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Abstract

This paper introduces a mechanism for combining unbounded looka-
head exploration with linear time complexity in a deterministic parser.
The idea is to use a resolve parsing action in place of the classical re-
duce. The construction of shift-resolve parsers is presented as a two-step
algorithm, from the grammar to a finite nondeterministic automaton, and
from this automaton to the deterministic parser. Grammar classes com-
parisons are provided.
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1 Introduction

Common deterministic parser generators [5] provide a parser developer with
two interesting static guarantees: that the input grammar is unambiguous, and
that the resulting parser will process its input string in linear time. There is
however a major issue with these parser generation algorithms: they cannot
provide a deterministic parser for an arbitrary context-free grammar, resulting
in the infamous conflicts between possible parsing actions. Their inability to
deal with parsing decisions that need more than the pre-established k lookahead
terminal symbols is to blame for a large part of it.

Two different parsing techniques allow to circumvent this limitation to boun-
ded lookaheads in bottom-up parsers, but to keep the unambiguity guarantee.
The first, called regular lookahead parsing, uses a finite state automaton to
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explore an unbounded right context [2, 3, 6]. The linear time guarantee is how-
ever lost. The second, called noncanonical parsing, explores the right context
using the parser itself. The latter can thus perform some reductions in this
right context, return to the conflict point, and use a bounded number of the
newly reduced symbols to yield a deterministic decision [14, 15, 12]. However,
the preset bound on the reduced lookahead length—in practice the bound is
k = 1—hampers the power of the noncanonical methods.

We want to have our cake and eat it too: we want linear time parsing,
ambiguity detection, and no user defined bound on the lookahead length. Shift-
resolve parsing is a new combination of the regular and noncanonical strategies
that achieves all these properties. To this end, we make the following contribu-
tions.

• We propose a new parsing action, resolve (Section 2.1), which combines
the classical reduction with a pushback, i.e. it rewinds the stack down
to the point where the reduction should take place. The exact amount
of pushback is not fixed, but computed for each reduction as a minimal
necessary length.

• By promoting the resolve action as a replacement for the reduce action,
our parsers properly integrate noncanonical resolutions in the right context
exploration (Section 2.2). One could fear that a quadratic time complexity
would stem from this combination. We avoid it by ensuring that the
pushback lengths remain bounded.

• We present the construction of shift-resolve parsers as the determiniza-
tion of a phrase recognizer (Section 4). The algorithm generalizes similar
constructions for LR parsers. The choice of the approximations used in
order to have a finite recognizer is left open, and we use a lattice of pos-
sible approximations (Section 3.2). Hence, our method is highly generic
and allows for tradeoffs between descriptional complexity and classes of
accepted grammars.

2 Shift-Resolve Parsing

A bottom-up parser operates by reverting the derivations that led from the
axiom of the grammar to the input string. Each of these reversions is the reduc-
tion of a phrase α to a nonterminal A, where A→α is a rule of P . A canonical
parser always reduces the leftmost phrase in a given sentential form, called the
handle of the sentential form, but a noncanonical parser partially ignores this
ordering. It is able to reduce a phrase further right from a handle, and to use
the additional information provided by the newly reduced nonterminals to infer
its parsing decisions. Indeed, a single nonterminal symbol describes a complete
context-free language, and, using only a few nonterminals as lookahead, a non-
canonical parser has an impressive amount of right context information at its
disposal.

2.1 The Approach

We make here the simplifying choice of always using completely reduced looka-
head symbols: symbols as they appear in the grammar rule we are exploring,
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$ a b c S A B C D

q0 s4 s5 s1 s2 s3

q1 r1’0

q2 s8 s6 s7

q3 s8 s9 s10

q4 s8 r5’0 r5’0

q5 s8 r7’0 r7’0

q6 s11 s8

q7 s8 r4’0 r4’0

q8 r8’0 r9’0 s8 s12 s13

q9 s8 r6’0 r6’0

q10 s14 s8

q11 r2’0

q12 r9’1 s8 r8’1 r8’1

q13 r8’1 s8 r9’1 r9’1

q14 r3’0

Table 1: Shift-resolve parsing table for G1.

