢.

Now our EF formulay,, expresses the following: We can reach a configuratign/; ) from (go,0) in
the zero-test-free OC&,;, such that the following holds:

— C(CRR, (M) = 1,

— from (qo, M;) we cannot reach a configuratiop, M) with 0 < My < M; andG(CRR,,(Mp)) =1
(i.e., My = 2™ mod []", p;), and

— for all configurations(r, M5) that are reachable frorty,, M) (henceM, > M) the following
holds: If we cannot reach a configuratigs, M3) from (r, M) with G(CRR,,(M3)) = 1 then
C(CRR,(Mz)) = 0.

Using the formulas constructed in Proposition 20, it isigtrdiorward to transform this description into a
real EF formula. This concludes the proof. O

At the moment we cannot pro®"-hardness for the data complexity BF over OCA. For this, it would

be sufficient to have a fixellF formulae(C') in (6). Note that this formula only depends on the number of
layersk of the circuitC'. Hence, ifC' is from anAC’-circuit family, theny(C) is in fact a fixed formula.

In our case, the circuit is the composition of two circuitaedrom anNC*-circuit family (coming from
Theorem 14, where we could even assumBQ@-circuit family) and a boolean formula, which can be
assumed to be in conjunctive normal form. Hence, the maitaeolesfor getting a fixed formula is the fact
that converting from Chinese remainder representatiointr representation is not possibleAa’ (this

is provably the case).

9 Reachability objectives on one-counter Markov decision pcesses

In this section we show that the techniques developed in tidqus sections can be used to improve a
lower bound on verifying reachability objectives on onexeter Markov decision processes from [8].

A probability distributionon a non-empty finite sef is a functionf : S — {x € Q | 0 < z < 1}
such thaty | o f(s) = 1. We restrict here to rational probabilities, in order to fyeite representations
for probability distributions. A (image-finiteylarkov chainis a tripleC = (S, —, f), where(S, —) is an
image-finite and deadlock-free directed graghi also called the set of states@fand f assigns to each
s € S a probability distributionf(s) over all (the finitely many) successors ofv.r.t. —. If s — ¢, then
we also use the notationf§s, ) = x or s = t for (f(s))(t) = = € Q. A (image-finite)Markov decision
proces{MDP) is atripleD = (V, —, f), where(V, <) is again an image-finite and deadlock-free directed
graph, the se¥’” of vertices is partitioned ag = VW Vp (Vy is the set ohondeterministizertices,Vp is
the set oprobabilisticvertices), and assigns to each probabilistic vertexe Vp a probability distribution
onv's successors. Atrategyo is a function that assigns to each with w € V* andv € Vy a probability
distribution onv’s successors. I assigns tavv andv’ (wherev — v') the probabilityz, then we write
o(wv,v') = x. Every strategy determines a Markov chai®(c) = (V T, —, f), wherewv = wov’ if
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and only ifv < v’ and moreover eithes € Vp and f(v,v') = z, orv € Viy ando(wv,v’) = z. Let
path,, (D) = path,,(V, <) andpath,,(D(c)) = path,,(V*,—); paths in these sets will be calleansin

D or D(o), respectively. Note that every run i corresponds to a unique run(o) and vice versa in a
natural way. In order to simplify notation, we will quite eft identify these corresponding runs. Let us fix
a set oftarget verticesI” C V of the MDPD. For each strategy and each vertex € V of D, let

Reaclf.(v) = {wyws - - - € path,(D(0)) |wy =vand3di > 1:w; € V*T}

denote all runs irD(o) that start inv and that satisfy the reachability objectien D. For eachr’, eacho
and each, the set Reach(v) is measurable [4]. The probabili®(Reacl.(v)) for the set Reach(v) can
be obtained as follows: Take all finite patlasc path_ (D(c)) that start inv and such that the last state of
w is from V*T" but no previous state i is from V*T' (this set is prefix free). For each such finite path
w = wy - - - w, such thatw; =5 w; in D(o) the probability isz - 25 - - - 2,,—1. Finally, the probability
for Reaclj.(v) is the (possibly infinite) sum of all these probabilities vi\tet us define th& -reachability
value inv by

ValReach-(v) = sup{P(Reaclf(v)) | o is a strategy irD}.

