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Abstract

We introducew-Petri nets ¢ PN), an extension oplain Petri nets withw-
labeled input and output arcs, that is well-suited to amaparametric concur-
rent systems with dynamic thread creatidost techniques (such as the Karp and
Miller tree or the Rackoff technique) that have been progas¢he setting oplain
Petri netsdo not apply directly tawPN because/PN define transition systems that
haveinfinite branching This motivates a thorough analysis of the computational
aspects ofuPN. We show that awPN can be turned into an plain Petri net that
allows to recover the reachability set of th®N, but that does not preserve ter-
mination. This yields complexity bounds for the reach&piljplace) boundedness
and coverability problems aaPN. We provide a practical algorithm to compute
a coverability set of the/PN and to decide termination by adapting the classical
Karp and Miller tree construction. We also adapt the Ractaithnique tavPN,
to obtain the exact complexity of the termination probleninally, we consider
the extension ofuPN with reset and transfer arcs, and show how this extension
impacts the decidability and complexity of the aforememeid problems.

1 Introduction

In this paper, we introduce-Petri nets ¢PN), an extension gblain Petri nets (PN)
that allows input and output arcs to be labeled by the symbadhstead of a natu-
ral number. Anw-labeled input arc consumes, non-deterministically, amyiner of
tokens in its input place while an-labeled output arc produces non-deterministically
any number of tokens in its output place. We claim thaN are particularly well suited
for modelingparametric concurrent systenfsee for instance our recent work on the
Grand Central Dispatch technology [12]), and to perf@amametric verificatiorf14]

on those systems, as we illustrate now by means of the examipig[l. The example
present a skeleton of a distributed program, in whiclaan function forksP parallel
threads (wheré is a parameter of the program), each executingthe t ask func-
tion. Many distributed programs follow this abstract sketethat allows to perform
calculations in parallel, and being able to model precisalh concurrent behaviors is
an importantissue. In particular, we would like that the elaghptures the fact that

is a parameterso that we can, for instance, check that the execution optbgram
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one_task(int k) {

/1 sonme work. .. W@ W“ ?@
}
mai n() {
for i :=1to P step 1
fork(one_task(i))

J onetask]  netask] |one_task

Figure 1: An example of a parametric system with three ptessilmdels

always terminates (assuming each individual executioars#_t ask does),for all
possible values aP. Clearly, the Petri net (a) in Fifg] 1 does not capture therpetdc
nature of the example, as plage contains a fixed numbédk” of tokens. The PN (b),
on the other hand captures the fact that the prograni oak an unbounded number
of threads, butloes not preserve terminatipipost)* is an infinite execution of PN
(b), while the programme terminates (assuming each_t ask thread terminates)
for all values ofP, because th&or loop in line[3 executes exactliy times. Finally,
observe that thePN (c) has the desired properties: firing transifiar k createsion-
deterministicallyan unboundedlbeit finite number of tokens ip, (to model all the
possible executions of the for loop in libé 5), and all poeséxecutions of thissPN
terminate, because the number of tokens produced nemainsfinite and no further
token creation imp- is allowed after the firing of théor k transition.

While close to Petri netsyPN are sufficiently different that a thorough and careful
study of their computational properties is required. Thithe main contribution of the
paper. A first example of discrepancy is that the semanticgf is an infinite transi-
tion system which isnfinitely branching This is not the case for plain PN: their tran-
sition systems can be infinite but they are finitely branchifig a consequence, some
of the classical techniques for the analysis of Petri netactbe applied. Consider for
example thdinite unfolding of the transition systejh0] that stops the development
of a branch of the reachability tree whenever a node with dlsnancestor is found.
This tree is finite (and effectively constructible) for aripip Petri net and any initial
marking because the set of markiigs is well-quasi orderedandfinite branchingof
plain Petri nets allows for the use of Kdnig's lenfinalowever, this technique cannot
be applied tauPN, as they are infinitely branching. Such peculiaritiesBN motivate
our study of three different tools for analysing them. Five¢ consider, in Sectidd 3,
a variant of the Karp and Miller treé [15] that appliesd®N. In order to cope with
the infinite branching of the semanticswPN, we need to introduce in the Karp and
Miller tree w’s that are not the result of accelerations but the result-ofutput arcs.
Our variant of the Karp and Miller constructionrscursive this allows us to tame the
technicality of the proof, and as a consequence, our proefwepplied tglain Petri
nets, provides a simplification of the original proof by Kapd Miller. Second, in
Sectior#, we show how to construct, from@RN, a plain Petri net that preserve its
reachability set. This reduction allows to prove that maayrixds on the algorithmic

1In fact, this construction is applicable to any well-stured transition system which is finitely branching
and allows to decide the termination problem for example.



Table 1: Complexity results aaPN (with the section numbers where the results are
proved). wIPN+R (WOPN+R) anduvIPN+T (WOPN+T) denote resp. Petri nets with
reset (R) and transfer (T) arcs withon input (output) arcs only.

| Problem | wPN | WPN+T | wPN+R |

Reachability Decidable and K- .
PSPACE-hard [4) Undecidablel(6) Undecidable[{p)

Place-boundedness
Boundedness ExPSPACE-C (4) Decidable[(b)
Coverability Decidable and Ackerman-hafd (6)

| Problem || wPN | wOPN+T,wOPN+R | wlIPN+T, wIPN+R |
Termination || EXPSPACE-c (B) Undecidablel(6) Decidable and

Ackerman-hard(6)

complexity of (plain) PN problems apply toPN too. However, it does not preserve
termination Thus, we study, in Sectidd 5, as a third contribution, aemsion of the
self-covering path technique due to Rackoffl[19]. This reghbe allows to provide a
direct proof of EXPSPACE upper bounds for several classical decision problems,rand i
particular, this allows to proveXSPACE completeness of the termination problem.

Finally, in Sectiori B, as a additional contribution, and & g complete picture,
we consider extensions ofPN with resetandtransferarcs [7]. For those extensions,
the decidability results for reset and transfer nets (witho arcs) also apply to our
extension with the notable exception of the terminatiorbpem that becomes, as we
show here, undecidable. The summary of our results are giveable[].

Related works wPN are well-structured transition systems|[10]. The seiraibn
techniquel[l] and so symbolic backward analysis can beeghfithem while the finite
tree unfolding is not applicable because of the infinite bhémg property ofuPN. For
the same reasonPN arenotwell-structured nets [11].

In [3], Bradzil et al. extends the Rackoff technique to VASS games withutput
arcs. While this extension of the Rackoff technique is téwdlly close to ours, we
cannot directly use their results to solve the terminatiabfem ofwPN.

Several works (see for instance [4, 5] rely on Petri nets tdehparametric sys-
temsand perfornparametrised verificationHowever, in all these works, the dynamic
creation of threads uses the same pattern as il Fig. 1 (b)l@esinot preserve ter-
mination. wPN allow to model more faithfully the dynamic creation of atbounded
number of threads, and are thus better suited to model negraroning paradigms
(such as those use in GCD_[12]) that have been recently pedptosbetter support
multi-core platforms.

Remark: due to lack of space, most proofs can be found in the appendix



2 w-Petri nets

Let us define the syntax and semantics of our Petri net extensalledw Petri nets
(wPN for short). Letv be a symbol that denotes ‘any positive integer value’. Wereckt
the arithmetic and the ordering onZ to Z U {w} as follows:w + w = w — w = w;
andforallce Z: c+t+w=w+c=w-—c=w, c—w = ¢, andc < w. The fact
thatc — w = ¢ might sound surprising but will be justified later when werdatuce
wPN. An w-multiset(or simply multise) of elements front' is a functionm : S —
NU{w}. We denote multisets: of S' = {s1, s2, ..., s» } by extension using the syntax
{m(s1) ® s1,m(s2) ® s2,...,m(s,) ® s, } (Whenm(s) = 1, we write s instead of
m(s) ® s, and we omit elements:(s) ® s whenm(s) = 0). Given two multisetsn,
andmeg, and an integer valuewe letm; + mqy be the multiset s.t(m; + ms)(p) =
mi(p) + ma(p); m1 — me be the multiset s.tmy — m2)(p) = m1(p) — ma(p); and
¢-my be the multiset s.tic - m1)(p) = ¢ x my(p) forallp € P.

Syntax Syntactically,wPN extend plain Petri nets [18,]20] by allowing (input and
output) arcs to be labeled by Intuitively, if a transitiont hasw as output (resp. input)
effect on placep, the firing oft non-deterministically creates (consumes) a positive
number of tokens ip.

Definition 1 A Petri net withw-arcs(wPN) is a tuple\N = (P, T') where: P is a finite
set of places T a finite set oftransitions Each transition is a pait = (I, O), where:
I:P—NU{w}andO : P — NU {w}, give respectively the input (output) effect
I(p) (O(p)) of t on placep.

By abuse of notation, we denote bit) (resp.O(t)) the functions s.tt = (I(¢), O(t)).
When convenient, we sometimes regé(d) or O(t) asw-multisetsof places. When-
ever there i s.t. O(t)(p) = w (resp. I(t)(p) = w), we say that is anw-output-
transition (w-input-transitior). A transitiont is anw-transition iff it is anw-output-
transition or anw-input-transition. Otherwiset, is a plain transition. Remark that
a (plain) Petri net is awPN with plain transitions only. Moreover, when arfPN
contains nav-output-transitions (resp. no-input transitions), we say that it is an
input-PN (u-output-PN), otwoIPN (wOPN) for short. For all transition's we denote by
effect(t) the functionO(t) — I(t). Remark thagffect(t)(p) could bew for somep (in
particular wherO(t)(p) = I(t)(p) = w). Intuitively, effect(t)(p) = w models the fact
that firing¢ can increase the marking pfby an arbitrary number of tokens. Finally,
observe thaO(¢t)(p) = ¢ # w andI(t)(p) = w implieseffect(t)(p) = ¢ —w = c.
This models the fact that firingcan at most increase the markingmoby ¢ tokens.
Thus, intuitively, the valueffect(t)(p) models themaximal possible effedf ¢ on p.
We extend the definition offfect to sequences of transitioas= t1ts - - - t,, by letting
effect(c) = D1, effect(t;).

A markingis a functionP — N. An w-markingis a functionP — N U {w},
i.e. anw-multiset onP. Remark that any marking is anrmarking, and that, for all
transitionst = (I,0), I andO are bothw-markings. We denote b§ the marking
s.t. 0(p) = O forall p € P. For allw-markingsm, we letw(m) be the set of places
{p | m(p) = w}, and letnbw (m) = |w(m)|. We definethe concretisatiorof m
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Figure 2: An examplesPN A;. ThewPN A/ is obtained by removing transitian
(red).

as the set of all markings that coincide withon all placep ¢ w(m), and take an
arbitrary value in any place from(m). Formally: v(m) = {m’ | ¥p & w(m) :
m’(p) = m(p)}. We further define a family of orderings anmarkings as follows.
ForanyP’ C P, we letm; <p/ my iff (i) forall p € P: mi(p) < ma(p), and
(i) for all p € P\ P: mi(p) = ma(p). We abbreviate<p by < (whereP is
the set of places of thePN). It is well-known that< is awell-quasi ordering(wqo),
that is, we can extract, from any infinite sequeneg mso, ..., m;,... of markings,
an infinite subsequence,,ma,...,m;,... S.t. m; =< M4 foralli > 1. For all
w-markingsm, we let)(m) be thedownward-closuref m, defined ag.(m) = {m’ |
m’ is a marking andn’ < m}. We extend, to sets ofu-markings:}(S) = Upes |
(m). A setD of markings isdownward-closedff | (D) = D. It is well-known that
(possibly infinite) downward-closed sets of markings camagk be represented by a
finite set ofw-markings, because the setwimarkings forms amdequate domain of
limits [13]: for all downward-closed set® of markings, there exists a finite skf of
w-markings s.t..(M) = D. We associate, to eacdPN, anintial markingmg. From
now on, we consider mostly initialisedPN (P, T', my).

