Removing e-Transitions in Timed Automata
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Abstract. Timed automata are among the most widely studied models
for real-time systems. Silent transitions, i.e., e-transitions, have already
been proposed in the original paper on timed automata by Alur and Dill
[2]. In [7] it is shown that e-transitions can be removed, if they do not
reset clocks; moreover e-transitions strictly increase the power of timed
automata, if there is a self-loop containing e-transitions which reset some
clocks. The authors of [7] left open the problem about the power of the
e-transitions which reset clocks, if they do not lie on any cycle.

The present paper settles this open question. Precisely, we prove that
a timed automaton such that no e-transition with nonempty reset set
lies on any directed cycle can be effectively transformed into a timed
automaton without e-transitions. Interestingly, this main result holds
under the assumption of non-Zenoness and it is false otherwise.
Besides, we develop a promising new technique based on a notion of
precise time which allows to show that some timed languages are not
recognizable by any e-free timed automaton.

1 Introduction

A number of “real-life systems” demand time requirements which cannot easily
be treated with the classical models based on transition systems. Therefore,
new timed models have been introduced for the specification and verification of
systems with quantitative properties. A natural way to define such a model is
to consider some usual untimed model and to add a suitable notion of time.
We focus in this paper on the basic and natural model of so-called timed au-
tomata, proposed by Alur and Dill [2,3]. Since its introduction, this model has
been intensively studied under several aspects: determinization [4], minimization
[1], power of clocks [9], extensions of the model [5,6] and logical characterization
[11] have been considered in particular. Moreover, this model has been used for
verification and specification of real-time systems successfully, [8,10,12].

In the original paper [2] silent or internal actions (e-transitions) of timed au-
tomata have been considered, but, somewhat surprisingly, they disappeared in
most of the following papers on timed automata (even in the extended version
[3]), until the recent work of [7]. Tt is shown there that e-transitions strictly in-
crease the power of timed automata, only if these e-transitions are allowed to
reset clocks (called e-reset transitions in the following). The emptiness problem



of the class of timed automata with e-transitions is still decidable, and its lan-
guage class is more robust (e.g. closed under projection) than the class where
e-transitions are forbidden. Thus, the natural question to characterize the “use-
ful” e-transitions arises.

In [7], it is left as an open question to find when e-reset transitions can be
removed. The present paper settles this problem. Precisely, we prove that a
timed automaton with e-transitions can be effectively transformed into a timed
automaton without e-transitions, if no e-reset transition lies on any directed cycle
of the automaton. Moreover and surprisingly, this result holds only under the
assumption of non-Zenoness, otherwise it becomes false. Our main construction
is quite involved and leads to some huge state explosion. However, this is just a
serious argument in favor of e-transitions. We may use them in order to have a
compact and concise specification for languages recognized by automata without
e-reset transitions, although no quantitative assertion about this statement can
be given at this moment.

The example of [7], showing that e-reset transitions increase the power, was based
on the idea to have a self-loop of some e-reset transition and the proof considered
a path which uses several consecutive e-reset transitions. We exhibit here a very
simple timed automaton with some cycle containing an e-reset transition and
in which no path uses two consecutive e-transitions and whose language cannot
be accepted without e-transition. To this purpose, we develop a new technique
based on a notion of precise time, which appears to be very promising in its
own right. This new notion yields a formal tool in order to show that some
timed languages are not recognizable by any timed automaton (without e-reset
transitions).

2 Preliminaries

A timed automaton (over R) is a tuple A = (Q, X,d,Qu, F, R, X, ('), where

() is a finite set of states,

X is a finite alphabet and ¢ denotes the empty word of 2™,
4 is the transition relation explained below,

Qo C Q is a subset of initial states,

F C @ is a subset of final states,

R C @ is a subset of repeated states,

X is a finite set of clocks, and

C C R is a finite set of constants.

