
Removing "-Transitions in Timed Automata

Volker Diekert

1

, Paul Gastin

2

and Antoine Petit

3

1

Inst. f�ur Informatik, Universit�at Stuttgart, Breitwiesenstr. 20-22, D-70565 Stuttgart

2

LITP, Universit�e Paris 7, 2, place Jussieu, F-75251 Paris Cedex 05

3

LSV, ENS de Cachan, 61, av. du Pr�es. Wilson, F-94235 Cachan Cedex

Abstract. Timed automata are among the most widely studied models

for real-time systems. Silent transitions, i.e., "-transitions, have already

been proposed in the original paper on timed automata by Alur and Dill

[2]. In [7] it is shown that "-transitions can be removed, if they do not

reset clocks; moreover "-transitions strictly increase the power of timed

automata, if there is a self-loop containing "-transitions which reset some

clocks. The authors of [7] left open the problem about the power of the

"-transitions which reset clocks, if they do not lie on any cycle.

The present paper settles this open question. Precisely, we prove that

a timed automaton such that no "-transition with nonempty reset set

lies on any directed cycle can be e�ectively transformed into a timed

automaton without "-transitions. Interestingly, this main result holds

under the assumption of non-Zenoness and it is false otherwise.

Besides, we develop a promising new technique based on a notion of

precise time which allows to show that some timed languages are not

recognizable by any "-free timed automaton.

1 Introduction

A number of \real-life systems" demand time requirements which cannot easily

be treated with the classical models based on transition systems. Therefore,

new timed models have been introduced for the speci�cation and veri�cation of

systems with quantitative properties. A natural way to de�ne such a model is

to consider some usual untimed model and to add a suitable notion of time.

We focus in this paper on the basic and natural model of so-called timed au-

tomata, proposed by Alur and Dill [2,3]. Since its introduction, this model has

been intensively studied under several aspects: determinization [4], minimization

[1], power of clocks [9], extensions of the model [5,6] and logical characterization

[11] have been considered in particular. Moreover, this model has been used for

veri�cation and speci�cation of real-time systems successfully, [8,10,12].

In the original paper [2] silent or internal actions ("-transitions) of timed au-

tomata have been considered, but, somewhat surprisingly, they disappeared in

most of the following papers on timed automata (even in the extended version

[3]), until the recent work of [7]. It is shown there that "-transitions strictly in-

crease the power of timed automata, only if these "-transitions are allowed to

reset clocks (called "-reset transitions in the following). The emptiness problem

of the class of timed automata with "-transitions is still decidable, and its lan-

guage class is more robust (e.g. closed under projection) than the class where

"-transitions are forbidden. Thus, the natural question to characterize the \use-

ful" "-transitions arises.

In [7], it is left as an open question to �nd when "-reset transitions can be

removed. The present paper settles this problem. Precisely, we prove that a

timed automaton with "-transitions can be e�ectively transformed into a timed

automatonwithout "-transitions, if no "-reset transition lies on any directed cycle

of the automaton. Moreover and surprisingly, this result holds only under the

assumption of non-Zenoness, otherwise it becomes false. Our main construction

is quite involved and leads to some huge state explosion. However, this is just a

serious argument in favor of "-transitions. We may use them in order to have a

compact and concise speci�cation for languages recognized by automata without

"-reset transitions, although no quantitative assertion about this statement can

be given at this moment.

The example of [7], showing that "-reset transitions increase the power, was based

on the idea to have a self-loop of some "-reset transition and the proof considered

a path which uses several consecutive "-reset transitions. We exhibit here a very

simple timed automaton with some cycle containing an "-reset transition and

in which no path uses two consecutive "-transitions and whose language cannot

be accepted without "-transition. To this purpose, we develop a new technique

based on a notion of precise time, which appears to be very promising in its

own right. This new notion yields a formal tool in order to show that some

timed languages are not recognizable by any timed automaton (without "-reset

transitions).

2 Preliminaries

A timed automaton (over R) is a tuple A = (Q;�; �;Q

0

; F;R;X;C), where

Q is a �nite set of states,

� is a �nite alphabet and " denotes the empty word of �

�

,

� is the transition relation explained below,

Q

0

� Q is a subset of initial states,

F � Q is a subset of �nal states,

R � Q is a subset of repeated states,

X is a �nite set of clocks, and

C � R is a �nite set of constants.