and cannot be reduced without reducing the entire rule.
As usual in noncanonical parsing [1], a deterministic two-stack model is used

to hold the current sentential form. The parsing (or left) stack corresponds to
the traditional LR stack, while the input (or right) stack initially contains the
input string. Two operations allow to move symbols from the top of one stack
to the top of the other: a shift of a symbol from the input stack to the parsing
stack, and a pushback of a bounded number of symbols the other way around.
A reduction using rule A→α removes the topmost |α| symbols from the parsing
stack and pushes A on top of the input stack.

We compute, for each reduction, the minimal bounded reduced lookahead
length needed to discriminate it from other parsing actions. This lookahead
exploration is properly integrated in the parser. Once the parser succeeds in
telling which action should have been done, we either keep parsing if it was a
shift, or need to reduce at an earlier point. The pushback brings the parser
back at this point; we call the combination of a pushback and a reduction a
resolution.

No cost is paid in terms of computational complexity, since shift-resolve
parsers are linear in the length of the input text. A simple proof is that the
only re-explored symbols are those pushed back. Since pushback lengths are
bounded, and since each reduction gives place to a single pushback, the time
linearity is clear if the number of reductions is linear with the input length.
This last point stems from the fact that our method detects and rejects cyclic
grammars.

2.2 Parsing Example

Let us consider the extended grammar with rules

S′ 1
−→S, S

2
−→ACa, S

3
−→BDb, A

4
−→AD,

A
5

−→a, B
6

−→BC, B
7

−→b, C
8

−→c, D
9

−→c.
(G1)

Grammar G1 can require an unbounded lookahead if we consider approximated
parsing methods, like for instance a LR(0) approximation, which provides the
basis for most practical parsing methods. A single inadequate state with items
C→c· and D→c· can be reached after reading both prefixes Ac and Bc. After
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parsing stack input stack actions
q0 acca$ s4

q0aq4 cca$ s8

q0aq4cq8 ca$ s8

q0aq4cq8cq8 a$ r8’0
We have reached the first phrase in acca$ that we can resolve with a completely reduced

lookahead. This lookahead is a, and indeed it cannot be reduced any further in the rule

S→ACa. The lookahead allows the decision of resolving C→c. The newly reduced nonter-

minal is pushed on the input stack, as usual in noncanonical parsing.

q0aq4cq8 Ca$ s12

q0aq4cq8Cq12 a$ r9’1
We have here a non-null pushback: the resolve action r9’1, which would have needed an

unbounded terminal lookahead, is solved using the stacked C and the lookahead a. The

pushback of length 1 emulates a reduced lookahead inspection of length 2.

q0aq4 DCa$ r5’0
q0 ADCa$ s2

q0Aq2 DCa$ s7

q0Aq2Dq7 Ca$ r4’0
q0 AC$ s2

q0Aq2 Ca$ s6

q0Aq2Cq6 a$ s11

q0Aq2Cq6aq11 $ r2’0
q0 S$ s1

q0Sq1 $ r1’0, accept

Table 2: The parse of the string acca by the shift-resolve parser for G1.

reading Ac, the lookahead for the reduction to C is a, while the one for the
reduction to D is c+a. After reading Bc, the lookaheads are c+b and b respec-
tively. Thus, if we use a LR(0) approximation, we need an unbounded terminal
lookahead length in order to choose between the reduction to C or D, when
seeing the last input symbol a or b after a sequence c+.

Grammar G1 is not LALR(1). If we try to use more advanced parsers, G1

is not NSLR(1) [15]—it is NSLR(2)—, and the time complexity of XLR(∞)
parsing [2] —LR-Regular using a LR(0) approximation—according to G1 is
quadratic.