Observe that it is not required that this supremum is agtuatiched by a certain strategy If however
a strategys does reach th&-reachability value, i.e/P(Reaclf.(v)) = ValReach-(v), theno is called
optimal

A one-counter Markov decision process (OC-MDP) is a tuple= (Q, do, d~0, fo, f>0), WhereQ =
Qn W Qp is a finite set ofcontrol locationswhich is partitioned intcmondeterministic control locations
@ n andprobabilistic control locationg) p, dg C Q x {0,1} x Q is a set ofzero transitionsanddo C
Q x {-1,0,1} x Q is a set ofpositive transitionsuch that eaclh € @ has at least one outgoing zero
transition and at least one outgoing positive transitiow, fnally fo (resp.f~o) assigns to eache Qp a
probability distribution over all outgoing zero (resp. jtivg) transitions ofy. The MDP thatM describes
isD(M) = (V, =, f), where

- Vn=Qn xNandVp =Qp x N, and
- (g,n) = (¢’',n + i) if and only if one of the following two conditions holds:
e n = 0and(q,i,¢') € d. If furthermoreq € Qp, then f assigns to(q,n) — (¢’,n + i) the
probability fo(q,,q’).
e n > 0and(qi,q) € ds¢. If furthermoreq € Qp, thenf assigns tdg,n) — (¢',n + i) the
probability f<o(q, %, q’).

Given an OC-MDPM = (Q, do, 00, fo, f>0) and a set of control locationd C @, define
ValOne(R) = {(¢,n) € Q x N | ValReaclg (0}(¢,n) = 1}

and
OptValOne(R) = {(¢,n) € @ x N | I strategyo : P(Reaclf, (y(¢,n)) = 1}

(both sets are defined w.Ex(M)). In other wordsValOne(R) is the set of all state§;, n) of the MDP
D(M) such that for every > 0 there exists a strategy. under which the probability of reaching from
(¢, n) a control location inR and at the same time having counter value at leasfl — . OptValOne(R)

is the set of all state§y, n) of the MDPD(M) for which there exists a specific strategy under which this
probability becomes. The following theorem recalls the complexity bounds thratknown for the latter
variant.

Theorem 22 ([8]).The following problem i®SPACE-hard and inEXPTIME:
INPUT: An OCA-MDPM = (Q, do, 00, fo, f>0), R € Q, andq € Q.
QUESTION:(g, 0) € OptValOne(R)?

The lower bound in Theorem 22 was proven by a reduction fraP8PACE-complete emptiness prob-

lem for alternating finite word automata over a singletorhalget ([23], see also [24] for a simplified
presentation).
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Theorem 23 ([8]). The following problem is hard for every level BH:
INPUT: An OC-MDPM = (Q, 60, 050, fo, f>0), R € @, andq € Q.
QUESTION:(q,0) € ValOne(R)?

Currently, it is open whether the problem stated in Theor&nis2lecidable; the corresponding problem
for MDPs defined by pushdown automata is undecidable [15].

From the proof of Theorem 23 it can be seen that the authorsemotually hardness fdpNPlos],
Moreover, it is pointed out in [8] that various difficultiesige when trying to improve the latter lower
bound. In this section, we will improve the lower bound formiership inValOne(R) to PSPACE. We
aim at demonstrating that the tools from computational derify that we have used so far, can again
be applied for the/alOne(R) problem, rather than emphasizing that one can prove\thine(R) is
indeedPSPACE-hard: as mentioned abowalOne(R) is not known to be decidable. From our proof one
can easily see that we reproPSPACE-hardness oDptValOne as a byproduct. But first, we need the
following proposition.

Proposition 24. The following problem can be solved by a logspace transducer

INPUT: A list of the firstm consecutive (unary encoded) prime numbers and a booleanufarF’ =
F((%4,r)ie(m),0<r<p:)-

OUTPUT: An OC-MDPM = M (F) with control locations?, a setR = R(F) C @, and some control
locationgr € @ such that for every numbér< M < [T, p; the following holds:

— If F(CRR,,,(M)) = 1, then there exists a strategysuch thatP(Reactf, 1oy (g7, M)) = 1.
— If F(CRR,,(M)) = 0, then for every strategy we haveP(Reactf,,. o) (qr, M)) < 1— 27171,

Proof. As in the proof of Proposition 17, we can assume this a positive boolean formula. The OC-
MDP M = M(F) = (Q, do, d>0, fo, f>o) Will have for each subformul& of F' a control locationy.

If G is of the formG = G, V Gs, thengg will be nondeterministic and both iy and inéd~q there
is a transition fromye to bothgs, andgg, that does not change the counter valugZlfs of the form
G = G1 A\ G, thengg will be probabilistic and both iy and ind~( there will be a transition to botty;,
andgc, that does not change the counter value and which will be chaéth probability + each. Now
assume that? is a variabler; .. Recall thate; ,. is set tol if and only if A/ modp; = . We introduce in
M further (deterministically behaving) control locationg, p;) for 0 < j < p; that allow to test ifM is
congruent modulop; by allowing the following transitions i~ for each0 < j < p;:

Since eacly(j, p;) must have an outgoing transition bothdinanddo, we add the transition

