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Abstract. Model-checking problems for PDL (propositional dynamic
logic) and its extension PDL∩ (which includes the intersection operator
on programs) over various classes of infinite state systems (BPP, BPA,
pushdown systems, prefix-recognizable systems) are studied. Precise up-
per and lower bounds are shown for the data/expression/combined com-
plexity of these model-checking problems.

1 Introduction

Propositional Dynamic Logic (PDL) was introduced by Fischer and Ladner in
1979 as a modal logic for reasoning about programs [10]. In PDL, there are two
syntactic entities: formulas and programs. Formulas are interpreted in nodes of
a Kripke structure and can be built up from atomic propositions using boolean
connectives. Programs are interpreted by binary relations over the node set of a
Kripke structure and can be built up from atomic programs using the operations
of union, composition, and Kleene hull (reflexive transitive closure). PDL con-
tains two means for connecting formulas and programs: Programs may appear
in modalities in front of formulas, i.e., if π is a program and ϕ is a formula, then
〈π〉ϕ is true in a node u if there exists a node v, where ϕ holds and which can be
reached from u via the program π. Moreover, PDL allows to construct programs
from formulas using the test operator: If ϕ is a formula, then the program ϕ?
is the identity relation on the node set restricted to those nodes where ϕ holds.
Since its invention, many different extensions of PDL were proposed, mainly
by allowing further operators on programs, like for instance the converse or in-
tersection operator, see the monograph [13] for a detailed exposition. Recently,
PDL, where programs are defined via visibly pushdown automata, was investi-
gated [18]. PDL and its variations found numerous applications, e.g., in program
verification, agent-based systems, and XML-querying. In AI, PDL received at-
tention by its close relationship to description logics and epistemic logic, see [16]
for references.

In the early days of PDL, researchers mainly concentrated on satisfiability
problems and axiomatization of PDL and its variants. With the emergence of
automatic verification, also model-checking problems for modal logics became
a central research topic, and consequently model-checking problems for PDL
attracted attention [16]. In this paper, we start to investigate model-checking
problems for PDL over infinite state systems. In recent years, verification of
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infinite state systems became a major topic in the model-checking community.
Usually, infinite state systems, like for instance systems with unbounded com-
munication buffers or unbounded stacks, are modeled by some kind of abstract
machine, which defines an infinite transition system (Kripke structure): nodes
correspond to system states and state transitions of the system are modeled by
labeled edges. Various classes of (finitely presented) infinite transition systems
were studied under the model-checking perspective in the past, see e.g. [25] for a
survey. In [22] Mayr introduced a uniform classification of infinite state systems
in terms of two basic operations: parallel and sequential composition. In this
paper, we will mainly follow Mayr’s classification.

We believe that model-checking of PDL and its variants over infinite state
systems is not only a natural topic, but also a useful and applicable research di-
rection in verification. PDL allows directly to express regular reachability proper-
ties, which were studied e.g. in [19,22,30] in the context of infinite state systems.
For instance, consider the property that a process can reach a state, where a
condition ϕ holds, via a path on which the action sequence a1a2 · · ·an is re-
peated cyclically. Clearly, this can be expressed in CTL (if ϕ can be expressed in
CTL), but we think that the PDL-formula 〈(a1 ◦a2 ◦ · · · ◦an)∗〉ϕ is a more read-
able specification. Secondly, and more important, the extension of PDL with the
intersection operator on programs [12], PDL∩ for short, allows to formulate nat-
ural system properties that cannot be expressed in the modal μ-calculus (since
they do not have the tree model property), like for instance that a system can
be reset to the current state (Example 2) or that two forking processes may
synchronize in the future (Example 3).

In Section 5 we study model-checking problems for PDL and its variants over
infinite state systems. For infinite state systems with parallel composition, PDL
immediately becomes undecidable. More precisely, we show that PDL becomes
undecidable over BPP (basic parallel processes), which correspond to Petri nets,
where every transition needs exactly one token for firing (Proposition 1). This
result follows from the undecidability of the model-checking problem for EF (the
fragment of CTL, which only contains next-modalities and the “exists finally”-
modality) for Petri nets [8]. Due to this undecidability result we mainly concen-
trate on infinite state systems with only sequential composition. In Mayr’s clas-
sification these are pushdown systems (PDS) and basic process algebras (BPA),
where the latter correspond to stateless pushdown systems. Pushdown systems
were used to model the state space of programs with nested procedure calls,
see e.g. [9]. Model-checking problems for pushdown systems were studied for
various temporal logics (LTL, CTL, modal μ-calculus) [1,9,15,28,29]. We also
include prefix-recognizable systems (PRS) into our investigation [3,5], which ex-
tend pushdown systems. Model-checking problems for prefix-recognizable sys-
tems were studied e.g. in [4,14]. The decidability of PDL and even PDL∩ for
prefix-recognizable systems (and hence also BPA and PDS) follows from the
fact that monadic second-order logic (MSO) is decidable for these systems and
that PDL∩ can be easily translated into MSO. But from the viewpoint of com-
plexity, this approach is quite unsatisfactory, since it leads to a nonelementary
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algorithm. On the other hand, for PDL (without the intersection operator) it
turns out that based on the techniques of Walukiewicz for model-checking CTL
and EF over pushdown systems [28], we can obtain sharp (elementary) com-
plexity bounds: Whereas test-free PDL behaves w.r.t. to the complexity of the
model-checking problem exactly in the same way as EF (PSPACE-complete in
most cases), PDL with the test-operator is more difficult (EXP-complete in most
cases).