Table 1 contains the parse table for shift-resolve parsing according to G1.
The table is quite similar to a LR(1) table, with the additional pushback length
information, but describes a parser with much more lookahead information.
States are denoted by qi; shift entries are denoted as si where i is the new state
of the parser; resolve entries are denoted as ri’j where i is the number of the
rule for the reduction and j the pushback length. The reduction according to

rule S′ 1
−→S indicates that the input is successfully parsed. Table 2 details the

parsing steps on the valid input acca. Symbols are interleaved with states in
the parsing stack in order to ease the reading, and are not actually used.

The originality of shift-resolve parsing resides in that Table 1 is not the
result of a very precise computation; in fact, we used the worst approximation
we tolerate. Still, the parsing time is linear and no preset lookahead length was
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(a) Derivation tree

S′→·S$ S′→S·$S

S→AC·a S→ACa·S→·ACa S→A·Ca aA C

A→·AD A→AD·A→A·DA D

A→AD·A→·AD A→A·DA D

A→·a A→a·a D→·c D→c·c

D→·c D→c·c

C→·c C→c·c

d2 r2

r8d8

r9d9

r5 d9 r9d5

d4

d4 r4

r4

$

(b) Position graph

Figure 1: Representing the derivation of string accca in G1.

necessary.

3 Grammatical Representation

The shift-resolve parsing table presented in Table 1 is the result of a two-steps
process: the first step builds a finite nondeterministic automaton from the gram-
mar, and the second generates the deterministic shift-resolve parser from it.

3.1 Position Graph

We consider here a graph representation of a context-free grammar. This graph
can be seen as the set of all left to right walks in all possible derivation trees for
the grammar. The nodes of this graph are positions to the immediate left or
immediate right of a derivation tree node. The vertices tell which other positions
are reachable. We label each position with a dotted rule giving its local context.

For instance, with G1, any tree node νA with symbol A can nondetermin-
istically derive a node νa with symbol a from A→a, or two nodes ν′

A and νD

with symbols A and D from A→AD. Following this idea, we find that the local
context of ν′

A provides us with more information than the mere symbol A: the
symbol A in question is in front of a dot in the position A→·AD.

If we make this local context explicit in the labels of the positions, then
the relations between these positions become visible. These transitions are of

three types: symbol transitions
X
7−→, and a two kinds of ε-transitions: derivation

transitions
di7−→ and reduction transitions

ri7−→ where i is a rule number. Figure 1
presents the portion deriving accca of the position graph for G1, along with the
traditional derivation tree representation. We emulate an infinite number of end

of file markers with a looping transition
$

7−→.
We introduce the bracketed grammar b(G) of a context-free grammar G as

the grammar with rules A
i

−→diαri whenever A
i

−→α is a rule of G. We also
define a homomorphism h that removes all the di and ri symbols from a string.
An immediate consequence is that L(G) = h(L(b(G))).
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·C·A ·D

A· D·
S·

S→AC·a

S→A·Ca

S→·ACa S→·BDb

S→B·Db

S→BD·b

ε

ε

εε

ε

ε

ε

ε

ε

C→·c
c

C→c·

C·

S→BDb·

ε ε

A→·a

A→a·

A→·AD

A→A·D

D→·c

D→c·
A→AD·

ε

ε

ε

a

C

A B

D

b

Aa

·S

S→ACa·

ε

D

B→·BC

B→B·C
B

B→BC·

B→·b
b

B→b·

·B

B·
C

ε

c

d9

d2 d3

r6

d6d8 d7

r4

d4d5

r3

r5 r9 r8 r7

r2

S′→·S$

S′→·S$

S

ε

ε
$

Figure 2: Nondeterministic automaton for Grammar G1 using κ0.

In order to uniquely identify a single position in the position graph, we define

valid positions for a grammar G as triples δdi[A
i

−→α·α′]riy such that

S⇒
rm

∗δAy⇒
rm

δdiαα′riy in b(G). (1)

For instance, the position labeled by C→·c in Figure 1b is identified by the

expression d2Ad8[C
8

−→·c]r8ar2.

