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1. Introduction

Background. Model-checking of infinite-state systems (for a survey see (Burkart
et al., 2001)) is a rapidly growing area of formal verification. It has been success-
fully applied to real-time and hybrid systems, concurrent systems, Petri nets, asyn-
chronous communication devices (unbounded FIFO channels), infinite and unbounded
data structures (counters, queues, lists), control systems, parameterized systems (net-
works of arbitrary number of processes), etc. The single most important property of
practical interest in infinite-state transition systems isstate reachabilitywhich is often
undecidable in structures with otherwise decidable first-order theories, such as auto-
matic structures (Khoussainovet al., 1995). Therefore, intensive research has been
devoted to identifying classes of finitely presentable infinite structures with decidable
reachability and related properties.

Transition systems determined by relations definable in Presburger arithmetic pro-
vide a large natural class of infinite-state transition systems (Bardinet al., 2005), suit-
able for modeling in various applications such as the TTP Protocol (embedded sys-
tems) (Bardinet al., 2004), broadcast protocols (Esparzaet al., 1999), and programs
with pointer variables (Bardinet al., 2006a; Bouajjaniet al., 2006; Finkelet al., 2009).
Important cases of such transition systems with computablereachability have been
established in (Ibarra, 1978; Fribourget al., 1997; Comonet al., 1998; Finkelet
al., 2000; Finkelet al., 2002). The method of acceleration for computing reachability
sets has been developed in (Boigelot, 1998; Leroux, 2003) and is implemented in the
verification tool FAST (Leroux, 2003; Bardinet al., 2004; Bardinet al., 2006b); see
also the verification tools LASH (Boigelot, 1998) and TReX (Annichiniet al., 2001).

Motivation. For practical model-checking, an infinite-state system must be pro-
vided with an effective finitary presentation, and in particular, must admit a symbolic
representation of sets of states and transitions. Such representations can be based
on:

– automata (finite, pushdown, on infinite words or trees, etc.), as in pushdown
graphs (Mulleret al., 1985), prefix-recognizablegraphs (Caucal, 2003), and automatic
structures (Blumensathet al., 2004),

– interpretations into sufficiently rich infinite structures with respective decid-
able theories, e.g., again, automatic structures (Blumensath et al., 2004) and tree-
interpretable structures (Blumensath, 2002), (Caucal, 2003).

– algebraic equations or operations (Courcelle, 1990), etc.

Presburger arithmetic (PrA) is a logical formalism that is intrumental in many applica-
tions and it is a particularly appropriate platform for symbolic representation of a wide
variety of infinite state systems, such ascounter systems(see (Bardinet al., 2003))
where vectors of integers are subjected to linear transformations according to a finite
control graph. These strongly extend counter automata (Minsky, 1967) and even very
simple examples of counter systems can have notoriously difficult and unpredictable
behaviour, a witness being the Collatz problem (a.k.a. the Syracuse problem), see
e.g. (Lagarias, 1985). An important and natural class of counter systems, in which
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various practical cases of infinite state systems can be modelled (e.g. broadcast proto-
cols (Finkelet al., 2002)), are those with aflat control graph, where no control loca-
tion occurs in more than one simple cycle (see (Boigelot, 1998; Comonet al., 1998;
Comonet al., 2000; Finkelet al., 2002; Bardinet al., 2003; Leroux, 2003; Lerouxet
al., 2005; Bardinet al., 2005; Bozgaet al., 2009)). Essential results on verifying safety
and reachability properties on flat counter systems have been obtained in (Comonet
al., 1998; Finkelet al., 2002). However, until recently such properties had not been
considered in the framework of any formal specification language, and thus a natural
question arisesto identify expressive logical languages in which formal specification
and verification of properties of counter systems can be conducted.

On the other hand, most of the studies on CTL⋆-model checking so far have been
restricted to (unfoldings of) finite transition systems, and few decidability results for
CTL⋆-model checking on essentially infinite-state systems are known (Finkelet al.,
1997; Bouajjaniet al., 1997). This is particularly surprising since CTL⋆ is one of the
most known applied non-classical logics among the temporallogics. Actually, most
of these results are immediate consequences of stronger results about decidable modal
mu-calculus, or even the whole monadic second-order logic (MSO) in such systems,
see e.g. (Walukiewicz, 2001). Furthermore, these decidability results typically refer to
the propositional CTL⋆, while model checking of first-order extensions of even much
simpler temporal logics is typically undecidable. That is why, it is importantto search
for larger classes of effectively generated infinite state systems (without necessarily
decidable MSO), but in which natural first-order extensionsof CTL⋆ have decidable
model-checking problems.