The analysis of PDL∩ turns out to be more involved. This is not really sur-
prising. PDL∩ turned out to be notoriously difficult in the past. It does not have
the tree model property, and as a consequence the applicability of tree automata
theoretic methods is quite limited. Whereas PDL is translatable into the modal
μ-calculus, PDL∩ is orthogonal to the modal μ-calculus with respect to expres-
siveness. A very difficult result of Danecki states that satisfiability of PDL∩ is in
2EXP [7]. Only recently, a matching lower bound was obtained by Lange and Lutz
[17]. Our main result of this paper states that the expression/combined complex-
ity of PDL∩ (and also the test-free fragment of PDL∩) over BPA/PDS/PRS is
2EXP-complete, whereas the data complexity goes down to EXP. For the 2EXP
lower bound proof, we use a technique from [28] for describing a traversal of the
computation tree of an alternating Turing machine in CTL using a pushdown.
The main difficulty that remains is to formalize in PDL∩ that two configurations
of an exponential space alternating Turing machine (these machines character-
ize 2EXP) are successor configurations. For the upper bound, we transform a
PDL∩ formula ϕ into a two-way alternating tree automaton A of exponential
size, which has to be tested for emptiness. Since emptiness of two-way alternat-
ing tree automata can be checked in exponential time [27], we obtain a doubly
exponential algorithm. Most of the inductive construction of A from ϕ uses
standard constructions for two-way alternating tree automata. It is no surprise
that the intersection operator is the difficult part in the construction of ϕ. The
problem is that two paths from a source node s to a target node t, where the
first (resp. second) path is a witness that (s, t) belongs to the interpretation of
a program π1 (resp. π2) may completely diverge. This makes it hard to check
for an automaton whether there is both a π1-path and a π2-path from s to t.
Our solution is based on a subtle analysis of such diverging paths in pushdown
systems.

One might argue that the high complexity (2EXP-completeness) circumvents
the application of PDL∩ model checking for pushdown systems. But note that
the data complexity (which is a better approximation to the “real” complexity
of model-checking, since formulas are usually small) of PDL∩ over pushdown
systems is only EXP, which is the same as the data complexity of CTL [28].
Moreover, to obtain an exponential time algorithm for PDL∩ it is not really
necessary to fix the formula, but it suffices to bound the nesting depth of inter-
section operators in programs. One may expect that this nesting depth is small
in natural formulas, like in Example 2 or 3 (where it is 1). Table 1 gives an
overview on our results. Proofs can be found in the technical report [11].
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2 Preliminaries

Let Σ be a finite alphabet and let ε denote the empty word. Let Σε = Σ ∪ {ε}
and let Σ = {a | a ∈ Σ} be a disjoint copy of Σ. For a word w = a1 · · · an ∈ Σ∗

(a1, . . . , an ∈ Σ) let wrev = an · · ·a1. For L ⊆ Σ∗ let Lrev = {wrev | w ∈ L}.
Let R,U ⊆ A × A be binary relations over the set A. Then R∗ is the reflexive
and transitive closure of R. The composition of R and U is R ◦ U = {(a, c) ∈
A × A | ∃b ∈ A : (a, b) ∈ R ∧ (b, c) ∈ U}. Let f : A → C and g : B → C be
functions, where A ∩ B = ∅. The disjoint union f 
 g : A ∪ B → C of f and g
is defined by (f 
 g)(a) = f(a) for a ∈ A and (f 
 g)(b) = g(b) for b ∈ B. Let
AB = {f | f : B → A} be the set of all functions from B to A.

We assume that the reader is familiar with standard complexity classes like P
(deterministic polynomial time), PSPACE (polynomial space), EXP (determin-
istic exponential time), and 2EXP (deterministic doubly exponential time), see
[24] for more details. Hardness results are always meant w.r.t. logspace reduc-
tions. An alternating Turing machine (ATM) is a tuple M = (Q,Σ, Γ, q0, δ,�)
where (i) Q = Qacc 
 Qrej 
 Q∃ 
 Q∀ is a finite set of states Q which is par-
titioned into accepting (Qacc), rejecting (Qrej), existential (Q∃) and universal
(Q∀) states, (ii) Γ is a finite tape alphabet, (iii) Σ ⊆ Γ is the input alphabet, (iv)
q0 ∈ Q is the initial state, (v) � ∈ Γ \ Σ is the blank symbol, and (vi) the map
δ : (Q∃∪Q∀)×Γ → Moves×Moves with Moves = Q×Γ×{←,→} assigns to every
pair (q, γ) ∈ (Q∃∪Q∀)×Γ a pair of moves. If δ(q, a) = ((q1, a1, d1), (q2, a2, d2)),
then this means that if M is in state q and reads the symbol a, then the left
(right) successor configuration of the current configuration results by writing a1

(a2), the read-write head moves in direction d1 (d2), and the new state is q1 (q2).
A configuration of M is a word from Γ ∗QΓ+. A configuration c of M, where
the current state is q, is accepting if (i) q ∈ Qacc or (ii) q ∈ Q∃ and there exists
an accepting successor configuration of c or (iii) q ∈ Q∀ and both successor con-
figurations of c are accepting. The machineM accepts an input w if and only if
the initial configuration q0w is accepting.

3 Propositional Dynamic Logic and Extensions

Formulas of propositional dynamic logic (PDL) are interpreted over Kripke struc-
tures : Let P be a set of atomic propositions and let Σ a set of atomic programs.
A Kripke structure over (P, Σ) is a tuple K = (S, {→σ| σ ∈ Σ}, ρ) where (i) S
is a set of nodes, (ii) →σ⊆ S × S is a transition relation for all σ ∈ Σ and (iii)
ρ : S → 2P labels every node with a set of atomic propositions. Formulas and
programs of the logic PDL∩ (PDL with intersection) over (P, Σ) are defined by
the following grammar, where p ∈ P and σ ∈ Σ:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | 〈π〉 ϕ
π ::= σ | π1 ∪ π2 | π1 ∩ π2 | π1 ◦ π2 | π∗ | ϕ?

