A Formal Analysis of Authentication in the TPM
(extended abstract)

Stéphanie Delaurle Steve Kremék, Mark D. Ryarf, and Graham Stekl

1SV, ENS Cachan & CNRS & INRIA Saclalje-de-France, France
2School of Computer Science, University of Birmingham, UK

1 Introduction

The Trusted Platform ModuleTPM) is a hardware chip designed to enable commodity computers t
achieve greater levels of security than is possible in soi#valone. To this end, tHEPM provides a
way to store cryptographic keys and other sensitive dattsishielded memory. Through its API, one
can use those keys to achieve some security goals. Ther@@maiBion TPMs currently in existence,
mostly in high-end laptops, but now increasingly in desktapd servers. ThEPM specification is an
industry standard [11] and an ISO/IEC standard [9] (more fh@0 pages) coordinated by the Trusted
Computing Group.

Several papers have appeared describing systems thatdeuweel PM to create secure applications,
but most of these assume that theM API behaves correctly and provides the high-level security
properties required [6, 7]. Lower level analyses of TfeM API also exist and several vulnerabilities
in the TPM API have been discovered: offline dictionary attacks on theswords or ‘authdata’ used
to secure access to keys [5], attacks exploiting the fadttheasame authdata can be shared between
usersl[4], an attacker can also in some circumstancedilteajely obtain a certificate on a TPM key of
his choice[[8], ... These attacks highlight the necessitiphal analysis of the API specification. We
perform such an analysis in this work, focusing on the meishas for authentication and authorisation.

2 Our Contributions

We model a collection of foulfPM commands, concentrating on the authentication mechanigvas
identify security properties which we will argue are cehtoacorrect and coherent design of the API.
We formalise these properties for our fragment in the agpdiecalculus([1], and usingroVerif [3], we
rediscover some known attacks on the APl and some new \@ar&tin them. We propose some fixes to
the API, partly inspired by ongoing discussions in the TedsEtomputing Group, and prove our security
properties for the modified API.

One of the difficulties in reasoning about security APIs sastihat of theTPM is non-monotonic
state If the TPM is in a certain stats, and then a command is successfully executed, then tyypite|
TPM ends up in a statg - s. Commands that require it to be in the previous ssatél no longer work.

We choseProVerif after first experimenting with thAVISPA tool suite [2], which provides support for
mutable global state. However, of tA¥ISPA back ends that support state, OFMC and CL-AtSe require
concrete bounds on the number of command invocations asd frences to be given. It is possible to
avoid this restriction using SATMC, but SATMC performed plgan our experiments

Tools such a®roVerif are not optimised to work with non-monotonic state. We asklthis restric-
tion by introducing the assumption that only one commandkeceted in each authorisation session.

© S. Delaune, S. Kremer, M.D. Ryan, and G. Steel
This work is licensed under the
Creative Commoris Attribution License.

Submitted to:
SecCo 2010

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 A Formal Analysis of Authentication in the TPM

This assumption appears to be quite reasonable. IndeedPiieimposes the assumption itself when-
ever a command introduces new authdata. Moreover, to@sliiV/J [10] that provide software-level
APIs also implement the assumption. Again to avoid non-rtmmoity, we do not allow keys to be
deleted from the memory of thEPM. However, we allow an unbounded number of keys to be loaded.

The TPM specification does not detail explicitly which security pecties are intended to be guar-
anteed, although it provides some hints. For example, teeifspation [11, Part I, p.60] states that:
“The design criterion of the protocols is to allow for ownepsuthentication, command and parame-
ter authentication and prevent replay and man in the middiacks” We will formalise these security
properties asorrespondence properti¢lsat state:

1. Ifthe TPM has executed a certain command, then a user in possessimrefévant authdata has
previously requested the command.

2. If a user considers that tle?M has executed a certain command, then eithellthil really has
executed the command, or an attacker is in possession daflthent authdata.

The first property expresses authentication of user commamt! is achieved by the authorisation
HMACSs that accompany the commands. The second one expr@stestication of thdPM, and is
achieved by the HMACs provided by tA&>M with its answer. We argue that tAid>M certainly aims at
achieving these properties, as otherwise there would beead for the HMAC mechanism. The above
mentioned properties can be expressed by injective canelgmce properties. In all experiments, the
security properties under test are the correspondencertiepexplained above.