Definition 1 The position graph I = 〈N , 7−→〉 of grammar G associates the
(potentially infinite) set N of valid positions for G with the labeled relation 7−→
defined by

δ[A
i

−→α·Xα′]y
X
7−→ δ[A

i
−→αX·α′]y, (2)

δ[A
i

−→α·Bα′]y
dj

7−→ δαdj [B
j

−→·β]rjuy if α′⇒∗u in b(G), and (3)

δαdj [B
j

−→β·]rjuy
rj

7−→ δ[A
i

−→αB·α′]y if α′⇒∗u in b(G). (4)

3.2 Position Equivalences

We are eager to put explicit labels on our positions because we intend to collapse
the position graph into a finite graph. The equivalence relations defined to this
end will preserve the local context, and thus use the position labels.

Definition 2 The collapsed position graph Γκ = 〈[N ]κ, 7−→κ〉 of a position
graph I = 〈N , 7−→〉 associates [N ]κ the finite set of equivalence classes [p]κ over
N modulo κ with the labeled relation 7−→κ defined by

[p]κ
χ
7−→κ [q]κ iff ∃p′ ∈ [p]κ, q′ ∈ [q]κ, p′

χ
7−→ q′. (5)
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Simple Equivalence Relation Figure 2 is not a Rorschach test but the col-
lapsed position graph Γκ0

for G1 using a simple equivalence relation κ0 between
positions.

Definition 3 Two positions are simply equivalent if and only if they have the
same dotted rule as label, i.e.

δ[A→α·α′]y κ0 γ[B→β·β′]z iff A→α·α′ = B→β·β′. (6)

While very basic, this equivalence relation is fine enough to yield a working
shift-resolve parser for G1. It is the simplest equivalence relation we will use for
shift-resolve parsing.

Base Positions The addition of base positions to N as in Figure 2 is straight-
forward. We identify them as δ[·A]y or δ[A·]y whenever S⇒

rm

∗δAy in G; Equa-
tions (3) and (4) are then replaced by

δ[A
i

−→α·Bα′]y
ε

7−→ δα[·B]uy if α′⇒∗u in b(G), (7)

δα[·B]uy
dj

7−→ δαdj [B
j

−→·β]rjuy, (8)

δαdj [B
j

−→β·]rjuy
rj

7−→ δα[B·]uy, and (9)

δα[B·]uy
ε

7−→ δ[A
i

−→αB·α′]y if α′⇒∗u in b(G). (10)

When the number |N | of nonterminals is small compared to the number |P |
of rules of G, as quite often in practical grammars, base positions allow to
significantly diminish the size of Γκ0

.

Lattice of Equivalence Relations The usual partial order on Eq(N )—the
complete lattice of all equivalence relations on N—is the inclusion relation ⊆.
For any two elements κa and κb of Eq(N ), κa ∧ κb is the greatest lower bound
or meet, defined as

κa ∧ κb = κa ∩ κb. (11)

Finer equivalence relations are obtained when using the meet of two equivalence
relations; they result in larger collapsed position graphs.

Let K be the set of all equivalence relations that are included in κ0; K is an
obvious interval sublattice of Eq(N ), ordered by the inclusion relation. We will
only make use of equivalence relations in K: if κ is in K, then κ = κ0 ∧ κ′ for
some κ′ in Eq(N ). Equivalence relations in K abound: for instance, a relation
κk with LR(k) precision could be written as κ0 ∧ lk with

δ[A→α·α′]y lk γ[B→β·β′]z iff k : h(y) = k : h(z); (12)

the set of equivalence classes using lk is [N ]lk = T ′k—the set of different se-
quences of k terminals. An experimental parser generator with a much finer
equivalence relation is currently available from the Internet at the following
address: http://serdis.dis.ulpgc.es/∼ii-pl/ftp/dr.

If κ = κ0 ∧κ′, we can still optimize the size of Γκ with base positions. If p is
a position in N , then we only have to identify [p]κ as a pair ([p]κ0

, [p]κ′), where
[p]κ0

can be a base position.

http://serdis.dis.ulpgc.es/~ii-pl/ftp/dr
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3.3 Nondeterministic Automaton

We call a collapsed position graph Γκ using an equivalence relation κ in K a
nondeterministic automaton.