A constraint is a propositional formula using the logical connectives {V, A, -}
over atomic formulae of the form & # corx —y # ¢, for 2,y € X, c € C, and
#e{<,=>}

A transition of 6 has the form p m q where A is a constraint, a € ¥ U {e},
aCX,and p,g € Q.If a = ¢ and o = ), then it is called an e-transition without
reset. If @ = ¢ and o # 0, then it is called an é-reset transition. For the global
time and the time values of clocks we shall use non-negative real numbers. For



a clock # € X and a time ¢ € R, we denote by #(¢) € R4 the clock value of
z. Initially, we are in some state ¢ € Q¢ and the (global) time is ¢y, = 0 with
z(0) =0 for all z € X.

In the course of time all clocks run synchronously. However, executing a transi-
tion may reset some clocks to zero. Formally, assuming that the automaton has
entered state p at time ¢ with clock values (), # € X, then it may execute the

transition p Aaa q at time t' > ¢, if the constraint A is satisfied with the clock
value z(t') = x(t) + (¢’ — 1) for all clocks x. The execution switches to state ¢
and enters this state at time ¢’ with clock value z(¥') = #(t) + (¢’ — t) for all
z € X \ a and resets clock values (') = 0 for all # € .

This leads to the notion of a run of the automaton:
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The semantics is that p;_1 =% p; has been executed at timet; with ¢;_; < ;
for all ¢ > 1 and ¢y = 0. In particular, for ¢ > 1, the constraint A; has been
satisfied for the clock values (;) at time ¢; of the execution of the i-th transition
(before performing its reset operation).

The finite (infinite resp.) run is accepted, if both, py € Qy and it ends in a final
state (and there are infinitely many states from R on the path resp.). Thus, we
accept infinite runs by some Biichi condition. With every finite (infinite resp.)
run we can associate in a natural way a finite (infinite resp.) timed e-word

(al,tl)(az,tz) s e ((Z U {6}) X R)Oo

Since an e-transition i1s viewed as an invisible action we may cancel all pairs
(ai,t;) where a; = . In this way we obtain a timed word (which might be finite
even if the underlying timed e-word has been infinite):

(ai1ati1)(ai2,ti2) L E (Z X R)Oo

The timed language L(A) C (X x R)* accepted by the automaton A is the set
of timed words associated with accepting runs.

A timed (e-)word (a1,t1)(az,t2) - - - is called a Zeno word, if it is infinite but the
sequence t1,1s, ... remains bounded. Let NZ be the set of non Zeno words. For
some applications Zeno words are not wanted. It is possible to transform a timed
automaton 4 into a timed automaton A’ such that L(A") = L(A) N NZ. Note
that this transformation is not as easy as it may appear because a finite timed
word, which 1s indeed non Zeno, can be accepted by a run ending in a loop of
e-transitions where the underlying timed e-word is Zeno.

Example 1. Consider the following automaton 4y where ¢ is both initial and
repeated.



0<z<1,b,0

The accepted language can be described as follows: In each open time interval
(i,i4 1), 1 > 0, there occurs at most one b. Moreover, there is an a at time i+ 1
if and only if there is no b in (4,4 + 1). For the automaton Ag, by construction,
no infinite run yields any Zeno word.

In [7] it is shown that all e-transitions without reset can be removed from the
automaton. The technique is to shift the constraint of an e-transition either to
the previous or to the following (visible) transition. A priori, one could expect
a similar technique to work in the example above. However we will see below
in Corollary 9 that L(Ap) cannot be accepted by a timed automaton without
e-transition.

3 The main result

The main result of this paper is a construction how to remove all e-transitions, if
there is no directed cycle of the automaton including an e-transition with reset.

Theorem 2. Let A be a timed automaton such that no e-reset transition lies
on any directed cycle. Then we can effectively construct a timed automaton A’
without any e-transition such that

L(A) C L(A)
LAYNNZ = L(AYN NZ

The e-depth of a timed automaton is defined as the maximal number of ¢-reset
transitions which can be found on some directed path through the automaton.
An e-reset transition is of mazimal depth, if it is the last one on such a directed
path.