Our contribution. In this paper, which is an improved and extended version of
(Demriet al., 2006), We jointly address both problems described above, and we obtain
a nearly optimal solution of them. Our main contributions are the following:

1) We introduce an extension of CTL⋆ (Emersonet al., 1986) over Presburger
arithmetic, i.e., where atomic propositions range over Presburger-definable sets of
configuration states. We interpret that extension over Presburger counter systems (ab-
breviated by PCS), thus proposing a very powerful specification language for such
systems. Presburger counter systems are infinite-state transition systems with states
being vectors of integers (counter values) and transition relations definable in Pres-
burger arithmetic. This class of models naturally includesthe counter automata (or
Minsky machines). Presburger counter systems are interesting in two complementary
ways: they naturally arise in the reachability analysis of counter systems, and on the
other hand they can be viewed as models for symbolic representation of infinite state
transition systems.

2) We identify a class of Presburger counter systems for which the local model
checking problem for the Presburger-CTL⋆ is decidable. These are Presburger counter
systems defined over flat control graphs with arcs labelled bytransition functions de-
fined by Presburger formulae, for which counting iteration over every cycle in the
control graph is Presburger definable. A well-studied case when the latter condition is
satisfied is when the composition monoids generated by the transition functions over
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every cycle are finite (see (Finkelet al., 2002)).
3) We show that the decidability results described above persist in some strong

extensions of the Presburger-CTL⋆, i.e. with a class of temporal operators defined by
means of constrained queue-content decision diagrams (akaCQDD) (see (Bouajjani
et al., 1999)) in a way analogous to Wolper’s Extended temporal logic (Wolper, 1983).

4) We provide evidence that our results are close to optimal with respect to the
class of Presburger counter systems described above, by showing that small relaxations
of each of the conditions lead to undecidability. For example, by dropping either the
counting iteration property or the flatness condition, undecidability is obtained.

Related work. Analyzing the reachability problem for counter systems is pa-
ramount for the verification of infinite-state systems, see e.g. (Ibarraet al., 2000)
(reversal-bounded systems), (Comonet al., 1998) (flat systems), (Finkelet al., 2002)
(flat Presburger transition systems), (Danget al., 2003) (discrete timed automata),
see also the decidability of reachability for classes of 2-counter systems (Finkelet
al., 2000). It is worth noting that, even though decidability can be obtained only at
the cost of making drastic restrictions on counter systems,there is a natural class of
counter systems that are sufficiently expressive for modelling different case studies
and for which one may verify the safety properties by means ofthe effective com-
putation of the reachability relation (Finkelet al., 2002; Bardinet al., 2003; Ler-
oux, 2003; Lerouxet al., 2005; Bardinet al., 2005). For instance, the flattable sys-
tems (Lerouxet al., 2005) admit a flat finite unfolding of the control graph with the
same reachability set. On the logical side, temporal logicswith Presburger constraints
have been defined and investigated in (Čerans, 1994; Bouajjaniet al., 1995; Bultanet
al., 1997; Comonet al., 2000; Schueleet al., 2004; Demri, 2006; Bruyèreet al., 2003),
some of which have quite expressive decidable fragments. However, undecidability
of the reachability problem can be proved for quite restricted counter systems, see
e.g. (Cortier, 2002; Potapov, 2004) while at the same time very few classes of counter
systems are decidable for CTL⋆ (see e.g. (Finkelet al., 1997) for one-counter sys-
tems). A logical formalism closer to the one developed in this paper is presented
in (Bultan et al., 1997) where an undecidable temporal logic with CTL-like opera-
tors and atomic formulae in Presburger arithmetic is introduced and the models are
counter systems. The class of models is not restricted (hence decidability does not
hold) but model-checking is performed by a symbolic analysis and an approximation
algorithm. Interestingly, if we restrict ourselves to the same temporal operators, it is
open whether our main decidability result can be established by giving up functional-
ity. Model checking discrete timed automata with parametric timed CTL is also shown
decidable by translation into Presburger arithmetic in (Bruyèreet al., 2003).