A constraint is a propositional formula using the logical connectives f_;^;:g

over atomic formulae of the form x # c or x � y # c, for x; y 2 X, c 2 C, and

2 f<;=; >g.

A transition of � has the form p

A;a;�

���!

q where A is a constraint, a 2 � [f"g,

� � X, and p; q 2 Q. If a = " and � = ;, then it is called an "-transition without

reset. If a = " and � 6= ;, then it is called an "-reset transition. For the global

time and the time values of clocks we shall use non-negative real numbers. For

a clock x 2 X and a time t 2 R

+

, we denote by x(t) 2 R

+

the clock value of

x. Initially, we are in some state q

0

2 Q

0

and the (global) time is t

0

= 0 with

x(0) = 0 for all x 2 X.

In the course of time all clocks run synchronously. However, executing a transi-

tion may reset some clocks to zero. Formally, assuming that the automaton has

entered state p at time t with clock values x(t), x 2 X, then it may execute the

transition p

A;a;�

���!

q at time t

0

� t, if the constraint A is satis�ed with the clock

value x(t

0

) = x(t) + (t

0

� t) for all clocks x. The execution switches to state q

and enters this state at time t

0

with clock value x(t

0

) = x(t) + (t

0

� t) for all

x 2 X n � and resets clock values x(t

0

) = 0 for all x 2 �.

This leads to the notion of a run of the automaton:

p

0

��

��

p

1

��

��

p

2

��

��

� � �

-

A

1

; a

1

; �

1

-

A

2

; a

2

; �

2

--

t

1

-

t

2

The semantics is that p

i�1

A

i

;a

i

;�

i

�����!

p

i

has been executed at time t

i

with t

i�1

� t

i

for all i � 1 and t

0

= 0. In particular, for i � 1, the constraint A

i

has been

satis�ed for the clock values x(t

i

) at time t

i

of the execution of the i-th transition

(before performing its reset operation).

The �nite (in�nite resp.) run is accepted, if both, p

0

2 Q

0

and it ends in a �nal

state (and there are in�nitely many states from R on the path resp.). Thus, we

accept in�nite runs by some B�uchi condition. With every �nite (in�nite resp.)

run we can associate in a natural way a �nite (in�nite resp.) timed "-word

(a

1

; t

1

)(a

2

; t

2

) � � � 2 ((� [f"g)�R)

1

:

Since an "-transition is viewed as an invisible action we may cancel all pairs

(a

i

; t

i

) where a

i

= ". In this way we obtain a timed word (which might be �nite

even if the underlying timed "-word has been in�nite):

(a

i

1

; t

i

1

)(a

i

2

; t

i

2

) � � � 2 (� �R)

1

:

The timed language L(A) � (� �R)

1

accepted by the automaton A is the set

of timed words associated with accepting runs.

A timed ("-)word (a

1

; t

1

)(a

2

; t

2

) � � � is called a Zeno word , if it is in�nite but the

sequence t

1

; t

2

; : : : remains bounded. Let NZ be the set of non Zeno words. For

some applications Zeno words are not wanted. It is possible to transform a timed

automaton A into a timed automaton A

0

such that L(A

0

) = L(A) \ NZ . Note

that this transformation is not as easy as it may appear because a �nite timed

word, which is indeed non Zeno, can be accepted by a run ending in a loop of

"-transitions where the underlying timed "-word is Zeno.

Example 1. Consider the following automaton A

0

where q

0

is both initial and

repeated.

q

0

��

��

6

��

��

��

��

p

��

��

q

0 < x < 1; b; ;

i

x = 1; "; fxg

s

x = 1; a; fxg

The accepted language can be described as follows: In each open time interval

(i; i+1), i � 0, there occurs at most one b. Moreover, there is an a at time i+ 1

if and only if there is no b in (i; i+ 1). For the automaton A

0

, by construction,

no in�nite run yields any Zeno word.

In [7] it is shown that all "-transitions without reset can be removed from the

automaton. The technique is to shift the constraint of an "-transition either to

the previous or to the following (visible) transition. A priori, one could expect

a similar technique to work in the example above. However we will see below

in Corollary 9 that L(A

0

) cannot be accepted by a timed automaton without

"-transition.

3 The main result

The main result of this paper is a construction how to remove all "-transitions, if

there is no directed cycle of the automaton including an "-transition with reset.