We use the abbreviations (ϕ1 ∧ϕ2) = ¬(¬ϕ1 ∨ ¬ϕ2) and [π]ϕ = ¬〈π〉¬ϕ. More-
over, a set {a1, . . . , an} ⊆ Σ of atomic programs is identified with the program
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a1 ∪ · · · ∪ an. The semantic of PDL∩ is defined over Kripke structures. Given
a Kripke structure K = (S, {→σ | σ ∈ Σ}, ρ) over (P, Σ), we define via mutual
induction for each PDL∩ program π a binary relation [[π]]K ⊆ S × S and for
each PDL∩ formula ϕ a subset [[ϕ]]K ⊆ S as follows, where σ ∈ Σ, p ∈ P, and
op ∈ {∪,∩, ◦}:

[[σ]]K =→σ [[p]]K = {s | p ∈ ρ(s)}
[[ϕ?]]K = {(s, s) | s ∈ [[ϕ]]K} [[¬ϕ]]K = S \ [[ϕ]]K
[[π∗]]K = [[π]]∗K [[ϕ1 ∨ ϕ2]]K = [[ϕ1]]K ∪ [[ϕ2]]K

[[π1 op π2]]K = [[π1]]K op [[π2]]K [[〈π〉ϕ]]K = {s | ∃t : (s, t) ∈ [[π]]K ∧ t ∈ [[ϕ]]K}

Note that [[〈ϕ?〉ψ]]K = [[ϕ ∧ ψ]]K. For s ∈ S we write (K, s) |= ϕ if and only
if s ∈ [[ϕ]]K. If the Kripke structure K is clear from the context we write [[ϕ]]
for [[ϕ]]K. PDL is the fragment of PDL∩, where the intersection operator ∩ on
programs is not allowed. Test-free PDL (resp. test-free PDL∩) is the fragment of
PDL (resp. PDL∩), where the test-operator “?” is not allowed. The size |ϕ| of
a PDL∩ formula ϕ and the size |π| of a PDL∩ program π is defined as follows:
|p| = |σ| = 1 for all p ∈ P and σ ∈ Σ, |¬ϕ| = |ϕ?| = |ϕ|+1, |ϕ∨ψ| = |ϕ|+ |ψ|+1,
|〈π〉ϕ| = |π|+|ϕ|, |π1 op π2| = |π1|+|π2|+1 for op ∈ {∪,∩, ◦}, and |π∗| = |π|+1.
The fragment EF of CTL (where only the next and “exists finally” modality
is allowed) can be defined as the fragment of test-free PDL, consisting of all
formulas ϕ such that every for every subformula of the form 〈π〉ψ, either π ∈ Σ
or π = Σ∗.

A PDL program π (where the intersection operator is not allowed) can be
viewed as a regular expression and translated into a finite automaton A, where
transitions are labeled by symbols from Σ and test formulas ϕ?. The semantic
[[A]] of this automaton is the union of all relations [[c1]]◦ · · · ◦ [[cn]], where c1 · · · cn
labels a path from the initial state of A to a final state; note that ci can be of
the form ϕ?. This PDL-variant is sometimes called APDL. For PDL∩ such a
translation does not exist. Moreover, PDL∩ neither possesses the finite model
property nor the tree model property in contrast to PDL [13].

Given a class C of Kripke structures and a logic L (e.g. PDL or PDL∩), the
model-checking problem asks: Given a Kripke structure K ∈ C, a node s of K,
and a formula ϕ ∈ L, does (K, s) |= ϕ hold. Following Vardi [26], we distinguish
between three measures of complexity:

– Data Complexity: The complexity of verifying for a fixed formula ϕ ∈ L,
whether (K, s) |= ϕ for a given Kripke structure K ∈ C and a node s of K.

– Expression Complexity: The complexity of verifying for a fixed Kripke struc-
ture K ∈ C and node s, whether (K, s) |= ϕ for a given formula ϕ ∈ L.

– Combined Complexity: The complexity of verifying (K, s) |= ϕ for a given
formula ϕ ∈ L, a given Kripke structure K ∈ C, and a node s.

Convention. In the rest of this paper, we will consider PDL∩ without atomic
propositions. A Kripke structure will be just a tupleK = (S, {→σ| σ ∈ Σ}) where
→σ⊆ S×S. Formally, we introduce the only atomic proposition true and define
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[[true]]K = S. This is not a restriction, since a Kripke structure (S, {→σ| σ ∈
Σ}, ρ) (where ρ : S → 2P,Σ∩P = ∅) can be replaced by the new Kripke structure
(S, {→σ| σ ∈ Σ ∪ P}) where →p = {(s, s) | p ∈ ρ(s)} for all p ∈ P. For the
formalisms for specifying infinite Kripke structures that we will introduce in the
next section, we will see that (a finite description of) this propositionless Kripke
structure can be easily computed from (a finite description of) the original Kripke
structure. Moreover, in PDL∩ formulas, we have to replace every occurrence of
an atomic proposition p by the formula 〈p〉true.

4 Infinite State Systems

In this section, we consider several formalisms for describing infinite Kripke
structures. Let Σ be be a set of atomic programs and Γ be a finite alphabet.

A basic parallel process (BPP) is a communication free Petri net, i.e., a Petri
net, where every transition needs exactly one token for firing. By labeling tran-
sitions of a Petri net with labels from Σ, one can associate an infinite Kripke
structure K(N ) with a BPP N , see [21] for more details.

A basic process algebra (BPA) over Σ is a tuple X = (Γ,Δ) where Δ ⊆
Γε × Σ × Γ ∗ is a finite transition relation. The BPA X describes the Kripke
structure K(X ) = (Γ ∗, {→σ| σ ∈ Σ}) over Σ, where →σ= {(γw, vw) | w ∈
Γ ∗ and (γ, σ, v) ∈ Δ} for all σ ∈ Σ. The size |X | of X is |Γ |+|Σ|+

∑
(γ,σ,v)∈Δ |v|.

If (γ, σ, v) ∈ Δ, we also write γ σ−→X v.

Example 1. For a finite alphabet Γ we will use the BPA TreeΓ = (Γ,Δ) over
Γ ∪ Γ where Δ = {(ε, a, a) | a ∈ Γ} ∪ {(a, a, ε) | a ∈ Γ}. Then K(TreeΓ ) is the
complete tree over Γ with backwards edges.

A pushdown system (PDS) over Σ is a tuple Y = (Γ, P,Δ) where (i) P is a finite
set of control states, and (ii)Δ ⊆ P×Γε×Σ×P×Γ ∗ is a finite transition relation.
The PDS Y describes the Kripke structure K(Y) = (PΓ ∗, {→σ| σ ∈ Σ}) over
Σ, where →σ= {(pγw, qvw) | w ∈ Γ ∗ and (p, γ, σ, q, v) ∈ Δ} for all σ ∈ Σ. The
size |Y| of Y is |Γ |+ |P |+ |Σ| +

∑
(p,γ,σ,q,v)∈Δ |v|. If (p, γ, σ, q, v) ∈ Δ, we also

write pγ σ−→Y qv. Note that a BPA is just a stateless PDS.

