
Verifying Properties of Electronic Voting Protocols ∗

Stéphanie Delaune

LSV, France Télécom R&D

ENS Cachan, CNRS, France

delaune@lsv.ens-cachan.fr

Steve Kremer

LSV, INRIA

ENS Cachan, CNRS, France

kremer@lsv.ens-cachan.fr

Mark Ryan

School of Computer Science

Univ. of Birmingham, UK

M.D.Ryan@cs.bham.ac.uk

Abstract

In this paper we report on some recent work to for-
mally specify and verify electronic voting protocols. In
particular, we use the formalism of the applied pi calcu-
lus: the applied pi calculus is a formal language similar
to the pi calculus but with useful extensions for mod-
elling cryptographic protocols. We model several im-
portant properties, namely fairness, eligibility, privacy,
receipt-freeness and coercion-resistance. Verification
of these properties is illustrated on two cases studies
and has been partially automated using the Blanchet’s
ProVerif tool.

1 Introduction

Electronic voting promises the possibility of a con-
venient, efficient and secure facility for recording and
tallying votes. It can be used for a variety of types of
elections, from small committees or on-line communi-
ties through to full-scale national elections. But this
convenience comes with the possibility of large-scale
abuse and fraud. The procedures for detecting and
avoiding fraud in paper-based systems, such as pub-
lic counting of votes and monitored transport of ballot
boxes, do not work when everything is done electron-
ically. The electronic voting machines used in recent
US elections have been fraught with problems [15].

Verification of electronic voting systems is there-
fore paramount, in order that voters can have the
same or better confidence in electronic systems as they
have in paper-based systems. Researchers have pro-
duced a plethora of formal protocols for electronic vot-
ing [8, 12, 3, 13, 9, 14, 17]. They offer the possibility
of abstract analysis of the protocol against formally-
stated properties.

∗This work has been partly supported by the RNTL project

PROUVÉ 03V360 and the ACI-SI Rossignol.

Among the properties which electronic voting pro-
tocols may satisfy are the following:

Fairness: no early results can be obtained which could
influence the remaining voters.

Eligibility: only legitimate voters can vote, and only
once.

Privacy: the system cannot reveal how a particular
voter voted.

Receipt-freeness: a voter does not gain any infor-
mation (a receipt) which can be used to prove to
a coercer that she voted in a certain way.

Coercion-resistance: a voter cannot cooperate with
a coercer to prove to him that she voted in a cer-
tain way.

Individual verifiability: a voter can verify that her
vote was really counted.

Universal verifiability: the published outcome re-
ally is the sum of all the votes.

Such security protocols are notoriously difficult to
design and are known to be extremely error-prone. For-
mal analysis is crucial to assess their security. For in-
stance, in other domains, security protocols which were
thought to be correct for several years have, by means
of formal verification techniques, been discovered to
have major flaws [18, 6].

In order to perform formal analysis, the security
properties, usually stated in natural language, need to
be formalised. In this paper, we describe our work
of two previously published papers [16, 10] in which
we formalise some of these properties in a rigorous
language, and verify whether they hold on particular
protocols. We model them in the applied pi calcu-
lus [2], which has the advantages of being based on
well-understood concepts. The applied pi calculus has
a family of proof techniques which we can use, is sup-
ported by the ProVerif tool [4], and has been used
to analyse a variety of security protocols in other do-
mains [1, 11].

Outline of the paper. In Section 2, we describe
two electonic voting protocols. In Section 3 we recall
some notions of the applied pi calculus and in Section 4
we briefly discuss how such protocol can be modelled
in this framework. Finally, in Section 5, we formalise
some of the security properties given in the introduc-
tion and we discuss whether they hold on the two elec-
tronic voting schemes introduced in Section 2.

2 Electronic Voting Protocols

There are several kinds of protocols proposed for
electroning voting [20]. For example, in protocols based
on blind signature schemes [8, 12], the voter first ob-
tains a token, which has been blindly signed by the ad-
ministrator and which is only known to the voter her-
self. She later sends her vote anonymously, with this
token as proof of eligibility. In schemes using homo-
morphic encryption [3, 13], the voter cooperates with
the administrator in order to construct an encryption
of her vote. The administrator then exploits homomor-
phic properties of the encryption algorithm to compute
the encrypted tally directly from the encrypted votes.
In yet other schemes [9], elaborate systems of MIX-nets
are employed to guarantee voter privacy.

