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Abstract. We consider the temporal logic with since and until modali-
ties. This temporal logic is expressively equivalent over the class of ordi-
nals to first-order logic thanks to Kamp’s theorem. We show that it has a
pspace-complete satisfiability problem over the class of ordinals. Among
the consequences of our proof, we show that given the code of some
countable ordinal α and a formula, we can decide in pspace whether the
formula has a model over α. In order to show these results, we intro-
duce a class of simple ordinal automata, as expressive as Büchi ordinal
automata. The pspace upper bound for the satisfiability problem of the
temporal logic is obtained through a reduction to the nonemptiness prob-
lem for the simple ordinal automata.

1 Introduction

The main models for time are 〈N, <〉, the natural numbers as a model of discrete
time and 〈R, <〉, the real line as the model for continuous time. These two models
are called the canonical models of time. A major result concerning linear-time
temporal logics is Kamp’s theorem [Kam68,GHR94] which says that LTL(U, S),
the temporal logic having “Until” and “Since” as only modalities, is expressively
complete for first-order monadic logic of order over the class of Dedekind com-
plete linear orders. The canonical models of time are indeed Dedekind-complete.
Another important class of Dedekind-complete orders is the class of ordinals, see
e.g. an axiomatization of LTL(U, S) over ordinals in [Ven93].
In this paper the satisfiability problem for the temporal logic with until and
since modalities over the class of ordinals is investigated. Our main results are
the following: the satisfiability problem for LTL(U, S) over the class of ordinals
is pspace-complete and a formula φ in LTL(U, S) has some α-model for some
ordinal α iff it has an β-model for some β < ω|φ|+2 where |φ| is the size of φ.

In order to prove these results we use an automata-based approach [VW94].
In Section 3, we introduce a new class of ordinal automata which we call simple
ordinal automata. These automata are expressive equivalent to Büchi automata
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over ordinals [BS73]. However, the locations and the transition relations of these
automata have additional structures as in [VW94,Roh97]. In particular, a loca-
tion is a subset of a base set X. Herein, we provide a translation from formulae
in LTL(U, S) into simple ordinal automata that allows to characterize the com-
plexity of the satisfiability problem for LTL(U, S). However, the translation of
the formula φ into the automaton Aφ provides an automaton of exponential size
in |φ| but the base of Aφ has a cardinality linear in |φ|.
Section 4 contains our main technical lemmas. We show there that every run
in a simple ordinal automaton is equivalent to a short run. Consequently, we
establish that a formula φ ∈ LTL(U, S) has an α-model iff it has a model of
length trunc|φ|+2(α) where trunc|φ|+2(α) is a truncated part of α strictly less

than ω|φ|+2 × 2 (see the definition of truncation in Section 2).
In Section 5 we present two algorithms to solve the nonemptiness problem for
simple ordinal automata. The first one runs in (simple) exponential time and
does not take advantage of the short run property. The second algorithm runs
in polynomial space and the short run property plays the main role in its design
and its correctness proof.

In Section 6 we investigate several variants of the satisfiability problem and
show that all of them are pspace-complete. Section 7 compares our results with
related works. The satisfiability problem for LTL(U, S) over ω-models is pspace-
complete [SC85]. Reynolds [Rey03,Rey] proved that the satisfiability problem
for LTL(U, S) over the reals is pspace-complete. The proofs in [Rey03,Rey] are
non trivial and difficult to grasp and it is therefore difficult to compare our proof
technique with those of [Rey03,Rey] even though we believe cross-fertilization
would be fruitful. We provide uniform proofs and we improve upper bounds
for decision problems considered in [Cac06,DN07,Roh97]. We also compare our
results and techniques with Rohde’s thesis [Roh97]. Finally we show how our
results entail most of the results from [DN07] and we solve some open problems
stated there.

2 Temporal logic with Until and Since

The formulae of LTL(U, S) are defined as follows:

φ ::= p | ¬φ | φ1 ∧ φ2 | φ1Uφ2 | φ1Sφ2

where p ∈ PROP for some set PROP of atomic propositions. Given a formula
φ in LTL(U, S), we write sub(φ) to denote the set of subformulae of φ or their
negation assuming that ¬¬ψ is identified with ψ. The size of φ is defined as
the cardinality of sub(φ) and therefore implicitly we encode formulae as DAGs.
This feature will be helpful for defining translations that increase polynomially
the number of subformulae but for which the tree representation might suffer
an exponential blow-up. We use the following abbreviations Gφ = φ∧¬(>U¬φ)
and Fφ = ¬G¬φ that do cause only a polynomial increase in size.

The satisfaction relation is inductively defined below where σ is an α-model
of the form α→ P(PROP) for some ordinal α > 0 (β < α):
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– σ, β |= p iff p ∈ σ(β),
– σ, β |= ¬φ iff not σ, β |= φ, σ, β |= φ1 ∧ φ2 iff σ, β |= φ1 and σ, β |= φ2,
– σ, β |= φ1Uφ2 iff there is γ ∈ (β, α) such that σ, γ |= φ2 and for every
γ′ ∈ (β, γ), we have σ, γ′ |= φ1,

– σ, β |= φ1Sφ2 iff there is γ ∈ [0, β) such that σ, γ |= φ2 and for every
γ′ ∈ (γ, β), we have σ, γ′ |= φ1.