The proof of Theorem 2 will be done by induction on the e-depth of the automa-
ton. Our strategy is as follows. First (Steps 1 to 5), we transform A into some
normal form without increasing the e-depth. Then we explain how to remove
all e-reset transitions of maximal depth (this is the crucial part). We end up
with an automaton A’ (being not in normal form anymore) where the e-depth
is decreased by one. The result follows by induction.

Step 1: Remove all e-transitions without reset by the procedure of [7]. Note
that if the e-depth of A is zero then the proof is done.

Step 2: Remove all constraints of the form  — y # ¢ where z,y are clocks and
¢ 18 some constant. Note that Step 1 introduces such constraints. By duplicating
some transitions, we may also assume that all constraints are conjunction of
atomic formulae of type y # ¢ with # € {<,=,>}.



Note that Steps 1 and 2 do not increase the e-depth of the automaton. Also,
for the proof below, they may be restricted to the part of the automaton which
follows e-reset transitions of maximal depth.

Step 3: Using copies of the automaton, we may now assume that every e-reset
transition of maximal depth py Aea po divides the automaton into two disjoint
parts and the only bridge between these parts is this e-reset transition (See the
figure below). Moreover, we may assume that ps has no other in-going transition.
Note that A, contains no e-transition and we may assume that it contains no
initial state either.
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Step 4: Reduction of « to a single clock # which is never reset in A;. Again,
this is an easy construction on timed automata which does not change A; and
hence does not change the e-depth.

Step 5: Using copies of the clocks used in the constraint A which are reset with
their originals inside .A; and are substituted to their originals in A, we may
assume that the clocks used in A are different from x and are not reset in As.

Important note: In order to make the following construction more readable we
shall assume that the clock constraints of A and inside the subautomaton .45 are
of the form y < ¢ or y > ¢, only. Thus, we do not consider the case y = ¢. The
inclusion of such constraints would multiply the case distinction without giving
any new insight. In fact, using a constraint y = ¢ would make life even easier,
since then we know the exact value of clock y. In the same spirit we consider
(and allow) strictly increasing time sequences, only.

Step 6: This is the main step of the construction. We will replace in A the
automaton Az by a new one A which will not use the clock # and such that
there will be a correspondence between the legal paths of the new automaton A’

and the legal ones of A. Then we will replace the e-reset transition p; ﬂ) P2
by the e-transition without reset p; A’—a’a]) (p2, Lo, Uy).

o The states of AL will be triples (p, L, U) where p is a state of Ay and L, U are
its lower and upper attributes. Intuitively, these attributes will keep track of the
possible interval for the clock « in the corresponding run of A. More precisely,
when we reach a state p of A, with a legal run of A, then the corresponding
run of A" will reach the state (p, L, U) with the value z(¢) in the open interval
(L(t),U(t)). Conversely, for each legal run of A’ leading to the state (p, L, U)



and for each value in (L(¢), U(t)), there exists a corresponding run in A leading
to state p with this value for z(t).

We will use two new clocks x, and x,,. The second one 1s reset on each transition
which enters state p;. Since we only consider strictly increasing time sequences,
we can assume that the constraint A contains x, > 0 and that each transition
from ps contains z > 0 in its constraint.

We can write A = A, m, < z, < m} withm, € CU{—o00} and m,. € CU{+0o0}.
Let Ly = max, (z, —m..) and Uy = min, (z, —m, ) be the initial attributes given
to the state py. Apart from the initial values Ly and Uy, the possible values for
Land U are {ag+c¢| e € C} and {xy + ¢ | ¢ € C} respectively. Hence, there are
finitely many possible values and the automaton .45 remains finite.