Theorem 2. Let A be a timed automaton such that no "-reset transition lies

on any directed cycle. Then we can e�ectively construct a timed automaton A

0

without any "-transition such that

L(A) � L(A

0

)

L(A) \NZ = L(A

0

) \NZ

The "-depth of a timed automaton is de�ned as the maximal number of "-reset

transitions which can be found on some directed path through the automaton.

An "-reset transition is of maximal depth, if it is the last one on such a directed

path.

The proof of Theorem 2 will be done by induction on the "-depth of the automa-

ton. Our strategy is as follows. First (Steps 1 to 5), we transform A into some

normal form without increasing the "-depth. Then we explain how to remove

all "-reset transitions of maximal depth (this is the crucial part). We end up

with an automaton A

0

(being not in normal form anymore) where the "-depth

is decreased by one. The result follows by induction.

Step 1: Remove all "-transitions without reset by the procedure of [7]. Note

that if the "-depth of A is zero then the proof is done.

Step 2: Remove all constraints of the form x� y # c where x; y are clocks and

c is some constant. Note that Step 1 introduces such constraints. By duplicating

some transitions, we may also assume that all constraints are conjunction of

atomic formulae of type y # c with # 2 f<;=; >g.

Note that Steps 1 and 2 do not increase the "-depth of the automaton. Also,

for the proof below, they may be restricted to the part of the automaton which

follows "-reset transitions of maximal depth.

Step 3: Using copies of the automaton, we may now assume that every "-reset

transition of maximal depth p

1

A;";�

���!

p

2

divides the automaton into two disjoint

parts and the only bridge between these parts is this "-reset transition (See the

�gure below). Moreover, we may assume that p

2

has no other in-going transition.

Note that A

2

contains no "-transition and we may assume that it contains no

initial state either.

p

1

��

��

p

2

��

�� ��

��

��

��

@

@

@R

�

�

�	

-

A; "; �

!

!

!

!

1

a

a

a

aq

"

"+

b

bs

"

"+

b

bs

A

1

A

2

Step 4: Reduction of � to a single clock x which is never reset in A

2

. Again,

this is an easy construction on timed automata which does not change A

1

and

hence does not change the "-depth.

Step 5: Using copies of the clocks used in the constraint A which are reset with

their originals inside A

1

and are substituted to their originals in A, we may

assume that the clocks used in A are di�erent from x and are not reset in A

2

.

Important note: In order to make the following construction more readable we

shall assume that the clock constraints of A and inside the subautomaton A

2

are

of the form y < c or y > c, only. Thus, we do not consider the case y = c. The

inclusion of such constraints would multiply the case distinction without giving

any new insight. In fact, using a constraint y = c would make life even easier,

since then we know the exact value of clock y. In the same spirit we consider

(and allow) strictly increasing time sequences, only.

Step 6: This is the main step of the construction. We will replace in A the

automaton A

2

by a new one A

0

2

which will not use the clock x and such that

there will be a correspondence between the legal paths of the new automaton A

0

and the legal ones of A. Then we will replace the "-reset transition p

1

A;";�

���!

p

2

by the "-transition without reset p

1

A;";;

���!

(p

2

; L

0

; U

0

).

� The states of A

0

2

will be triples (p; L; U) where p is a state of A

2

and L;U are

its lower and upper attributes. Intuitively, these attributes will keep track of the

possible interval for the clock x in the corresponding run of A. More precisely,

when we reach a state p of A

2

with a legal run of A, then the corresponding

run of A

0

will reach the state (p; L; U) with the value x(t) in the open interval

(L(t); U (t)). Conversely, for each legal run of A

0

leading to the state (p; L; U)

and for each value in (L(t); U (t)), there exists a corresponding run in A leading

to state p with this value for x(t).

We will use two new clocks x

`

and x

u

. The second one is reset on each transition

which enters state p

1

. Since we only consider strictly increasing time sequences,

we can assume that the constraint A contains x

u

> 0 and that each transition

from p

2

contains x > 0 in its constraint.

We can write A =

V

r

m

r

< x

r

< m

0

r

with m

r

2 C[f�1g and m

0

r

2 C[f+1g.

Let L

0

= max

r

(x

r

�m

0

r

) and U

0

= min

r

(x

r

�m

r

) be the initial attributes given

to the state p

2

. Apart from the initial values L

0

and U

0

, the possible values for

L and U are fx

`

+ c j c 2 Cg and fx

u

+ c j c 2 Cg respectively. Hence, there are

�nitely many possible values and the automaton A

0

2

remains �nite.