Structure and content of the paper. In Section 2 we present preliminary defini-
tions about graphs and Presburger arithmetic. In Section 3 we introduce the class of
Presburger counter systems (PCS) and we present the branching-time temporal logic
FOPCTL⋆(PrA)[n] whose models are transition systems generated from PCS. Ad-
missible PCS are introduced in Section 4 and we recall (un)decidability results of the
reachability problem for some classes of PCS. In Section 5, we show our main decid-
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ability result about model-checking admissible counter systems with FOPCTL⋆(PrA)[n].
Section 6 provides undecidability results indicating thatour result in Theorem 20 is
close to optimal.

In Section 7 we show the decidability of model-checking problems over admissible
PCS even when CQDD-based temporal operators are added to thetemporal logic.
Section 8 contains concluding remarks and states open problems related to our results.

2. Preliminaries

Graphs, paths, cycles.A labelled graphG = 〈Σ, Q, E〉 is a structure such thatQ

is a non-empty set,Σ is a non-empty finite alphabet andE ⊆ Q × Σ × Q. Graphs
with a singleton alphabet are the standard graphs. As usual,〈q, a, q′〉 ∈ E is also

denoted byq
a
−→ q′. A path in G is a sequenceq0

a0−→ q1 . . .
an−1

−−→ qn such that
for i ∈ {0, . . . , n − 1}, qi

ai−→ qi+1 is a transition. Acycle in a labelled graph is
a closed path (where the initial and final vertices coincide)with no repeating edges.
A simple cycleis a cycle in which the only repeated vertex is the initial (and final)
vertex. Observe that herein we use notions about cycles a bitdifferent from those in
graph theory. Given a pathλ = q0

a0−→ q1 . . .
an−1

−−→ qn, where eachqi ∈ Q, ai ∈ Σ,
we define thelength ofλ to be|λ| = n. A graph isflat if every cycle in it is a simple
cycle; equivalently, if every vertex occurs in at most one cycle.

Presburger arithmetic. Presburger arithmetic is the first-order theory PrA of
the structure〈N, +,≤〉, well-known to be decidable (Presburger, 1929). However,
all results in this paper will still hold in a more general setting, based on the struc-
ture 〈Z, +,≤〉 which is easily seen to be first-order interpretable into〈N, +,≤〉, and
therefore has a decidable first-order theory, too. For simplicity of notation, and with
a benign abuse of terminology, hereafter we will refer to thefirst-order theory of
〈Z, +,≤〉 as Presburger arithmetic, too, and will use the same notation, PrA, for it.
Given a Presburger formulaA(x1, . . . , xn) with free variables inx = 〈x1, . . . , xn〉
anda = 〈a1, . . . , an〉 ∈ Z

n, the truth ofA(x1, . . . , xn) with respect to the assign-
ment of valuesa to x is denoted bya |=PrA A(x). Elements ofZn will be usu-
ally denoted bya, b, c, . . . and vectors of variables will be denoted byx, y, z,
t, . . . , possibly decorated. A setX ⊆ Z

n is said to bePresburger definableiff
there is a Presburger formulaA(x) with free variablesx = 〈x1, . . . , xn〉 such that
X = {a ∈ Z

n : a |=PrA A(x)}. For n > 0, A binary relation of dimensionn is a
relationR ⊆ Z

n×Z
n. Respectively,R is Presburger definable iff there is a Presburger

formulaA(x,x′) with free variablesx = 〈x1, . . . , xn〉 andx′ = 〈x′1, . . . , x
′
n〉 such

thatR = {〈a,a′〉 ∈ Z
n × Z

n : a,a′ |= A(x,x′)}.

DEFINITION 1. — Let f be a partial function fromZ
n to Z

n with domain
dom(f).

– f is a translationif there existsb ∈ Z
n such that for everya ∈ dom(f) we have

f(a) = a + b.
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– f is affine if there exist a matrixA ∈ Z
n×n andb ∈ Z

n such that for every
a ∈ dom(f) we havef(a) = Aa + b.

– f is Presburger definableiff the graph off is a Presburger definable relation.