Example 1 An example of anPN (actually anoOPN) N, = (P, T,mg) is shown
in Fig.[2. In this exampleP = {p1,p2,ps}, T = {t1,t2,t3,ts}, mo(p1) = 1 and
mo(p2) = mo(ps) = 0. 1 is the onlyw-transition, withO(t1)(p2) = w. ThiswPN
will serve as a running example throughout the section.

Semantics Letm be anw-marking A transitiont = (I, O) is firable fromm iff:
m(p) = I(p) for all p s.t. I(p) # w. We consider two kinds of possible effects
for t. The first is theconcrete semanticand applies only whem is amarking In
this case, firing yields a new markingn’ s.t. forallp € P: m/(p) = m(p) —i + o
where:i = I(t)(p) if 1(t)(p) # w,i € {0,...,m(p)}if I(¢)(p) = w, 0= O(t)(p)

if O(t)(p) # wando > 0if O(t)(p) = w. This is denoted byn % m’. Thus,
intuitively, I(¢)(p) = w (resp. O(t)(p) = w) means that consumes (produces) an
arbitrary number of tokens imwhen fired. Remark that, in the concrete semanties,
transitions arenon-deterministicwhent is anw-transitions that is firable im, there
areinfinitely manym’ s.t. m L m/. The latter semantics is the-semantics In this
case, firingt = (I,0) yields the (unique-markingm’ = m — I + O (denoted
m i>w m'). Remark thain Lyom!iff m i>w m’ whenm andm’ are markings.



We extend the— and—, relations to finite or infinite sequences of transitions in
the usual way. Also we write: = iff o is firable from m. More precisely, for a finite
sequence of transitions = t, - - - t,,, we writemm = iff there arem, ..., m, S.t. for
alll <i<n:mi_ Ly m;. For an infinite sequence of transitiofs= ¢, ---¢; - - -,

we writemg — iff there arems, . .. ,mj,...s.t.foralli > 1: m;_4 LN m,.

Given anwPN N = (P, T, mg), anexecutionof A/ is either a finite sequence of
the formmyg, t1,m1,t2,...,tn, my S.t. mg I, m RN my, Or an infinite
sequence of the formug, t1,m1,t2,...,t;,m;,... s.t. forallj > 1: m;_; b, mj.
We denote byReach(N) the set of marking$m | Jo s.t.mo < m} that are reachable
from mg in AV, Finally, afinite set ofw-markingsCS is acoverability seof A (with
initial marking my) iff | (CS) =/ (Reach(N')). That is, any coverability selS is a
finite representation of the downward-closure\és reachable markings

Example 2 The sequence tX is firable for all K > 0 in A (Fig.2). Indeed, for
eachK > 0, one possible execution corresponding {6 is given by(1, 0, 0) b,
(0,3K,0) 22 (0,3K —1,2) 22 (0,3K —2,4) 2 ... 12, (0, 2K, 2K). Remark that
there are other possible executions corresponding to theessequence of transitions,
because the number of tokens created;kin p- is chosen non-deterministically. Also,
t1tot$ is an infinite firable sequence of transitions. Finally, atvgethat the set of
reachable markings ioV; is Reach(N) = {(1,0,0)} U {(0,i,2 x j) | 4,5 € N}.
The set ofv markingsCS = {(1,0,0), (0,w,w)} is a coverability set of\. Note that
UCS) 2 Reach(N): for instance,(0,1,1) €(CS), but(0, 1, 1) is not reachable.

Let us now observe two properties of the semanticsPiN, that will be useful for
the proofs of Sectionl3. The first says that, when firing a secgief transitions that
have nonw-labeled arcs on to and from some plagehe effect ofc onp is as in a
plain PN:

Lemma 1l Let m and m’ be two markings and let = ¢, ---t, be a sequence of
transitions of anwPN s.t. m < m/. Letp be a place s.t. forall < i < n:

O(ti)(p) # w # I1(t:)(p). Then,m'(p) = m(p) + effect(a)(p).

The latter property says that the set of markings that achedde by a given sequence
of transitionss is upward-closed w.r.t=<p,, whereP’ is the set of places where the
effect ofo isw.

Lemma 2 Letmy, mo andmg be three markings, and let be a sequence of transi-
tions s.t. (i) my % ma, (i1) ms =pr ma With P’ = {p | effect(c)(p) = w}. Then,
m1 = ms holds too.

Problems We consider the following problems. L&f = (P, T, mq) be anwPN:

1. Thereachability problenasks, given a marking, whetherm € Reach(V).

2. Theplace boundedness problesks, given a placeof A/, whether there exists
K e Ns.t. forallm € Reach(NV): m(p) < K. If the answer is positive, we say
thatp is boundedfrom my).



3. Theboundedness probleasks whether all places &f are bounded (fronmy).

4. Thecovering problenasks, given a marking: of A/, whether there exista’ €
Reach(N) s.t.m’ = m.

5. Thetermination problenasks whether all executions 4f are finite.

Remark that @overability sebf thewPN is sufficient to solvéoundednesplace
boundednesandcovering as in the case of Petri nets.dF is a coverability set alV/,
then: (¢) p is bounded iffm(p) # w for all m € CS; (it) N is bounded iffim(p) # w
for all p and for allm € CS; and(iii), N can covemn iff there existsm’ € CS s.t.
m =< m’. As in the plain Petri nets case, a sufficient and necessaition of non-

termination is the existence ofsglf covering executionA self covering executioof

anwPNAN = (P, T, mo) is afinite execution of the formng - my - - - 255 my, REEN

t’!l H
<o 2 my, with my, = my:

Lemma 3 AnwPN terminates iff it admits no self-covering execution.

Example 3 Consider again thefPN A in Fig.[2. Recall from Examplé 2 that, for alll
K > 0, t;t& is firable and allows taeach(0, 2K, 2K). All these markings are thus
reachable These sequences of transitions also show phaind p; are unbounded
(hence N is unbounded too), whilg, is bounded Marking (0, 1, 1) is not reachable
but coverablewhile (2,0, 0) is neither reachable nor coverable. Finally; does not
terminate (becausg .ty is firable), whileA| does. In particularjin N, t3 can fire
only afinite number of time, because will always create a finite (albeit unbounded)
number of tokens ip,. This an important difference betwee®N and plain PN: no
unbounded PNs terminates, while there are unbound®d that terminate, e.gV;.

3 A Karp and Miller procedure for wPN

In this section, we presents an extension of the classicgd&Miller procedure[[15],
adapted tawPN. We show that the finite tree built by this algorithm (cairteke KM
tree), allows, as in the case of PNs, to dedidendednesplace boundednesover-
ability andterminationonwPN.

Before describing the algorithm, we discuss intuitivelg &M trees of theoPN
N1 and AN given in Fig[2. Their respectivikM trees (for the initial markingng =
(1,0,0)) are7; and7{, respectively the tree in Figl 3 and itfack subtredi.e., ex-
cludingn;). As can be observed, the nodes and edgesKlatree are labeled by
w-markings and transitions respectively. The relation&lgiiween &KM tree and the
executions of the corresponding®N can be formalised using the notion sifitter-
ing path Intuitively, a stuttering path is a sequence of nodesns, ..., n; s.t. for
all « > 2: eithern; is a son ofn;_1, or n; is anancestorof n;,_; that has the same
labelasn; 1. Forinstanceqr = ni,ns, ng,no, n3, ng, n3, n5, N3, N5 IS a stuttering
path in7/. Then, we claim(i) that every execution of thePN is simulated by a
stuttering pathin its KM tree, and thatii) every stuttering path in thEM tree cor-
responds to a family of executions of thBN, where an arbitrary number of tokens
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can be produced in the places markeddip the KM tree. For instance, the execution
mo, t1, (0,42,0),t3,(0,41,0), ta, (0,40, 2), t3, (0, 39,2), t2, (0,38, 4), to, (0, 37, 6), of
N is witnessed in7{ by the stuttering pathr given above — observe that the se-
quence of edge labels ifis equals the sequence of transitions of the execution, and
that all markings along the execution ar@veredby the labels of the corresponding
nodes inm: mo € y(n1), (0,42,0) € ~(n2), and so forth. On the other hand, the
stuttering pathn, no, n3 of A7 summarises all the (infinitely many) possible execu-
tions obtained by firing a sequence of the fotyf;. Indeed, for allk > 1, ¢ > 0:
mo,t1, {0,k + £,0),t2,(0,k + € — 1,2),ta,...,t2,(0,k,2 x £) is an execution of
N1, s0, an arbitrary number of tokens can be obtained in pe#ndp; by firing se-
guences of the forrty t%. Finally, observe that self-covering executioof A7, such as
mo, t1, (0,1,0), t2, (0,0, 2),4,(0,0,2) can be detected ifi;, by considering the path
n1, na, ng, nz, and noting that the label ¢fis, n7) is t4 with effect(t4) > 0.

The Bui | d- KM algorithm  Let us now show how to build algorithmically théM

of anwPN. Recall thatjn the case of plain PNghe Karp& Miller tree [15] can be
regarded as finite over-approximation of the (potentially infinite) &wbility tree of
the PN Thus, the Karp& Miller algorithm works by unfolding the trsition relation of
the PN, and adds two ingredients to guarantee that the tfieéés First, a node: that
has an ancestor’ with the same labdk not developedit has no children). Second,
when a node: with labelm has an ancestot’ with labelm’ < m, anacceleration
functionis applied to produce a marking,, s.t. m.(p) = w if m(p) > m’(p) and
my(p) = m(p) otherwise. This acceleration sundwrt to coverability since the
sequence of transition that has produced the brénch’) can be iterated an arbitrary
number of times, thus producing arbitrary large numberskedns in the places marked
by w in m,,. Remark that these two constructions are not sufficient soientermina-
tion of the algorithm in the case afPN, aswPN arenot finitely branchindfiring an
w-output-transition can produce infinitely many differenteessors). To cope with



this difficulty, our solution unfolds the-semantics—,, instead of the concrete seman-
tics —. This has an important consequence: whereas the preseacwdé labeled by
m with m(p) = w in theKM tree of a PNV impliesthat A/ does not terminatehis is
not true anymoren the case ofuPN. For instance, all nodes but in 7 (Fig.[3) are
marked byw, yet the correspondingPN A/ (Fig.[2)does terminate

Our version of the Karp& Miller tree adapteddd”N is given in Fig[4. It builds a
treeT = (N, E, \, u,ng) where: N is a set of nodesly C N x N is a set of edges;
A: N — (NU{w})? is a function that labels nodes bhymarkingQ; . : E — T is
a labeling function that labels arcs by transitions; agde N is the root of the tree.
For each edge, we leteffect(e) = effect(u(e)). Let ET andE* be respectively the
transitive and the transitive reflexive closurefaf A stuttering paths a finite sequence
no,n1,...,ne St foralll < < ¢: either(n;—1,n;) € E or (n;,n,—1) € E* and
A(n;) = A(n;—1). A stuttering pathng, n1, . .., ng is a(plain) pathiff (n,_1,n;) € FE
forall 1 < i < /4. Given two nodes andn’ s.t. (n,n') € E*, we denote by: ~ n/
the (unique path) from to n’. Given a stuttering path = ng, n1, ..., ng, we denote
by p(m) the sequence(no, n1)u(na, n2) - - - p(ne—1,ne) assumingu(ni, nit1) = €
when(n;,n;+1) € F; and byeffect(m) = Zle effect(n;—1,n;), lettingeffect(n;—1,n;) =
0 When(ni, ni+1) ¢ FE.