Moreover, a state (p; L; U) of A

0

2

is �nal (repeated resp.) if and only if the state

p of A

2

is �nal (repeated resp.).

� For each transition p

(a<x<b)^B;�;�

����������!

q of A

2

where B does not contain the

clock x and a 2 C [f�1g and b 2 C [f+1g, we add the following transitions

to the automaton A

0

2

.

(p; L; U)

(a�L<U�b)^B;�;�

�������������������!

(p; L; U)

(a�L<b<U)^B;�;�[fx

u

g

�������������������!

(p; L; x

u

+ b)

(L<a<U�b)^B;�;�[fx

`

g

�������������������!

(p; x

`

+ a; U)

(L<a<b<U)^B;�;�[fx

`

;x

u

g

�������������������!

(p; x

`

+ a; x

u

+ b)

(1)

where L

0

< a is an abbreviation for

V

r

(x

r

�m

0

r

) < a and similarly for a � L

0

,

b < U

0

and U

0

� b.

Claim: All timed words (Zeno or non-Zeno) accepted by A are also accepted

by A

0

. Conversely, all non-Zeno timed words accepted by A

0

are also accepted

by A.

Note that, thanks to Step 3, we can do Steps 4 to 6 simultaneously on all "-reset

transitions of maximal depth. Hence we have reduced the "-depth by one and

Theorem 2 follows by induction. We will now prove the claim.

Proof. Let � = q

0

A

1

;�

1

;�

1

�����!

q

1

A

2

;�

2

;�

2

�����!

q

2

� � � be a path of A and let t

1

t

2

� � � be

a timed sequence such that the timed "-word w = (�

1

; t

1

)(�

2

; t

2

) � � � is accepted

by �. Assume that the i-th transition of � is p

1

A;";fxg

����!

p

2

, hence the path from

q

0

to q

i�1

= p

1

runs in A

1

while the path from q

i

= p

2

runs in A

2

.

We will construct a path �

0

of A

0

which accepts precisely the same timed "-word

w. The path �

0

starts as the path � and its i-th transition enters the \initial"

state of A

0

2

:

q

0

A

1

;�

1

;�

1

�����!

q

1

� � �

A

i�1

;�

i�1

;�

i�1

����������!

q

i�1

= p

1

A;";;

���!

(p

2

; L

0

; U

0

) = (q

i

; L

i

; U

i

)

Since the constraint A has been satis�ed at time t

i

, we have L

0

(t

i

) < 0 < U

0

(t

i

).

Hence, we have the time invariant L

0

(t) < x(t) < U

0

(t) for all t � t

i

.

Assume that the path �

0

has been constructed up to state (q

j�1

; L

j�1

; U

j�1

) and

that the time invariant L

j�1

(t) < x(t) < U

j�1

(t) for all t � t

j�1

holds. Assume

also that the constraint A

j

= (a

j

< x < b

j

) ^ B

j

where B

j

does not contain

the clock x. Thanks to the time invariant, we can see that among the transi-

tions described in (1), there is exactly one transition (q

j�1

; L

j�1

; U

j�1

)

A

0

j

;�

j

;�

0

j

�����!

(q

j

; L

j

; U

j

) whose constraint A

0

j

is true at time t

j

. This transition is used to

extend the path �

0

. One can easily verify that the time invariant L

j

(t) < x(t) <

U

j

(t) for all t � t

j

holds. We have thus obtain the desired path �

0

and we have

proved the �rst part of the claim. Note that we do not need to assume that the

time sequence t

1

t

2

� � � diverges for this part of the proof.

Conversely, let �

0

be a path of A

0

whose i-th transition is p

1

A;";;

���!

(p

2

; L

0

; U

0

).

Thus the path �

0

has the form

q

0

A

1

;�

1

;�

1

�����!

q

1

� � �q

i�1

A;";;

���!

(q

i

; L

i

; U

i

)

A

0

i+1

;�

i+1

;�

0

i+1

����������!