Example 2. Let K = (S, {→σ| σ ∈ Σ}) be a deterministic Kripke structure, i.e.,
for every state s ∈ S and every σ ∈ Σ there is at most one t ∈ S with s →σ t.
For PDL over BPA and PDS, determinism is no restriction: it can be ensured by
choosing a possibly larger set Σ′ of atomic programs such that every transition
of the BPA (PDS) can be labeled with a unique σ′ ∈ Σ′. Every original atomic
program σ can be recovered as a union of some of these new atomic programs
(for PRS, this doesn’t work). We now want to express that the current state
s ∈ S is a recovery state of the system in the sense that wherever we go from s,
we can always move back to s. This property cannot be expressed in the modal
μ-calculus unless the state s is somehow uniquely marked, e.g., by a special
atomic proposition (but here, we want to define the set of all recovery states).
One can show that s is a recovery state if and only if
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(K, s) |= [Σ∗]
∧

σ∈Σ

(
〈σ〉true ⇒ 〈true? ∩ σ ◦Σ∗〉true

)
.

Note that true? defines the identity relation on S.

Example 3. Let us consider two PDS Yi = (Γ, Pi, Δi) (with a common pushdown
alphabet Γ ) over Σi (i ∈ {1, 2}), where Σ1 ∩ Σ2 = ∅, and such that K(Y1)
and K(Y2) are deterministic (which, by the remarks from Example 2, is not
a restriction). The systems Y1 and Y2 may synchronize over states from the
intersection P1 ∩ P2. These two systems can be modeled by the single PDS
Y = (Γ, P1 ∪ P2, Δ1 ∪Δ2) over Σ1 ∪Σ2. In this context, it might be interesting
to express that whenever Y1 and Y2 can reach a common node s, and from s,
Yi can reach a node si by a local action, then the two systems can reach from
s1 and s2 again a common node. This property can be expressed by the PDL∩

formula

[Σ∗
1 ∩Σ∗

2 ]
∧

a∈Σ1,b∈Σ2

(
〈a〉true ∧ 〈b〉true ⇒ 〈a ◦Σ∗

1 ∩ b ◦Σ∗
2 〉true

)
.

Note that [[a◦Σ∗
1∩b◦Σ∗

2 ]] is in general not the empty relation, although of course
a ◦Σ∗

1 ∩ b ◦Σ∗
2 = ∅ when interpreted as a regular expression with intersection.

A relation U ⊆ Γ ∗×Γ ∗ is prefix-recognizable over Γ , if U =
⋃n
i=1Ri (n ≥ 1) and

Ri = {(uw, vw) | u ∈ Ui, v ∈ Vi, w ∈Wi} for some regular languages Ui, Vi,Wi ⊆
Γ ∗ (1 ≤ i ≤ n). We briefly write Ri = (Ui × Vi)Wi. A prefix-recognizable system
(PRS) (which should not be confused with Mayr’s PRS (process rewrite systems)
[21]) over Σ is a pair Z = (Γ, α) where α assigns to every atomic program σ ∈ Σ
a prefix-recognizable relation α(σ) over Γ , which is given by finite automata
Aσ1 ,Bσ1 , Cσ1 , . . . ,Aσnσ

,Bσnσ
, Cσnσ

such that α(σ) =
⋃nσ

i=1(L(Aσi )×L(Bσi ))L(Cσi ). The
PRS Z describes the Kripke structure K(Z) = (Γ ∗, {α(σ) | σ ∈ Σ}) over Σ.
The size |Z| of Z is |Γ |+ |Σ|+

∑
σ∈Σ

∑nσ

i=1 |Aσi |+ |Bσi |+ |Cσi |, where |A| is the
number of states of a finite automaton A.

Our definition of BPA (resp. PDS) allows transitions of the form ε
σ−→X v

(resp. p σ−→Y qv for control states p and q). It is easy to see that our definition
describes exactly the same class of BPA (resp. PDS) as defined in [20,21] (resp.
[2,21,29,28]), and there are logspace translations between the two formalisms.

Usually, in the literature a PDS Y describes a Kripke structure with atomic
propositions from some set P. For this purpose, Y contains a mapping � : P → 2P,
where P is the set of control states of Y, and one associates with the atomic
proposition η ∈ P the set of all configurations where the current control state p
satisfies η ∈ �(p). In our formalism, which does not contain atomic propositions,
we can simulate such an atomic propositions η by introducing the new transition
rule p

η→ p whenever η ∈ �(p), see also the convention from the end of Section 3.
Similar remarks apply to BPA and PRS.

Table 1 summarizes our complexity results for PDL and its variants.
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Table 1.

BPA PDS PRS

data P-complete EXP-complete
EF

expression PSPACE-complete
PDL\?

combined EXP-complete

data P-complete

PDL expression EXP-complete

combined

data
PSPACE-hard, in

EXP
EXP-complete

PDL∩
expression

PDL∩\?
combined

2EXP-complete

5 Model-Checking PDL over Infinite State Systems

It was shown in [8] that the model-checking problem of EF over (the Kripke
structures defined by) Petri nets is undecidable. A reduction of this problem to
the model-checking problem of test-free PDL over BPP shows:

Proposition 1. The model-checking problem for test-free PDL over BPP is un-
decidable.

Hence, in the following we will concentrate on the (sequential) system classes
BPA, PDS, and PRS. Our results for (test-free) PDL without intersection over
BPA/PDS/PRS mainly use results or adapt techniques from [2,22,28,29], see
Table 1. It turns out that PDL without test behaves in exactly the same way as
EF, and that adding the test operator leads in most cases to a complexity jump
up to EXP-completeness.