Preserving Grammar Derivations Let us denote by ν0 = [ε[S′→·S$]ε]κ
the equivalence class on N using κ containing ε[S′→·S$]ε, and by ν1 = [ε[S′→S·$]ε]κ

the one containing ε[S′→S·$]ε. We also denote by
χ

7−→∗
κ the transitive reflex-

ive closure of 7−→κ, labeled with χ the sequence of labels on the individual
relations. We show here a simple result: paths in a nondeterministic automaton
correspond to derivations in the bracketed grammar.

Theorem 1 If S⇒∗δAρ⇒δriαα′diρ = γα′diρ = γσ holds in b(G), then

ν0

γ
7−→∗

κ[δri[A
i

−→α·α′]dix]κ
σ

7−→∗
κν1 with ρ⇒∗x holds in Γκ.

Proof. A straightforward induction on the length of γ. �

Size of the Nondeterministic Automaton The index of κ0 is |G|, thus,
the size of Γκ0∧κ′ is in the worst case O(|[N ]κ′ |.|G|) where |[N ]κ′ | is the index
of κ′.

4 Shift-Resolve Parsers

4.1 Shift-Resolve Parser Construction

We now describe how to extract a deterministic shift-resolve parser from a non-
deterministic automaton Γκ. The algorithm is based on a subset construction.

States of the Shift-Resolve Parser The states of the shift-resolve parser
are sets of items [ν, sr , d], where ν is an equivalence class on N using κ—i.e.
a state in Γκ—, sr a parsing action—either a production number or 0 to code
a shift—, and d is a nonnegative integer to code the distance to the resolution
point. By convention, we assume that d is null whenever sr denotes a shift.

Initial state’s item set is computed as Iq0
= C({[ν0, 0, 0]}), where the closure

C of an item set I is the minimal set such that

C(I) = I ∪

{[ν′, 0, 0] | [ν, sr , d] ∈ C(I), ν
di7−→κ ν′} ∪

{ι | [ν, sr , d] ∈ C(I), ν
ri7−→κ ν′,¬(null(i) and null(I)),

((sr = 0 and ι = [ν′, i, 0]) or (sr 6= 0 and ι = [ν′, sr , d]))},

where, by noting L the terminal language produced by a sequence of symbols,
we discard superfluous ε-reductions with the help of the conditions

null(i) iff A
i

−→α, L(α) = {ε}

null(I) iff [[δ[A→αX·β]y]κ, sr, d] ∈ I, L(X) = {ε}.

Transition from state item set I with symbol X is defined as follows.
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q2

q3

q0

q12

B→BC·, r8, 1
S→AC·a, r9, 1
B→B·C, r8, 1
S→B·Db, r8, 1
C→·c
D→·cc

C

c

C→c·
D→c·
S→AC·a, r8, 0
B→B·C, r8, 0
S→B·Db, r8, 0
S→BD·b, r9, 0
A→A·D, r9, 0
S→A·Ca, r9, 0
C→·c
D→·c

q8

A

B

c

c

Figure 3: Item sets of some states of the shift-resolve parser for Grammar G1.

∆(I,X) = C({[ν′, sr , d′] | [ν, sr , d] ∈ I, ν
X
7−→κ ν′,

((sr = 0 and d′ = 0) or (sr 6= 0 and d′ = d + 1))})

Figure 3 presents the details of the item sets computations for states q8 and
q12 of the shift-resolve parser presented in Table 1. Lemma 1 states that two
positions reachable from ν0 by the same language will appear in a single item
set of the shift resolve parser.

Lemma 1 Let z be a terminal string in T ∗, u and v two strings in (T ∪ {di |

i ≤ |P |} ∪ {ri | i ≤ |P |})∗ such that h(u) = h(v) = z, ν0

u
7−→∗

κν, ν0

v
7−→∗

κν′ in Γk

and ν 6= ν′.
Then there exists a cover string ϕ in V ∗ for (u, v) such that {[ν, sr , d], [ν′, sr ′, d′]}

is included in the item set ∆(Iq0
, ϕ).