In this section, we describe two of these protocols: a
protocol due to Fujioka et al. [12] which employs blind
signatures and a protocol due to Lee et al. [17] which
uses designated verifier proofs of re-encryption.

2.1 Fujioka et al., 1992

We give an informal description of the Fujioka et al.
voting protocol [12]. The protocol involves voters, an
administrator, verifying that only eligible voters can
cast votes, and a collector, collecting and publishing
the votes. In comparison with authentication proto-
cols, the protocol also uses some unusual cryptographic
primitives, such as secure bit-commitment and blind
signatures. Moreover, it relies on anonymous channels.

In a first phase, the voter gets a signature on a com-
mitment to his vote from the administrator. To ensure
privacy, blind signatures [7] are used, i.e. the adminis-
trator does not learn the commitment of the vote.

• Voter V selects a vote v and computes the com-
mitment x = ξ(v,r) using the commitment scheme
ξ and a random key r;

• V computes the message e = χ(x, b) using a blind-
ing function χ and a random blinding factor b;

• V digitally signs e and sends his signature σV (e)
to the administrator A together with his identity;

• A verifies that V has the right to vote, has not
voted yet and that the signature is valid; if all
these tests hold, A digitally signs e and sends his
signature σA(e) to V ;

• V now unblinds σA(e) and obtains y = σA(x), i.e.
a signed commitment to V ’s vote.

The second phase is the actual voting phase.

• V sends y to the collector C using an anonymous
channel;

• C checks correctness of the signature y and, if the
test succeeds, enters (ℓ, x, y) onto a list as an ℓ-th
item.

The last phase starts, once the collector decides that
he received all votes, e.g. after a fixed deadline. In this
phase the voters reveal the random key r which allows
C to open the votes and publish them.

• C publishes the list (ℓi, xi, yi) of commitments he
obtained;

• V verifies that his commitment is in the list and
sends ℓ, r to C via an anonymous channel;

• C opens the ℓ-th ballot using the random r and
publishes the vote v.

Note that we need to separate the voting phase into
a commitment phase and an opening phase to avoid
releasing partial results of the election.

2.2 Lee et al., 2003

We present a simplified version of the Lee et al. pro-
tocol [17]. One of the main advantages of this protocol
is that it is vote and go: voters need participate in the
election only once, in contrast with [12], where all vot-
ers have to finish a first phase before any of them can
participate in the second phase.

We simplified the protocol in order to concentrate on
the aspects that are important with respect to proper-
ties such as receipt-freeness and coercion-resistance. In
particular we do not consider distributed authorities.
The protocol relies on two less usual cryptographic
primitives: re-encryption and designated verifier proofs
(DVP) of re-encryption. We start by explaining these
primitives.

A re-encryption of a ciphertext (obtained using a
randomized encryption scheme) changes the random
coins, without changing or revealing the plaintext. In
the ElGamal scheme for instance, if (x, y) is the ci-
phertext, this is simply done by computing (xgr, yhr),

2

where r is a random number, and g and h are the sub-
group generator and the public key respectively. Note
that neither the creator of the original ciphertext nor
the person re-encrypting knows the random coins used
in the re-encrypted ciphertext, for they are a function
of the coins chosen by both parties. In particular, a
voter cannot reveal the coins to a potential coercer who
could use this information to verify the value of the
vote, by ciphering his expected vote with these coins.

A DVP of the re-encryption proves that the two ci-
phertexts contain indeed the same plaintext. However,
a designated verifier proof only convinces one intended
person, e.g., the voter, that the re-encrypted cipher-
text contains the original plaintext. In particular this
proof cannot be used to convince the coercer.

Our simplified protocol can be described in three
steps.

1. Firstly, the voter encrypts his vote with the col-
lector’s public key, signs the encrypted vote and
sends it to an administrator on a private channel.
The administrator checks whether the voter is a le-
gitimate voter and has not voted yet. Then the ad-
ministrator re-encrypts the given ciphertext, signs
it and sends it back to the voter. The administra-
tor also provides a DVP that the two ciphertexts
contain indeed the same plaintext.