(Q(jvpi)7 Oa q(]7pl))

to o for each0 < j < p;. We putg,, , to be nondeterministic with a transition bothdgand ind( from
4z, 10 q(r, p;) that does not change the counter value. Finally weiput {¢(0,p;) | i € [m]}.
Assume first thaf'(CRR,,,(M)) = 1. We prove that there exists a strategguch that

P(Reactk, oy (qr, M)) =1

in D(M). Note that the only nondeterministic state€i\M) that have more than one successor are states
which correspond to a disjunctive subformdle= G, v Gz of F. If G(CRR,,,(M)) = 1, then there exists
somei € {1,2} such thaiG;(CRR,,(M)) = 1. Our strategy will choose(q¢, M)'s successofqg,, M)
with probability 1. If G(CRR,,(M)) = 0, then the choice of is irrelevant and we let choose(qg, M)'s
successor uniformly distributed, say. Itis now easy tofyéhiat P(Reactf, o, (¢, M)) = 1.

On the other hand, assume tH&CRR,, (M )) = 0 and consider an arbitrary strategyThe question
is how close carP(Reactf, (¢, (¢r, M)) reachl. We prove by induction on the structure of the formula
F that

P(Reacth, (o) (gr, M)) <1-27", 8

25



wherek is the number of conjunctions that appea#inlf F' is a variabler; ,., then
P(Reacth,. 10y (g, M)) =0 =1-2°.

If F = F,V FythenF;(CRR,,(M)) = F5(CRR,,(M)) = 0. Assume that- assigns to the transition from
(gr, M) to (qF,, M) the probabilityz;, wherez; + zo = 1. With the induction hypothesis, we get

P(Reacth, o) (gr, M)) = a1 - P(Reacty, oy (qr,, M)) + 22 - P(Reacty, ) (4r,, M))
<ap(1—277) 4 ap(1 — 2752),

wherek; the number of conjunctions that appeaifin Sincek; < k, we get (8). Finally, assume that=
F1 A F5 and letk; be the number of conjunctions that appeaFjnHencek; < k—1.If F; (CRR,,,(M)) =
F>(CRR,,,(M)) = 0 then we get?(React},, ) (¢r, M)) <1 —27F+1 <1— 277 On the other hand, if
e.0.F1(CRR,,(M)) = 0 but F5(CRR,,(M)) = 1 (the other case is symmetric), then we get

P(React o) (ar, M)) = 5 - P(ReaCH (o) (4r:. M) + 5 - P(Reacth, oy (qr. M)

IN
N = N =

1
-(1—2*’”1)+5 =1-27F

This concludes the proof of (8). Sinde< |F| we obtainP(Reacth, o) (qr, M)) < 1 — 2711, This
concludes the proof of Proposition 24. ad

Theorem 25. The following problem i®SPACE-hard:
INPUT: An OC-MDPM = (Q, 8,050, fo, f>0), R € Q, andq € Q.
QUESTION:(g,0) € ValOne(R)?

Proof. Take an arbitrarfPSPACE-complete languagé C {0, 1}*. Fix the polynomialp(n) and the NFA
A = (5,{0,1},46, 50, Sy) over the alphabef0, 1} from Proposition 15. Let: € {0,1}* be an input of
lengthn, and letm := p(n), where w.l.o.gm > 1. By Proposition 15 one can construct in sp&tgog n)
a boolean formuld’ with propositional variables; ,. (i € [m] and0 < r < p;) such that

2™ 1
rel <= [] F(CRR,(M)) € L(A). (9)
M=0

By Proposition 13 we can compute in spa@@ogm) = O(logn) alistpy, ..., p,, of the firstm prime
numbers in unary notation. Note tHet" , p; > 2™ sincem > 1.

By doubling, if necessary, the set of final statesdoive can assume that states fréfp do not have
outgoing transitions but every state frafr, S; has at least one outgoing transition. This assumption will
slightly simplify our construction.

LetG = /\ie[m] x;.r, With r; = 2™ modp; for eachi € [m] be the boolean formula that testsiif
equals2™. We will build an OC-MDPM = (Q, do, d~0, fo, f>0) With S C @ and a target set of control
locationsR C () such that

2™m—1
I F(CRR,(M)) € L(A) <= ValReach,(o}(s0,0) = 1.
M=0

Moreover, our reduction will have the additional propettgtt
ValReach;x (01(s0,0) =1 <= Istrategyo : P(Reacltf, (¢, (s0,0)) = 1.