In the rest of the paper, we concentrate on PDL∩, for which we prove that the
expression and combined complexity over BPA/PDS/PRS is complete for 2EXP.
Our lower bound proof uses a technique from [28] for describing a traversal of the
computation tree of an alternating Turing machine in CTL using a pushdown.
The main difficulty that remains is to formalize in PDL∩ that two configurations
of an exponential space alternating Turing machine (these machines characterize
2EXP) are successor configurations. For doing this, we adjoin to every tape cell
a binary counter, which represents the position of the tape cell. This encoding of
configurations is also used in the recent 2EXP lower bound proof of Lange and
Lutz for satisfiability of PDL∩ [17].

Theorem 1. There exists a fixed BPA X such that the following problem is
2EXP-hard:
INPUT: A test-free PDL∩-formula ϕ.
QUESTION: (K(X ), ε) |= ϕ?
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Proof. Since 2EXP equals the class of all languages that can be accepted by an
ATM in exponential space [6], we can choose a fixed 2p(m) − 1 space bounded
ATM M = (Q,ΣM, ΓM, q0, δ,�) (where p(m) is a polynomial) with a 2EXP-
complete acceptance problem. The machine M satisfies the conventions of Sec-
tion 2. Let w ∈ Σ∗

M be an input of length n. We construct a fixed BPA
X = X (M) = (Γ,Δ) and a test-free PDL∩-formula ϕ = ϕ(w,M) each over
Σ = Σ(M) such that w ∈ L(M) if and only if (K(X ), ε) |= ϕ. Let N =
p(n) and Ω = Q ∪ ΓM. A configuration c of M is a word from the language
⋃

0≤i≤2N−2 Γ
i
MQΓ 2N−1−i

M . We will represent c = γ0 · · ·γi−1qγi+1 · · · γ2N−1 by
the word

γ0[0] · · · γi−1[i− 1]q[i]γi+1[i+ 1] · · ·γ2N−1[2
N − 1], (1)

where [k] denotes the binary representation of k (0 ≤ k ≤ 2N − 1) with N bits,
i.e., [k] = β0 · · ·βN−1 with βj ∈ {0, 1} and k =

∑N−1
j=0 2j · βj . A cell is a string

ω[i], where ω ∈ Ω and 0 ≤ i ≤ 2N − 1. Let Moves = Q× ΓM × {←,→} be the
set of moves ofM and let

Dir = {L(μ1, μ2), R(μ1, μ2) | (μ1, μ2) ∈ δ(Q∀, Γ )} ∪
{E(μ1), E(μ2) | (μ1, μ2) ∈ δ(Q∃, Γ )}

be the set of direction markers. These symbols separate consecutive configura-
tions of the form (1) on the pushdown. As in [28], direction markers are used in
order to organize a depth-first left-to-right traversal of the computation tree of
the ATM M on the pushdown. Let Γ = Ω ∪ {0, 1} ∪Dir and Σ = Γ ∪ Γ ∪ {λ},
which is a fixed alphabet. We define the fixed BPA X to be TreeΓ (see Ex-
ample 1) together with the rule (ε, λ, ε), which generates a λ-labeled loop at
every node. In order to define the PDL∩ formula ϕ, we need several auxiliary
programs:

– X =
⋃
x∈X x for X ⊆ Γ : Pops a single symbol x ∈ X from the pushdown.

– popi = {0, 1}i for all 0 ≤ i ≤ N : Pops i bits from the pushdown.
– cell = Ω ◦ popN : Pops a cell ω[i] from the pushdown.

– cell0 = Ω ◦ 0N : Pops a cell ω[0] from the pushdown.

– cell1 = ΓM ◦ 1N : Pops a cell γ[2N − 1] for γ ∈ ΓM from the pushdown.

Next, we define a program inc, which is executable only if on top of the pushdown
there is a word of the form ω[i]ω′[i + 1] for some ω, ω′ ∈ Ω and some 0 ≤ i <
2N − 1. The program inc pops ω[i] during it execution. In order to define inc
we will use the programs χj,β (0 ≤ j < N , β ∈ {0, 1}) which assure that, after
popping j bits of the current cell, a bit β can be popped that matches the bit that
can be popped after popping another j bits of the subsequent cell. Afterwards,
further bits may be popped:
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χj,β = popj ◦ β ◦ {0, 1}
∗ ◦Ω ◦ popj ◦ β ◦ {0, 1}

∗

inc = cell ∩
[

(cell ◦ cell) ∩ Ω ◦
N−1⋃

i=0

(
1i ◦ 0 ◦ {0, 1}∗ ◦ cell ∩

{0, 1}∗ ◦Ω ◦ 0i ◦ 1 ◦ {0, 1}∗ ∩
N−1⋂

j=i+1

(χj,0 ∪ χj,1)
)]

◦ Γ ∗

The next program conf is only executable if the top of the pushdown is a legal
configuration in the sense of (1), i.e.: A word of the form ω0[0]ω1[1] · · ·ω2N−1[2N−
1] is assumed to be on top of the pushdown, for exactly one 0 ≤ i ≤ 2N − 2
we have ωi ∈ Q, and for all other i we have ωi ∈ ΓM. This top configuration is
being popped during execution:

conf = (cell0 ◦ cell
∗
) ∩ (inc

∗ ◦ cell1) ∩ (ΓM ∪ {0, 1}
∗ ◦Q ◦ ΓM ∪ {0, 1}

∗
)

For all ω, ω′ ∈ Ω the program πω,ω′ is only executable if the top of the pushdown
is a certain suffix of a configuration ofM followed by a direction marker d ∈ Dir
and a complete configuration ofM. More precisely,

ωk[k] · · ·ω2N−1[2N − 1] dω′
0[0] · · ·ω′

2N−1[2
N − 1]

with ωk = ω and ω′
k = ω′ must be on top of the pushdown. During its execution,

πω,ω′ pops ωk[k] from the pushdown:

πω,ω′ = cell ∩

⎛

⎝
N−1⋂

i=0

⋃

β∈{0,1}
ω ◦ popi ◦ β ◦ {0, 1}

∗◦

cell
∗ ◦Dir ◦ cell

∗ ◦ ω′ ◦ popi ◦ β ◦ {0, 1}
∗
)