3. Temporal Logics on Presburger Counter Systems

In this section, we introduce Presburger counter systems and a first-order extension
of the temporal logic CTL∗ interpreted over such systems.

3.1. Presburger Counter Systems

The Presburger transition systems defined below are infinitestate transition sys-
tems that can be finitely described by formulae in Presburgerarithmetic.

When infinite state transition systems arise in the modelingof computational pro-
cesses, there is often a natural factoring of each system state into a control component
and a memory component, where the set of control states (locations) is typically finite.
We refer to the combined state of the system, containing the location, the memory
state and the position of the head, as aconfigurationof the system.

We will be interested in systems where the memory states aren-dimensional vec-
tors of integers. In particular, we define systems where the transition relation on such
vectors may be described by relations definable in Presburger arithmetic.

DEFINITION 2. — A Presburger counter system (PCS) of dimensionn is a labelled
graphC = 〈Σ, Q, δ, n〉, where

– Σ is a finite set of Presburger formulae of the formA(x,x′) wherex andx′ are
tuples ofn variables,

– Q is a finite set of locations,
– δ ⊆ Q× Σ×Q is the transition relation.

By convention, prime variables inx′ are intended to be interpreted as the next-state
values of the unprimed variables inx.

Given two locationsq andq′, we writeAq,q′ (x,x′) to denote the disjunction of
all the formulaeB(x,x′) such that〈q, B(x,x′), q′〉 ∈ δ. Thus, without any loss of
generality, we can assume that there is a unique transition between every two control
states. When there is no transition between a pair of states in the counter system, we
introduce one labelled by falsum⊥.

Thus, a PCS can be regarded as a labelled graph with alphabet made of specific
Presburger formulae.

Figure 1 contains a simple Presburger counter system, augmented with an initial
location and final location.
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s0s0

x′ = x + 1

s1

(∃y(x = 2y) ∧ 2x′ = x) ∨ (¬∃y(x = 2y) ∧ x′ = 3x + 1)

Figure 1. A simple Presburger system

Every PCSC = 〈Σ, Q, δ〉 of dimensionn naturally induces aPresburger transition
system (of dimensionn): SC = 〈S,→〉 whereS = Q × Z

n is a set ofconfigurations
and〈q, a〉 → 〈q′,a′〉 iff a,a′ |=PrA Aq,q′ (x,x′). As usual,→∗ denotes the reflexive
and transitive closure of the relation→. Whenever,〈q, a〉 →∗ 〈q′,a′〉, we say that
〈q′,a′〉 is reachablefrom 〈q, a〉. Without any loss of generality, we can assume that
Q ⊆ N, henceS ⊆ Z

n+1. Depending on the context, the configurations ofSC will be
written asa = 〈q, a1, . . . , an〉 (location encoded in the first element ofa) or simply
as〈q, a〉 ∈ Q× Z

n. A configuration pathin C is an infinite path inSC .

We say that:

– C is functional, if for all q, q′, the formulaAq,q′ (x,x′) defines a partial function.
– a functional PCSC is acounter automaton, if for all q, q′, Aq,q′ (x,x′) defines a

translation.
– a functional PCSC is affineif for all q, q′, Aq,q′(x,x′) defines an affine function.

PROPOSITION3. — Each of the following properties of Presburger counter system:
being functional, translation (i.e., a counter automaton), or affine, is definable in PrA,
and therefore decidable.

PROOF 4. — Let A(x,x′) be a Presburger formula over the free variablesx =
〈x1, . . . , xn〉 andx′ = 〈x′1, . . . , x

′
n〉. It is immediate to check that:

– A(x,x′) is functional iff

|=PrA ∀x∀y∀y
′((A(x,y) ∧A(x,y′))⇒ (y = y′)).
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– A(x,x′) is a translation iff

|=PrA

n∧

i=1

∃z∀x∀y(A(x,y) ⇒ yi = xi + z).

To check whetherA(x,x′) is affine requires a bit more work. We want to check the
existence of a matrixA ∈ Z

n×n and a vectorb ∈ Z
n such that for everya ∈ dom(f)

we havef(a) = Aa + b, where,f(a) is the uniquea′ such thata,a′ |= A(x,y).
The solution below is a bit more complex than the straightforward approach. Indeed,
f(0) = b, which allows to defineb. A similar reasoning would allow to compute
each column ofA by applyingf to unit elements. However, this is not sufficient since
f is partial and for instancef(0) may be undefined. A less straighforward approach
is described below. Here is how this can be done.