2. Then, the voter sends (via an anonymous channel)
the re-encrypted vote, which has been signed by
the administrator to the public board.

3. Finally, the collector checks the administrator’s
signature on each of the votes and, if valid, de-
crypts the votes and publishes the final results.

3 The applied pi calculus

The applied pi calculus [2] is a language for describ-
ing concurrent processes and their interactions. It is
based on the pi calculus, but is intended to be less
pure and therefore more convenient to use. Properties
of processes described in the applied pi calculus can
be proved by employing manual techniques [2], or by
automated tools such as ProVerif [4]. As well as reach-
ability properties which are typical of model checking
tools, ProVerif can in some cases prove that processes
are observationally equivalent [5]. This capability is
important for privacy-type properties such as those we
study here. The applied pi calculus has been used to
study a variety of security protocols, such as those for
private authentication [11] and for fast key establish-
ment [1].

To describe processes in the applied pi calculus, one
starts with a set of names (which are used to name
communication channels or other constants), a set of
variables, and a signature Σ which consists of the func-
tion symbols which will be used to define terms. In
the case of security protocols, typical function symbols
will include enc for encryption, which takes plaintext
and a key and returns the corresponding cipher text,
and dec for decryption, taking cipher text and a key
and returning the plaintext. One can also describe the
equations which hold on terms constructed from the
signature, such as

dec(enc(x, k), k) = x.

Terms are defined as names, variables, and function
symbols applied to other terms. Terms and function
symbols are sorted, and of course function symbol ap-
plication must respect sorts and arities. Modelling bit
commitment and blind signatures may also be done
by choosing function symbols and defining appropriate
equations.

Plain processes are built up in a similar way to pro-
cesses in the pi calculus, except that messages can con-
tain terms (rather than just names). In the grammar
described below, M and N are terms, n is a name, x a
variable and u is a metavariable, standing either for a
name or a variable.

P, Q, R :=
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
if M = N then P else Q conditional
in(u, x).P message input
out(u, N).P message output

In the applied pi calculus, there is also a notion of
extended processes A which generalises plain processes
P . Details are not given here (but may be found in [2]
and also in our papers [16, 10]).

Example 1 Consider the following process P :

νs, k.(out(c1, enc(s, k)) | in(c1, y).out(c2, dec(y, k))).

The first component publishes the message enc(s, k)
by sending it on c1. The second receives a message
on channel c1, uses the secret key k to decrypt it, and
forwards the resulting plaintext on c2.

The operational semantics of processes in the ap-
plied pi calculus is defined by structural rules defin-
ing two relations: structural equivalence, noted ≡ and

3

internal reduction, noted →. Structural equivalence,
noted ≡, is the smallest equivalence relation on ex-
tended processes that is closed under α-conversion
on names and variables, by application of evaluation
contexts—an evaluation context is an extended pro-
cess with a hole instead of some extended process—
and satisfying some further basic structural rules such
as A | 0 ≡ A, associativity and commutativity of
|, etc. Internal reduction → is the smallest relation
on extended processes closed under structural equiva-
lence and application of evaluation contexts such that
out(a, x).P | in(a, x).Q → P | Q and for any ground
terms M and N , whenever M 6=E N , we have

if M = M then P else Q → P
if M = N then P else Q → Q.

Applied pi calculus processes evolve by executing
the actions mentioned above. We write A → A′ to
mean that the process A evolves to A′ by one step,
and A →∗ A′ for finitely many steps.

Example 2 Consider the process P described in ex-
ample 1. We have P → νs, k.out(c2, s). This internal
reduction expresses a communication on the channel c1

between the two components of the process P . In the re-
mainder of the process, y is replaced by enc(s, k). Note
that we have assumed that dec(enc(x, y), y) = x.

Many properties of security protocols (including
some of the properties we study in this paper) are for-
malised in terms of observational equivalence (≈) be-
tween processes. Intuitively, processes which are ob-
servationally equivalent cannot be distinguished by an
outside observer, no matter what sort of test he makes.
This is formalised by saying that the processes are in-
distinguishable under any context, i.e., no matter in
what environment they are executed.