The satisfiability problem for LTL(U, S) consists in determining, given a for-
mula φ, whether there is a model σ such that σ, 0 |= φ.

We recall that well orders are particular cases of Dedekind complete linear
orders. Indeed, a chain is Dedekind complete iff every non-empty bounded subset
has a least upper bound. Kamp’s theorem applies herein.

Theorem 1. (I) [Kam68] LTL(U, S) over the class of ordinals is as expressive
as the first-order logic over the class of structures 〈α,<〉 where α is an ordinal.
(II) [BS73] The satisfiability problem for LTL(U, S) over the class of ordinals is
decidable.

Hence, LTL(U, S) is a fundamental logic to be studied. Moreover, another key
result is the pspace-completeness of LTL(U, S) restricted to ω-models [SC85].

We recall below some definability results that will be used in Sections 6 and 7.
Ordinals strictly below ωω can be defined in LTL(U, S) with the truth constant
> (no propositional variable).

Lemma 2. Given an ordinal 0 < α = ωk1ak1
+ · · ·ωkmakm

< ωω with k1 >

. . . > km ≥ 0, ak1
, . . . akm

> 0, there is a formula defα in LTL(U, S) of linear
size in Σi(ki × aki

) such that for any model σ, we have σ, 0 |= defα iff σ is of
length α.

3 Translation from formulae to simple ordinal automata

In Section 3.1, we introduce a new class of ordinal automata which we call simple
ordinal automata. These automata are expressive equivalent to Büchi automata
over ordinals [BS73]. However, the locations and the transition relations of these
automata have additional structures. In Section 3.2, we provide a translation
from LTL(U, S) into simple ordinal automata which assigns to every formula
in LTL(U, S) an automaton that recognizes exactly its models. We borrow the
automata-based approach for temporal logics from [VW94,KVW00].

3.1 Simple ordinal automata

Definition 3. A simple ordinal automaton A is a structure 〈X,Q, δnext, δlim〉
such that

– X is a finite set (the basis of A), Q ⊆ P(X) (the set of locations),
– δnext ⊆ Q×Q is the next-step transition relation,
– δlim ⊆ P(X) ×Q is the limit transition relation.
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A can be viewed as a finite directed graph whose set of nodes is structured.
Given a simple ordinal automaton A, an α-path (or simply a path) is a map
r : α→ Q for some α > 0 such that

– for every β + 1 < α, 〈r(β), r(β + 1)〉 ∈ δnext,
– for every limit ordinal β < α, 〈always(r, β), r(β)〉 ∈ δlim where

always(r, β)
def

= {a ∈ X : ∃ γ < β such that a ∈ ∩γ′∈(γ,β) r(γ
′)}.

The set always(r, β) contains exactly the elements of the basis that belong to
every location from some γ < β until β. We sometimes write always(r) instead
of always(r, α) when α is a limit ordinal or always(r) instead of always(r, α− 1)
when α is a successor ordinal and α− 1 is a limit ordinal.

Given an α-path r, for β, β′ < α we write

– r≥β to denote the restriction of r to positions greater or equal to β,
– r≤β to denote the restriction of r to positions less or equal to β,
– r[β,β′) to denote the restriction of r to positions in [β, β′) (half-open interval).

A simple ordinal automaton with acceptance conditions is a structure of the
form 〈X,Q, I, F,F , δnext, δlim〉 where

– I ⊆ Q is the set of initial locations,
– F ⊆ Q is the set of final locations for accepting runs whose length is some

successor ordinal,
– F ⊆ P(X) encodes the accepting condition for runs whose length is some

limit ordinal.

Given a simple ordinal automaton with acceptance conditions, an accepting run
is a path r : α→ Q such that r(0) ∈ I and

– if α is a successor ordinal, then r(α− 1) ∈ F ,
– otherwise {a ∈ X : ∃ γ < α such that a ∈ ∩γ′∈(γ,α) r(γ

′)} ∈ F .

The nonemptiness problem for simple ordinal automata consists in checking
whether A has an accepting run.

Our current definition for simple ordinal automata does not make them lan-
guage acceptors since they have no alphabet. It is possible to add in the definition
a finite alphabet Σ and to define the next-step transition relation as a subset of
Q×Σ×Q. If we do so, our model of automata can recognize the same languages
as the usual ordinal automata with Muller acceptance conditions in the limit
transitions. The proof is not very difficult. Additionally, the current definition
can be viewed as the case either when the alphabet is a singleton or when the
read letter is encoded in the locations through the dedicated elements of the
basis. This second reading will be in fact used implicitly in the sequel.