Hence, we prové®SPACE-hardness oDptValOne as a byproduct. The control locations $h\ S; are
nondeterministic inM (M will hence behave nondeterministically in control locagofrom S \ Sy).
The NFA A on input F(CRR,,(0)) - - - F(CRR,,,(2™ — 1)) will be simulated byM from state(sq,0) by
consecutively incrementing the counter and checking ifiercurrent counter valu®/ and for the current
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(to be simulated}-labeled transition ofA we haveF(CRR,,(M)) = b. This simulation will be done
until a state(s, 2™) with s € Sy is reached. Recall that by Proposition 24 we can compute @EM
M(F AN-G), M(—~F A—G), andM(G) together with sets of control locatiod F' A —G), R(—~F A—G),
and R(G), and control locationgga-¢, ¢-ra-a, @andge such that, e.gM(F A —G) satisfies for each
0< M <[, pi

F(CRR,,(M)) = 1AM # 2™ = I strategyo : P(Reacly pp-c)x o0} (qrr-c: M)) =1
F(CRR,,(M)) =0V M = 2™ =V strategies : P(Reacth yr-q)x o} (qra-c, M)) < 1 — 27177
The OC-MDPsM (—F A =~G) and M (G) have analogous properties.

In the following diagrams we draw transitions thatrtut modify the counter value by dashed lines and

we draw transitions that increase the counter value by onerimal width. We realize each NFA-transition
(s,1,t) € 6 (where necessarily € S\ S¢) both indy and ind~ by

s (8,1, ) >t
2
1
2
A\
qFA-G
whereas each transitid, 0, t) € § (where necessarily € S\ Sy) is realized inM by
s (8,0,8) >t
2
1
2
A\
4-FA-G

i.e. we connect the intermediate control locatienp, t) € § to M(F A =G) (if b = 1) or M(=F A =G)
(if b = 0) for checking if F(CRR,,(M)) = bandM < 2™ for the current counter valug/. Moreover,

for all final statess € Sy we add a transition LN qc 1o bothdy andd~.o that does not change the counter
value. As expected, we pit = R(F A -G) U R(—~F A =G) U R(G). LetD = D(M) in the following.
Note that since every non-final state has at least one owgd@insition inA, D is indeed an MDP, i.e., the
underlying graph is deadlock-free.

Now assume that € L. We show that there exists a strateggpuch thatP?(Reacff, (o; (s0,0)) = 1.

Sincex € L, we have[[5,_, F(CRR,,(M)) € L(A) along with some accepting run

b b bom 1
S0 = 81— o+ Sgm_j] — Som € Sy,

wheres,; ¢ Sy andby, = F(CRR,,,(M)) forall M € [0,2™ —1]. For eachM € [0,2™ — 1] our strategy
o will assign to(sas, M)'s successof (sas, bar, Sar+1), M) probability 1. Moreover, by Proposition 24
we can choose the strategysuch that:

by=1 — P(Reacﬁzx{o}(qF/\ﬂGvM)) =1
by=0 — P(Reacﬁgx{o}(qﬁFmG,M)) =1
P(Reacth,. 1y (s0,0)) = 1.

Conversely, assume now thatz L. Recall that all states frotfi; have no outgoing transitions it and all
states front5'\ Sy have at least one outgoing transition. Hence, every maxpathlin A (a path is maximal
if it cannot be extended) is either infinite or terminates iimal state. Withe ¢ L and (9) we obtain the
following claim:

Claim 1.Every maximal path in the automatehthat starts in the initial stat&, has exactly one prefix
SOC—0>816—1) SM%SMle

that satisfies one of the following three mutually exclusbases (recall that every state §fy has no
outgoing transitions):
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@ M <2™—1,cy # F(CRR,,(M)), andey = F(CRR,,(N)) forall N € [0, M — 1]
(b) M <2™ —1,¢en = F(CRR,,(N)) forall N € [0, M], andsar41 € Sy
() M =2"—1,cny = F(CRR,,(N)) forall N € [0, M], andsa41 &€ Sy

Our goal is to prove a global non-zero lower bound on the grdibaof runs in D(c) that begin in(s, 0)
and that dootreachR x {0}, whereo is an arbitrary strategy. For this, let us first fix an arbitrstrategy
o in D. We distinguish the following three typésl), (B) and(C) of finite pathsr in the Markov chain
D(o) (type (X) corresponds to case (x) from Claim 1):

Case (A) is of the form

1 «
(50,0) =% ((s0,0,51),0) = (s1,1) =% ((s1,¢1,82),1) -+

1 a
((sm—1,en—1,8Mm), M — 1) = (sar, M) =25 ((sars ey Saas1), M),

whereM < 2™ — 1, cpr # F(CRR,,(M)), andey = F(CRR,,(N)) forall N € [0, M — 1]. Theay
are probabilities that result from the strategyLet o = HNE[O’M} ay. The probability for the set of all
runs from(sg, 0) that (i) start withr, then (ii) proceed tdgpp-c, M) (if cpr = 1) or to (¢-pa-c, M) (if
ey = 0), and (iii) donotvisit R x {0} is at least