Our methodology was to first study some core key managememinemds in isolation in order to
analyse the weakness of each command. This leads us to prepo® fixes for these commands. Then
we carried out an experiment where we consider the commBRNE CertifyKey, TPM_CreateWrapKey,
TPM_LoadKey2, andTPM_UnBind together. We consider the fixed version of each of these caordsna
and we show in our last experiment (Experiment 10) that tlcariy properties are satisfied for a sce-
nario that allows:

e an attacker to load his own keys inside thieM, and

e an honest user to use the same authdata for different keys.

All the files for our experiments are available on line at:
http://www.lsv.ens-cachan.fr/~delaune/TPM.

In our first six experiments, we model the commanelM_CertifyKey in isolation. Then, in Ex-
periments 7-9, we model the commang&M _CreateWrapKey only. Lastly, in Experiment 10, we con-
sider a model where the command®M _CertifyKey, TPM_CreateWrapKey, TPM _LoadKey2, and
TPM_UnBind are taken into account.

3 Conclusion and Future Work

In this work, we proposed a detailed modelling of a fragmdnthe TPM in the applied pi calculus.
We model core security properties as correspondence piegpand use the todtroVerif to automate
our security analysis. We were able to rediscover severakkrattacks and some new variants of these
attacks.

http://www.lsv.ens-cachan.fr/~delaune/TPM

S. Delaune, S. Kremer, M.D. Ryan, and G. Steel 3

As future work we foresee to extend our model with more conteasuch as the key migration
part. We also plan to include a modelling of the TPM’s regsighe PCRs) which allow to condition
some commands on the current value of a register. PCRs ari@alondnen using the TPM for checking
the integrity of a system. Modelling the PCRs and the commdadmanipulating these registers for
automated verification seems to be a challenging task.

Acknowledgments. Mark Ryan gratefully thanks Microsoft and Hewlett-Packéodinteresting dis-
cussions and financial support that contributed to thisarese

References

[1] M. Abadi and C. Fournet. Mobile values, new names, andigecommunication. liProc. 28th Symposium
on Principles of Programming Languages (POPL’0fiages 104—-115. ACM Press, 2001.

[2] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compsy J. Céllar, P. Drielsma, P.-C. &m,
O. Kouchnarenko, J. Mantovani, S.ddersheim, D. von Oheimb, M. Rusinowitch, J. Santiago, MuTu
ani, L. Vigarp, and L. Vigneron. The AVISPA tool for the automated validatof internet security protocols
and applications. Ir€omputer Aided Verification, 17th International Conferen€AvV 2005, Edinburgh,
Scotland, UK, July 6-10, 2005, Proceedingages 281-285, 2005.

[3] B. Blanchet. An efficient cryptographic protocol verifieased on prolog rules. [h4th IEEE Computer
Security Foundations Workshop (CSFW’'(dages 82—-96. IEEE Computer Society Press, 2001.

[4] L. Chen and M. Ryan. Attack, solution and verification &irared authorisation data in TCG TPM. In
P. Degano and J. D. Guttman, editdfsrmal Aspects in Security and Trusblume 5983 ol ecture Notes
in Computer Scienggpages 201-216. Springer, 2009.

[5] L. Chen and M. D. Ryan. Offline dictionary attack on TCG TRiak authorisation data, and solution.
In D. Grawrock, H. Reimer, A. Sadeghi, and C. Vishik, editdfature of Trust in Computingvieweg &
Teubner, 2008.

[6] A. Datta, J. Franklin, D. Garg, and D. Kaynar. A logic ofcsee systems and its application to trusted
computing. InProceedings of 30th IEEE Symposium on Security and Prjyzages 221-236, May 2009.

[7] Y. Gasmi, A.-R. Sadeghi, P. Stewin, M. Unger, and N. Asokeyond secure channels. $galable Trusted
Computing (STC’07)pages 30—40, November 2007.

[8] S. Girgens, C. Rudolph, D. Scheuermann, M. Atts, and R. PlageurBgevaluation of scenarios based on
the TCG’s TPM specification. IESORICSpages 438-453, 2007.

[9] ISO/IEC PAS DIS 11889: Information technology — Secutéchniques — Trusted platform module.
[10] L. Sarmenta. TPM/J developer’s guide. Massachusbkgitisute of Technology.

[11] Trusted Computing Group. TPM Specification version. IParts 1-3, revision 103.http://www.
trustedcomputinggroup.org/resources/tpm main specification, 2007.

http://www.trustedcomputinggroup.org/resources/tpm_main_specification
http://www.trustedcomputinggroup.org/resources/tpm_main_specification

	Introduction
	Our Contributions
	Conclusion and Future Work