Bui | d- KM follows the intuition given above. At all times, it maintaim fron-
tier U of tree nodes that are candidate for development (initi@lly= {no}, with
A(ng) = myp). Then,Bui | d- KM iteratively picks up a node fromU (see liné #), and
develops it (lind b onwards) if has no ancestor’ with the same label (lingl 5)De-
velopinga noden amounts to computing all the markimg s.t. A\(n) —, m (line[17),
performing accelerations (linel9) if need be, and insgttive resulting children in the
tree. Remark thaBui | d- KM is recursive(see lind ®): every time a marking with
an extraw is created, it performs a recursive callBai | d- KM(A/, m), usingm as
initial markingd.

The rest of the section is devoted to proving that this athoriis correct. We start
by establishing termination, then soundness (every stuftgath in the tree corre-
sponds to an execution of thg@PN) and finally completeness (every execution of the
wOPN corresponds to a stuttering path in the tree). To thiswadely on the follow-
ing notions. Symmetrically taelf-covering executionse define the notion ofelf-
covering (stuttering) patim a tree: a (stuttering) pathis self-coveringff © = myms
with effect(m2) > 0. A self-covering stuttering path = 7 72 is w-maximaliff for all
nodesn, n’ alongms: nbw (n) = nbw (n').

Termination Let us show thaBui | d- KM always terminates. First observe that the
depth of recursive calls is at most b¥| + 1, as the number of places marked by
along a branch does not decrease, and since we perform aiveccall only when a
place gets marked hy and was not before. Moreover, the branching degree of tee tre
is bounded by the numbér| of transitions. Thus, by Kodnig's lemma, an infinite tree
would contain an infinite branch. We rule out this possipitiy a classical wqo argu-

2We extend\ to set of nodesS in the usual wayA(S) = {\(n) | n € S}.
3Although this differs from classical presentations of ther& Miller technique, we have retained it
because it simplifies the proofs of correctness.
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Input anwOPNN = (P, T) and arw-markingm,
Output theKM of N, starting fromm,

Bui | d- KM (N, my):
T = <N,E,)\,,U,,no> wher e N:{no} Wi th )\(no):mo
U:= {no}
while U #0:
select and renove n fromU
if #m st (m,n) € ET and A(n) = A(R):
forall ¢tin T s.t. VpeP: I(t)(p)#w inplies An)(p) > I(t)(p):
m’ 1= Post(N, A(n), t)
i f nbw(m') > nbw (A(n)):
T’ = Buil d-KM(N, m)
add all edge and nodes of 7' to T
let n' be the root of 7’

el se
n’ 1= new node with \(n')=m'
U:=Uu {n}
E:=EU(n,n) s.t. plnn)=t
return 7T
Post(Nn,t):

m' = An) = I(t) + O(t)
if m:(m,n)eETANR) < A(n)):
_ | m'(p) if effect(m~n-t)(p) <0
mlp) = {w otherwise
return ms,

el se:
return m’

Figure 4: The algorithm to build th€M of anwPN.

ment: if there were an infinite branch in the tree compute@byl d- KM(N, my),
then there would be two nodes along the branch, (wheren, is an ancestor of
ng) S.t. A(n1) < A(ng) andeffect(ni ~ ng) »= 0. Since the depth of recursive calls
is bounded, we can assume, wlog, thatandny, have been built during the same
recursive call, hencg(n1) < A(n2) is not possible, because this would trigger an ac-
celeration, create an exttaand start a new recursive call. Thugpn,) = A(ns), but

in this case the algorithm stops developing the branch[H)n&ee the appendix for a
full proof.

Proposition 1 For all wPN A and for all markingm,, Bui | d- KM(N,mg) termi-
nates.

Then, following the intuition that we have sketched at thgibeing of the section,
we show thatKM is sound(Lemmal4) anccomplete(Lemmal®). Note that we first
establish these results assuming thatdi®N A given as parameter is anOPN, then

10



prove that the results extend to the general caseRifl.

Soundness To establishsoundnessf our algorithm, we show that, for every path
no, - - ., ng in the tree returned bBui | d- KM(N, mg), and for every target marking
m € v(A(ng)), we can find an execution ¥ reaching a marking:.’ € ~(ny) that
coversm. This implies that, ifA(n)(p) = w for somep, then, we can find a family
of executions that reach a marking+iin;) with an arbitrary number of tokens
For instance, consider the path, n2, ng in 7, (Fig.[3), and letn = (0,2,4). Then,

a corresponding execution {%, 0, 0) 12N (0,4,0) L2, (0,3, 2) EN (0,2,4). Remark
that the execution is not necessarily the sequence of tiamsilabeling the path in
the tree: in this case, we need to iteratdo transfer tokens from- to p3, which is
summarised in one edges, n3) in 71, by the acceleration.

Lemma 4 Let A\ be anwOPN, letmg be anw-marking and let7” be the tree returned
by Bui | d- KM(AN,my). Letw = ng,...,n, be a stuttering path iy, and letm be
a marking iny(A(ng)). Then, there exists an executipn = my h, my--- Ley my
of N s.t. me € y(A(ng)), me = m andmgy € v(A(ng)). Moreover, when for all
0 <i<j <k nbw(n;) =nbw(n,), we havet, ---t, = u(m).

Completeness Proving completeness amounts to showing that every exec{diart-
ing from mg) of anwPN A is witnessed by a stuttering pathBui | d- KM(N, myg).
It relies on the following property:

Lemma5 LetN be anwOPN, letm, be anw-marking, and lef/” be the tree returned
byBui | d- KM(N,mg). Then, for all nodes of Bui | d- KM(N, my):

e eithern has no successor in the tree and has an ances®t. A(77) = A\(n).

e or the set of successors ofcorresponds to all the—,, possible successors of
A(n), e {p(n,n’) | (n,n’) € E} = {t | A(n) im}. Moreover, for eachn’
s.t.(n,n') € Eandu(n,n') =t: A(n’) = A(n) + effect(t).

We can now state the completeness property:

Lemma 6 Let ' be anwOPN with set of transition?’, let mg be an initial marking

t t tn . .
and letmg -~ m; = --- =% m,, be an execution ok/. Then, there are atuttering

patht = ng,n1,...,nk in Bui | d- KM(N, mg) and a monotonic increasing mapping
ho:{1l,...,n} = {0,...,k} st p(m) = tita---t, andm; =< A(np) for all
0<i<n.

From wOPNtowPN We have shown completeness and soundness 8ithed- KM
algorithm for wOPN. Let us show that eachPN A/ can be turned into awOPN
remlw(N) that (i) terminates iffA” terminates andi:) that has the same coverability
sets as\V. ThewOPNremlw(N) is obtained from\/ by replacing each transitiane

T by atransition’ € 77 s.t. O(t') = O(¢t) andI(t') = {I(t)(p) @ p | I(t)(p) # w}.
Intuitively, ¢’ is obtained front by deleting alkv input arcs. Sinc#’ always consumes
less tokenthant does, the following is easy to establish:

11



Lemma 7 LetA be anwPN. For all executionsng, t}, m1, . . ., t),, m, ofremlw(N):

»bmo

mo,t1, m1,...,t,, my, is an execution afV. For all finite (resp. infinite) executions
mo, t1, M1, ... o, My (Mo, t1,ma,...,t;,mj,...) of N, there exists an execution
mo, 1y, my, ..., by, my, (mo, t,mh, ... 5, ml, ) of remlw(N), s.t. m; < mj] for
all 4.

Intuitively, this means that, when solving coverabilitylgce) boundedness or ter-
mination on anvPN .\, we can analyseemlw(N) instead, becausk” terminates iff
remlw(N) terminates, and removing thelabeled input arcs from\" does not allow
to reach higher markings. Finally, we observe that, fow®N A/, and all initial mark-
ing mo: the trees returned Bui | d- KM(N, mg) andBui | d- KM (remlw (N, my))
respectively are isomorpl[ﬁcThis is because we have defined w to be equal ta:
applying this rule when computing the effect of a transiti¢line[17), is equivalent to
computing the effect of the correspondirign remlw(N), i.e. lettingI (¢')(p) = 0 for
allps.t. I(t)(p) = w. Thus, we can lift Lemm@a4 and Lemifiia 648N. This establish
correctness of the algorithm for the genes&N case.

Applications of the Karp& Miller tree  These results allow us to conclude that the
Karp& Miller can be used to compute a coverability set anddoide termination of
anywPN.

Theorem 1 LetV be anwPN with initial markingmg, and let7 be the tree returned
by (N, E, \, i, no) = Bui | d- KM(N, myg). Then: (i) A(IV) is a coverability set oV’
and(:7) N terminates ifff” contains anu-maximal self-covering stuttering path.

Proof.  Point (i) follows from Lemma# (lifted tawPN). Let us now prove both
directions of poin{iz).
First, we show that iBui | d- KM(N,mg) contains anv-maximal self-covering

stuttering path, thetV” admits a self-covering execution fromg. Letng, ..., ng,
nk+1,---,N¢ be an w-maximal self-covering stuttering path, and assume
effect(ngs1,-..,n¢) > 0. Let us apply Lemmal4 (lifted taPN), by lettingm = 0

andn = w9, and letm; andmy be markings s.tm, M ms. The existence of

my andms is guaranteed by Lemnia 4 (lifted &dPN), because all the nodes along
have the same number ofs as we are considering anmaximalself-covering stut-
tering path. Sinceffect(ms) is positive, so iseffect(u(m2)). Thus, there exiﬁsm

I
2
s.t.my LIGEIN mb andm), = my. By invoking Lemmad# (lifted tauPN) again, letting

7 = m; andm = m1, we conclude to the existence of a sequence of transitioas
markingmo and a markingn/, > m; s.t.mg = m/. Sincem/, = my, () is again

4That is, if Buil d-KM(N,mo) returns (N, E, X, u,no) and Bui | d- KM (remlw(N, mg))
returngN’, E’, X', 1/, ny), then, there is a bijectioh : N — N’ s.t. (i) h(ng) = ng, (4) for all
n € N: A(n) = A(h(n)), (4ii) for all n1, na in N: (n1,n2) € Eiff (h(n1), h(n2)) € E’, (iv) for all
(n1,m2) € E: p(n1,na) = ' (A(n1), h(nz)).

SRemark that, althoughffect(u(m2)) = 0, we have no guarantee thate > mp, as we could have
effect(u(mwz)) = w for somep, and maybe the amount of tokens that has been produgetiyn.(m2) to
yield m2 does not allow to haveus (p) > m1(p). However, in this case, it is always possible to reach a
marking with enough tokens imto coverm (p), sinceeffect(u(m2)) = w.

12



firable fromm/. Letmy = ma + m{ — m;y. Clearly,m} M Mo, With Ty = m].

Hencesng <> m/, 2U72), 7, is a self-covering execution of.

Second, let us show that, " admits a self-covering execution fromg, then
Bui | d- KM(N, mg) contains anv-maximal self-covering stuttering path. Lpt=

mo n, my--- In, m,, be a self-covering execution and assung k < n is a
position s.t. my < m,. Leto; denotety,...t, andoy denotetyq,...t,. Letus
consider the executiosf, defined as follows

’ o1 tet1 [ tet1 [
P =Mg —> Ml —— Mpy1 " — My —— M1 — Mop_f

o2 o2

tr41 tn
T M(|P|+1)n—|Plk+1 """ — 7 M(|P|+2)n—(|P|+1)k

o2

whereforalln+1 < j < (|P|+2)n—(|P|+1)k: mj—m;_1 = myjy —mysj—1) With

f the function defined ag(z) = ((z — k) mod (n — k)) + k for all . Intuitively, o’
amounts to firingr; (o2)!”1+1 (whereP is the set of places of/) from my, by using,
each time we firer,, the same effect as the one that was used to optédiemember
that the effect ok, is non-deterministic whew’s are produced). It is easy to check
thatp’ is indeed an execution of, because is a self-covering execution.