Proof. We outline the proof by induction on the length |u| + |v|.
If u = v = ε, then z = ε and ϕ = ε is a cover for (ε, ε). There are three

possible atomic steps that allow to increase |u|+ |v|: append a single di or ri to
either u or v, or append a terminal symbol a to both.

If u = u′di and ϕ is a cover for (u′, v), then ϕ is also a cover for (u, v). If
u = u′a, v = v′a and ϕ is a cover for (u′, v′), then ϕa is clearly a cover for (u, v).
If u = u′ri and ϕ is a cover for (u′, v), then two different cases arise. The first
case occurs when null(i), ϕ = ϕ′γ, L(γ) = ε, ϕ′ = δX with L(X) 6= ε or ϕ′ = ε.
Then ϕ′ is a cover for (u, v). The second case occurs otherwise, and then ϕ is
clearly a cover for (u, v). �

Parser Table Parser table entries, i.e., shifts and resolves, are computed from
the item set Iq of each state q as follows.

T (q,X) =
if ∀ι = [[δ[A→α·Xβ]x]κ, sr , d] ∈ Iq,
sr = r: resolve r with pushback d (if r = 1 and d = 0, accept)
otherwise: shift to q′ such that Iq′ = ∆(Iq,X)

4.2 Shift-Resolve Grammars

Rejection Condition A grammar is inadequate if and only if two differ-
ent state item sets are built with identical item sets except for some pushback
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length(s); otherwise, we write it is a ShRe(κ) grammar.

It follows that the worst-case space complexity of the shift-reduce parser for
G is O(2|Γκ||P |). More powerful shift-resolve parsers can be obtained at the price
of descriptional complexity if we add to the condition that one such state should
be ∆-reachable from the other.

Theorem 2 If G is ambiguous, then it is not ShRe(κ) for any κ in K.
Proof. We merely outline the proof.

Since G is an ambiguous context-free grammar, we can find two leftmost
derivations S⇒

lm

∗xAρ⇒
lm

xαα′ρ = xασ and S⇒
lm

∗yBσ⇒
lm

yβσ in G, with Aαα′ 6=
Bβ, and such that there is a z in T ∗ with xα⇒∗z and yβ⇒∗z.

Such derivations are mirrored in the nondeterministic automaton Γκ by two

positions ν = [δ[A→α·α′]s]κ and ν′ = [γ[B→β·]t]κ such that ν0

u
7−→∗

κν
χ

7−→∗
κν1

and ν0

u′

7−→∗
κν′ χ′

7−→∗
κν1, with

h(u) = h(u′) = z (13)

h(χ) = h(χ′) = σ. (14)

In such a situation, there is a prefix ϕ in V ∗ such that some items [ν, sr , d]
and [ν′, sr ′, d′] are included in the item set of ∆(Iq0

, ϕ). The right context of
this shift-resolve parser state is σ$∗, an infinite regular language. Since ν 6= ν′

(Aαα′ 6= Bβ and κ = κ0 ∧κ′), we are bound to find two item sets only differing
on the pushback lengths, and therefore G is found inadequate. �

Grammar Classes The classes of ShRe(κk)—κk is defined as the meet of k0

and lk from Equation (12)—grammars are not comparable with the classes of
LR(k) grammars. For instance, we can produce a shift-resolve parser for the
grammar with rules

S→AC |BCb, A→d, B→d, C→aCb |c (G2)

using κ0, but G2 is not LR(k) for any value of k—as a matter of fact, it is not
LR-Regular either.

Conversely, for k > 0, we can put an unbounded number of null nonterminals
between a conflict and its resolution. For instance, the grammar with rules

S→Aa |Bb, A→cAE |c, B→cBE |c, E→ε (G3)

is LR(1) but not ShRe(κ) for any κ: once we reach the a or b symbol allowing
to resolve, we would need to pushback an unbounded number of E symbols in
order to have the c we intend to reduce on top of the parsing stack.