◦ Γ ∗

The program π= =
⋃
ω∈Ω πω,ω checks whether the content of the top cell ω[k]

equals the content of the k-th cell of the subsequent configuration. Now we define
a program checkμ for μ ∈ Moves, which is only executable if cdc′ is on top of
the pushdown, where: (i) c and c′ are configurations of M in the sense of (1),
(ii) d ∈ Dir, and (iii) M moves from configuration c′ to configuration c by the
move μ. We restrict ourselves to the case where μ = (q, a,←):

λ ∩
(

conf ◦Dir ◦ conf ∩ π∗
= ◦

⋃

p∈Q,b,c∈ΓM

(πq,c ◦ πc,p ◦ πa,b) ◦ π∗
= ◦Dir ◦ conf

)

◦ Γ ∗

The rest of the proof is analogous to Walukiewicz’s proof for the EXP lower bound
for CTL over PDS [28]. Using the direction markers, we can define a program
traverse, whose execution simulates on the pushdown a single step in a depth-first
left-to-right traversal of the computation tree ofM. Using a program init, which
pushes the initial configuration on the pushdown, we get (ε, ε) ∈ [[init◦ traverse∗]]
if and only if the initial configuration q0w is accepting. ��
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In the rest of this paper, we sketch a 2EXP upper bound for the combined com-
plexity of PDL∩ over PRS. For this, we need the concept of two-way alternating
tree automata. Vardi and Kupferman [15] reduced the model-checking problem
of the modal μ-calculus over PRS to the emptiness problem for two-way alter-
nating tree automata, and thereby deduced an EXP upper bound for the former
problem, see also [4,29]. Our general strategy for model-checking PDL∩ over
PRS is the same.

Let Γ be a finite alphabet. A Γ -tree is a suffix-closed subset T ⊆ Γ ∗, i.e., if
aw ∈ T for w ∈ Γ ∗ and a ∈ Γ , then w ∈ T . Elements of T are called nodes. An
infinite path in the tree T is an infinite sequence u1, u2, . . . of nodes such that
u1 = ε and for all i ≥ 1, ui+1 = aiui for some ai ∈ Γ . A Σ-labeled Γ -tree, where
Σ is a finite alphabet, is a pair (T, λ), where T is a Γ -tree and λ : T → Σ is
a labeling function. The complete Γ -tree is the Γ 
 {⊥}-labeled Γ -tree (Γ ∗, λΓ )
where λΓ (ε) = ⊥ and λΓ (aw) = a for a ∈ Γ and w ∈ Γ ∗. For a finite set X ,
let B+(X) be the set of all positive boolean formulas over X ; note that true and
false are positive boolean formulas. A subset Y ⊆ X satisfies θ ∈ B+(X), if θ
becomes true when assigning true to all elements in Y . Let ext(Γ ) = Γ 
 {ε, ↓}
and define for all u ∈ Γ ∗, a ∈ Γ : εu = u, ↓au = u, whereas ↓ε is undefined.

A two-way alternating tree automaton (TWATA) over Γ is a triple T =
(S, δ,Acc), where S is a finite set of states, δ : S×(Γ ∪{⊥})→ B+(S×ext(Γ )) is
the transition function, and Acc : S → {0, . . . ,m} is the priority function, where
m ∈ N. Let u ∈ Γ ∗ and s ∈ S. An (s, u)-run of T (over the complete Γ -tree
(Γ ∗, λΓ )) is a (S × Γ ∗)-labeled Ω-tree R = (TR, λR) for some finite set Ω such
that: (i) ε ∈ TR, (ii) λR(ε) = (s, u), and (iii) if α ∈ TR with λR(α) = (s′, v) and
δ(s′, λΓ (v)) = θ, then there is a subset Y ⊆ S× ext(Γ ) that satisfies the formula
θ and for all (s′′, e) ∈ Y there exists ω ∈ Ω with ωα ∈ TR and λR(ωα) = (s′′, ev).
An (s, u)-run R = (TR, λR) of T is successful if for every infinite path w1, w2, . . .
of TR, min({Acc(s′) | λR(wi) ∈ {s′} × Γ ∗ for infinitely many i}) is even. Let
[[T , s]] = {u ∈ Γ ∗ | there is a successful (s, u)-run of T }. The size |T | of T
is |Γ | + |S| +

∑
θ∈ran(δ) |θ| + |Acc|, where |Acc| := max{Acc(s) | s ∈ S}. For

TWATAs Ti = (Si, δi,Acci) (i ∈ {1, 2}) over Γ let T1 
 T2 = (S1 
 S2, δ1 

δ2,Acc1 
 Acc2) be their disjoint union. Note that in our definition a TWATA
over an alphabet Γ only runs on the complete Γ -tree. Hence, our definition is
a special case of the definition in [14,15,27], where also runs of TWATAs on
arbitrarily labeled trees are considered. Using [27], we obtain:

Theorem 2 ([27]). For a given TWATA T = (S, δ,Acc) and a state s ∈ S, it
can be checked in time exponential in |S| · |Acc| whether ε ∈ [[T , s]].

It should be noted that the size of a positive boolean formula that appears in the
transition function δ of a TWATA T = (Q, δ,Acc) can be exponential in |Q|, but
the size of δ only appears polynomially in the upper bound for emptiness (and
not exponentially, which would lead to a 2EXP upper bound for emptiness).

Let T = (S, δ,Acc) be a TWATA over Γ . A nondeterministic finite automaton
(briefly NFA) A over T is a pair (Q,→A) where Q is a finite state set and all

transitions are of the form p
a−→A q for p, q ∈ Q, a ∈ Γ ∪ Γ or p

T ,s−−→A q for
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p, q ∈ Q, s ∈ S. The latter transitions are called test-transitions. Let A↓ (resp.
A↑) be the NFA over T that results from A by removing all transitions with a
label from Γ (resp. Γ ), i.e., we only keep test-transitions and transitions with a
label from Γ (resp. Γ ). Let ⇒A ⊆ (Γ ∗ ×Q)× (Γ ∗ ×Q) be the smallest relation
with:

– (u, p)⇒A (au, q) whenever u ∈ Γ ∗ and p a→A q

– (au, p)⇒A (u, q) whenever u ∈ Γ ∗ and p ā→A q

– (u, p)⇒A (u, q) whenever u ∈ [[T , s]] and p
T ,s−−→A q

Let [[A, p, q]] = {(u, v) ∈ Γ ∗ × Γ ∗ | (u, p)⇒∗
A (v, q)} for p, q ∈ Q.