Moreover, a state (p, L, U) of A} is final (repeated resp.) if and only if the state
p of Aj is final (repeated resp.).

e For each transition p M) q of Ay where B does not contain the
clock # and ¢ € CU{—o0} and b € C'U {400}, we add the following transitions
to the automaton Aj.

(a<L<U<b)AB,0,6

(p, L, U) U)
D, L l‘u+b)
p,2e+a,U)

Tp 4 a, &y + b)

(a<L<b<U)AB,0,pU{z.}

(1)

(P,
(
(L<a<U<b)AB,0,pU{z,} (
(P,

(L<a<b<U)AB,o,fu{ze,wu}

where Ly < a is an abbreviation for A, (z, — m}) < @ and similarly for a < Lo,

b< Uyand Uy <b.

Claim: All timed words (Zeno or non-Zeno) accepted by A are also accepted
by A’. Conversely, all non-Zeno timed words accepted by A’ are also accepted

by A.

Note that, thanks to Step 3, we can do Steps 4 to 6 simultaneously on all e-reset
transitions of maximal depth. Hence we have reduced the e-depth by one and
Theorem 2 follows by induction. We will now prove the claim.

Proof. Let m = qq A1,01,01 q1 Az2,02,22 g2 -+ - be a path of A and let tits--- be
a timed sequence such that the timed e-word w = (o1,%1)(02,t2) - - - is accepted

by m. Assume that the i-th transition of 7 is py ;{}} pa, hence the path from

go to ¢;_1 = p1 runs in A; while the path from ¢; = p> runs in A,.

We will construct a path 7’ of A’ which accepts precisely the same timed e-word
w. The path =’ starts as the path = and its ¢-th transition enters the “initial”
state of AL:

Aq,01,001 Ai_1,0i-1,00-1

o —— S q-- T T =, M(Pz,Lo,UO)I(Qi,Li,Ui)

Since the constraint A has been satisfied at time ¢;, we have Lg(t;) < 0 < Up(t;).
Hence, we have the time invariant Lo(t) < z(t) < Up(t) for all ¢ > ¢;.



Assume that the path 7' has been constructed up to state (¢;_1, L;j_1,U;_1) and
that the time invariant L;_q(t) < z(t) < U;_1(¢) for all t > ¢;_1 holds. Assume
also that the constraint A; = (a; < « < b;) A B; where B; does not contain
the clock z. Thanks to the time invariant, we can see that among the transi-
Alv,aj,oc;v

tions described in (1), there is exactly one transition (¢;_1, Lj_1,U;j—1) —2

(¢5,L;,U;) whose constraint A’ is true at time ¢;. This transition is used to
extend the path 7/. One can easily verify that the time invariant L;(t) < z(t) <
U;(t) for all ¢ > ¢; holds. We have thus obtain the desired path 7’ and we have
proved the first part of the claim. Note that we do not need to assume that the
time sequence t1ts - - - diverges for this part of the proof.

Conversely, let 7 be a path of .4’ whose i-th transition is py A’—a’@> (p2, Lo, Uy).
Thus the path 7’ has the form
A101, Ac Aipitne
qo 22T gy qimy 250 (g, Ly, Up) 20T (g L, Uigt) - - -

Let w = (01,t1)(02,t2) - - - be a timed e-word accepted by 7’. For all j > 4, let

q—1 (a;<a<b))nBj 05,0 q; be the transition of A, from which the corresponding

transition of 7’ was obtained. We have thus constructed a path 7 of A. The timed
e-word w is not necessarily accepted by the path m but we will see that we can
find a time ¢} such that the corresponding timed e-word w' is accepted by the
path 7. Since w and w’ differs only by the time of the i-th action which is ¢, this
will prove the second part of the claim.

Let I = ﬂjgi(tj —U;(t;),t; — L;(t;)). By construction of A}, since the constraint
A} was satisfied at time ¢;, we have L;(t;) < Uj;(t;). Hence the open inter-
vals considered in this intersection are nonempty. Moreover, we have L;(t;) =
max(Lj_l(tj),aj). Hence, Lj(tj) > Lj_l(tj) = Lj_l(tj_l) —|—tj — tj_l. Using
the same argument for the upper attribute, we deduce that these intervals are
decreasing.