Letng, n1, .. .ne andh be the stuttering path iBui | d- KM(N, m) and the map-
ping corresponding t@’ (and whose existence is established by Lemiina 6). Since,
my = My, effect(tk+1 - -tn) > 0 and by Lemmal6 (lifted tayPN), all the following
stuttering paths are self-covering:

no, ... ,nh(k), “ee ,nh(n)

n0s -+ Mh(k)y + -+ s Th(n)s - - - » TPh(2n—k)

05 -+ -y Mh(k)y - - s Th(n)s - - -y Th(2n—k)» - - + » TVh(3n—2k)

05 -y Mh(k)y - - s Th(n)s - -+ s TPh(2n—k)s - - + s TPh(3n—2k) > - - - s R ((| P|4+2)n—(| P|+1)k)

Let us show that one of them issmaximal, i.e. that there i$ < j < |P|+ 1 s.t.
nbw (np(jn—(i—1)k)) = 1bw (Np(j+1)n—jk) ). ASSUme it is not the case. Since the
number ofw’s can only increase along a stuttering path, this means that

0 < nbw (n(n)) < nbw (Mh(zn k) < 0bw (Ran—21)) < 0bW (P20 (1P11R)
However, this implies thatbw (nh((‘p|+2)n,(‘P|+1)k)) > | P|, which is not possible

as P is the set of places ol/. Hence, we conclude that there existsuamaximal
self-covering stuttering path #Bui | d- KM(N, my). O

13
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Figure 5: Transforming awPN into a plain PN.

4 From wPN to plain PN

Let us show that we can, from amyPN A/, build a plain PNA/" whose set of reach-
able markings allows to recover the reachability se\ofThis construction allows to
solve reachability, coverability and (place) boundedrigse idea of the construction
is depicted in Figlls. More precisely, we turn th@N A = (P, T,m,) into a plain
PNN’ = (P', T, m) using the following procedure. Assume that= T}4in & T,
whereT,, is the set ofu-transitions of\/. Then:

1. We add to the net one place (called tjlebal locK locks, and for eachu-
transitiont, one placéock;. Thatis,P’ = P U {lockg} U {lock, | t € T,,}.

2. Each transitiort in NV is replaced by a set of transitiofi3 in A”’. In the case
wheret is a plain transition]; contains a single transition that has the same
effect ast, except that it also tests for the presence of a tokdndk;,. In the
case where is anw-transition,T; is a set of plain transitions that simulate the
effect oft, as in Fig[h. Formally]” = U;c7 T}, where thel}; sets are defined as
follows:

o If tis a plain transition, thet; = {¢'}, where, I(t') = I(t) U {lockg} and
O(t') = O(t) U {lockg}.

e If ¢ is anw-transition, then:

Ty = {t', tena} U {2, [ I(t)(p) = w} U{th, | O(t)(p) = w}
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{lockg} + O(t). Furthermore, for alp s.t. I(t)(p) = w: I(t",) =
{p,lock;} andO(t" ) = {lock;}. Finally, for all p s.t. O(t)(p) = w:
1(t%,,) = {lock;} andO(t” ) = {p, locki}.

3. We letf be the function that associates each markingf A to the marking
f(m) of NV s.t. m/(lockg) = 1; for all p € P: m/(p) = m(p); and for all
p & P U {lockg}: m/(p) = 0. Then, the initial marking oV’ is f(mo).

It is easy to check that:
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Lemma 8 LetA be anwPN and let\” be its corresponding PN. Then € Reach(/\)
iff f(m) € Reach(N”).

The above construction can be carried out in polynomial tifiteus,wPN generalise
Petri nets, the known complexities for reachability![16], {place) boundedness and
coverability [19] carry on tewPN:

Corollary 1 Reachability forwPN is decidable andExpPSPACE-hard. Coverability,
boundedness and place boundedness/fN are EXPSPACE-C.

This justifies the result given in Taklé 1 for reachabilityyerability and (place) bound-
edness, fowPN.

However, the above construction fails for deciding terriota For instance, as-
sume that the leftmost part of Figl 5 is a®N N = (P, T, mg) with mg(¢) = 1.
Clearly, all executions ol are finite, whilet’ (¢ ) is an infinite transition sequence
that is firable in\”’. Termination, however is decidable, by ti¥ technique of Sec-
tion[3, and EXPSPACE-hard, asuPN generalise Petri nets. In the next section, we show
that the Rackoff techniqué [19] can be generalisedRd, and prove that termination
is EXPSPACE-c for wPN.

5 Extending the Rackoff technique forwPN

In this section, we extend the Rackoff technique/RN to prove the existence of short
self-covering sequences. For applications of interest) a8 the termination problem,

it is sufficient to considetwOPN, as proved in Lemnid 7. Hence, we only consider
wOPN in this section.

As observed in[[19], beyond some large values, it is not reeggsto track the
exact value of markings to solve some problems. We use thigk$hnctionsh :
{0,...,|P|} — N to specify such large values. Lebw (m) = [{p € P | m(p) €
N} .

Definition 2 Leth : {0,...,|P|} — N be a threshold function. Given anmarking
m, the marking$m/|,,_,,, and[m],,_,,, are defined as follows:

_Jm(p) ifm(p) < h(nbw (m)),
(Imln—)(p) = {w otherwise.

~ [m(p) if m(p) €N,
([mlw—n)(p) = {h(nbw (m)+1) otherwise.

In [m]n—w, values that are too high are abstractedoylIn [m], ., w is replaced
by the corresponding natural number. This kind of abswacts formalized in the
following threshold semantics.

Definition 3 Given anwPN A/, a transitiont, an w-markingm that enables and a
threshold functiork, we define the transition relatimtq»h asm i>h [m+effect ()] h—w-
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The transition relation’s, is extended to sequences of transitions in the usual way.

Note that ifm %, m’, thenw(m) C w(m'). In words, a place marked will stay that
way along any transition in threshold semantics.

Let R = max{] effect(t)(p)| | t € T,p € P, effect(t)(p) < w}. The following
proposition says that can be replaced by natural numbers that are large enough so
that sequences are not disabled. The proof is by a routineciizah on the length of
sequences, using the fact that inia@PN, any transition can reduce at méstokens
from any place.

Proposition 2 For somew-markingsm; andms, SUPposen; —, mo andw(ms) =
w(my). If m} is a marking such thatn| =,y m1 andmi(p) > R|o| for all
p € w(my), thenm} % mi such thatm/, Sw(mg) M2 @Ndm4(p) > my(p) — Rlo|.

Definition 4 Given arw-markingm; and a threshold functioh, anw-maximal thresh-
old pumping sequendg-PS) enabled atn; is a sequence of transitions such that
m1 Zp ma, effect(o) > 0 andw(ms) = w(my).

In the above definition, note that we requiéect (o) (p) > 0 for anyplacep, irrespec-
tive of whethenn, (p) = w or not.

Definition 5 Supposer is anw-maximalh-PS enabled atn; ando = 010203 such
thatm; 25, ms 25, ms —5;, meo. We calloy a simple loopif all intermediate
w-markings obtained while firingz fromms (except the last one, whichiiss again)
are distinct from one another.

In the above definition, sinces 22+, ms andm; =%, my, one might be tempted
to think thato; o3 is also anv-maximalh-PS enabled at:;. This is however not true in
general, since there might be some w(m;) such thatffect(c103)(p) < 0 (which
is compensated by, with effect(c2)(p) > 0). The presence of the simple loep is
required due to its compensating effect. The idea of thefgbihe following lemma
is that if there are a large number of loops, it enough to medaiew to get a shorter
w-maximalh-PS.

Lemma 9 There is a constard such that for anywPN A/, any threshold functioh
and anyw-maximalh-PS o enabled at some-markingm;, there i§ anw-maximal
h-PSc’ enabled atn;, whose length is at moéh (nbw (m1))2R)4F1",

Proof. [Sketch] This proof is similar to that of [19, Lemma 4.5], wgome modifica-
tions to handlev-transitions. It is organized into the following steps.

Step 1: We first associate a vector with a sequence of transito measure the effect
of the sequence. This is the step that differs most from thidi9) Lemma 4.5].
The idea in this step is similar to the one used in [3, Lemma 7].

Step 2: Next we remove some simple loops freno obtaing” such that for every
intermediatew-markingm in the runm; <, mo, m also occurs in the run

"

g
mi —rp M2.

16



Step 3: The sequence’ obtained above need not behaPS. With the help of the
vectors defined in step 1, we formulate a set of linear Diophamquations that
encode the fact that the effectsadf and the simple loops that were removed in
step 2 combine to give the effect of.aPS.

Step 4: Then we use the result about existence of small snkitd linear Diophan-
tine equations to construct a sequentéhat meets the length constraint of the
lemma.

Step 5: Finally, we prove that is ah-PS enabled at;.

Step 1 Let P, C w(mq) be the set of places such that some transitionin o
haseffect(t)(p) = w. If we ensure that for each plagee P, some transitiort
with effect(t)(p) = w is fired, we can ignore the effect of other transitiongoiThis
is formalized in the following definition of the effect of arsgquence of transitions
o1 =t1 -+ t,.. We define the functio\ p_ [01] : w(m1) — Z as follows.

1 peP,,Fie{l,....r}: effect(t;)(p) =
Ap,lo1](p) =0 p € R, Vie{l,...,r}: effect(t;)(p) #
Z1§igr effect(t;)(p) otherwise

g€ €

Applying the above definition to simple loops, it is possitd@éemove some of them to
get shorter pumping sequences. Details about how to do ihahe remaining steps
of the proof, which are moved to the appendix. O

Definition 6 Letc = 2d. The functiongiq, ho, ¢ : N — N are as follows:

hi(0) =1 £(0) = (2R)I7I” ha(0) = R
hi(i+1)=2ReE) (i +1) = (ha(i + 1)2R)EY  hy(i +1) = Re(i)

All the above functions are non-decreasing. Due to the Beteof the constant
above, we hav@zR)“IPI° > 2Pl + (22R)4P” for all 2 € N.

The goal is to prove that if there is a self-covering exeautibere is one whose
length is at most(| P|). That proof uses the result of Leminia 9 and the definitiof of
above reflects it. For the intuition behind the definitiomhefandhs, suppose that the
proof of the length upper bound éf| P|) is by induction on P| and we have proved
the result forl P| = 4. For the case aof+ 1, we want to decide the value beyond which
it is safe to abstract by replacing numbershyAs shown in Figl B, suppose the initial
prefix of a self-covering execution fémplaces is of length at mogti). Also suppose
the pumping portion of the self-covering execution is ofgénat most (). The total
length is at mosR/(i). Since each transition can reduce at mBsbkens from any
place, it is enough to haw@R/(i) tokens inp,; to safely replace numbers by

The following lemma shows that if somemarking can be reached in threshold
semantics, a corresponding marking can be reached in theahaemantics where
is replaced by a value large enough to solve the terminatiobl@m.
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Figure 6: Intuition for the threshold functions

Lemma 10 For somew-markingsms and my, supposens i>h1 my4. Then there
’

is a sequence’ such that[ms],_n, — My, My Ze(my) [M4lwsh, andlo’| <
hl(nbw (mg))‘P|

Lemma 11 If an wPN N admits a self-covering execution, then it admits one whose
sequence of transitions is of length at mésP|).