Advantages and limitations of the applied pi cal-

culus. An advantage of the applied pi calculus is that
we can combine powerful (hand) proof techniques from
the applied pi calculus with automated proofs provided
by Blanchet’s ProVerif tool. Moreover, the verification
is not restricted to a bounded number of sessions and
we do not need to explicitly define the adversary. We
only give the equational theory describing the intruder.
Generally, the intruder has access to any message sent
on public, i.e. unrestricted, channels. These public
channels model the network. Note that all channels
are anonymous in the applied pi calculus. Unless the
identity or something like the IP address is specified ex-
plicitly in the conveyed message, the origin of a message
is unknown. This abstraction of a real network is very

l e t proces sV=
(* his private key *)

i n (skvCh , skv) .
(* public keys of administrators *)

i n (pkaCh , pubka) .
i n (pkcCh , pubkc) .
ν r .
l e t e=penc ryp t (v , pubkc , r) i n

out (chA , (pk (skv) , e , s i g n (e , skv))) .
i n (chA ,m2) .
l e t (re , sa , dvpV)=m2 i n

i f checkdvp (dvpV , e , re , pk (skv))=ok
then i f ch e c k s i g n (re , sa , pubka)=ok
then out (ch , (re , sa))

Process 1. Voter process

appealing, as it avoids having us to model explicitly an
anonymiser service. However, we stress that a real im-
plementation needs to treat anonymous channels with
care. Another advantage of the applied pi calculus is
its ability to model sophisticated cryptographic primi-
tives (such as those used in the two example protocols)
by means of the equational theory. One limitation con-
cerns modelling non-determinism or probabilities, e.g.
in MIX-nets [9]. In the applied pi calculus, all non-
determinism is controlled by the attacker. If MIX-nets
are modelled non-deterministically, this gives the at-
tacker unreasonably strong powers.

4 Modelling Voting Protocols

Before defining the properties, we need to define
what is an electronic voting protocol in applied pi cal-
culus. Different voting protocols often have substantial
differences. However, we believe that a large class of
voting protocols can be represented by processes cor-
responding to the following structure.

Definition 1 A voting process is a closed plain process

VP ≡ νñ.(V σ1 | · · · | V σn | A1 | · · · | Am).

The V σi are the voter processes, the Ajs the differ-
ent election authorities and the ñ are channel names.
We also suppose that v ∈ dom(σi) is a variable which
refers to the value of the vote and at some moment the
outcome of the vote is made public.

We also define an evaluation context S which is as
VP, but has a hole instead of two of the V σi.

As an example, the voter process of the Lee et al.
protocol is described in Process 1. First, each voter
obtains his secret key from the PKI as well as the public

4

keys of the election authorities. Then, a fresh random
number is generated to encrypt his vote with the public
key of the collector. Next, he signs the result and sends
it on a private channel to the administrator. If the
voter has been correctly registered, he obtains from
the administrator, a re-encryption of his vote signed
by the administrator together with a designated verifier
proof of the fact that this re-encryption has been done
correctly. If this proof is correct, then the voter sends
his re-encrypted vote signed by the administrator to
the collector.

5 Formalising Properties

We have analysed five major properties of electronic
voting protocols: fairness, eligibility, privacy, receipt-
freeness, and coercion resistance. The first two of these
can be directly verified using ProVerif. The tool al-
lows us to verify standard secrecy properties as well
as resistance against guessing attacks, defined in terms
of equivalences. But for privacy, receipt-freeness and
coercion-resistance, we need to rely on the hand-proof
techniques introduced in [2]. In the case of the last of
our properties, we had to extend the applied pi calculus
with a new notion which we call adaptive equivalence.
We believe that the way we formalise and verify the
properties increases the understanding of the proper-
ties themselves and also the way to model them.

5.1 Fairness

Fairness is the property that ensures that the proto-
col does not leak any votes before the opening phase.
We discuss fairness using the Fujioka et al. protocol as
an example. We model fairness as a secrecy property:
it should be impossible for an attacker to learn a vote
before the opening phase, i.e., before the beginning of
phase 2.