We also write A to denote either a simple ordinal automaton or its extension
with acceptance conditions.
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3.2 Translation from LTL(U, S) formulae to simple ordinal automata

As usual, a set Y is a maximally Boolean consistent subset of sub(φ) when the
following conditions are satisfied: for every ψ ∈ sub(φ), ¬ψ ∈ Y iff ψ 6∈ Y and
for every ψ1 ∧ ψ2 ∈ sub(φ), ψ1 ∧ ψ2 ∈ Y iff ψ1, ψ2 ∈ Y . Given a formula φ, the
simple ordinal automaton Aφ = 〈X,Q, I, F,F , δnext, δlim〉 is defined as follows:

– X = sub(φ).
– Q is the set of maximally Boolean consistent subsets of sub(φ).
– I is the set of locations that contain φ and no since formulae.
– F is the set of locations with no elements of the form ψ1Uψ2.
– F is the set of sets Y such that not {ψ1,¬ψ2, ψ1Uψ2} ⊆ Y , for every ψ1Uψ2 ∈
X.

– For all q, q′ ∈ Q, 〈q, q′〉 ∈ δnext iff the conditions below are satisfied:
(nextU) for ψ1Uψ2 ∈ sub(φ), ψ1Uψ2 ∈ q iff either ψ2 ∈ q′ or ψ1, ψ1Uψ2 ∈ q′,
(nextS) for ψ1Sψ2 ∈ sub(φ), ψ1Sψ2 ∈ q′ iff either ψ2 ∈ q or ψ1, ψ1Sψ2 ∈ q.

– For all Y ⊆ X and q ∈ Q, 〈Y, q〉 ∈ δlim iff the conditions below are satisfied:
(limU1) if ψ1,¬ψ2, ψ1Uψ2 ∈ Y , then either ψ2 ∈ q or ψ1, ψ1Uψ2 ∈ q,
(limU2) if ψ1, ψ1Uψ2 ∈ q and ψ1 ∈ Y , then ψ1Uψ2 ∈ Y ,
(limU3) if ψ1 ∈ Y , ψ2 ∈ q and ψ1Uψ2 is in the basis X, then ψ1Uψ2 ∈ Y ,
(limS) for every ψ1Sψ2 ∈ sub(φ), ψ1Sψ2 ∈ q iff (ψ1 ∈ Y and ψ1Sψ2 ∈ Y ).

Even though the conditions above can easily be shown correct, at this stage
it might sound mysterious how they have been made up. For some of them, their
justification comes with the proof of Lemma 4.

Let σ be an α-model and φ be a formula in LTL(U, S). The Hintikka sequence
for σ and φ is an α-sequence Hσ,φ defined as follows: for every β < α,

Hσ,φ(β)
def

= {ψ ∈ sub(φ) : σ, β |= ψ}.

Now we can state the correctness lemma.

Lemma 4.

(I) If σ, 0 |= φ, then Hσ,φ is an accepting run of Aφ.
(II) If r is an accepting run of Aφ, then there is a model σ such that σ, 0 |= φ

and r is the Hintikka sequence for σ and φ.
(III) φ is satisfiable iff Aφ has an accepting run.

4 Short run properties

Let A be a simple ordinal automaton and Y be a subset of its basis. Y is said
to be present in A iff there is a limit transition of the form 〈Y, q〉 in A. Given
a set Y present in A, its weight, noted weight(Y ), is the maximal l such that
Y1 ⊂ Y2 ⊂ · · · ⊂ Yl is a sequence of present subsets in A and Y1 = Y . Obviously,
weight(Y ) ≤ |X| + 1.

Given a path r : α→ Q in A with α ≥ ω + 1, its weight, noted weight(r), is
the maximal value in the set {weight(always(r, β)) : β < α, β is a limit ordinal}.
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By convention, if a path is of length strictly less than ω + 1, then its weight is
zero (no limit transition is fired). Furthermore, we write exists(r) to denote
the set

⋃

β<α r(β) and all(r) to denote the set
⋂

β<α r(β). For example, all(r)
corresponds to the set of elements from the basis that are present in all locations
of the run r. Let r, r′ be two paths of respective length α+1 and α′+1, we say that
they are congruent (noted r ∼ r′) iff the conditions below are meet: r(0) = r′(0),
r(α) = r′(α′), exists(r) = exists(r′) and all(r) = all(r′). We can easily adapt the
congruence relation to runs r and r′ of length some limit ordinal by requiring
that always(r) = always(r′) instead of the condition on final locations for runs
of length some successor ordinal.

Let r1 be a path of length α + 1 and r2 be a path of length β such that
r1(α) = r2(0). The concatenation r1 · r2 is the path r of length α+ β such that
for γ ∈ [0, α], r(γ) = r1(γ) and for γ ∈ [0, β), r(α+γ) = r2(γ). For every ordinal
α, the concatenation of α-sequences of paths is defined similarly. The relation ∼
can be viewed as a congruence for the concatenation operation on paths.

Lemma 5.