Proof. Supposer = o0 is the sequence of transitions in the given self-covering
execution such thatig 2= m; 2% ms andms = m;. A routine induction on the
length of any sequence of transitionshows that ifn; = m4, we havens inh my
with m/, — m3 = mg4 —m3. Hence, we havery 2, m) 2254, mb with mly, = m).
By monotonicity, we infer that for any € N+, m/, 2, m} , with m/,, = m.
j—1

Letj € N* be the first number such thatm’;) = w(m/, ;). We havem, &)hl
m;- U—2>h1 m;-H andoy is anw-maximalh;-PS enabled ah;

By Lemmal[®, there is &;-PS ¢ enabled atm’ whose length is at most

(ha (b (m)))2R)4P1°. By LemméID, there is a sequendesuch thatng — m”,

M} =um) [Mflo—sn, and|of] < (hi(|P]))'"l. By Definition[6 and Definitiori2,

we infer thatm/(p) = Re(nbw (m})) = R(hy(nbw (m}))2R)IFI” > R|a}| for all

p € w(m)). Hence, we infer from Propositiéd 2 that, 4, mf] — mf, . Since

oy is ah1-PS, effect(o3) = 0, and som/,; = m/. Therefore, firings| o, at mg

results in a self-covering execution. The lengtho¢t is at most(h(|P|))F! +
(R (nb@ (mf))2R)PT < ¢(| P)). 0

ki+1|P‘3(i+1)

Lemma 12 Letk = 3c. Thenl(i) < (2R) forall i € N.

Theorem 2 The termination problem favPN is EXPSPACE-C.

The idea of the proof of the above theorem is to construct adet@rministic Turing
machine that guesses and verifies a self-covering sequBgdeemmd 11, the length
of such a sequence can be limited and hence made to work@®BACE. Full proof
can be found in the appendix.
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6 Extensions with transfer or reset arcs

In this section, we consider two extensions«#N, namely:wPN with transfer arcs
(wPN+T) andwPN withreset arcfwPN+R). These extensions have been considered in
the case of plain Petri nets: Petri nets with transfer aids-{P and Petri nets with reset
arcs (PN+R) have been extensively studied in the literdfii&,[€,[21]. Intuitively, a
transfer arcallows, when the corresponding transition is firedrémsfer all the tokens
from a designated plageto a given place, while areset arc consumes all tokefiem

a designated plage

Formally, anextendeduPN is a tuple(P, T'), whereP is a finite set of places and
T is finite set of transitions. Each transition is a pai= (I,0) wherel : P — N U
{w, T.REO: P> NU{w, T} {p [ I(p) e {T, R} <L {p| Op) e {THI < 1;
thereisps.t. I(p) = T iff thereisg s.t. O(q) = T; andif thereisps.t. I(p) = R, then
O(p) € N{w} forall p. A transition(I,O) s.t. I(p) = T (resp.I(p) = R) for somep
is called atransfer(rese). An wPN with transfer arcg(resp.with reset arcy wPN+T
(wPN+R) for short, is an extendedPN that contains no reset (transfer). ARN+T
s.t. I(t)(p) # w for all transitionst and place® is anwOPN+T. The class)IPN+T
is defined symmetrically. AwPN+T which is both amOPN+TandanwIPN+T is a
(plain) PN+T. The classesOPN+R,wIPN+R and PN+R are defined accordingly.

Lett = (I,0) be a transfer or a reset.is enabledin a markingm iff for all p:
I(p) & {w, T,R} impliesm(p) > I(p). In this case firing yields a markingn’ =
m — my +mo (denotedn 5 m’) where for allp: m;(p) = m(p) if I(p) € {T,R};

0 < my(p) < m(p)if I(p) = w;mi(p) = I(p) if I(p) € {T,R,w}; mo(p) = m(p’)
if O(p) =1(p') = Timo(p) =2 0if O(p) = w;andmo(p) = O(p) if O(p) € {T,w}.
The semantics of transitions that are neither transfersasats is as defined faPN.

Let us now investigate the status of the problems listed 8ti@&2, in the case of
wPN+T andwPN+R. First, sincewPN+T (WPN+R) extend PN+T (PN+R), the lower
bounds for the latters carry on: reachability and placerbledness are undecidalilé [6]
for wPN+T andwPN+R; boundedness is undecidabled®N+R [§]; and coverability
is Ackerman-hard fowPN+T andwPN+R [2]1]. On the other hand, the construction
given in Sectiof ¥ can be adapted to turngN+T (resp.wPN+R) N into a PN+T
(PN+R) N satisfying Lemmal8 (i.e., projectir@each(N’, mg) on the set of places
of NV yieldsReach(N, my)). Hence, boundedness foPN+T [8], and coverability for
bothwPN+T anduPN+R are decidablé[1].

As far asterminationis concerned, it is decidablg![7] and Ackerman-hard [21]
for PN+R and PN+T. Unfortunately, the construction presérin Sectiof ¥ does not
preserve termination, so we cannot reduce terminationRNi+T (resp.wPN+R) to
termination of PN+T (PN+R). Actually, termination becomaglecidable when con-
sideringwOPN+R orwOPN+T:

Theorem 3 Termination is undecidable farOPN+T andvOPN+R with onev-output-
arc

Proof. We first prove undecidability fatOPN+T. The proof is by reduction from the
parameterised termination probleior Broadcast protocol$BP) [9]. It is well-known
that PN+T generalise broadcast protocols, hence the fifpparameterised termina-
tion problem for PN+Tis undecidable ‘given a PN+T(P, T') and anw-markingmy,
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does(P, T, m) terminatefor all mg €/(mo) ?* From a PN+TN = (P, T') and anw-
markingmy, we build thewOPN+T (with only onev-output-arc)\/ = (P’,T’, mj,)
whereP’ = Py {pinit}n T = T&J{(I, O)}, 1= {pinit}r 0= {w Xp | mo(p) = w},
andmj, = {mo ® p | mo(p) # w}. Clearly, N terminates iff(P,T,mg) ter-
minates for allmgy €] (7). Hence, termination fowOPN+T isundecidabletoo.
Finally, we can transform awOPN+RN = (P,T,m¢) into anwOPN+T N’ =
(P W {ptrasn}, T',mo), wheret’ € T’ iff either (i) ¢ € T andt’ is not a reset,
or (it) there is areset € T and a placep € P s.t. I(t)(p) = R, I(t")(p) = T,
O(t)(prrasn) = T, forall p’ # p: I(#')(p') = I(H)(p') and for allp” # prraen’
o) (p") = O(t)(p"). Intuitively, the construction replaces each reset (tegpplace

p) in A by a transfer fromp to pyqsn iN N7, Wherepy,.q., is a fresh place from which
no transition consume. Singé’ terminates iffA” terminates, termination is undecid-
able foroPN+R too. [0 However, the construction of Sectibh 4 can
be applied tawIPN+T andwlIPN+R to yield a corresponding PN+T (resp. PN+R) that
preserves termination. Hence, termination is decidabiefarkerman-hard for those
models. This justifies the results af®N+T anduPN+R given in Tablgll.
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A Proof of Lemmalf3

An wPN terminates iff it admits no self-covering execution. dfro AssumeN =
(P, T, mo) admits an infinite executiomo - my — t5 - - - N m; LTl ... Since

=< is a well-quasi ordering on the markings, there are two fwste and g in the

; t ¢ t .
execution s.t.a < 8 andm, < mg. Hence,mg ~% my > --- -5 mgis a
self-covering execution.

For the reverse implication, assutve= (P, T, m,) admits a self-covering execu-

; t1 tn . .-

tionmy — mq — ta--- — m,, and assumé < k < n is a position s.tmy < m,,.
Then, by monotonicity, it is possible to fire infinitely oftéine ¢, - - - t,, Sequence
from my. More precisely, one can check that the following is infirgt@cution of\/:

t t tet1 t tet1 t
Mo = My = My ——> My = mh ——m e = m),

n

tn 2 tht1 j tn j
—>mk+1"'_>mn"'—>mk+1"'—>m e

where for alll < i <n—kim{,, =my,forallj > 1,mj,, =mi™ + (my1 -
my) and forall2 <i <n—Fk:m] =m]_; + (miyi — Mpri—1). O

B Proof of Proposition[1 (Termination)

For all wPNA and for all initial markingmy, Bui | d- KM(\/, mg) terminates. Proof.
The proof is by contradiction. AssunfBai | d- KM(N, m) does not terminate. First
observe that the recursion depth is always bounded: sireeuasive call is performed
only when a neww has been created, the recursion depth is, at any time, atagoat
to|P| + 1, whereP is the set of places of/

Thus, ifBui | d- KM(N, m) does not terminate, it is necessarily because the main
while loop does not terminate (the other loop of the algorithm ésfenall starting in
line[, which always execute at mdt| iterations, wherd' is the set of transitions of
N). In this loop, one node is removed frothat each iteration. Since the algorithm
builds a tree, a node that has been removed fcbwill never be inserted again id.
Hence, the tre@ built by Bui | d- KM(N, my) is infinite.

By Konig's lemma, and sinc& is finitely branching, it contains an infinite path
m. Since the recursion depth is bounded;an be split into a finite prefix; and an
infinite suffix 75 s.t. all the nodes im, have been built during the same recursive call.

Let us assume, = ng,n1,...,Nm, ... Since= is a well-quasi-ordering ow-
markings, there arkand? s.t.0 < k < £andA(ng) = A(ng). Clearly,A(ng) = A(ng)
is not possible because of the test of [ile 5 that preventddiaelopment of., in this
case. ThusA(ng) < A(ng). This means that, for ap € P: A(ng)(p) < A(ne)(p),
and that there exisiss.t. A\(n)(p) < A(n¢)(p). Letp= be such a place. By definition
of the Post function, and of the acceleration (lihe]19), the only podisibis that
Ang)(p<) = w # A(ng)(p<). However, in this case, whek(n,) is returned by
Post , a new recursive call is triggered, which contradicts thpdtlesis that,, and
ny have been built during the same recursive call. Contraficti O
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C Proof of Lemmal4 (soundness)

Recall that, in the present section, we prove the soundrieBsid d- KM, when ap-
plied towOPN only Hence, throughout the sectidiit)(p) # w for all placesp and
transitionst. To prove Lemmél4, we need ancillary results and definitidtisst, we
state theplace monotonicityproperty ofwPN. Letm; andms, be two markings, and
let P’ C P be a set of places s#us =p m1. Leto be a sequence of transitions and
let ms be a marking s.t. m1 = ms. Then, there exists a markings s.t. mo < ma
andm4 = pr Mm3.

Then, we observe, that, when nés are introduced in the labels of the nodes, the
sequence of labels along a branch coincides with the effébedransitions labelling
this branch. Formally:

Lemma 13 LetN be anwOPN, letmg be anw-marking and let/” be the tree returned
by Bui | d- KM(N,mg). Letny, ny be two nodes of” s.t. (n1,n2) € ET. Then,
for all p s.t. A(n1)(p) # w andA(n2)(p) # w, we have:A(nz2)(p) = A(n1)(p) +
effect(c)(p).

The next technical definitions allows to characterise wheacuence of transition
is firable from a given marking. Let = ¢; - - - t,, be a sequence of transitions of an
wOPN, s.t. foralll <i <n-—1,forallp € P: O(t;)(p) # w. Letm be a marking and
let p be a place. Then, we IétllowsFiring be the predicate s.&llowsFiring(o, m, p)
is true iff:

V1 <i<n:m(p)+ effect(ts---ti1)(p) > 1(t:)(p)

Remark that is firable fromm iff for all p € P: AllowsFiring(o, m,p). We extend
the definition ofAllowsFiring to sequences of transitions containing ean®utput-
transition. Letc = t;---t, be a sequence of transitions, jebe a place, and let
1 < j < n be the least position s.0(¢;)(p) = w. ThenAllowsFiring(c, m, p) holds
iff AllowsFiring(t1 - -t;,m,p) holds. Again,o is firable fromm iff for all p € P:
AllowsFiring(o, m, p). Indeed AllowsFiring(t1 - - - t;, m, p) ensures that, when firing
from m, p will never be negative along - - - t;. Moreover,t; can create an arbitrary
large number of tokens ip, sinceO(t;)(p) = w, which allows to ensure that will
never be negative along,, - - - t,. Given this definition ofAllowsFiring it is easy to
observe that:

1. m(p) > I(o)(p) implies thatAllowsFiring(a, m, p),

2. if AllowsFiring(o, m, p) holds anceffect (o) (p) > 0, thenAllowsFiring(a’, m, p)
holds too for allK > 1.