(q

i+1

; L

i+1

; U

i+1

) � � �

Let w = (�

1

; t

1

)(�

2

; t

2

) � � � be a timed "-word accepted by �

0

. For all j > i, let

q

j�1

(a

j

<x<b

j

)^B

j

;�

j

;�

j

�������������!

q

j

be the transition of A

2

from which the corresponding

transition of �

0

was obtained. We have thus constructed a path � ofA. The timed

"-word w is not necessarily accepted by the path � but we will see that we can

�nd a time t

0

i

such that the corresponding timed "-word w

0

is accepted by the

path �. Since w and w

0

di�ers only by the time of the i-th action which is ", this

will prove the second part of the claim.

Let I =

T

j�i

(t

j

�U

j

(t

j

); t

j

�L

j

(t

j

)). By construction of A

0

2

, since the constraint

A

0

j

was satis�ed at time t

j

, we have L

j

(t

j

) < U

j

(t

j

). Hence the open inter-

vals considered in this intersection are nonempty. Moreover, we have L

j

(t

j

) =

max(L

j�1

(t

j

); a

j

). Hence, L

j

(t

j

) � L

j�1

(t

j

) = L

j�1

(t

j�1

) + t

j

� t

j�1

. Using

the same argument for the upper attribute, we deduce that these intervals are

decreasing.

We will see now that I 6= ;. This is clear if the path �

0

is �nite. Assume now

that � is in�nite and that the time sequence t

1

t

2

� � � diverges. Note that this is

the only point where we need to use non-Zenoness.

By construction, x > 0 is part of the constraint A

i+1

. Hence, a

i+1

� 0 and

L

i+1

(t

i+1

) = max(L

i

(t

i+1

); a

i+1

) � 0. Moreover, for all j > i we have L

j

(t

j

) �

L

i+1

(t

i+1

) + t

j

� t

i+1

� t

j

� t

i+1

. Let j

0

be such that t

j

0

� t

i+1

> maxC

where we recall that C � R is the set of (�nite) constants which are used in the

constraints of the automaton A. We deduce that L

j

= L

j

0

for all j � j

0

. Now,

for all j � j

0

, we have maxC < L

j

(t

j

) < U

j

(t

j

) = min(U

j�1

(t

j

); b

j

) and then

b

j

= +1. It follows that U

j

= U

j

0

for all j � j

0

. Finally, we have proved that

I = (t

j

0

� U

j

0

(t

j

0

); t

j

0

� L

j

0

(t

j

0

)) which is non empty.

To complete the proof we will show that for all t

0

i

2 I, the timed "-word w

0

obtained from w by replacing time t

i

by t

0

i

is accepted by the path �.

First, t

0

i

2 (t

i

� U

i

(t

i

); t

i

� L

i

(t

i

)) therefore, L

0

(t

0

i

) = L

0

(t

i

) + t

0

i

� t

i

< 0 <

U

0

(t

i

) + t

0

i

� t

i

= U

0

(t

0

i

) and the constraint A is satis�ed at time t

0

i

. Note that

since by construction x

u

> 0 is part of the constraint A and x

u

2 �

i�1

, we

deduce that t

i�1

< t

0

i

.

Second, let j > i, we have t

0

i

2 (t

j

�U

j

(t

j

); t

j

�L

j

(t

j

)) therefore, a

j

� L

j

(t

j

) <

t

j

� t

0

i

< U

j

(t

j

) � b

j

and the constraint (a

j

< x < b

j

)^B

j

is satis�ed at time t

j

.

Note that since by construction x > 0 is part of the constraint A

i+1

, we deduce

that t

0

i

< t

i+1

. This concludes the proof of the claim.

We have seen that the non-Zenoness is needed in the proof above. One might

wonder whether this hypothesis is really necessary. We will show that indeed,

Theorem 2 becomes false if we allow Zeno-words. Consider the following automa-

ton A.

p

1

��

��

-

p

2

��

��

p

3

��

��

��

��

-

true; "; fxg

-

0 < x; a; fyg

k

x < 1 ^ 0 < y; a; fyg

One can verify that the language accepted by this automaton is

L = f(a; t

2

)(a; t

3

) � � � j 9
 > 0 such that 8i � 2; t

i

< t

i+1

< t

2

+ 1�
g

We will show that L is not recognizable by any timed automaton without "-

transitions, even if we allow for the automaton any set of constants which is a

discrete subspace of R.