Q- 27(]\/[4»1) . 27|—|F/\—‘G| >a- 27(2m+‘—\F/\—|G|).
Case (B)  is of the form

1 1
(50,0) 2% ((s0,¢0,51),0) = (s1,1) 25 ((s1,¢1,85),1) 2> (52,2) -~

-

3 1
(s, M) 2IN ((snrsenrs sms1), M) = (s, M+ 1) = (ga, 1),

whereM < 2™ —1, ey = F(CRR,,(N)) forall N € [0, M], andsyi1 € Sy. Let 8 = [[nepo,ar BN
The probability for the set of all runs frof, 0) that (i) start withm and (i) donotvisit R x {0} is at least

8- 9—(M+1)  o—I|G| >3- 9= (M +[=FASGI).

Case (C) 7 is of the form

1
(SOaO) ’Y—O> ((50700781)70) = (517 1) ’Y—l> ((51761752)5 1) e

-

(32W—172m - 1) u ((S2m—1702m—1782ﬂa2m - 1) = (527n72m)7

wherecy = F(CRR,,(N)) forall N € [0,2™ — 1] and sy & Sy. Lety = [[ye(g.2m_1)7n- The
probability of the set of runs i(o) that (i) begin withr, then (ii) proceed (via an intermediate control
location of the form(sam, b, t)) to either(gpa-a, 2™) Of (¢-ra-c,2™) and (iii) that donotreachR x {0}

is at least

.27 9= I~FA=G] (@™ +1+[~FA=G])

=-27
Now, the crucial point is that the sum of all value$rom (A), all valuesg from (B), and all values from

(C) is 1. This is a consequence of Claim 1 and the fact that the nomdigtistic choices irD correspond
exactly to the selection of transitions of the NFA Since moreover the set of paths in (A), (B), and (C)
are pairwise disjoint, it follows that the probability ofetlset of runs that dootreachR x {0} is at least
2~ (@"+1+=FA=G]) This concludes the proof of the theorem. i

10 Timed automata

In this section, we present an application of the serialitgliechnique to timed automata. Let us start
with the definition of timed automata, see e.qg. [7] for mortaide.
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As usual, we fix a countable s@t of atomic propositions. Lef’ be a finite set, whose elements are
calledclocks A mappingt € RE from C to the setR, of positive real numbers is also callectipck
valuation The setB(C) of clock constraint®verC' is the set of all boolean formulas with atomic formulas
of the formc ~ k, wherec € C, k € Nand~ € {<, >}. We use the usual abbreviations, e.g., we write
¢ = kforec < kAc > k. Let us define the size of the clock constraint k as|c ~ k| = [logk]; itis
the length of the binary encoding of the numlaerA clock valuationt € RE satisfies a clock constraint
v € B(C), if the formulay becomes true, when each clock C' is replaced by the valugc).

A timed automatoifTA) is a tupleA = (Q,{Q, | p € P},C, ), where

— @ is a finite set otontrol locations

- @, C Q foreachp € P but@, = 0 for all but finitely manyp € P,
— C'is afinite set otlocks and

- 6§ C Q x B(C) x 2¢ x Qis afinite set otransitions

Thesizeof the TA Ais defined agA| = |Q| + [C| + X cp [Qpl + X, - r.g)es [7]- A timed automaton
A=(Q,{Q, | p € P},C,0) defines a transition system

T(A) = (@ xR{, {Q, xRS | p € P}, =),
where(q,t) — (¢',t’) if and only if one of the following two cases holds:

— ¢ = ¢’ and there existd € R, such that’(c) = t(c) + d for all c € C (time d elapses).

— There exists a transitiofy, v, R, ¢’) € § such that (i) the mapping: C — R, satisfies the clock
constrainty, (i) t'(c) = ¢(c) forall c € C'\ R, and (iii))t'(c) = 0 for all ¢ € R (i.e., all clocks from
the setR are reset).

10.1 CTL model checking on timed automata

In this section, we will only consider timed automata withyotwo clocksx andy. For a natural number
mlett,, : {z,y} — R, be the clock valuation with,,, (z) = m andt,,(y) = 0.

In [25], it was shown that model checkil@l L over 2-clock timed automata BSPACE-complete. The
proof in [25] for PSPACE-hardness only works if the timed automaton and @& formula are part of
the input. Here we sharpen this result by showing that mdaetkingCTL over 2-clock timed automata
is PSPACE-hard already for a fixed TL formula. Let us fix the set of propositiof’s = {«, 5, v} for this
section. The following lemma is implicitly shown in [25],es€&igure 4 in that paper.