(I) Let r · r0 · r
′, r1 be two paths such that r0 ∼ r1. Then, r · r1 · r

′ is a path that
is congruent to r · r0 · r

′.
(II) Let r00, r

1
0, r

2
0, . . . and r01, r

1
1, r

2
1, . . . be two ω-sequences of pairwise consecu-

tive paths such that for i ≥ 0, ri
0 ∼ ri

1 and their length is a successor ordinal.
If r · r00 · r

1
0 · r

2
0 · . . . · r

′ is a path, then it is congruent to r · (r01 · r
1
1 · r

2
1 · . . .) · r

′.

The proof of the above lemma is by an easy verification.

Lemma 6. Let r : α → Q be a path in A. Then, there is a path r′ : α′ → Q

such that α′ < ωweight(r)+1 and r ∼ r′.

Lemma 6 states a crucial property for most of complexity results established
in the sequel. Indeed, for usual ordinal automata, it is not possible to get this
polynomial bound as an exponent of ω for the length of the short paths. Actually,
the exponent is linear in the cardinal of its basis and can be logarithmic in
the number of locations for large automata. By combination of Lemma 4 and
Lemma 6, we obtain the following interesting result.

Corollary 7. If φ is satisfiable, then φ has an α-model with α < ω|φ|+2.

This can be still be refined a little more by observing that for each ωi × a

occurring in the Cantor normal form of the length of a small model of φ (strictly
less than ω|φ|+2), a is bounded by 2|φ|−1 since the cardinal of the set of locations
of Aφ is bounded by 2|φ|−1.

For n ∈ N, let truncn be the function that assigns to every ordinal α > 0 an
ordinal in (0, ωn2) as follows. α can be written in the form α = ωnγ + β with
β ∈ [0, ωn). Then truncn(α) = ωn ×min(γ, 1) + β.

Lemma 8. Let A be a simple ordinal automaton.
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(I) If r is a path of length ωweight(r)+1 × α for some countable ordinal α > 0,
then there is a path r′ of length ωweight(r)+1 such that r ∼ r′.

(II) If a path r has length ωweight(r)+1, then for every ordinal α > 0, there is a
path r′ of length ωweight(r)+1 × α such that r ∼ r′.

(III) If r is a path of length α and β ≈|X|+1 α, then there is a path r′ of length
β such that r ∼ r′.

Only in (I), α is supposed to be countable. Because of the translation from
formulae to automata, we can also establish a pumping lemma at the level of
formulae.

Lemma 9.

(I) Let A be a simple ordinal automaton with acceptance conditions and α, β
be ordinals such that α ≈|X|+1 β. Then, A has an accepting run of length α
iff A has an accepting run of length β.

(II) Let φ be a formula in LTL(U, S) and α, β be ordinals such that α ≈|φ|+2 β.
Then φ has an α-model iff φ has a β-model.

Proof. (I) Direct consequence of Lemma 6 and Lemma 8 since accepting runs
can be viewed as paths.
(II) By Lemma 4, φ has an α-model iff Aφ has an accepting run r of length α.
Since |φ| + 1 bounds the weight of any path in Aφ and by (I), we get that Aφ

has an accepting run r of length α iff Aφ has an accepting run r of length β.
Equivalently, φ has a β-model. ut

5 Checking nonemptiness of simple ordinal automata

In this section, we provide algorithms to check whether a simple ordinal au-
tomata admits accepting runs. The first one is in exptime. Our optimal algo-
rithm runs in polynomial space in the size of the basis.

Let A be a simple ordinal automaton 〈X,Q, I, F,F , δnext, δlim〉. We provide
below an algorithm to check given q, q′ ∈ Q and n ∈ N whether there is path
r : α+ 1 → Q such that r(0) = q, r(α) = q′ and α < ωn. Given an (α+ 1)-path
we write abs(r) to denote the quadruple 〈r(0), exists(r), all(r), r(α)〉. We define
a family of relations containing the quadruples of the form abs(r). Each relation
Ri below is therefore a subset of Ri ⊆ Q× P(X)2 ×Q.

– R0 = {〈q, q ∪ q′, q ∩ q′, q′〉 : 〈q, q′〉 ∈ δnext},
– For i ∈ N,

R′
i = {〈q0,

m
⋃

i=0

Ei,

m
⋂

i=0

Ai, qm+1〉 :

∃〈q0, E0, A0, q1〉Ri〈q1, E1, A1, q2〉Ri · · ·Ri〈qm, Em, Am, qm+1〉}

– For i ∈ N, Ri+1 is defined from R′
i as follows: 〈q, E,A, q′〉 ∈ Ri+1 iff

• either 〈q, E,A, q′〉 ∈ R′
i
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• or there exist a limit transition 〈Y, q′〉 ∈ δlim and a path

〈q0, E0, A0, q1〉Ri〈q1, E1, A1, q2〉Ri · · ·Ri〈qm, Em, Am, qm+1〉

such that
(a) q0 = qm+1, (b)

⋂m
i=0Ai = Y , (c) 〈q, E′, A′, q0〉 ∈ R′

i for some E′, A′,
(d) E = (E′ ∪ q′) ∪

⋃m

i=0Ei, A = (A′ ∩ q′) ∩
⋂m

i=0Ai.