A simplification we made in the shift-resolve construction makes it possible
for a LR(0) to be inadequate using κk. This is the case for the grammar with
rules

S→Sa |B, A→a, B→dBA |b. (G4)

Figure 4 shows how the resolution in a shift-resolve state with a single possible
reduction (here B→b) can be tricked into an useless exploration of the right
context caused by the κk approximations. The issue can be tackled on the
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B→b·, 0, 0
S→B·, r7, 0
S→S·a, r7, 0
S′→S·$, r7, 0
B→dB·A, r7, 0
A→·a, 0, 0

bq0

S→Sa·, r7, 1
A→a·, 0, 0
S→S·a, r7, 1
S′→S·$, r7, 1
B→dbA·, r5, 0
S→B·, r5, 0
S→S·a, r5, 0
S′→S·$, r5, 0
B→db·A, r5, 0
A→·a, 0, 0

a

S→Sa·, r7, 2
A→a·, 0, 0
S→S·a, r7, 2
S′→S·$, r7, 2
B→dbA·, r5, 0
S→B·, r5, 0
S→S·a, r5, 0
S′→S·$, r5, 0
B→db·A, r5, 0
A→·a, 0, 0

a

Figure 4: Item sets exhibiting the inadequacy of Grammar G4 using κ0.

nondeterministic automaton level by choosing a finer equivalence relation, for
instance κ = κ0 ∧ c1 where

δ[A→α·α′]y c1 γ[B→β·β′]z iff h(δ) : 1 = h(γ) : 1. (15)

The issue can also be tackled on the subset construction level if we test whether
following ri transitions in the nondeterministic automaton is necessary for a
resolution, and if not, fill the entire parser table line with this resolution.

5 Related Work

Shift-resolve parsing is related to two areas: parsing techniques and nondeter-
ministic grammatical representations.

Parsing Techniques The presence of conflicts in deterministic parsers is a
widely acknowledged issue. Transforming an input grammar until no more con-
flicts can be found is a tedious task, can obfuscate the grammar, and may result
in convoluted semantic actions. It is therefore tempting for a parser developer to
trade the two static guarantees—unambiguity and linear time recognition—for
his confidence in his own skill in the handling of ambiguities and a reasonable
chance of having a linear time parser [16]. Another line of research is to see how
far one can go without sacrificing the static guarantees.

This line has given birth to the LR-Regular [4] and noncanonical [14] parser
families. To the best of our knowledge, the only other combination of the two
families [7] is an extension to DR(k) parsing [8]. It suffers from a worst-case
quadratic parsing time complexity inherent to DR(k) parsing with non LR(k)
grammars.

Using only completely reduced symbols in noncanonical parsing was already
investigated with the Leftmost SLR(1) parsers [15], and discarded as less pow-
erful than Noncanonical SLR(1) parsing. We improve on LSLR(1) parsers by
allowing a non-predefined lookahead length and more powerful approximations
in our grammatical representations.

Finally, to the extent of our knowledge, Grammar G1 is the first published
instance of a quadratic parsing time complexity with a regular lookahead parser.

Nondeterministic Grammatical Representations Before becoming a clas-
sical presentation [9] and a classical implementation [5] for LR(k) parser con-
structions, nondeterministic grammatical representations were used for efficient
LR(k) testing [11]. Item grammars are a very similar representation [10]. They
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have also been used as a unifying framework for parsing methods [13]. Our idea
of using the lattice of equivalence relations for the various possible approxima-
tions seems to be new.

6 Conclusion

Shift-resolve parsing is a novel parsing method with an attractive combination of
properties: the produced parsers are deterministic, they can use an unbounded
lookahead, and they run in linear time. Their generation is the result of a highly
generic algorithm working on a nondeterministic automaton. It is easy to design
new approximations for the automaton in order to improve the grammatical
coverage.

The next logical step is the investigation of which conditions would yield
shift-resolve parsers that keep running in linear time even if we allow unbounded
pushback lengths.
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