Standard secrecy. Checking standard secrecy, i.e.
secrecy based on reachability, is the most basic prop-
erty ProVerif can check. We request ProVerif to check
that the variable v representing the vote cannot be de-
duced by the attacker. ProVerif directly succeeds to
prove this result.

Strong secrecy. We also verified strong secrecy in
the sense of [5]. Intuitively, strong secrecy is verified if
the intruder cannot distinguish between two processes
where the secret changes. ProVerif directly succeeds to
prove strong secrecy.

Corrupt administrator. We have also verified
standard secrecy and strong secrecy for the Fujioka et
al. protocol in the presence of a corrupt administrator.
A corrupt administrator is modeled by outputting the
administrator’s secret key on a public channel. Hence,
the intruder can perform any actions the administra-
tor could have done. Again, the result is positive: the
administrator cannot learn the votes of a honest voter,
before the committed votes are opened. Note that we
do not need to model a corrupt collector, as the col-
lector never uses his secret key, i.e. the collector could
anyway be replaced by the attacker.

5.2 Eligibility

Eligibility is the property verifying that only legiti-
mate voters can vote, and only once. Again, we discuss
this property for the Fujioka et al. protocol. The way
we verify the first part of this property is by giving the
attacker a challenge vote. We modify the processes in
two ways: (i) the attacker is not registered as a legiti-
mate voter; (ii) the collector tests whether the received
vote is the challenge vote and outputs the restricted
name attack if the test succeeds. Verifying eligibility is
now reduced to secrecy of the name attack. ProVerif
succeeds in proving that attack cannot be deduced by
the attacker.

If we register the attacker as a legitimate voter, the
tool finds the trivial attack, where the intruder votes
challenge vote. Similarly, if a corrupt administrator is
modeled then the intruder can generate a signed com-
mitment to the challenge vote and insert it.

5.3 Privacy

The privacy property aims to guarantee that the
link between a given voter V and his vote v remains
hidden. Anonymity and privacy properties have been
successfully studied using equivalences. However, the
definition of privacy in the context of voting protocols
is rather subtle. While generally most security prop-
erties should hold against an arbitrary number of dis-
honest participants, arbitrary coalitions do not make
sense here. Consider for instance the case where all but
one voter are dishonest: as the results of the vote are
published at the end, the dishonest voter can collude
and determine the vote of the honest voter. A clas-
sical trick for modeling anonymity is to ask whether
two processes, one in which V1 votes and one in which
V2 votes, are equivalent. However, such an equivalence
does not hold here as the voters’ identities are revealed
(and they need to be revealed at least to the adminis-
trator to verify eligibility). In a similar way, an equiv-

5

alence of two processes where only the vote is changed
does not hold, because the votes are published at the
end of the protocol. To ensure privacy we need to hide
the link between the voter and the vote and not the
voter or the vote itself.

Definition 2 A voting protocol respects privacy if

S[VA{
a/v} | VB{b/v}] ≈ S[VA{

b/v} | VB{a/v}].

The intuition is that if an intruder cannot detect
if arbitrary honest voters VA and VB swap their votes,
then in general he cannot know anything about how VA

(or VB) voted. Note that this definition is robust even
in situations where the result of the election is such
that the votes of VA and VB are necessarily revealed:
for example, if the vote is unanimous, or if all other
voters reveal how they voted and thus allow the votes
of VA and VB to be deduced.

Both the Fujioka et al. and Lee et al. protocols
may be shown to satisfy privacy, but this proof re-
quires to be done by hand. Although ProVerif is capa-
ble of showing observational equivalence in some simple
cases, it is not able to show it in this case.

5.4 Receipt-freeness

We also formalize receipt-freeness using observa-
tional equivalence. However, we need to model the fact
that VA is willing to provide secret information, i.e., the
receipt, to the coercer. We assume that the coercer is in
fact the intruder who, as usual in the Dolev-Yao model,
controls the public channels. To model VA’s communi-
cation with the coercer, we consider that VA executes
a voting process which has been modified: any input
and any freshly generated names are forwarded to the
coercer. Given a process A and a a channel name ch,
we define P ch to be the process like P , but which sends
all of its secrets on the channel ch.