Because Ri ⊆ Ri+1 for all i, for some N ≤ 24×|X| + 1, RN+1 = RN . The bound
24×|X| + 1 takes simply into account that Q ⊆ P(X).

Lemma 10. (I) If 〈q, E,A, q′〉 ∈ Rn, then there is an (α + 1)-path such that
abs(r) = 〈q, E,A, q′〉 and α < ωn. (II) Conversely, let r : α + 1 → Q be a path
such that α < ωn. Then abs(r) ∈ R′

n.

We provide below a first complexity result.

Lemma 11. The nonemptiness problem for simple ordinal automata with ac-
ceptance conditions can be checked in exponential time in |X|.

Proof. Let A be of the form 〈X,Q, I, F,F , δnext, δlim〉. A has an accepting run iff
either (A) there are q0 ∈ I, qf ∈ F and E,A ⊆ X such that 〈q0, E,A, qf 〉 ∈ R′

n

for some n or (B) there are q0 ∈ I, and a run r from q0 such that always(r) ∈ F .
(A) deals with accepting runs of length some successor ordinal, whereas (B) deals
with accepting runs of length some limit ordinal.

By Lemma 6 and Lemma 10(II), in order to check (A), it is sufficient to test
for 〈q0, E,A, qf〉 ∈ I × P(X)2 × F whether 〈q0, E,A, qf 〉 ∈ R′

|X|+2 ⊆ R|X|+3.

Since |Q| is in O(2|X|), computing R|X|+3 takes |X| + 3 steps that requires
polynomial time in |A| and exponential time in |X|, we obtain the desired result.
Observe that we can take advantage of the fact that computing the transitive
closure of a relation and the maximal strongly connected components can be
done in polynomial time in the size of the relations.

By Ramsey theorem, (B) is equivalent to the following condition: there are
q ∈ Q, E,E′, A ⊆ X, A′ ∈ F and runs r1 and r2 such that abs(r1) = 〈q0, E,A, q〉
and abs(r2) = 〈q, E′, A′, q〉.

Hence. in order to check these, it is enough to check whether there are q0 ∈ I,
q ∈ Q and E,A ⊆ X such that 〈q0, E,A, q〉 ∈ R′

|X|+2, 〈q, E
′, A′, q〉 ∈ R′

|X|+2 and

A′ ∈ F . This can be done in exponential time as for (A).
ut

The proof of Lemma 11 mentions Lemma 6 but the exponential time upper
bound can be obtained by observing that an exponential number of steps, such
as 24×|X| + 1 would provide the same bound in the worst case. As a corollary
of Lemma 11, satisfiability for LTL(U, S) is in exptime. Moreover, this can be
improved as shown in the proof of Theorem 13 presented in Section 6.

We improve below the bound in Lemma 11.

Theorem 12. The nonemptiness problem for simple ordinal automata can be
checked in polynomial space in |X|.
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Proof. Following the proof of Lemma 11, A has an accepting run iff (A) there are
q0 ∈ I, qf ∈ F and E,A ⊆ X such that 〈q0, E,A, qf〉 ∈ R|X|+3 or (B) there are
q0 ∈ I, q ∈ Q and E′, A′ ⊆ X such that 〈q0, E

′, A′, q〉 ∈ R|X|+3, 〈q, E
′, A′, q〉 ∈

R|X|+3 and A′ ∈ F . X denotes the basis of A. In order to check (A), the non-
deterministic algorithm guesses q0 ∈ I, qf ∈ F and E,A ⊆ X (encoded in
polynomial space in O(|X|) and test whether PATH(A, 〈q0, E,A, qf〉, |X| + 3)
returns true. Condition (B) admits a similar treatment. The non-deterministic
algorithm PATH defined below works in polynomial space in |X| assuming that
the last argument is polynomial in |X| which is the case with |X| + 3. Figure 1
contains the definition of the function PATH (some details are omitted).

PATH(A, 〈q, E, A, q′〉, N)

– If N = 0 then (if (either E 6= q ∪ q′ or A 6= q ∩ q′ or 〈q, q′〉 6∈ δnext) then abort else
return >);

– If N > 0 then go non-deterministically to 1.,2. or 3.
(1.) Return PATH(A, 〈q, E, A, q′〉, N − 1)
(2.) Guess on-the-fly a sequence

〈q0, E0, A0, q1〉, 〈q1, E1, A1, q2〉, . . . , 〈qm, Em, Am, qm+1〉

such that
• m < 24×|X|+1 + 1,
• for 0 ≤ i ≤ m, PATH(A, 〈qi, Ei, Ai, qi+1〉, N − 1) returns >,
• E =

S

j
Ej and A =

T

j
Aj

• q = q0, q′ = qm+1;
(3.) We guess here two long sequences:

(3.1) Guess on-the-fly a sequence

〈q0, E0, A0, q1〉, 〈q1, E1, A1, q2〉, . . . , 〈qm, Em, Am, qm+1〉

such that
• m < 24×|X|+1 + 1,
• for 0 ≤ i ≤ m, PATH(A, 〈qi, Ei, Ai, qi+1〉, N − 1) returns >,
• E′ =

S

j
Ej and A′ =

T

j
Aj ;

• q0 = q;
(3.2) Guess a limit transition 〈Y, q′〉 ∈ δlim and on-the-fly a sequence

〈q′0, E
′
0, A

′
0, q

′
1〉, 〈q

′
1, E

′
1, A

′
1, q

′
2〉, . . . , 〈q

′
m, E′

m′ , A
′
m′ , q

′
m′+1〉 such that

• m′ < 24×|X|+1,
• for 0 ≤ i ≤ m′, PATH(A, 〈q′i, E

′
i, A

′
i, q

′
i+1〉, N − 1) returns >,

• E = (E′ ∪ q′m′+1) ∪
S

j
E′

j ,

• A = (A′ ∩ q′m′+1) ∩
T

j
A′

j , Y =
T

j
A′

j , q′0 = qm+1;
– Return >.

Fig. 1. Algorithm PATH
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In (2.), guessing on-the-fly a long sequence means that only two consecutive
quadruples are kept in memory at any time. We need a counter to guarantee that
m < 24×|X|+1 and it requires only space in O(|X|). Moreover, in order to check
E =

⋃

j Ej and A =
⋂

j Aj we need two auxiliary variables that bookkeep the Ej

and Aj so far respectively. Similar techniques are used in (3.) to guarantee that
this non-deterministic algorithm requires only polynomial space in O(|X| +N)
(we only need more variables and steps). It is straightforward to show that
PATH(A, 〈q, E,A, q′〉, N) has a computation that returns > (all the guesses were
correct) iff 〈q, E,A, q′〉 ∈ RN . Finally Savitch’s Theorem allows to conclude that
nonemptiness can be checked in deterministic polynomial space in |X|. ut

6 Complexity of satisfiability problems

We establish new complexity results for problems related to LTL(U, S) satisfia-
bility thanks to the intermediate results we have established so far.

6.1 Complexity of LTL(U, S)

Here is the main result of the paper.

Theorem 13. The satisfiability problem for LTL(U, S) over the class of ordinals
is pspace-complete.

Proof. By Lemma 4, given a formula φ in LTL(U, S), there is an automaton
Aφ whose accepting runs correspond exactly to models of φ. In order to check
nonemptiness of Aφ, we do not build it explicitly (as usual) but we run the
algorithm from the proof of Theorem 12 and we compute the locations, and
transition relations of Aφ on demand. Hence, we obtain a polynomial space
non-deterministic algorithm since the basis of Aφ has a cardinality in O(|φ|)
and checking whether a subset of X is a location of Aφ or 〈q, q′〉 ∈ δnext or
〈Y, q〉 ∈ δlim can be done in polynomial space in O(|φ|). Again by Savitch’s
Theorem, we get that the satisfiability problem for LTL(U, S) is in pspace. The
pspace lower bound can be easily shown inherited from LTL. ut

Thanks to Kamp’s theorem, we get the following corollary.

Corollary 14. Let LTL(U, S,O1, . . . ,Ok) be an extension of LTL(U, S) with k

first-order definable temporal operators. Then the satisfiability problem for the
logic LTL(U, S,O1, . . . ,Ok) over the class of ordinals is in pspace.

Indeed, every formula Oi(p1, . . . , pni
) encoded as a DAG can be translated

into an equivalent formula in LTL(U, S) encoded as a DAG over the proposi-
tional variables p1, . . . , pni

. Since O1, . . . ,Ok and their definition in LTL(U, S)
are constant of LTL(U, S,O1, . . . ,Ok) we obtain a translation in polynomial-time
(with our definition for the size of formulae).
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6.2 A family of satisfiability problems

The satisfiability problem for LTL(U, S) asks for the existence of a model for
a given formula. A natural variant of this problem consists in fixing the length
of the models in advance as for LTL. The satisfiability problem for LTL(U, S)
over α-models, noted SAT(α,LTL(U, S)), is defined as follows: given a formula
φ in LTL(U, S), is φ satisfiable over an α-model? In this subsection we prove
that SAT(α,LTL(U, S)) is in pspace for every countable ordinal α. First we
consider the case of ordinals strictly less than ωω. Recall that for every α < ωω

there is a formula defα in LTL(U, S) such that for every β-model σ, we have
σ, 0 |= defα iff β = α.

Corollary 15. For every α < ωω, the problem SAT(α,LTL(U, S)) is in pspace.