Lemma 26 ([25]). There is a logspace transducer that computes from two unacgded numbers <
i < nand abitb € {0,1} a 2-clock TAA,, ; , with a distinguished control locatioim,, ; ;, such that for
every numbef < M < 2" — 1 the following are equivalent:

— bit;(M) =b
— In the transition systerfi (A,, ; ) there is a path frongin,, ; », tar) to a+-labeled state.

Proof. Let us first construct the TA4,, , ;. The set of control locations i$qo, g1, - .., qn,p}, Where
innip = go andp is the only control location labeled with propositign We add the following transi-
tions:

= (gj-1,(y=0),0,¢;) forall 1 < j <n
= (gj—1,(y=27"1) {y},q;) forall 1 < j <nwith j #i
- (Q’n7(y:O/\$:2n_1)a®7p)

For the TAA,, ; o we replace the transitiofg; _1, (y = 0), 0, ¢;) by the transitior{¢;—1, (y = 271, {y}, ¢)-
The intuition for the TAA, ;1 is the following: Clearly, in the transition systef(.A,, ; 1) there is

a path from(in,, ; 5, t5s) to a~v-labeled state if and only if there is a path frdigy, tas) t0 (¢n,t2n 1)

For eachl < j < n with i # j we can either decide to add—! to the current value of clock (using

the transition(q;_1, (y = 2771, {y}, ¢;)) or to add0 to the current value of clock (using the transition

(gj—1,(y = 0),0,¢;)). Moreover, forj = i, we are forced to ad@. Using these transitions, we can move

from state(qo, tar) 0 (¢n, t2n 1) if and only if theit® bit of M is 1. 0
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The proof of Proposition 27 below is very similar to the prodProposition 17.

Proposition 27. For the fixedEF formulay = (o — EX(8 AEF(7))) the following problem can be solved
with a logspace transducer:

INPUT: A boolean formuld = F(z1,...,z,)

OUTPUT: A 2-clock TAA(F") with distinguished control locatioris andout such that for every number
0 < M < 2™ — 1 the following are equivalent:

— F(BIN,(M)) =1
— There exists d¢]7(a(r))-path from(in, t5/) to (out, tar) in T (A(F)).

Proof. W.l.o.g. we may assume that negations occuf ianly in front of variable$. Let S be the syntax
tree of F' and letVr be the set of nodes dfr. Analogously to the proof of Proposition 17, the tige

is traversed with the TA4(F) in a depth first manner. Each time a node that is labeled witriabez;
(resp., a negated variabter;) is seen, the TA may also enter the 7, ; 1 (resp.A,, ;o) in order to check
whether the™ bit of the current value of clock (which is M) is 1 (resp.0). We first construct all TAs
A, i » from Lemma 26 forl < i < nandb € {0,1}. Let.A,, be the disjoint union of all these TAs, where
in addition every control locatiom,, ; ; is labeled with the propositiofi. To constructA(F'), we add to
A, all control locationsn(v) andout(v) for v € V. We label every control locatioin(v), wherev € Vi

is labeled with a variable; or a negated variablez; (1 < i < n), with the propositiorv. Moreover, we
setin = in(vp) andout = out(vg), whereuvq is the root ofSr. Let us finally add transitions as follows. Let
v € Sr with childrenv; andwv,. If v is labeled withv, then we add the transitions

(in(v), (y = 0),0,in(v;)) and(out(v;), (y = 0), 0, out(v)) for i € {1,2}.
If v is labeled withn, then we add the transitions

(in(v), (y = 0),0,in(v1)), (out(v1), (y = 0),0,in(v)), and(out(vz), (y = 0),0, out(v)).
For every lealv € S that is labeled with:; (1 < ¢ < n) we add the transitions

(in(v), (y = 0),0, out(v)) and(in(v), (y = 0),0,inp ;i 1).
For every lealy € Sr that is labeled with-z; (1 < i < n) we add the transitions

(in(v), (y = 0), 0, out(v)), and(in(v), (y = 0),0,in,0.1).

This concludes the description of the TA(F'). Correctness of the construction can be easily checked by
induction on the structure of the formuia ad

Theorem 28. There exists a fixe@TL formula of the formEy; Ups, wherep; and o, are EF formulas,
such that the following problem RSPACE-complete:

INPUT: A 2-clock TAA4 and a control locatiory of A.

QUESTION:(T (A), (¢,t0)) = Ep1Upa?