Assume by contradiction that L is recognized by some "-free automaton A

0

. Let

C � R be its set of constants assuming that C is a discrete subspace of R (e.g.,

C is �nite). Let t

2

> 0 be an arbitrary positive real and choose 0 < � < 1 such

that (t

2

+ 1� �; t

2

+ 1) \ (C [(t

2

+C)) = ; and � < minfc 2 C j c > 0g.

Consider a timed word w = (a; t

2

)(a; t

3

)(a; t

4

) � � � with t

2

+ 1� � < t

i

< t

i+1

for

all i > 2 and lim

i!1

t

i

= t

2

+ 1�
 for some 0 <
 < �.

Then we have w 2 L(A

0

) and there exists some accepting path � for the timed

word w. Due to the choice of � one can verify that the same path accepts also the

timed word w

0

= (a; t

2

)(a; t

3

+
)(a; t

4

+
) � � �. However, since lim

i!1

t

i

+
 =

t

2

+ 1, we have w

0

=2 L and therefore a contradiction.

4 A notion of precise time

Let A be a timed automaton which uses a set C � Q of rational constants. Let

C

max

be the maximum value of C. Let � > 0 be such that C � �Z. Consider a

�nite or in�nite path

� = p

0

A

1

;a

1

;�

1

�����!

p

1

A

2

;a

2

;�

2

�����!

p

2

� � �

through A such that all constraints are conjunctions of atomic formulae x # c

with # 2 f<;=; >g for some clocks x and constants c. Note that one can always

transform a timed automaton in such a way that this is true for all transitions

of the automaton.

By TS(�) we denote the set of possible time sequences t

0

t

1

t

2

� � � such that 0 =

t

0

� t

1

� t

2

� � � � and

p

0

��

��

p

1

��

��

p

2

��

��

� � �

-

A

1

; a

1

; �

1

-

A

2

; a

2

; �

2

--

t

1

-

t

2

de�nes a �-run of A. Let us assume that TS(�) 6= ;. By TS

n

(�) we denote the set

of values r

n

2 Rsuch that there exists t

0

t

1

t

2

� � � t

n�1

t

n

� � � 2 TS(�) with r

n

= t

n

.

Assuming that n is not greater than the length of �, we have TS

n

(�) 6= ;.

De�nition 3. A time t 2 R is called a precise time of �, if TS

n

(�) = ftg for

some n � 1.

The aim of the present section is to show the following theorem.

Theorem 4. Let �, � and C

max

be as above. Assume that TS(�) 6= ; and let

t 2 TS

n

(�). If t is a precise time of � then t 2 �N and if t > 0 then the half-

open interval [t� C

max

; t) contains another precise time. Otherwise, TS

n

(�) is

a non-empty open interval (r; s) with r 2 �N and s 2 �N[f+1g.

The main idea of the proof is to associate with the path � a directed graph G

with edge weights such that the interval can be calculated from the graph. We

�rst normalize the automaton in two simple steps as follows:

Step 1: We may assume that there is some clock x

0

such that x

0

� 0 is a

constraint of A

i

and x

0

2 �

i

for all i � 0.

Step 2: We may assume that the path � is in�nite. (If the path � is �nite, enter

a new state performing any action with the only constraint x

0

> 0. Loop in this

state. This modi�cation does not touch TS

n

(�), since TS

n

(�) 6= ;.)

We are now ready to de�ne the graph G. For convenience we put �

0

= X. The

vertex set of the graph is V = f0; 1; 2; : : :g = N. There are two types of directed

edges. Let x 2 X be a clock and c 2 C be a constant such that x 2 �

i

and

(x # c) 2 A

j

for some i < j and x =2 (�

i+1

[: : :[�

j�1

).

If (x = c) 2 A

j

, then we de�ne strong arcs with weights c and �c respectively:

i

��

��

j

��

��

q

c

i

�c

If (x < c) 2 A

j

, then we de�ne a soft arc with weight c:

i

��

��

j

��

��

q

c

If, �nally, (x > c) 2 A

j

we de�ne a soft arc with weight �c:

i

��

��

j

��

��

i

�c

We de�ne i � j, if i and j are connected by some path using strong edges, only.

Clearly � is an equivalence relation on V . An induction on the length of the

path yields:

Lemma 5. Let t

0

t

1

t

2

� � � 2 TS(�) be the time sequence of some �-run; i; j 2 V

and

ij

the weight of some directed path of G from i to j.