We will see now that I # @. This is clear if the path 7’ is finite. Assume now
that 7 is infinite and that the time sequence t15 - - - diverges. Note that this is
the only point where we need to use non-Zenoness.

By construction, # > 0 is part of the constraint A;41. Hence, a;41 > 0 and
Lit1(tig1) = max(L;(tiy1), @it1) > 0. Moreover, for all j > ¢ we have L;(t;) >
Lit1(tig1) +t; — tign > t; — tiy1. Let jo be such that ¢;, — ¢;41 > maxC
where we recall that C' C R is the set of (finite) constants which are used in the
constraints of the automaton A. We deduce that L; = Lj, for all j > jg. Now,
for all j > jo, we have maxC' < L;(t;) < U;(t;) = min(U;_1(t;),b;) and then
b; = 4o0. It follows that U; = Uj, for all j > jo. Finally, we have proved that
I={(tj, — Ujs(tjs), tjs — Ljo(ts,)) which is non empty.

To complete the proof we will show that for all ¢{ € I, the timed s-word v/
obtained from w by replacing time ¢; by t! is accepted by the path =.

First, t; € (t; — Us(t;),t; — Li(t;)) therefore, Lo(t) = Lo(t;) +t — ¢ < 0 <
Up(t;) +t; —t; = Ug(t;) and the constraint A is satisfied at time ¢;. Note that
since by construction z, > 0 is part of the constraint A and x, € a;_1, we
deduce that ¢;_1 < #,.




Second, let j > i, we have t; € (t; — U;(¢;),t; — L;(t;)) therefore, a; < L;(t;) <
t; —t, < U;(t;) < b; and the constraint (a; < & < b;) A B; is satisfied at time ¢;.
Note that since by construction x > 0 is part of the constraint A;41, we deduce
that { < ¢;41. This concludes the proof of the claim.

We have seen that the non-Zenoness is needed in the proof above. One might
wonder whether this hypothesis is really necessary. We will show that indeed,
Theorem 2 becomes false if we allow Zeno-words. Consider the following automa-
ton A.

true e, {a} 0<a,a,{y}

One can verify that the language accepted by this automaton is

L ={(a,t2)(a,t3)--- | Iy > 0 such that Vi > 2,¢; <t;41 <ta+1—7}

We will show that L is not recognizable by any timed automaton without e-
transitions, even if we allow for the automaton any set of constants which is a
discrete subspace of R.

Assume by contradiction that L is recognized by some e-free automaton A’. Let
C' C R be its set of constants assuming that C' is a discrete subspace of R (e.g.,
C' is finite). Let t3 > 0 be an arbitrary positive real and choose 0 < § < 1 such
that (to+1—9,t+1)N(CU(t2 +C)) =0 and § < min{c € C'| ¢ > 0}.
Consider a timed word w = (a,t2)(a,t3)(a,t4) - - with ta + 1 — 3§ < t; < ;41 for
all i > 2 and lim;_, oo &; = 15 + 1 — 7 for some 0 < vy < 4.

Then we have w € L(A’) and there exists some accepting path © for the timed
word w. Due to the choice of § one can verify that the same path accepts also the
timed word w' = (a,t2)(a,ts + ¥)(a,t4 + ) - - -. However, since lim; oo t; + 7 =
ty+ 1, we have w’ ¢ L and therefore a contradiction.

4 A notion of precise time

Let A be a timed automaton which uses a set C' C @ of rational constants. Let
Cax be the maximum value of C'. Let § > 0 be such that C' C §Z. Consider a
finite or infinite path

_ Aq,aq,001 Ag,az,a0
T = pg 2RIy, A28 g,

through A such that all constraints are conjunctions of atomic formulae « # ¢
with # € {<, =, >} for some clocks # and constants c¢. Note that one can always
transform a timed automaton in such a way that this is true for all transitions
of the automaton.