Proof. The proof is analogous to the proof of Theorem 18 but simplace we do not need to work with
CRR-representations of natural numbers. Let us take atrampPSPACE-complete languagé. Fix the
polynomialp(n) and the NFAA = (S, {0,1}, 9, so, Sy) over the alphabeft0, 1} from Proposition 16. Let
x € {0,1}* be an input of length, and letm := p(n), where w.l.o.gm > 1. By Proposition 16 one can
construct in spackg n a boolean formula with propositional variables(: € [mn]) such that:

2m_1
zeL < [] F(BIN,(M)) € L(A). (10)
M=0

® In contrast to the proof of Proposition 17 (where we work with the CRRResentation) we cannot eliminate nega-
tions in front of propositional variables; here.
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We now apply our construction from Proposition 27 to the folar¥'. For everyl-labeled transitionr € §
of the NFA A let A(7) be a copy of the TAA(F). For every0-labeled transition € ¢ let A(7) be a copy
of the TA A(—F). In both cases we writgl(7) as(Q(7), {Qa(7), Qs(7), Q+(7)},{x,y},d(7)). Denote
with in(7) (resp.out(7)) the control location of this copy that corresponditéresp.out) in A(F). Thus,
for a b-labeled transitiomr € § (b € {0,1}) and0 < M < 2™ — 1 there exists dp]r(a(-))-path ¢ is
from Proposition 27) fronfin(7), tas) to (out(7), tar) if and only if F'(BIN,,,(M)) = b.

We define a 2-clock TAA as follows: Take the disjoint union of all TA4(7) for = € § and add all
statess € S of the NFA A as well as the special control locatiéinal to the set of control locations.
Moreover, we add to the set of transitions4for every NFA-transitionr = (s, b, s’) € § the transitions

(s, (x <27 = 1Ay =1),{y},in(7)), (out(7), (y = 0),0, ).

Then, by Proposition 27 and (10) we haves L if and only if there exists &p]7(4)-path in7(A) from
(s0,to) to (s, tam_1) for somes € S;. Finally, introduce a new propositign letfinal be the onlyp-labeled
control location, and add for evegye Sy the transition

(¢, (x =2 —1 Ay =0),0,final).
By puttingq = so we obtain:

reL < (T(A),(gt)) FE (= EX(3AEF(y))) Up.

« from Proposition 27

This concludes the proof of the theorem. ad

10.2 Reachability of timed automata with modulo tests

The final application of our lower bound technique concehesdontrol location reachability problem of

timed automata with two clocks but very simple modulo teEle expressiveness of timed automata with
periodic clock constraints has already been studied in. [\ refer to [27], where it has been shown
that the control location reachability problem (or equévdly the emptiness problem) for 2-clock timed
automata with modulo tests BSPACE-hard (and in facPSPACE-complete). However, the lower bound

construction in [27] heavily requires the constants appgan the clock constraints to be presented in
binary.

The set ModC) of modulo clock constraintsver a set of clock€’ is the set of boolean formulas with
atomic formulas of the form = k£ mod/ andc ~ k, wherec € C, k,¢ € Nand~ € {<,>}. A modulo
timed automaton (MTAs a tupleA = (Q,{Q, | p € P},C,0), where everything is the same as for
timed automata, but wheleC Q x Mod(C) x 2¢ x Q. Thesize|.A| of an MTA A is defined in analogy
to TA. A clock valuationt : C — R satisfiesa modulo constraint of the form = k& mod¢ whenever
[t(c)] = k mod¢, where for eachr € R we define|r| to be the largest non-negative integesuch that
n < r. The transition systerff (A) of an MTA A is defined analogously as for timed automata (by taking
into account the above definition when a clock valuatiorsfias a modulo constraint).

We only sketch the proof of the following theorem.

Theorem 29. The following problem i$SPACE-hard, even if all constants that occur in the input are
given in unary:

INPUT: An MTAA = (Q,{Q, | p € P}, C, ) with only two clocks: andy and two distinguished control
locationsgg, g1 € @ such that every transitiofy, v, R, ¢’) € J satisfies

— ~ does not contain any atomic formulas of the farm &,

— x € R (i.e.x is never reset),

— ~ does not contain any atomic formulas of the faynx £ mod/, and
— if y ~ k is an atomic formula iny, thenk = 1.

QUESTION: Doegqo, to) —* (q1,t) hold for some clock valuatione Rf’y} inT7(A)?
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Proof sketchThe theorem is proven very similar as Theorem 18. Since weaajpnesenting all constants
of the MTA in unary, we use the Chinese remainder representaf the current numbe¥/ € [0,2™ — 1].
We represent the current value df by the clockx. The clocky is only used to increment by one.
Instead of using the formula from Proposition 17 to control the Chinese remainder regrigion of )M,
we directly testz by using modulo tests in the transitions of the MTA. ad
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Appendix

Let M be a nondeterministic Turing machine with a linear ordemmgthe set of all transition tuples.
Assume furthermore that/ does not contain infinite computation paths. Then, for eveput x, the
computation tred’(x) of the machinel on inputz is a finite ordered tree. Let, v, ..., v, be a list
of all leafs of T'(x) in left-to-right enumeration. Then tHeaf stringleaf (M, x) is the stringaias - - - an,
wherea; = 1 (resp.a; = 0) if v; is an accepting (resp. rejecting) configuration.