1. If the path uses strong edges only, then we have t

j

� t

i

=

ij

.

2. If the path uses at least one soft edge, then we have t

j

� t

i

<

ij

.

Let i; j 2 V , assuming inf ; = +1, we de�ne

c

ij

= inff

ij

j

ij

is the weight of a directed path from i to jg

In order to prove the theorem, we need some few technical results:

Lemma 6. Let t

0

t

1

t

2

� � � 2 TS(�) be the time sequence of some �-run and let

i; j;m 2 V . Then,

1. �c

ji

� t

j

� t

i

� c

ij

.

2. c

ij

2 �Z[f+1g and if c

ij

6= +1 then there exists a directed path in G from

i to j of weight c

ij

.

3. i � j () t

j

� t

i

= c

ij

() c

ij

+ c

ji

= 0.

4. c

ij

� c

im

+ c

mj

.

5. c

ij

= c

im

+ c

mj

if i � m or m � j.

6. c

ij

< c

im

+ c

mj

if i � j and i 6� m.

Lemma 7. We have

TS(�) = ft

0

t

1

t

2

� � � j 8i; j 2 V : t

j

� t

i

= c

ij

if i � j and

t

j

� t

i

< c

ij

otherwiseg:

We can now state the decisive lemma.

Lemma 8. We have

TS

n

(�) =

�

fc

0n

g if n � 0

(�c

n0

; c

0n

) otherwise.

Proof. If n � 0 then the result is a consequence of Lemma 6 (3) since t

0

= 0.

Assume now that n 6� 0. For each k � 0 we will de�ne inductively in stage k a

subset s(k) � V satisfying the following properties:

1. The s(k) is a �nite union of the equivalence classes.

2. For all i 2 s(k) a time t

i

is de�ned.

3. For all i; j 2 s(k) we have

t

i

� t

j

=

�

c

ij

if i � j

t

j

� t

i

< c

ij

otherwise.

To begin with let s(0) = [0] = fi 2 V j 0 � ig the equivalence class of 0. For

i 2 [0] de�ne t

i

= c

0i

. Clearly 1), 2), and 3) are satis�ed. To see 3) observe that

for i � j � 0 we have by Lemma 6 c

ij

= c

i0

+ c

0j

and c

0i

= �c

i0

.

Assume that s(k) has been de�ned, k � 0. If s(k) = V we stop the procedure.

Otherwise, for each m 2 V n s(k) de�ne an open interval

I

(k)

m

= (r

(k)

m

; s

(k)

m

)

by r

(k)

m

= maxft

j

� c

mj

j t

j

2 s(k)g and s

(k)

m

= minft

i

+ c

im

j t

i

2 s(k)g.

Note that for i � j 2 s(k) and m 2 V , by Lemma 6, we have t

i

� c

mi

= t

j

� c

mj

and t

i

+ c

im

= t

j

+ c

jm

. Hence the maximum and the minimum are taken

over �nite sets. The interval I

(k)

m

is not empty since t

j

� c

mj

< t

i

+ c

im

for all

i; j 2 s(k);m 62 s(k): Indeed, for i � j we have t

j

� t

i

= c

ij

< c

im

+ c

mj

; and for

i 6� j we have t

j

� t

i

< c

ij

� c

im

+ c

mj

. Hence the claim in both cases.

For k = 0 and m 6� 0 we have I

m

= (c

m0

; c

0m

). Now consider k+ 1. If k+ 1 = 1

then choose m = n. For k + 1 > 1 choose any m =2 s(k). De�ne s(k + 1) =

s(k)[fj 2 V j j � mg so that (1) holds for s(k+1). Let t

m

be any value of the

open interval I

(k)

m

. For all j � m de�ne t

j

= t

m

+ c

mj

. Now (2) holds for s(k+1)

as well. Finally, (3) is a direct consequence of t

j

2 I

(k)

j

for all j � m which can

be easily checked using t

m

2 I

(k)

m

, the de�nition of t

j

and Lemma 6.

Since 0 6� n, we can choose a sequence m

0

= 0;m

1

= n;m

2

;m

3

; : : : such that

s(k) = [0][[n][[m

2

][� � �[[m

k

] and

S

k�0

s(k) = V . This de�nes values t

m

for

all m � 0 and thereby a sequence t

0

t

1

t

2

� � �.