By T'S(m) we denote the set of possible time sequences tgt1¢s - - - such that 0 =
to <tp <ty <+ and
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defines a m-run of A. Let us assume that 7'S(7) # . By T'S, () we denote the set
of values r,, € R such that there exists tot1ts - - tp_1ty - -+ € T'S(m) with rp, = 1,.
Assuming that n is not greater than the length of 7, we have T'S, (7) # 0.

Definition 3. A time ¢ € R is called a precise time of m, it T'S, () = {t} for
some n > 1.

The aim of the present section is to show the following theorem.

Theorem 4. Let w, § and Cpax be as above. Assume that T'S(w) # 0 and let
t € TSy (m). If t is a precise time of w then t € 0N and if t > 0 then the half-
open interval [t — Crax,t) contains another precise time. Otherwise, TS, (m) is
a non-empty open interval (r,s) with r € N and s € SN U {4o0}.

The main idea of the proof is to associate with the path 7 a directed graph G
with edge weights such that the interval can be calculated from the graph. We
first normalize the automaton in two simple steps as follows:

Step 1: We may assume that there is some clock zy such that g > 0 is a
constraint of A; and xg € a; for all 7 > 0.

Step 2: We may assume that the path = is infinite. (If the path = is finite, enter
a new state performing any action with the only constraint zy > 0. Loop in this
state. This modification does not touch 7S, (7), since T'S, (7) # §.)

We are now ready to define the graph (. For convenience we put ag = X. The
vertex set of the graph is V = {0,1,2,.. .} = N. There are two types of directed
edges. Let x € X be a clock and ¢ € C' be a constant such that # € «; and
(z#c¢) € Ajforsomei < jand o ¢ (11 U...Uaj_q).

If (x = ¢) € A;, then we define strong arcs with weights ¢ and —c respectively:



We define ¢ ~ j, if i and j are connected by some path using strong edges, only.
Clearly ~ is an equivalence relation on V. An induction on the length of the
path yields:

Lemma 5. Let totity--- € TS(m) be the time sequence of some w-run; i,j € V
and v;; the weight of some directed path of G' from i to j.

1. If the path uses strong edges only, then we have t; —t; = v;;.
2. If the path uses at least one soft edge, then we have t; —; < v;;.

Let 4,7 € V, assuming inf ) = +oo, we define
¢ij = inf{y;; | 7i; is the weight of a directed path from 7 to j}
In order to prove the theorem, we need some few technical results:

Lemma 6. Let totita--- € T'S(m) be the time sequence of some m-run and let
1,5, m e V. Then,

1. —Cji S tj —ti S Cij-

2. ¢ij € 0ZU{+o0o} and if ¢;; # +oo then there exists a directed path in G from
i to j of weight c;;.

1~ ] = ty—t;, =c¢y <— Cij—l—CjZ'IO.

¢ij < Cim + Cmy-

Cij = Cim + Cmy tfE~m orm ~ j.

Cij < Cim + Cmyj if i ~j and i £ m.

S S to

Lemma 7. We have
TS(m) = {totata--- | Vi, j €V it; —ti =¢; if i ~ j and
t; —ti < ¢;; otherwise}.
We can now state the decisive lemma.

Lemma 8. We have

TS, (m) = {{Cfm} ifn~0

(—¢no, con) otherwise.

Proof. Tf n ~ 0 then the result is a consequence of Lemma 6 (3) since t; = 0.
Assume now that n # 0. For each & > 0 we will define inductively in stage k a
subset s(k) C V satisfying the following properties:

1. The s(k) is a finite union of the equivalence classes.
2. For all i € s(k) a time ¢; is defined.
3. For all ¢, 5 € s(k) we have

b — 1 = Cij leN_]
P Tt — i < 65 otherwise.