Proof. φ has a α-model iff ψ = φ ∧ defα is satisfiable over the class of ordinals.
Thanks to Lemma 2 and Theorem 13, we obtain the pspace upper bound. ut

Now we consider the case of a countable ordinal α ≥ ωω. Let α′ be the unique
ordinal strictly less than ωω such that α = ωω × γ +α′ for some ordinal γ. Note
that for every k, trunck(α) = trunck(ωk + α′) < ωω. By Lemma 9, φ has an α-
model iff φ has a α|φ|-model with α|φ| = trunc|φ|+2(α) = trunc|φ|+2(ω

|φ|+2 +α′).
Hence, φ has an α-model iff φ∧ defα|φ|

is satisfiable (over the class of countable
ordinals). Since the size of defα|φ|

is polynomial in the size of φ, we derive from
Theorem 13 the following result.

Corollary 16. For every countable α ≥ ωω, the problem SAT(α,LTL(U, S)) is
in pspace.

Corollaries 15, 16 and the arguments similar to the arguments in the proof
of Corollary 14 imply the result below.

Theorem 17. For every finite set {O1, . . . ,Ok} of first-order definable temporal
operators and every countable ordinal α, the satisfiability problem for the logic
LTL(O1, . . . ,Ok) restricted to α-models is in pspace.

Observe that (1) if α is finite, then SAT(α,LTL(O1, . . . ,Ok)) is np-complete
whereas (2) if α is infinite, then pspace-hardness for SAT(α,LTL(U, S)) follows
from the pspace-completeness of SAT(ω,LTL(U, S)).

6.3 Uniform satisfiability

Büchi (see, e.g., [BS73]) has shown that there is a finite amount of data con-
cerning any countable ordinal that determines its monadic theory.

Definition 18 (Code of an ordinal). Let α be a countable ordinal and let m
be in [1, ω].

1. Write α = ωmα′ + ζ with ζ < ωm (this can be done in a unique way), and
let

pm(α) :=

{

−2 if α′ = 0
−1 if 0 < α′ < ω1

.
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2. If ζ 6= 0, write ζ =
∑

i≤n ω
n−i · an−i where ai ∈ ω for i ≤ n and an 6= 0

(this can be done in a unique way), and let tm(α) := (an, . . . , a0). If ζ = 0,
let t(α) = −3.

3. The m-code of α is the pair (pm(α), tm(α)).

The following is implicit in [BS73].

Theorem 19 (Code Theorem). There is an algorithm that, given a monadic
second-order sentence φ and the ω-code of a countable ordinal α, determines
whether 〈α,<〉 |= φ.

Lemma 9 can be rephrased as “the (|φ|+ 2)-code of an ordinal α determines
whether φ has a model of length α”.

Let C = (b, an, . . . a0) be an m-code. Its size is defined as n+a0+a1+· · ·+an.
It is clear that form1 < m2 them2-code of an ordinal determines itsm1-code and
there is a linear time algorithm, that given m2-code of an ordinal and m1 < m2

computes the m1-code of the ordinal.
The arguments used in the proof of Corollary 16 show the following theorem.

Theorem 20 (Uniform Satisfiability).

(I) There is a polynomial-space algorithm that, given an LTL(U, S) formula φ

and the ω-code of a countable ordinal α, determines whether φ has an α-
model.

(II) There is a polynomial-space algorithm that, given an LTL(U, S) formula φ
and the (|φ|+2)-code of a countable ordinal α, determines whether φ has an
α-model.

7 Related work

In this section, we compare our results with those from the literature. Because
of lack of place, we omit to cite works in which models of length higher than ω
are considered for formal verification of computer systems, see e.g. [GW94].

7.1 Comparison with Rohde’s thesis

In [Roh97], it is shown that an uniform satisfiability problem for temporal logic
with until (and without since) can be solved in exponential-time. The inputs of
this problem are a formula in LTL(U) and the representation of an ordinal. The
satisfiability problem is also shown in exptime. In order to obtain this upper
bound, formulae are shown equivalent to alternating automata and a reduction
from alternating automata into a specific subclass of non-deterministic automata
is given. Finally, a procedure for testing nonemptiness is provided. Here are the
similarities between [Roh97] and our results.

1. We follow an automata-based approach and the class of non-deterministic
automata in [Roh97] and ours have a structured set of locations and limit
transitions use elements that are true from some position.
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2. Existence of α-paths in the automata depends on some truncation of α.
3. The logical decision problems can be solved in exponential-time.

However, our work improves considerably some results from [Roh97].

1. Our temporal logic includes the until and since operators (instead of until
only) and it is therefore as expressive as first-order logic.

2. We establish a tight pspace upper bound (instead of exptime) thanks to
the introduction of a class of simple ordinal automata.

3. Our proofs are much shorter and transparent (instead of the lengthy devel-
opments from [Roh97]).

Consequently, the developments from [Roh97] and ours follow the same ap-
proach with different definitions for automata, different intermediate lemmas
and distinct final complexity bounds. On the other hand, the structure of the
whole proof to obtain the main complexity bounds is similar.

7.2 Comparison with Reynolds’ results

Even though the results for linear-time temporal logics from [Rey03,Rey] involve
distinct models, our automata-based approach has similarities with these works
that uses a different proof method, namely mosaics. Indeed, equivalence classes
of the relation ∼ between runs of length a successor ordinal roughly correspond
to mosaics from [Rey03]. We recall the main results below.