Theorem 30. Let A be a language iPSPACE. ThenA is AC’-serializable, i.e., there exists a regular
languageL C {0,1}*, a polynomialp(n), and a logspace-uniforrACC-circuit family (B,,)n>0, WhereB,,
has exactly: + p(n) many inputs and one output, such that for every {0, 1}" we have:

€A — Bn(:c,Op(")) -+ By(x, lp(")) el
where “ - - ” refers to the lexicographic order of0, 1}7("),

Proof. Let A C {0,1}* be a language iRSPACE. By the work of [21] there exists a nondeterministic
polynomial time Turing machine
M = (Q7F7A7QOan7|:|)

and a regular languag€ C {0, 1}* such that

r €A < leaf(M,z) € K. (11)

33



Here,Q is the set of stateqd; is the tape alphabetd C Q x I' x Q x I' U {—, <} is the set of transition
tuples,qo is the initial stategy is the final (accepting) state, aadis the blank symbol. W.l.0.g. we can
assume that every computation pathiéfon an input of lengt has lengthy(n) for a polynomialg. This
can be enforced by introducing a counter. Note that the evaain be incremented deterministically, hence
the produced leaf string does not change. Assumedhat {4, ...,0,,}, whered; < §; < --- < d,, is
the fixed order on the transition tuples if.

Let 2 = Q U ' U A, where all three sets are assumed to be pairwise disjointwiencode a
computation of\ of lengthq(n), starting on inputz € X", by a word from the language

C(SC) = {COtlcltZ T Cq(n)—ltq(n)cq(n) ‘ ty,... atq(n) €A
co = qozI™M =" ¢y, Cq(n) € r-Qrt,
ler] = = [eqmy| = a(n) +1, VO < i < q(n) : i by Civ1)

Here,c; -, ,, ci+1 means that configuratian, ; results from configuration; by applying transitiort; , ;.
Let D(x) be the subset af'(x) consisting of all successful computation$;cits - - - ¢g(n)—1t¢(n)Cq(n) €
C(x), where in additior(,y € I™qI't.

Note that every word i (x) has length(q(n) + 1)? + ¢(n). We use some block encoding: 2 —
{0, 1}* such thaty(6;, 1) is lexicographically larger tham(§;) for i € [m — 1]. This ensures that if we list
all bit strings of lengttk - ((¢(n) +1)2 +¢(n)) in lexicographic order than the subsgeétr) of all (encodings
of) valid computations appears as a subsequence in the sdereas in the computation tré& ).

Let us next describe a Iogspace—unifoﬁrﬁo—circuit family (C),)n>0, Where thent” circuit C,, has
n+k-((g(n)+1)?+¢q(n)) many inputs and accepts exactly all strings of the feum wherez € {0,1}"
andw € C(z). Constructing’,, is tedious but straightforward. The most difficult part istecke; . |
ciy1 forall 0 < i < g(n). For this, we use an AND-gate with ¢(n) many childrengo, . .., g4(n)—1-
Gateg; is an OR-gate witly(n) many childreny; 1, .. ., g; 4(n)- Gateg; ; evaluates td if and only if ¢;
results frome; by applying the transitioty | ; at positionj. To achieve thisg; ; becomes an AND-gate with
k(¢(n) + 1) many input gates. Each of these gates compares two cordiggdsits in they-encodings of
¢; ande;41. It should be clear that such a circdif, can be built in logarithmic space. Analogously we can
construct a logspace-uniforAC-circuit family (Dy)n>0 Which accepts all strings of the formw, where
xz € {0,1}" andw € D(x).

Finally, we construct from the two famili€€’,,),,>o and(D,,),,>0 a new logspace-uniforiaCC-circuit
family (B,,)n>0, WhereB,, hasn+ k- ((g(n) +1)? +q(n)) + 1 many inputs. On inputw0 (with z € X™)
it outputsC,, (xw). On inputzwl, B,, outputsD,, (zw). Now, let us construct from the regular language
K C {0,1}* the new regular language= (K L {a}*), whereL is the shuffle operatog, ¢ {0,1} is a
new symbol, ana is the homomorphism witty(a) = 00, ¢(0) = 10, (1) = 11.

The regular languageg, the polynomialp(n) = & - ((¢(n) + 1)? + ¢(n)) + 1, and the circuit family
(Bn)n>0 fulfill the requirements from the theorem. O
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