Lemma 14 LetN be anwOPN, letmg be anw-marking, and lef” be the tree returned
by Bui | d- KM(N, myg), lete = (n1,n2) be an edge of” and letm be a marking
in v(A(n2)). Then, there aren; € y(A(n1)), ma € v(A(n2)) and a sequence of
transitionso, of N s.t. m; == ms andms = m. Moreover, whembw (AMm)) =
nbw (A(n2)), o = u(e) is a sequence of transitions meeting these properties.

SRemark that, due to the's, the effect ofs is now non-deterministic, and there can be several sugh
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Proof. Edges are created WBui | d- KM in line[I3 only. Thus, by the test of the
foral |l loop (line[8), and since we are considering.&DPN:

Aln1) > I(pu(e)) 1)

Moreover, when creating an ed@e, »’) (line[18),n’ is either a fresh node si(n') is
thew-marking returned byost (N, A(n), t), orn’ is the root of the subtreg’ returned
by the recursive caBui | d- KM(N, m’), with u(n,n’) = ¢ in both cases. However, in
the latter case, the root Gf is m/, i.e., the marking returned ost (N, A\(n), ) too.
Since this holds for all edges, we conclude th@ts) is thew-markingm' returned by
Post(N, A(n1), u(e)). Considering the definition of tist function, we see that)’

is either\(nq) — I(t) + O(t) (when the condition of thef in line[1§ is not satisfied),
or the resultn,, of an acceleration (when the condition of ihfein line[18 is satisfied).
We consider these two cases separately.

CASE A: the condition of the if in line [I8 has not been satisfied (i.e., no accelera-
tion has occurred). Then,A(ns) is the markingn’ computed in lin€7:

Alnz) = A(n1) = I(u(e)) + O(p(e)) )
We letm be the marking s.t. for all placesc P:

mmﬁ:{Amn@> it () (p) # w

I(u(e))(p) + m(p) otherwise
And we letms be the marking s.t., for all placese P:

() = {7+ 0N @) = T(u(e)) ) if O(u(e) (p) #
mi(p) — I(p(e))(p) +m(p) otherwise

Finally, we let:

or = p(e)

Let us show thain,, ms ando, = u(e) satisfy the lemma. First, we observe that
m1 € v(A(n1)), by definition. Then, we further observe that there are ooly possi-
bilities regarding the possible valuesXifni)(p), A(n2)(p) andO(u(e))(p), as shown

in the following table. Indeeds; is a successor of; in the tree, s@(n2) 2 w(ny).
Moreover,A(nz2)(p) = w # A(n1)(p) holds for somep iff O(u(e))(p) = w, as we
have assumed that the condition of tifein line[18 has not been satisfied:

Case|| M(n1)(p) | A(n2)(p) | O(ule))(p)

1 =w =w =w
2 =w =w +w
3 #w =w =w
4 #w #w #w

For these four different cases, we obtain the following galform, (p) andms(p), by
definition:

mi(p) = {I(N(e))(p) +m(p) casesland?2 .

A(n1)(p) cases 3and 4
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2 x m(p) case 1

() — 3 P) +Oule))(p) case 2
2(p) = A1) (p) — I(u(e))(p) +m(p) case 3 ()
A(n1)(p) + O(u(e))(p) — I(u(e))(p) case 4

To prove thatny € v(A(ng)), we must show thata(p) = A(n2)(p) for all p s.t.
A(n2)(p) # w, which corresponds only to case 4, where we have:

ma(p) = A(n1)(p) + O(u(e))(p) — I(p(e))(p) By @)
= A(n2)(p) By ()

Then, it remains to show that ﬂ mq. First, we show thaty(e) is firable
from mq, i.e. that for allp € P: my(p) > I(u(e))(p). In case 1 and 2, we have
ma(p) = I(u(e))(p) + m(p) > I(u(e))(p). In cases 3 and 4, we have;(p) =
A(n1)(p), with X(n1)(p) > I(u(e))(p) by (@). Thus,u(e) is firable fromm,. Then,
we must show thatn, can be obtained as a successomof by u(e). In cases 1
and 3, the effect ofu(e) is to removel(u(e))(p) tokens fromp and to produce an
arbitrary numbefK of tokens inp. Hence, in case 1, by firing(e) fromm;, we obtain
I(u(e))(p) + m(p) — I(u(e))(p) + K = m(p) + K tokens inp. In case 3, by firing
w(e) from mq, we obtainA(n1)(p) — I(u(e))(p) + K tokens inp. In both cases, by
letting K = m(p), we obtainms(p). In cases 2 and 4, the effect @fe) on placep is
equal toO(u(e))(p) — I(u(e))(p). Hence, in case 2, by firing(e) fromm4, we obtain
I((€))(p) +m(p) — I(1(€))(p) + Ou(e))(p) = m(p) + Ou(e))(p) tokens inp. In
case 4, by firing.(e) frommy, we obtain\(n1)(p) — I(u(e))(p) + O(u(e))(p) tokens
in p. In both cases, these values correspond exactiy:t®).

We conclude this case by observing that (A(n1)) = nbw (A(ng)) implies that
no acceleration has been performed, which is the preseet &8s have thus shown
that whennbw (A(n1)) = nbw (A(n2)), o = p(e) is a sequence of transitions that
satisfies the lemma.

CAsE B: the condition of the if in line L8 has been satisfied (an acceleration has
occurred). Remark that, in this case; is the node callea in the condition of the
if, andp(e) is the transition called in the same condition. L&t be the sequence of
transitions labelling the path fromto n;. Let P4°¢ denote the set of places:

PAC = {p| effect(@(p)) > 0 A A(n2)(p) # w A O(u(e))(p) # w} (5)
Then, letK be the value defined as:

K = max {m(p)} (6)

pe PAcc

This value allows us to define the sequence of transitigns

o = p(e) (@ - p(e) (7)
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From those definitions 6f, n1, n2, T andu(e), we conclude that only the following
cases are possible, for all plages

case [ AM(B) Am)(p) Am)(p)effect@)p) _effect (u(e)) (o) Remark
1 w w w € ZU{w} € ZU{w}
2 #w #+w #w #w #w
3 #w #+w w #w w
4 #w #*w w #w #w effect(@ - p(e))(p) >0

Those cases are the only possible becaugean ancestor ofi;, which is itself an
ancestor ofn,. Moreover, by constructiombw () = nbw (n1), since those two
nodes have been computed during the same recursive calk, Tfeioccurrence of a
freshw can only appear between andn., either becauseffect(u(e))(p) = w (case
3), or because we have performed an acceleration (case arRé¢hat the latter only
occurs whereffect(a - ju(e))(p) > 0.

Let us next define the marking;, as:

A1) if A(n1)(p) # w
mi(p) = { I(U;)(g)—i—m(p) othervlviszé ®)

wherel(o,)(p) denotesy_ , I(t;)(p) for o = t1,...,t,. Observe that, by defini-
tion: my € y(A(n1)). Then, let us prove that, is firable fromm;. First observe that,

if pis a place s.tA(n1)(p) = w, thenAllowsFiring(o-, m1,p) holds, because, in this
casemi(p) > I(o:)(p), by (8). Then, assumeis a place s.tA(n1)(p) # w. In this
case, by definitiony; (p) = A(n1). First observe that, by construction, and since we
considerwOPN (see lin€l6 of the algorithm):

Vp : A(n1)(p) > I(u(e))(p) 9)

Let us now consider all the possible cases, which are casear] 4 from the table
above (case 1 cannot occur since we have assumeg(that(p) # w):

¢ In case 2since the condition of thié (line[18) is satisfied, we know thaffect (7
u(e))(p) > 0. SinceA(n)(p) # w, andA(nq1)(p) # w, we can apply Lemmals,
and conclude that:

A(n2)(p) = A@)(p) + effect(@ - p(e))(p)
= AM)(p) + effect(T)(p) + effect(u(e))(p)
= A(n1)(p) + effect(u(e))(p)
Thus:
A(n1)(p) + effect(u(e))(p) > A7) (p) (10)

sinceeffect(z - u(e))(p) > 0. By applying GsSE A (above) iteratively along
the branch fronm to n,, we deduce thaillowsFiring(a, A(7), p) holds. Hence,
AllowsFiring(a, A(n1)(p)+effect(u(e))(p), p) holds too, byl(ID). Finally, by {9),
we conclude thahllowsFiring(u(e)-@, A(n1)(p), p) holds. Howevergffect (uu(e)-
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7)(p) = effect(a - u(e))(p) > 0. Thus, sinceu(e) - & has a positive effect on
p, we conclude thafllowsFiring ((u(e) - 7)%, A(n1)(p),p) holds too, for all
K > 1. Finally, sinceeffect ((u(e) - @)X) (p) > 0, we conclude that

A(n1)(p) + effect ((u(e) - @)%) > A(n1)(p)

Thus, by [9), we have

A(n1)(p) + effect ((u(e) -@)™) = I(u(e))

and we can thus firg(e) once again after firingu(e) - 7). Hence,

AllowsFiring ((1u(e) - 7)" - u(e), A(n1), p)
holds, witho, = (u(e) - @)% - u(e).

e In case 3 by (9), sinceO(u(e))(p) = w, and sinceu(e) is the first transition of
o, We immediately conclude thatlowsFiring(ox, A(n1),p).

¢ In case 4we can adapt the reasoning of case 2 as follows. First rermemthiat,
in case 4gffect(a - p(e))(p) > 0. SinceA(w)(p) # w, andA(n1)(p) # w, we
can apply Lemma3, and conclude thdt,)(p) = A\(7)(p) + effect(T)(p).
Thus:

A(n1)(p) + effect(uu(e))(p)

A@)(p) + effect(7)(p) + effect(uu(e))(p)
A(@)(p) + effect(@ - p(e))(p)

with effect(a - u(e))(p) > 0. Hence:

A(n1)(p) + effect(u(e))(p) > A(7@)(p)

This implies[[Z0), and we can thus reuse the arguments ofx@seonclude that
AllowsFiring (o, A(n1), p) holds in the present case too.

Thus, forallp s.t. \(n1)(p) # w: AllowsFiring(o, A(n1), p) holds. HoweverA(ny)(p) #
w implies thatn; (p) = A(n1)(p), henceAllowsFiring(o, m1, p) holds in those cases.
Thus, we conclude tha&llowsFiring(o,m1,p) holds for all place®, and thus, that
o is firable fromm;.

To conclude the proof let us build a marking, that respects the conditions given
in the statement of the lemma. L®@tbe a marking s.tm; 2=y 7. We know that such
a marking exists since; is firable fromm;. We first observe that, by Lemrha 1:

Vp s.t. effect(or)(p) # w : m(p) = mi(p) + effect(or)(p) (11)

Fromm, we definemy as follows:

max {m(p),m(p)} otherwise

ma(p) = {m@) it effect(o)(p) # .
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Clearly,my =p: m, for P’ = {p | effect(o,)(p) = w. Hence, by Lemmal2p; 7=
ms holds. Let us conclude the proof by showing that € (A(n2)), and thatny, >
m, as requested. Sinee has been assumed to be4yit\(n2)) too, it is sufficient to
show that for all place: (i) A(n2)(p) = wimpliesms(p) > m, and(ii) A(n2)(p) # w
impliesma(p) = A(n2)(p).