We also need a definition which removes communica-
tion from a processes. Given a process A and a channel
name ch, we define the extended process A\out(ch,·) to
be like the process A, but hiding the ouputs on the
channel ch.

We are now ready to define receipt-freeness. Intu-
itively, a protocol is receipt-free if, for all voters VA, the
process in which VA votes according to the intruder’s
wishes is indistinguishable from the one in which she
votes something else. As in the case of privacy, we
express this as an observational equivalence to a pro-
cess in which VA swaps her vote with VB, in order to
avoid the case in which the intruder can distinguish
the situations merely by counting the votes at the end.
Suppose the coercer’s desired vote is c. Then we define
receipt-freeness as follows.

Definition 3 A voting protocol is receipt-free if there
exists a closed plain process V ′, satisfying the two con-
ditions below:

• V ′\out(chc,·) ≈ VA{
a/v}, and

• S[VA{
c/v}

chc | VB{a/v}] ≈ S[V ′ | VB{c/v}].

V ′ is a process in which voter VA votes a but com-
municates with the coercer C in order to feign coop-
eration with him. Thus, the equivalence says that the
coercer cannot tell the difference between a situation
in which VA genuinely cooperates with him in order to
cast the vote c and one in which she pretends to coop-
erate but actually casts the vote a, provided there is
some counterbalancing voter that votes the other way
around. In accordance with intuition, we have formally
shown in [10] that whenever V P is receipt-free, it also
respects privacy.

The Fujioka et al. protocol is known not to satisfy
receipt-freeness [19]. Indeed, anyone who gets to know
the voter’s token can easily find out her vote in the list
published by the collector at the end of the election.

Lee et al. does satisfy that property. To show
receipt-freeness for Lee et al., one needs to construct a
process V ′ which successfully can fake all secrets to a
coercer. The idea is for V ′ to vote a, but when out-
putting secrets to the coercer V ′ prepares all outputs
as if he was voting c. The crucial part is that, using
his private key, he provides a fake dvp stating that the
actual re-encryption of the encryption of vote a is a
re-encryption of the encryption of vote c.

5.5 Coercion-resistance

Coercion-resistance is a stronger property as we give
the coercer the ability to communicate interactively
with the voter and not only receive information. In
this model, the coercer can for instance prepare the
messages he wants the voter to send. As for receipt-
freeness, we are going to modify the voter process.
However, we give the coercer the possibility to provide
the messages the voter should send.

To define coercion resistance, we need to specify a
stronger mode of communication with the attacker. To
this end, given a process P and channel names c1, c2,
we define the process P c1,c2 to be the process which:

• outputs all its secrets on c1;

• accepts inputs on c2 and uses them in its commu-
nication with the voting system.

This means that the attacker gets to see all P ’s secrets
(via c1), and gets to prepare messages which P should
use in the voting process, and send them to P via c2.

6

As a first approximation, we could try to define
coercion-resistance in the following way:

S[VA{
c/v}

c1,c2 | VB{a/v}] ≈ S[V ′ | VB{c/v}].

This definition has an obvious problem as the co-
ercer could oblige VA{

c/v}
c1,c2 to vote c′ 6= c. In that

case, the process VB{c/v} would not counterbalance
the outcome to avoid a trivial way of distinguishing.

To properly define coercion-resistance, we define a
new simulation relation which allows the second voting
process on the right-hand side to dynamically adapt
its vote to correspond to the coercer’s choice. We do
not give the full details here (they may be found in
[10]). The intuition is that adaptive simulation holds
between A and B, written A �a B, if no matter how
the process A is closed and no matter how the environ-
ment reacts, B can be closed, such that the processes
are indistinguishable.

We are now ready to define coercion-resistance.

Definition 4 A voting protocol is coercion-resistant if
there exists a closed extended process V ′ and a (strict)
evaluation context C such that

• S[VA{
c/v}

c1,c2 | VB{a/v}] �a S[V ′ | VB{x/v}],

• νc1, c2.C[VA{
c/v}

c1,c2] ≈ VA{
c/v}

chc,

• νc1, c2.C[V ′]\out(chc,·) ≈ VA{
a/v},

where x is a fresh free variable.