To begin with let s(0) = [0] = {¢ € V | 0 ~ i} the equivalence class of 0. For
i € [0] define ¢; = ¢g;. Clearly 1), 2), and 3) are satisfied. To see 3) observe that
for ¢ ~ j ~ 0 we have by Lemma 6 ¢;; = ¢;o + co; and co; = —cj0.

Assume that s(k) has been defined, k& > 0. If s(k) = V we stop the procedure.
Otherwise, for each m € V'\ s(k) define an open interval

Ik — (r

m

by ri) = max{t; — cm; | t; € s(k)} and s = min{t; + cim | 6 € s(k)}.

Note that for i ~ j € s(k) and m € V, by Lemma 6, we have t; — ¢;ni =t — ¢y
and ?; + ¢;m = t; + ¢jm. Hence the maximum and the minimum are taken
over finite sets. The interval L(,f) is not empty since t; — ¢y < ; + ¢ for all
i,j € s(k),m ¢ s(k): Indeed, for i ~ j we have t; —t; = ¢;; < ¢im + ¢m;; and for
i ot j we have t; —1; < ¢ij < ¢im + ¢myj. Hence the claim in both cases.

For k = 0 and m + 0 we have [, = (¢mo, com). Now consider k+ 1. Ifk+1=1
then choose m = n. For k + 1 > 1 choose any m ¢ s(k). Define s(k + 1) =
s(k)U{j € V| j~ m} sothat (1) holds for s(k +1). Let ., be any value of the
open interval 1% For all j ~ m define t; = t,,, + ¢m;. Now (2) holds for s(k+ 1)

(k)

as well. Finally, (3) is a direct consequence of ¢; € I; for all j ~ m which can

be easily checked using ¢,, € Ir(,f), the definition of ¢; and Lemma 6.
Since 0 % n, we can choose a sequence mg = 0,m; = n,my, ms, ... such that

s(k) = [0]U [n]U[mso]U---Ulmy] and (s, s(k) = V. This defines values ¢, for
all m > 0 and thereby a sequence tgtits - - -

By property 3) above and Lemma 7 we see that ¢ot1t2 - - - € T'S(m). The result fol-
lows since my = n and the only condition on ¢,, has been t,, € IT(LO) = (—¢no, Con)-
The proof of Theorem 4 is now easy. From Lemma 8 we deduce that the precise
times of 7 are {co, | n ~ 0} C 0N. Moreover, assume that ¢ = ¢p, > 0 is a
precise time. Since n ~ 0 there i1s a path in G composed of strong arcs from n
to0:n=mng —ng — - — np = 0. Let ¢ = inf{j | con, < con}. We have
Con—Con; < Con;_; —Con; < Cmax. Hence the precise time con; € [con—Chmax, Con)-
Now if n + 0, then by Lemma 8 we have T'S,, (1) = (—¢no, con) and by Lemma 6
we obtain —c¢,g € 0N and cq, € SN U {400} which concludes the proof.

The theorem above yields a tool to prove that certain languages are not recog-
nizable by timed automata (without e-reset transitions resp.). The application
we have in mind is the following simple consequence.

Corollary 9. Every timed automaton recognizing the language L(Ay) from Fx. 1
has an e-reset transition lying on some directed cycle.

Proof. By contradiction. By Theorem 2 we may assume L(Ag) is recognized by
some automaton without any e-transition. Applying Theorem 4 we let § > 0 and
Cmax be the constants introduced at the beginning of Section 4. We find some
d € N, d > Chax and an accepted word of the form

(b,81)(b,85) -+ (b, 1) (a, d) (a,d + 1) - -



such that §; € (i — 1,4) \ 6N for all 0 < ¢ < d. Let m be a path accepting this
timed word. The time d must be precise contradicting Theorem 4.

Acknowledgment: We thank the anonymous referees for useful remarks which
yield to a simplification of our original construction.
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