Thus, we consider each plagseparately, by reviewing the four cases given in the
table above:

e Incase 1 mi(p) = I(or)(p) + m(p) and A(n2)(p) = w. Let us show that
ma(p) > m(p). We consider two further cases:

1. eithereffect(o)(p) # w. In this case:

ma(p) = m(p) By (12)
= mi(p) + effect(ox)(p) By (11)
= I(0x)(p) + effect(ox)(p) +m(p) By @)
> m(p)

2. oreffect(or)(p) = w. Then,ms(p) > m(p) by (12)

e In case 2 we know thateffect(u(e))(p) # w and effect(a)(p) # w, hence
effect(a - u(e)) # w andeffect(o,) # w either. Then:

ma(p) =m(p) By (12)
m1(p) + effect(or)(p) By (1)

= AMnm)(p) + effect(or)(p) By (8)

= A(n2)(p) LemmdIB andeffect(c - u(e)) # w

e Incase 3\(n2)(p) = w andeffect(o,)(p) = w too. Hencema(p) > m(p) by

2.

e In case 4 \(n2)(p) = w again, andn;(p) = A(n1)(p), by (8). Moreover, we
haveeffect(o:)(p) # w, becauseffect(7)(p) # w andeffect(u(e))(p) # w.

Finally, since in case 4, we havffect(7-1.(e))(p) > 0, and sincer, = u(e) (7
,u(e))K, we conclude thatffect(o,)(p) > K — effect(u(e))(p). Thus:

ma(p) =m(p) By (12)
=mi(p) + effect(ox)(p) By (11)
> ma(p) + K — effect(u(e))(p) See above
=ma(p) + K — I(u(e))(p) + O(u(e))(p) Def. of effect
> K +mi(p) — 1(u(e)) (p)
> K+ An1)(p) — I(1(e))(p) By @
>K By @)
> m(p) p € PA° and by [5) and({7)

(I
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We are now ready to prove Lemina 4:

Let N be anwOPN, letm, be anw-marking and let7 be the tree returned by
Bui | d- KM(N,mg). Letm = ny,...,n, be a stuttering path ir/, and letm be

a marking iny(A(ng)). Then, there exists an executipn = mg b, my--- LN my
of N s.t. my € v(A(ng)), me = m andmg € v(A(ng)). Moreover, when for all

0 <i<j <k nbw(n;) =nbw(n,), we havet, ---t, = p(m).

Proof. We build, by induction on the lengthof the path in the tree, a corresponding
execution of\. The induction works backward, starting from the end of ththp

Base casek = 0. Sincen; = ng, we can takeny, = m, which clearly satisfies the
Lemma sincen € A(ny) = A(no).

Inductive case,k > 0. The induction hypothesis is that there are a sequenceref tra
sitions o and two markingsn; andmy, s.t. m; = mg, my € y(A(n1)), mp €
v(A(ng)), andmy > m. In the case wheréng,n;) is not an edge of” (i.e., ny is

an ancestor ofig), we know that\(ng) = A(n1) by definition of stuttering and let
ppi = m1 — my,. Otherwise, we can apply Lemrial 14, and conclude that there ar

o', mog andmy s.t. mg = mf, mo € y(A(no)), mi € y(A(n1)) andm} = my.
Sincem} = m, o is also firable fromm}. Letm) = mj + (mi — ma). Clearly,

mo ”—/> m) % mj,. Moreover,mj, > my = m, by monotonicity. Let us show that

m). € y(A(ng)). Sincem} andm; are both iny(A(n1)): mi(p) = m}(p) forall p s.t.

A(n1)(p) # w. Thus, by strong monotonicity, we conclude that(p) = m).(p)

for all p s.t. A(n1)(p) # w. However, for all place®, A(n;)(p) # w implies

A(n1)(p) # w, as the number ab’s increase along a path in the tree. Thus we con-

clude thatmy(p) = mj,(p) for all p s.t. A(nx)(p) # w. Sincemy(p) = A(ny)(p) for

all ps.t. \(ng)(p) # w becausen, € v(A(ng)) by induction hypothesis, we conclude

thatm) € v(A(nx)) too. Thusymg, mj, ando’ - o fulfill the statement of the lemma.
Finally, observe that, when all the nodes along the pdtlhve the same number of

w's, LemmdI# guarantees thafr) can be chosen for the sequence of transitinns

D Proof of Lemmal3

Let A be anwOPN, letm, be anw-marking, and let7 be the tree returned by
Bui | d- KM(N, mg). Then, for all nodes of 7

e eithern has no successor in the tree and has an ances®t. A(7) = A\(n).

e or the set of successors ofcorresponds to all the—,, possible successors of
A(n), e {p(n,n’) | (n,n’) € E} = {t | A(n) im}. Moreover, for eachn’
s.t.(n,n') € Eandu(n,n') =t: A(n’) = A(n) + effect(t).

Proof. Observe that each time a node is created, it is insertedJinbo a recursive
call is performed on this node. In both cases, the node wih&yally be considered
in line[3. If the condition of the f in line[8 is not satisfiedy has an ancestat s.t.
A(@) = A(n). Otherwise, all transitions that are firable from\(n) are considered
in the loop in lineg b onward, and a corresponding e@ger’) with p(n,n’) = t is
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added to the tree in lifeL5. The label’) of this node is eithei(n) + effect(t),
or a =-larger marking, in the case where an acceleration has bedormed during
thePost , in line[I9. Thus in both case&(n’) = A(n) + effect(t). The algorithm

terminates becaus¢has become empty. Thus, all the nodes that have eventualty be
constructed by the algorithm fall into these two cases. ld¢he Lemma. O

E Proof of Lemmal@ (completeness)

Let V' be anwOPN with set of transition§’, let mq be an initial marking, letT be

the tree returned byui | d- KM(N, mg) and letm, 12N my LN m,, be
an execution of\/. Then, there are atutteringpathm = ng,n1,...,ng in 7 and a

monotonic increasing mappirtg: {1,...,n} — {0,...,k} s.t.: u(w) = tita-- -ty
andm,; =< /\(nh(i)) forall 0 < i < n. Proof. The proof is by induction on the length
of the execution.
Base casen = 0 We leth(0) = 0. By constructiom\(ng) = mg, hence the lemma.
Inductive case:n > 0 The induction hypothesis is that there are a path ng, . .. ng
and a mapping : {0,...,n—1} — {0, ..., ¢} satisfying the lemma for the execution
prefixmg h, mi BN t—”) m,_1. By Lemmd®, we consider two cases for
o Either the set of successorsraf corresponds to the set of all transitions that are
firable from\(n,). Since, by induction hypothesis, > m,,_1, and sincd,, is
firable fromm,,_1, we conclude that, is firable fromA(n,) by monotonicity.
Hencen, has a successaers.t. u(ng,n) = t,. Still by Lemmd5,

A(n) = Mne) + effect(tn)
= my_1 + effect(tn)
Z My

Hence, we letiy1 = n, andh(n) = ¢ + 1.

e Or the set of successors of is empty. In this case, by Lemrh& 5, there exists
an anceston of ny s.t. A(n) = A(n¢). Letny41 be such a node. Moreover, as
ng+1 # Ny, andny,q is an ancestor afy, ny1 Must have at least one successor.
Hence, by Lemm@l 53,1 is fully developed, and we can apply the same reason-
ing as above to conclude that there is a successofrn, 1 s.t. A(n’) = m,, and
w(ngs1,n') = t,. Letny, o be such anode. We conclude by letting) = ¢+2.

O

F Proof of Lemmald

Let NV be anwPN. For all executionsng, t}, m1,...,t,, m, of remlw(N): my, 1,
mi,...,tn, m, isanexecution ak/. For allfinite (resp. infinite) executionsy, t1, m1,
oy ty,my, (Mo, t1,ma, ..., t;,mj,...) of N, there is an executiomy, t}, m}, ...,
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ty,my, (mo,t,mh, ... t;,mh,..) of remlw(N), s.t. m; < mj forall i. Proof.

The first point follows immediately from the definition sfmiw(A) and from the fact
that consuming tokens in each plages.t. I(¢;)(p) = w is a valid choice when firing
each transitiort; in A/. The second point is easily shown by induction on the execu-
tion, because firing each produces the same amount of tokens thatonsumes the
same amount of token as eaghn all places s.tI(t;)(p) # w, and consumes, in each
placep s.t. I(t;)(p) = w a number of tokens that is larger than or equal to the number
of tokens consumed hy. O

G Proofs for Lemmas in Sectiori’b

Proof. [Lemma[9] This proof is similar to that of [19, Lemma 4.5], iwéome modifi-
cations to handle-transitions. It is organized into the following steps.

Step 1. We first associate a vector with a sequence of transitdo measure the effect
of the sequence. This is the step that differs most from thidi9 Lemma 4.5].
The idea in this step is similar to the one used in [3, Lemma 7].

Step 2: Next we remove some simple loops freno obtaing” such that for every
intermediatew-markingm in the runm; <, mo, m also occurs in the run

"

g
mi1 —rp Ma.

Step 3: The sequence’ obtained above need not behaPS. With the help of the
vectors defined in step 1, we formulate a set of linear Diophamquations that
encode the fact that the effects«df and the simple loops that were removed in
step 2 combine to give the effect ofaPS.

Step 4: Then we use the result about existence of small epkitd linear Diophan-
tine equations to construct a sequentéhat meets the length constraint of the
lemma.

Step 5: Finally, we prove that is ah-PS enabled at;.

Step 1 Let P, C w(mq) be the set of places such that some transitionin o
has effect(t)(p) = w. If we ensure that for each plagee P,, some transitiort
with effect(t)(p) = w is fired, we can ignore the effect of other transitiongoiThis
is formalized in the following definition of the effect of arsgquence of transitions
o1 =ty - - - t,. We define the functiol\ p_ [01] : w(my) — Z as follows.

1 p€ P,,die{l,....r}: effect(t;)(p) =
Ap,[o1](p) = {0 p € P, Vie{l,...,r}: effect(t;)(p) #
> i<i<r effect(t;)(p) otherwise

g€ €

Step 2 Letm; =, my. From Definitiori %, we have (ms) = w(m,). From Defi-
nition[2, infer that for anys-markingm in the runm; %, ma, m(p) < h(nb@ (m;))
forallp € P\ w(my). Now we remove some simple loops franto obtains”. To
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obtain some bounds in the next step, we first make the follgwbservations on loops.
Let|P\w(mq)| = r1. Supposer is a simple loop. There can be at mhghbw (m4))"
transitions inr, so—h(nbw (m1))" R < Ap_[7](p) < h(nbw (m1))™ R for anyp €
P. Let B be the matrix whose set of columns is equalfop_ [7] | 7 is a simple loop.
There are at mogt(nbi (1)) 2R)P! columns inB. We useb, ', . . . to denote the
columns ofB.

Now we remove simple loops fromaccording to the following steps. L&y = 0
be the zero vector whose dimension is equal to the numbelwincs inB. Begin the
following steps withi = 0 ando; = o.

a. Think of the firs{(nbw (m1))!”l 4 1)? transitions ofr; ash(nbw (m1))F1 41
blocks of lengthh(nbw (m4))1”! + 1 each.

b. There is at least one block in which altmarkings also occur in some other
block.

c. Letw be a simple loop occurring in the above block.

d. Leto,,1 be the sequence obtained fremby removingr.

e. LetZ,;;, be the vector obtained from} by incrementingz; (Ap, [7]) by 1.
f. Increment by 1.

g. Ifthe length of the remaining sequence is more than orleqa(nba (m,))!”!
+1)2, go back to step a. Otherwise, stop.