– First, note thatdom(f) is Presburger definable by the formula∃yA(x,y).
– Therefore,dom(f) can be defined as a finite union of sets of the form

Si = {bi + λ1pi,1 + · · ·+ λni
pi,ni

: λ1, . . . , λni
∈ N}

wherebi,pi,1, . . . ,pi,ni
∈ Z

n (the basis and the periods). All these integers can be
effectively computed (Ginsburget al., 1966).

Suppose the union hasK sets. Iff is affine, thenf(a) = Âa + b̂ for someÂ
andb̂. Then for every1 ≤ i ≤ K and1 ≤ j ≤ ni, there is a unique integer vector
cij (= Âpj,nj

) such that for everyz ∈ Si we have that

f(z + pj,nj
)− f(z) = cij. (∗)

(Indeed:f(z+pj,nj
)− f(z) = Â(z+pj,nj

)+ b̂− (Âz+ b̂) = Âz+ Âpj,nj
+

b̂− Âz− b̂ = Âpj,nj
= cij.)

The existence of such unique vector can be easily expressed by a Presburger for-
mula and then verified. If false, thenf is not affine. If true, then̂A andb̂ must, in
particular, satisfy the equations:

Âpj,nj
= f(bi + pj,nj

)− f(bi) for every1 ≤ i ≤ K and1 ≤ j ≤ ni. (∗∗)

Âbi + b̂ = f(bi) for every1 ≤ i ≤ K. (∗ ∗ ∗)

This is a system of linear equations with integer coefficients for then2 + n integer
entries of the matrix̂A and the vector̂b. To find an integer solution of that system, or
to show that there is none, one can use e.g., the method from (Papadimitriou, 1981) or
(Boroshet al., 1976). If there is no integer solution, then such matrix andvector do
not exist, sof is not affine. If there is an integer solution, take any one; itdetermines
a matrixA and a vectorb.

We can now check thatf(a) = Aa + b for anya ∈ dom(f). Indeed, using the
equations (*), (**), and (***) we have thatf(a) = f(bi + Σjλjpi,j) = f(bi) +
ΣjλjApi,j = Abi + b + ΣjλjApi,j = A(bi + Σjλjpi,j) + b = Aa + b. �
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3.2. The Temporal Logic FOPCTL⋆(PrA)

We now define a version FOPCTL⋆(PrA) of first-order and past-time extension
of CTL⋆ that is appropriate for reasoning about Presburger transition systems. The
name ’FOPCTL⋆(PrA)’ indicates that FOPCTL⋆(PrA) contains past-time operators,
first-order quantification over integers and its underlyingtemporal logic is CTL⋆. The
logic FOPCTL⋆(PrA) differs from standard CTL⋆ with past mainly in the definition of
atomic formulae. Whereas propositional variables are usedin the propositional CTL⋆,
we will use as atomic formulae in FOPCTL⋆(PrA) Presburger definable predicates,
interpreted on the set of configurations.

We introduce a countable set of individual variables, say VAR = {y0, y1, y2 . . .},
for quantification over counter values. Elements of VAR are distinct from the distin-
guished ones in{x0, x1, . . . , xn} that are free variables, only interpreted by the values
of counters on configurations (the control location being encoded by the interpreta-
tion of x0). In order to match the dimension of the models where such formulae will
be interpreted, the Presburger definable predicates must have a matching number of
free variables, thus giving a family of logics FOPCTL⋆(PrA)[n] parameterized by the
dimensionn ≥ 1. When the dimensionn is clear from the context, we just refer to
FOPCTL⋆(PrA).

Atomic formulae of FOPCTL⋆(PrA)[n] are Presburger formulae of the formθ(x,y)
wherex = x0, x1, . . . , xn andy is a vector of variables from VAR, regarded as pa-
rameters.

Formulae of FOPCTL⋆(PrA)[n] are defined as follows:

ϕ
def
= θ(x,y) | ¬ϕ | ϕ ∧ ϕ | Xϕ | ϕUϕ | X−1ϕ | ϕSϕ | A ϕ | ∃ y ϕ,

wherey ∈ VAR andy is a sequence of variables. We shall freely use standard abbre-
viations for the implication⇒, the existential path quantifierE , the always operator
G, and the sometimes operatorF.