We will inductively transform a given PDL∩-formula (resp. PDL∩-program)
into an equivalent TWATA (resp. NFA over a TWATA). In order to handle the
intersection operator on programs, we first have to describe a general automata
theoretic construction: Let T = (S, δ,Acc) be a TWATA over Γ and let A =
(Q,→A) be an NFA over T . Let hopA ⊆ Γ ∗ × Q × Q be the smallest set such
that:

– for all u ∈ Γ ∗ and q ∈ Q we have (u, q, q) ∈ hopA
– if (au, p′, q′) ∈ hopA, p a→A p

′, and q′ ā→A q, then (u, p, q) ∈ hopA
– if (u, p, r), (u, r, q) ∈ hopA, then (u, p, q) ∈ hopA
– if u ∈ [[T , s]], p T ,s−−→A q, then (u, p, q) ∈ hopA

Intuitively, (u, p, q) ∈ hopA if and only if we can walk from node u of the complete
Γ -tree back to u along a path consisting of nodes from Γ ∗u. At the beginning
of this walk, the automaton A is initialized in state p, each time we move in the
tree from v to av (resp. av to u) we read a (resp. ā) in A, and A ends in state
q. Formally, we have:

Lemma 1. We have (u,p,q) ∈ hopA if and only if there exist n ≥ 1, u1, . . . , un ∈
Γ ∗u, and q1, . . . , qn ∈ Q such that u1 = un = u, q1 = p, qn = q, and (u1, q1)⇒A

(u2, q2) · · · ⇒A (un, qn).

The inductive definition of the set hopA can be translated into a TWATA:

Lemma 2. There exists a TWATA U = (S′, δ′,Acc′) with state set S′ = S 

(Q × Q) such that (i) [[U , s]] = [[T , s]] for s ∈ S, (ii) [[U , (p, q)]] = {u ∈ Γ ∗ |
(u, p, q) ∈ hopA} for (p, q) ∈ Q×Q, and (iii) |Acc′| = |Acc|.

Define a new NFA B = (Q,→B) over the TWATA U by adding to A for every

pair (p, q) ∈ Q×Q the test-transition p
U ,(p,q)−−−−→ q.

Lemma 3. Let u, v ∈ Γ ∗ and p, q ∈ Q. Then the following statements are
equivalent:

– (u, v) ∈ [[A, p, q]]
– (u, v) ∈ [[B, p, q]]
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– there exist a common suffix w of u and v and a state r ∈ Q with (u,w) ∈
[[B↓, p, r]] and (w, v) ∈ [[B↑, r, q]]

Let dropB ⊆ Γ ∗ ×Q×Q be the smallest set such that:

– for all u ∈ Γ ∗ and p ∈ Q we have (u, p, p) ∈ dropB
– if (u, p′, q′) ∈ dropB, p ā→B p′, and q′ a→B q, then (au, p, q) ∈ dropB
– if s′ ∈ S′, u ∈ [[U , s′]], p U ,s′−−→B r, and (u, r, q) ∈ dropB, then (u, p, q) ∈ dropB
– if s′ ∈ S′, u ∈ [[U , s′]], r U ,s′−−→B q, and (u, p, r) ∈ dropB , then (u, p, q) ∈ dropB

Lemma 4. We have (u, p, q) ∈ dropB if and only if there exist r ∈ Q and a
suffix v of u such that (u, v) ∈ [[B↓, p, r]] and (v, u) ∈ [[B↑, r, q]].

Again, the inductive definition of dropB can be translated into a TWATA:

Lemma 5. There exists a TWATA V = (S′′, δ′′,Acc′′) with state set S′′ =
S′ 
 (Q × Q) such that: (i) [[V , s′]] = [[U , s′]] for every state s′ ∈ S′ of U , (ii)
[[V , (p, q)]] = {u ∈ Γ ∗ | (u, p, q) ∈ dropB} for every state (p, q) ∈ Q×Q, and (iii)
|Acc′′| = |Acc|.

Let C = (Q,→C) be the NFA over the TWATA V that results from B by adding

for every pair (p, q) ∈ Q × Q the test-transition p
V,(p,q)−−−−→ q. For u, v ∈ Γ ∗ let

inf(u, v) the longest common suffix of u and v.

Lemma 6. Let u, v ∈ Γ ∗ and p, q ∈ Q. Then the following statements are
equivalent:

– (u, v) ∈ [[A, p, q]]
– (u, v) ∈ [[C, p, q]]
– there exists r ∈ Q with (u, inf(u, v)) ∈ [[C↓, p, r]] and (inf(u, v), v) ∈ [[C↑, r, q]]

Now we are ready to prove the announced 2EXP upper bound for the combined
complexity of PDL∩ over PRS. Let Z = (Γ, α) be a PRS and ϕ be a PDL∩

formula each over Σ. We translate Z and ϕ into a TWATA T = (S, δ,Acc) over
Γ together with a state s ∈ S such that (K(Z), ε) |= ϕ if and only if ε ∈ [[T , s]].
The number of states of T will be exponentially in the size of the formula ϕ and
polynomially in the size of Z and the size of the priority function Acc will be
linear in the size of ϕ, which proves a 2EXP upper bound by Theorem 2. From
now on any occurring TWATA is implicitly over Γ and the size of the priority
function is at least 1. The construction of T is done inductively over the structure
of the formula ϕ. More precisely, (i) for every subformula ψ of ϕ we construct a
TWATA T (ψ) together with a state s of T (ψ) such that [[ψ]] = [[T (ψ), s]] and (ii)
for every program π that occurs in ϕ we construct an NFA A(π) over a TWATA
T (π) such that [[π]] = [[A(π), p, q]] for states p and q of A(π).