By property 3) above and Lemma7 we see that t

0

t

1

t

2

� � � 2 TS(�). The result fol-

lows since m

1

= n and the only condition on t

n

has been t

n

2 I

(0)

n

= (�c

n0

; c

0n

).

The proof of Theorem 4 is now easy. From Lemma 8 we deduce that the precise

times of � are fc

0n

j n � 0g � �N. Moreover, assume that t = c

0n

> 0 is a

precise time. Since n � 0 there is a path in G composed of strong arcs from n

to 0: n = n

0

�! n

1

�! � � � �! n

k

= 0. Let i = inffj j c

0n

j

< c

0n

g. We have

c

0n

�c

0n

j

� c

0n

j�1

�c

0n

j

� C

max

. Hence the precise time c

0n

j

2 [c

0n

�C

max

; c

0n

).

Now if n 6� 0, then by Lemma 8 we have TS

n

(�) = (�c

n0

; c

0n

) and by Lemma 6

we obtain �c

n0

2 �N and c

0n

2 �N[f+1g which concludes the proof.

The theorem above yields a tool to prove that certain languages are not recog-

nizable by timed automata (without "-reset transitions resp.). The application

we have in mind is the following simple consequence.

Corollary 9. Every timed automaton recognizing the language L(A

0

) from Ex. 1

has an "-reset transition lying on some directed cycle.

Proof. By contradiction. By Theorem 2 we may assume L(A

0

) is recognized by

some automaton without any "-transition. Applying Theorem 4 we let � > 0 and

C

max

be the constants introduced at the beginning of Section 4. We �nd some

d 2 N, d � C

max

and an accepted word of the form

(b; �

1

)(b; �

2

) � � � (b; �

d�1

)(a; d)(a; d+ 1) � � �

such that �

i

2 (i � 1; i) n �N for all 0 < i < d. Let � be a path accepting this

timed word. The time d must be precise contradicting Theorem 4.

Acknowledgment:We thank the anonymous referees for useful remarks which

yield to a simpli�cation of our original construction.

References

1. R. Alur, C. Courcoubetis, D.L. Dill, N. Halbwachs, and H. Wong-Toi. Minimization

of timed transition systems. In Proceedings of CONCUR'92, number 630 in Lecture

Notes in Computer Science. Springer Verlag, 1992.

2. R. Alur and D.L. Dill. Automata for modeling real-time systems. In Proceedings

of ICALP'90, number 443 in Lecture Notes in Computer Science, pages 322{335.

Springer Verlag, 1990.

3. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science,

126:183{235, 1994.

4. R. Alur, L. Fix, and T.A. Henzinger. A determinizable class of timed automata. In

Proceedings of CAV'94, number 818 in Lecture Notes in Computer Science, pages

1{13. Springer Verlag, 1994.

5. R. Alur and T.A. Henzinger. Back to the future: towards a theory of timed regular

languages. In Proceedings of FOCS'92, Lecture Notes in Computer Science, pages

177{186. Springer Verlag, 1992.

6. B. B�erard. Untiming timed languages. Information Processing Letters, 55:129{135,

1995.

7. B. B�erard, P. Gastin, and A. Petit. On the power of non observable actions in

timed automata. In Proceedings of STACS'96, number 1046 in Lecture Notes in

Computer Science, pages 257{268. Springer Verlag, 1996.

8. C. Courcoubetis and M. Yannakakis. Minimum and maximum delay problems

in real-time systems. In Proceedings of CAV'91, number 575 in Lecture Notes in

Computer Science, pages 399{409. Springer Verlag, 1991.

9. T.A. Henzinger, P.W. Kopke, and H. Wong-Toi. The expressive power of clocks.

In Proceedings of ICALP'95, number 944 in Lecture Notes in Computer Science,

pages 335{346. Springer Verlag, 1995.

10. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking

for real-time systems. Information and Computation, 111(2):193{244, 1994.

11. T. Wilke. Specifying timed state sequences in powerful decidable logics and timed

automata. In H. Langmaack, W.-P. de Roever, and J. Vytopil, editors, Formal

Techniques in Real-Time and Fault-Tolerant Systems, volume 863 of Lecture Notes

in Computer Science. Springer Verlag, 1994.

12. H. Wong-Toi and G. Ho�mann. The control of dense real-time discrete event

systems. In Proceedings of the 30th IEEE Conf. on Decision and Control, pages

1527{1528, 1991.