Let n be the value of when the above process stops. bét = o, and? = 7,.
We remove a simple loop starting at ano-markingm only if all the intermediate
w-markings occurring while firing- from m occur at least once more in the remaining
sequence. Hence, for evesymarkingm arising while while firings fromm,, m also
arises while firings” from m;. We have|o”’| < (h(nb@ (m1))/F! + 1)2. For each
columnb of B, :1?(5) contains the number of occurrences of simple loopgmoved
from o such thatA p_[7] = b.

Step 3 For everyp € F,,, we want to ensure that there is some transitiomthe
shorterh-PS that we will build, such thatffect(t)(p) = w. For the other places, we
want to ensure that the effect of the shortePS is non-negative. These requirements
are expressed in the following vectar

- 1 e P,
dp)=4 "
0 p¢ P,

Recall that for each columinof 73, f(l?) contains the number of occurrences of simple
loops7 removed fromy such thatA p_ [7] = b and thato”’ is the sequence remaining
after all removals. Hencé\p_[0] = BZ + Ap_[0”]. Sinceo is ah-PS and for every
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p € P, there is a transitionin ¢ such thatffect(t)(p) = w, we have

Ap o] >d
= B+ Ap, 0" >d

—

= Bi>d— Ap,[d"] . (13)

Step 4:We use the following result about the existence of smallgraksolutions
to linear equations$ [2], which has been used by Rackoff te kP sPACEuUpper bound
for the boundedness problems in Petri nets [19, Lemma 4.4].

Letd;,d> € NT, let A be ad; x ds integer matrix and let be an integer vector
of dimensiond;. Letd > ds be an upper bound on the absolute value of the integers
in A anda. Suppose there is a vectdr € N such thatAZ > @. Then for some
constant:c independent ofl, d;, d», there exists a vectaj € N% such that/fy“ > a
andy/(i) < d°® for all i betweenl andds.

We apply the above result tb(13). Each entry/of [0"] is of absolute value at
most(h(nb@ (m1))!*l + 1)2R. Recall that there are at mogt(nbw (m;))"2R)!7
columns inB, with the absolute value of each entry at mbgth (m1))™ R. There
are|P| — r; rows in B. Hence, we conclude thatcan be replaced by such that
Bij > d — Ap,_[0"] and the sum of all entries ifiis at most(h(nbw (my))2R)% 1P1°
for some constant’. This expression is obtained from simplifying

(h(nb@ (1)) 2R) P! (((nb (ma)) ! + 1)22R) 1P

for some constant”.

For each columrb of B, let 7; be a simple loop ob such thatAp, [7;] = b.
Recall from step 2 that there is some intermediat@arking:m; occurring while fir-
ing o from m; such thatm; is the w-marking from which the simple loop; is
fired in 0. Leti; be the position iv” wherem; occurs. Leto’ be the sequence

obtained froms” by insertingg(g) copies ofr;; into o” at the positioni; for each
columnb of B. Since we insert at mogh(nbw (7711))2113)‘1'“3'3 simple loops, each
of length at most:(nbw (m1))™, |o’| < (h(nbw (my))2R)? 171 h(nbw (mq))™ +
(h(nbw (m1))IPl + 1)2. Choose the constarits.t. || < (h(nbw (m1))2R)4 171> x
h(nb@ (m1))™ + (h(nb@ (my))Pl + 1)2 < (h(nb@ (m1))2R)4FI°. Now we have
lo’| < (h(nb@ (mq))2R)4PI",

Step 5:Now we prove that’ is ah-PS enabled atr;. Recall thatm; 25, mo
and thato’ is obtained froms by removing or adding extra copies of some simple
loops. We infer thatn; ”—/>h ms. Now we show thatffect(c’) > 0. Since for any
simple loopr in o, effect(m)(p) = 0 forall p € P\ w(my), we haveeffect(o’)(p) =
effect(o)(p) > 0.

Foranyp € P,,, we have( Bj+ Ap_[0”])(p) > d(p) > 1. Henceg(Ap,[r]) > 1
andAp, [7](p) = 1 for some simple loogr or Ap, [0”](p) = 1. From the definitions
of Ap,[r] andAp,[c”], the only way this can happen is for some transitiameither
some simple loopr or o to haveeffect(t) = w. Hence, there is some transitiom
o’ such thatffect(t)(p) = w. Henceeffect(c’)(p) = w.

33



-

Foranyp € w(m1)\ F.,, we haveeffect(a’)(p) = (§3j+pr [")(p) > d(p) > 0.
Hence effect(c’)(p) > 0. O
Proof. [Lemmd10] Lets’ be obtained frona by removing all transitions between any
two identicalw-markings occurring in the rumg i>h1 my4. The number of distinct

w-markings appearing in the runs 2=, my is an upper bound of#’|. Among the
w-markings in this runmms has the maximum number of places not markedSince
h1 is non-decreasing, we infer from the definition of threshesithantics (Definitiohl3)
thath; (nbw (m3))!*’! is an upper bound on the number of possible distinatarkings.

Hence,|o’| < hi(nbw (m3))!Fl. We will now prove that for any rums 2+, my

where all intermediate;-markings are distinct from one anothéns],, n, — my
andm =y (m,) [Malw—n,. The proofis by induction onbw (m4) — nbw (m3) (the
number of places whete is newly introduced).

Base casabw (m4) — nbw (m3) = 0: We havelo’| < hy(nbw (m3))F! <
{(nbw (m3)). For anyp’ € w(ms), we have by Definitiof]2 and Definitidd 6 that
[ma)woh, (P) = hi(ubw (m3) + 1) = 2RL(nbw (m3)). We conclude from Proposi-
tion[2 that{ms], n, - M, aNdm)y = (ma) (Ml he-

Induction step Let my be the firstw-marking afterms such thatnbw (ms) >
nbw (mg) Let o/ = oitoe Wherems U—1>h1 mg i>h1 ms U—2>h1 my4. Note that
due to our choice ofns, we havew(mg) = w(mgs). In any intermediate marking
m # ma in the runmg 255, me, m(p) < hi(nbw (my)) forallp € P\ w(ms)
(otherwise,p would have been marked, contradictingw(mes) = w(ms)). Hence
we have|oi| < hy(nbw (m3))!Fl. For anyp’ € w(ms), we have by Definitiof12
and Definitior(® thafms]., ,», (p) = hi(nbw (ms) + 1) = 2RL(nbw (m3)). We
conclude from Propositidd 2 thats],—n, LN mg Wheremg =,,mq) me and for
all p’ € w(ms), mg(p') > 2RL(nbw (m3)) — Rhi(nbw (m3))IFl. Transitiont is
enabled aing. Letmyg 5N myg, where for any such thateffect(t)(p) = w, we chose
mg(p) > hi(nb@ (ms) + 1). We now conclude thaty =, ;) [m5]w—n, due to the
following reasons:

1. pe P\ w(ms): we havep € P\ w(mg).

ms(p) = mg(p) + effect(t) [semantics ofsPN ]
= me(p) + effect(t) [m Zw(me) M)
= ms(p) [[me + effect(t)]n, —w = ms, ms(p) # w]

m5]w—>h1 (p)

2. p € w(ms), effect(t)(p) = w: m&(p) > hy(nbw (ms5) + 1) by choice.

3. p € w(ms), effect(t)(p) # w, p ¢ w(mg): since[mg + effect(t)]n, —w = Ms
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andms(p) = w,

meg(p) + effect(t)(p) > hi(nbw (me))

= mg(p) + effect(t)(p) > h1(nbw (ms) +1) [nbw (ms5) > nbw (mg)]

= mg(p) + effect(t)(p) > ha(nb@ (ms) + 1) (M Zw(me) ]

= mg(p) > hi(nbw (m5) + 1) [semantics ofuPN ]

4. p € w(ms), effect(t)(p) # w, p € w(me):
mg(p) = mg(p) + effect(t)(p) [semantics ofuPN ]
> mg(p) — R [Definition of R]
> 2R((nb@ (m3)) — Rhy (nbw (m3))'Fl — R [p € w(me)]
> R{(nbw (m3)) — Rhy (nbw (m3))!F!

= R(hy(nb@ (m3))2R)P1” — Rhy (nbw (ms))! 7! [Definition[d

> hy (nbw (m3))
> hy(nbw (ms) + 1)

The last inequality follows sincgbw (ms) > nbw (mg).

Sincenbw (m4) — nbw (ms) < nbw (m4) — nbw (mg) and all intermediatev-
markings in the rumn; U—2>h1 my are distinct from one another, we have by induction
hypothesis thabms]., n, —» m/j andm/ > w(m) [M4]w—shy. SINCE[M3]w s, —
mg LN M5, ME Zey(my) [M5]w—sn, aNd[ms]e,n, 22 m}j, we infer by strong mono-

oi1tog

tonicity that[ms|., n, —— mj andmy =y m,) [Maw—h,- O
Proof. [Lemma[12] By induction oni. For the base case= 0, the result is obvious
since by Definitiofi6/(0) = (2R)<IPI".

Induction step:
hi(i +1)2R) P’ [Definition[8]
2R((i) -2 R)IP [Definition[8]
4R2)C\P|3 ))C\P|3
)

Li+1)=(

= (

= ( (¢
= (2R 2c|PP(
< (
= (
<(
= (

(i
0(i )CIP‘3
2R)2PP (2R)F PP el PP [1nduction hypothesis]

Ck1+1 |P‘3(1+2)
2R 3Cki+1 ‘P|3(i+2)

kz+2|P‘3(i+2)

)

)
2R)2IPI*(2R)

)

)

2R

O
Proof. [Theorem2] SinceuPN generalise Petri nets, and since terminations E
PSPACE-c for Petri nets[[19], termination is>@®SpPAcE-hard forwPN. Let us now
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show that termination favPN is in EXPSPACE. We have from Lemmla 3 that arPN
N does not terminate iff it admits a self-covering executirem Lemma1lL, it admits
a self-covering execution iff it admits one whose sequerideaasitions is of length
at most{(|P|). The following non-deterministic algorithm can guess aedfy the
existence of such a sequence. It works witmarkings, storingv in the respective
places whenever an-transition is fired.

Input An wPNWN, with initial markingm.
Output SUCCESS if a self-covering execution is guessed, FAIL otiss.

counter := 0
m = Mo
if counter > {(|P|)
return FAIL
el se
non-determnistically choose a transition ¢
if ¢tis not enabled at m
return FAIL
el se
m = m+ effect(t)
counter := counter + 1
non-determnistically go to line Bl or |ine [I3
in m, replace w by R{(|P]|)
mip = m
if counter > {(|P|)
return FAIL
el se
non-determnistically choose a transition ¢
if ¢tis not enabled at m;

return FAIL
el se
my . = mi + effect(t)
counter := counter + 1
non-determnistically go to line [I5 or |ine [Z5
if mi>=m
return SUCCESS
el se
return FAIL

The above algorithm tries to guess a sequence of transitipns such thatmn, —-

m 2% my, guessingr; in the loop between lindg 3 ahdl12 angin the loop between
lines[I% and 24. If\ admits a self-covering execution with sequence of traorsti
o102 such thato; 02| < £(]P|), then the execution of the above algorithm that guesses
o102 Will return SUCCESS. If all executions df” are finite, then all executions of the
above algorithm will return FAIL.

The space required to store the variable “counter” in thevakaigorithm is at
mostlog(¢(|P|)). The space required to store andm; is at most|P|(||mo||c +
log(RE(|P|))). Using the upper bound given by Lemma 12, we conclude thahtre-
ory space required by the above algorithr®ig P| log||mo|| oo +k!FIT1| P21 F1+410g R).
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This can be simplified t@(2¢' 171102 1Pl (log R + log||mo ||« )). Using the well known
Savitch’s theorem to determinize the above algorithm, weageExPSPACE upper
bound for the termination problem inPN. O
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