The case ψ = true is clear, the case ψ = ψ1 ∧ ψ2 can be skipped since
ψ1 ∧ ψ2 ⇔ 〈ψ1?〉ψ2. If ψ = ¬θ, then we apply the standard complementation
procedure [23], where all positive boolean formulas in the right-hand side of the
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transition function are dualized and the acceptance condition is complemented
by incrementing the priority of every state. If ψ = 〈π〉θ, then we have already
constructed A(π), T (π), and T (θ) such that [[π]] = [[A(π), p, q]] for two states p
and q of A(π) and [[θ]] = [[T (θ), s]] for a state s of T (θ). Basically, the TWATA
T (ψ) results from the disjoint union of A(π) and T (π)
T (θ), additionally T (ψ)
can move from state q to state s. It remains to construct A(π) and T (π) for a
PDL∩ subprogram π of ϕ.

Case π = ψ?: We can assume that there exists a TWATA T (ψ) and a state r
of T (ψ) such that [[ψ]] = [[T (ψ), r]]. The TWATA T (π) is T (ψ). The automaton

A(π) has two states p and q with the only transition p
T ,r−−→ q.

Case π = σ ∈ Σ: Assume that α(σ) =
⋃n
i=1(L(A′

i) × L(B′
i))L(C′

i). Define the
homomorphism h : Γ ∗ → Γ

∗
by h(a) = a for all a ∈ Γ . From the representation

of α(σ) we can construct finite automata Ai, Bi, Ci such that L(Ai) = h(L(A′
i)),

L(Bi) = L(B′
i)

rev, and L(Ci) = h(L(C′
i)). Basically, the automaton A(π) first

chooses nondeterministically an i ∈ {1, . . . , n} and then simulates the automaton
Ai, until a current tree node u ∈ Γ ∗ belongs to the language L(Ci). Then
it continues by simulating the automaton Bi. Whether the current tree node
u ∈ Γ ∗ belongs to L(Ci) has to be checked by the TWATA T (π), which can be
built from the automaton Ci.

Case π = π1 ∪ π2, π = π1 ◦ π2, or π = χ∗: We construct A(π) by using the
standard automata constructions for union, concatenation, and Kleene-star. We
set T (π1 ∪ π2) = T (π1 ◦ π2) = T (π1) 
 T (π2) and T (χ∗) = T (χ).

It remains to construct A(π1∩π2) and T (π1∩π2). For this, we use the hop/drop-
construction described above: Assume that the NFA A(πi) = (Qi,→i) (i ∈
{1, 2}) over the TWATA T (πi) = (Si, δi,Acci) is already constructed. Thus,
[[A(πi), pi, qi]] = [[πi]] for some states pi, qi ∈ Qi. We first construct the NFA C(πi)
over the TWATA V(πi) = (S′′

i , δ
′′
i ,Acc′′i ) as described in Lemma 6. Note that the

state set of C(πi) is Qi (the state set of A(πi)) and that |S′′
i | = |Si|+ 2 · |Qi|2.

Let T (π1 ∩ π2) = V(π1)
V(π2). The NFA A(π1 ∩ π2) is the product automaton
of C(π1) and C(π2), where test-transitions can be done asynchronously: Let
A(π1 ∩ π2) = (Q1 × Q2,→), where for a ∈ Γ ∪ Γ we have (r1, r2)

a→ (r′1, r
′
2) if

and only if ri
a→C(πi) r

′
i for i ∈ {1, 2}. Finally, for a state s of V(π1) 
 V(π1)

we have the test-transition (r1, r2)
T (π1∩π2),s−−−−−−−→ (r′1, r

′
2) if and only if for some

i ∈ {1, 2}: s is a state of V(πi), ri
V(πi),s−−−−−→C(πi) r

′
i, and r3−i = r′3−i.

Lemma 7. We have [[A(π1 ∩ π2), (p1, p2), (q1, q2)]] = [[π1 ∩ π2]]. Moreover, if
A(πi) = (Qi,→i), A(π1∩π2) = (Q,→), T (πi) = (Si, δi,Acci), and T (π1∩π2) =
(S, δ,Acc), then: |Q| = |Q1| · |Q2|, |S| = |S1| + |S2| + 2 · |Q1|2 + 2 · |Q2|2, and
|Acc| = max{|Acc1|, |Acc2|}.

Recall that we want to check (K(Z), ε) |= ϕ for the PRSZ and the PDL∩ formula
ϕ. A careful analysis of the constructions above allows to prove inductively:

Lemma 8. If |Z| and |ϕ| are sufficiently large, then:
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– For every subformula ψ of ϕ with T (ψ) = (S, δ,Acc) we have |S| ≤ |Z|2·|ψ|2

and |Acc| ≤ |ψ|.
– For every subprogram π of ϕ with A(π) = (Q,→) and T (π) = (S, δ,Acc) we

have |Q| ≤ |Z||π|, |S| ≤ |Z|2·|π|2 , and |Acc| ≤ |π|.

From our construction, Lemma 8, and Theorem 2 we get:

Theorem 3. It can be checked in 2EXP, whether (K(Z), ε) |= ϕ for a given PRS
Z and a given PDL∩ formula ϕ. For a fixed PDL∩ formula, it can be checked in
EXP, whether (K(Z), ε) |= ϕ for a given PRS Z.

For the data complexity of test-free PDL∩ over PDA we can prove a match-
ing EXP lower bound, by translating the fixed CTL formula from Walukiewicz’s
lower bound proof for the data complexity of CTL over PDS [28] into a fixed
test-free PDL∩ formula. For the data complexity of test-free PDL∩ over BPA
we can only prove a lower bound of PSPACE by a reduction from the universal-
ity problem from non-deterministic finite automata. Altogether, we obtain the
results for PDL∩ in Table 1.

One might ask, whether an elementary upper bound also holds for the model-
checking problem of PDL with the complement operator on programs over push-
down systems. But this model-checking problem allows to express emptiness for
a given extended regular expression (i.e., regular expression where the comple-
ment operator is allowed), which is a well known nonelementary problem.

6 Open Problems

On the technical side it remains to close the gap between PSPACE and EXP
for the data complexity of PDL∩ over BPA. Another fruitful research direction
might be to extend PDL∩ by a unary fixpoint operator. The resulting logic is
strictly more expressive than PDL∩ and the modal μ-calculus. We are confident
that our upper bounds for PDL∩ from Theorem 3 can be extended to this logic.
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