Theorem 21. (I) The satisfiability problem for the temporal logic with until
and since over the reals is pspace-complete. (II) The satisfiability problem for
LTL(U) over the class of all linear orders is pspace-complete.

The proofs in [Rey03,Rey] are much more involved than our proofs since the
orders are more complex than the class of ordinals. Unfortunately, we do not
understand these proofs fully and find it difficult to compare to our proof.

7.3 Quantitative temporal operators

In this section, we show that the main results from [DN07] are subsumed by
the current paper. We also solve an open problem from [Cac06,DN07]. For every
fixed countable ordinal α ≤ ω, let us introduce the logic LTL(Oα) where the set
of temporal operators Oα is defined as follows: {Xβ : β < ωα} ∪ {Uβ : β ≤ ωα}.
The models of LTL(Oα) as those of LTL(U, S) and the formulae of LTL(Oα) are
precisely defined by: φ ::= p | ¬φ | φ1 ∧ φ2 | Xβφ | φ1U

β′

φ2. The size
of a formula φ is the number of subformulae occurring in φ plus the sum of all
the natural numbers occurring in φ either as a coefficient or as an exponent of
ω. The satisfaction relation is inductively defined below where σ is a model for
LTL(Oα) (we omit the obvious clauses):

– σ, β |= Xβ′

φ iff β + β′ is a position of σ and σ, β + β′ |= φ,
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– σ, β |= φ1U
β′

φ2 iff there is 0 < γ < β′ such that β + γ is a position of σ,
σ, β + γ |= φ2 and for every 0 < γ′ < γ, we have σ, β + γ′ |= φ1.

The satisfiability problem for LTL(Oα) consists in determining, given a for-
mula φ, whether there is a model σ such that σ, 0 |= φ. The main results
of [Cac06,DN07] are the following: for every k ≥ 1, the satisfiability problem for
LTL(Ok) restricted to models of length ωk is pspace-complete and LTL(Oω)
restricted to models of length ωω is decidable.

Observe that LTL(Ok) cannot express the temporal operator U over the class
of countable ordinals but it can do it on models of length ωk. Hence, each logic
LTL(Ok) is less expressive than LTL(U, S).

Moreover, it is easy to show that for every α ≤ ω, the logic LTL(Oα) is
expressive equivalent (over the class of countable ordinals) to its sublogic over
the following set O′

α of temporal operators:

O′
α = {Xωi

: ωi < ωα, i ∈ N} ∪ {Uωβ

: ωβ ≤ ωα, β ≤ ω}.

This set is finite when α is finite. Moreover, there is a linear time (and logarithmic
space) meaning preserving translation from LTL(Oα) into LTL(O′

α).
We obtain alternative proofs for known results and we get new results.

Theorem 22. For every k ≥ 1,

(I) the satisfiability problem for LTL(Ok) over ωk-models is in pspace,
(II) the satisfiability problem for LTL(O′

k) restricted to ωk-models is pspace-
complete,

(III) for every countable infinite ordinal α, the satisfiability problem for LTL(O′
k)

restricted to α-models is pspace-complete.

(III) is an instance of Theorem 17. (II) is an instance of (III). (I) can be shown
by observing that there is logarithmic space meaning preserving translation from
LTL(Ok) to LTL(O′

k). (I) is the main result of [DN07] with the unary encoding
of natural numbers occurring in ordinal expressions.

Finally, the corollary below improves the non-elementary bounds obtained
in [Cac06,DN07] for LTL(Oω) by reducing this temporal logic to the monadic
second order logics, and then to the Buchi ordinal automata.

Corollary 23. Satisfiability for LTL(Oω) over the class of ωω-models is pspace-
complete.

8 Conclusion

In the paper, we have shown that the linear-time temporal logic with until and
since over the class of ordinals, namely LTL(U, S) has a pspace-complete satis-
fiability problem. Thanks to Kamp’s theorem [Kam68], we know that LTL(U, S)
is a fundamental temporal logic since it is as expressive as first-order logic over
the class of ordinals. In order to establish this tight complexity characterization,
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we have introduced the class of simple ordinal automata. This class of automata
is more structured than usual ordinal automata and the sets of locations have
some structural properties, typically it is a subset of the powerset of some set
(herein called the basis). As a consequence, we are also able to improve some
results from [Roh97,DN07]. For instance the uniform satisfiability problem is
pspace-complete and we obtain alternative proofs for results in [DN07].

Extensions of our results include that the satisfiability problem for the lan-
guage LTL(O1, . . . ,Ok) where the Ois form a finite set of MSO definable tem-
poral operators is in pspace by adapting the developments from [VW94] and
showing that our simple ordinal automata augmented with alphabet has the ex-
pressive power of standard ordinal automata. Furthermore, our results can be
extended to scattered linear orderings, see e.g. [BC07]. Indeed, one should add
right limit transitions, using the terminology from [BC07] and adapt the devel-
opments herein.

Acknowledgments: We would like to thank the anonymous referees for
helpful suggestions and remarks.
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