The intuition of this definition is that whenever the
coercer requests a given vote on the left-hand side,
then VB can adapt his vote on the right-hand side
and counter-balance the outcome. However, we need to
avoid the case where V ′ = VA{

c/v}
c1,c2 letting VB vote

a. Therefore we require that when we apply a context
C, intuitively the coercer, requesting VA{

c/v}
c1,c2 to

vote c, V ′ in the same context votes a. There may be
circumstances where V ′ may need not to cast a vote
that is not a (fault attacks).

In accordance with intuition, we have formally
shown that whenever a protocol is coercion-resistant,
it is also receipt-free [10].

Since the Fujioka et al. protocol doesn’t sat-
isfy receipt-freeness, it follows that it doesn’t satisfy
coercion-resistance either. In the case of Lee et al.,
the construction of V ′ is similar to the one for receipt-
freeness. However, for coercion-resistance the coercer
also provides the inputs for the messages to send out. If
the coercer prepares messages corresponding to a given
vote, we fake the outputs as previously and know that
the non-coerced voter will counter-balance the out-
come, by adaptively choosing the same vote. We have

also to provide the context C and to show that the
three equivalences hold.

The first one some subtleties about details of how
the protocol is implemented. The attacker can ob-
serve a difference between both sides if he schedules
the processes so that VA{

c/v}
c1,c2 is delayed on the

left while VB{a/v} is allowed to proceed. If this hap-
pens, we cannot find the substitution for x required for
the adaptive simulation so that VB{x/v} can proceed.
The attacker will observe a difference because VB{a/v}
will send his vote on the left, while VB{x/v} will not.
To prevent this attack, we can make the voters report
their votes along a private channel instead of a public
one This means that the protocol could not be used
over the internet if one wants to guarantee coercion
resistance.

Another way to attack coercion resistance is to use
the fault attacks. Here, the coercer provides a badly
formatted input. The voter should detect this and just
follow the instructions to avoid the fault attack. In-
valid signatures are easy to detect. However, the case
where the first encrypted vote sent to the administra-
tor is an invalid encryption is more difficult to handle
as V ′ cannot detect it. Here we can consider several
cases depending on the details of the implementation,
namely whether decryption is possible on every bit-
string. If so (as in our equational theory), then the
other voter could counterbalance by choosing x to be
the decryption of the given garbage message. At the
tallying stage this would indeed result in an invalid
vote on both sides. If one considers encryption with
integrity checking, which one could model in applied pi
calculus by adding an explicit checking equation, then
this protocol would not be coercion-resistant. This is
because the non-coerced is only allowed to choose the
value of its vote, but in other respects it follows the
protocol and in particular encrypts the chosen vote cor-
rectly. Therefore it cannot mimick the coerced voter
who sends an invalid vote. Thus the collector blocks
when trying to decrypt the vote for the coerced voter,
but not for VB , resulting in an observable difference.

6 Conclusion

The paper describes our recent efforts to formally
specify and verify electronic voting protocols in the
applied pi calculus. Properties such as fairness and
eligibility benefit from automated proofs. For more so-
phisticated anonymity properties, even specifying the
properties is challenging, in particular receipt-freeness
and coercion-resistance. In these cases we rely on hand
proofs and reuse existant proof techniques from the ap-
plied pi calculus. The definition of these properties and

7

their verification on two examples provided interesting
insights.

References

[1] M. Abadi, B. Blanchet, and C. Fournet. Just fast
keying in the pi calculus. In D. Schmidt, edi-
tor, 13th European Symposium on Programming
(ESOP’04), volume 2986 of LNCS, pages 340–354,
Barcelona, Spain, 2004. Springer.

[2] M. Abadi and C. Fournet. Mobile values, new
names, and secure communication. In H. R. Niel-
son, editor, Proceedings of the 28th ACM Sym-
posium on Principles of Programming Languages,
pages 104–115, London, UK, Jan. 2001. ACM.

[3] J. G. Beneloh. Verifiable Secret Ballot Elections.
PhD thesis, Yale University, 1987.

[4] B. Blanchet. An efficient cryptographic protocol
verifier based on prolog rules. In S. Schneider, ed-
itor, 14th IEEE Computer Security Foundations
Workshop, pages 82–96, Cape Breton, Nova Sco-
tia, Canada, 2001. IEEE Comp. Soc. Press.

[5] B. Blanchet. Automatic Proof of Strong Secrecy
for Security Protocols. In IEEE Symposium on Se-
curity and Privacy, pages 86–100, Oakland, Cali-
fornia, May 2004.

[6] R. Chadha, S. Kremer, and A. Scedrov. Formal
analysis of multi-party contract signing. In R. Fo-
cardi, editor, 17th IEEE Computer Security Foun-
dations Workshop, pages 266–279, Asilomar, CA,
USA, June 2004. IEEE Computer Society Press.

[7] D. Chaum. Blind signatures for untraceable pay-
ments. In Advances in Cryptology, Proceedings of
CRYPTO’82, pages 199–203. Plenum Press, 1983.

[8] D. Chaum. Elections with unconditionally-secret
ballots and disruption equivalent to breaking
RSA. In Advances in Cryptology – Eurocrypt’88,
volume 330 of LNCS, pages 177–182. Springer,
1988.

[9] D. Chaum, P. Y. A. Ryan, and S. Schneider.
A practical, voter-verifiable election scheme. In
Proc. 10th European Symposium On Research In
Computer Security (ESORICS’05), volume 3679
of LNCS, pages 118–139, Milan, Italy, 2005.
Springer.

[10] S. Delaune, S. Kremer, and M. D. Ryan. Coercion-
resistance and receipt-freeness in electronic voting.

In 19th Computer Security Foundations Workshop
(CSFW 2006). IEEE Comp. Soc. Press, 2006.

[11] C. Fournet and M. Abadi. Hiding names: Pri-
vate authentication in the applied pi calculus.
In International Symposium on Software Security
(ISSS’02), pages 317–338. Springer, 2003.

[12] A. Fujioka, T. Okamoto, and K. Ohta. A practi-
cal secret voting scheme for large scale elections.
In J. Seberry and Y. Zheng, editors, Advances
in Cryptology — AUSCRYPT ’92, volume 718 of
LNCS, pages 244–251. Springer, 1992.

[13] M. Hirt and K. Sako. Efficient receipt-free voting
based on homomorphic encryption. In B. Preneel,
editor, Advances in Cryptography – Eurocrypt’00,
volume 1807 of LNCS, pages 539–556, Bruges, Bel-
gium, may 2000. Springer.

[14] A. Juels, D. Catalano, and M. Jakobsson.
Coercion-resistant electronic elections. In Proc.
of Workshop on Privacy in the Electronic Society
(WPES’05), Alexandria, USA, 2005. ACM Press.

[15] T. Kohno, A. Stubblefield, A. D. Rubin, and D. S.
Wallach. Analysis of an electronic voting sys-
tem. In IEEE Symposium on Security and Pri-
vacy. IEEE Computer Society Press, 2004.

[16] S. Kremer and M. D. Ryan. Analysis of an elec-
tronic voting protocol in the applied pi-calculus.
In Proc. 14th European Symposium On Program-
ming (ESOP’05), volume 3444 of LNCS, pages
186–200, Edinburgh, U.K., 2005. Springer.

[17] B. Lee, C. Boyd, E. Dawson, K. Kim, J. Yang,
and S. Yoo. Providing receipt-freeness in mixnet-
based voting protocols. In Proc. of Informa-
tion Security and Cryptology (ICISC’03), volume
2971 of LNCS, pages 245–258, Seoul, Korea, 2004.
Springer.

[18] G. Lowe. An attack on the Needham-Schroeder
public-key authentication protocol. Information
Processing Letters, 56:131–133, 1995.

[19] T. Okamoto. An electronic voting scheme. In IFIP
World Conference on IT Tools, pages 21–30, Can-
berra, Australia, 1996.

[20] Z. Rjaskova. Electronic voting schemes.
Master’s thesis, Comenius University, 2002.
www.tcs.hut.fi/∼helger/crypto/link/

protocols/voting.html.

8