The LTL fragment of FOPCTL⋆(PrA), denoted by FOLTL(Pr), consists of for-
mulae of the form eitherE φ′ or A φ′ whereφ′ has no path quantifiers and no past-
time operators. We define thestrict EF fragmentof FOPCTL⋆(PrA) as the set of
FOPCTL⋆(PrA) formulae containing only the temporal operatorE F and no nested
occurrences ofE F. Hence, this fragment has no past-time operators either.

We will give semantics of FOPCTL⋆(PrA) over Presburger transition systems.
The satisfaction relation|= is parameterized by anenvironmentρ that is a map VAR
→ Z, in order to interpret the free variables from VAR that occurin formulae (the map
ρ will be omitted when not immediately relevant). For a PCSC = 〈Σ, Q, δ, n〉 with
Presburger transition systemSC = 〈S,→〉, the satisfaction relation|=ρ is defined at
positioni of configuration pathπ as follows, whereπ≤i denotes the initial part ofπ
up to and including positioni; the environmentρ will be omitted wherever it is not
essential.
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– π, i |=ρ θ(x,y) iff π(i), ρ |= θ(x,y) in PrA, whereπ(i) provides the interpre-
tation of the variablesx0, . . . , xn andρ the interpretation for the variables iny,

– π, i |= ¬ϕ iff π, i 6|= ϕ,
– π, i |= ϕ ∧ ϕ′ iff π, i |= ϕ andπ, i |= ϕ′,
– π, i |= Xϕ iff π, i + 1 |= ϕ,
– π, i |= ϕUϕ′ iff there is somej ≥ i such thatπ, j |= ϕ′ and for eachk, if

i ≤ k < j thenπ, k |= ϕ,
– π, i |= X

−1ϕ iff i > 0 andπ, i− 1 |= ϕ,
– π, i |= ϕSϕ′ iff there is somej ≤ i such thatπ, j |= ϕ′ and for eachk, if

j < k ≤ i thenπ, k |= ϕ,
– π, i |= A ϕ iff for every infinite configuration pathπ′ such thatπ′≤i = π≤i we

haveπ′, i |= ϕ,
– π, i |=ρ ∃yϕ iff there is an integerm ∈ Z such thatπ, i |=ρ[y←m] ϕ where

ρ[y ← m] is the environment obtained fromρ by forcingy to be interpreted bym.

Past-time operators are known to simplify the expressions of specifications, see
e.g. (Laroussinieet al., 2000). Here is an example of formula with a past-time opera-
tor:

A G (x1 = x2 ⇒ F
−1x3 = x4)

The forthcoming translation will treat future-time and past-time temporal operators
uniformly.

First-order quantification over counter values allows us tostate many interesting
properties in FOPCTL⋆(PrA):

Determinism: For all the configurations reachable from the initial configuration, there
is at most one successor configuration:

A G

∧

0≤i≤n

¬∃y(E X(xi = y) ∧ E X(xi 6= y)).

Boundedness:The set of configurations reachable from the initial configuration is
finite:

∃y, y′ A G
∧

1≤i≤n

y ≤ xi ≤ y′.

Increasing chain: On some path the first counter strictly increases at every step:

E G∃y (y = x1 ∧ X(x1 > y)).

3.3. Model checking problems for FOPCTL⋆(PrA)[n]

In the definition of model-checking problems below, the formulae in FOPCTL⋆(PrA)[n]
satisfy that none of the variables in VAR occur out of the scope of a quantification. Of
course, variables related to counter values and locations (those inx) occur freely, In
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that way, we can sometimes omit the environments when interpreting formulae with
all variables in VAR bounded. We will call such formulaesemi-closed. In that way,
we do not need to specify an environment in the statement below.

1) LOCAL MODEL CHECKING: Given a PCSC with Presburger transition sys-
tem SC = 〈S,→〉, a configuration〈q, a〉 ∈ S, and a semi-closed formulaϕ from
FOPCTL⋆(PrA)[n], determine whetherC, 〈q, a〉 |= ϕ, meaning that for every pathπ
such thatπ(0) = 〈q, a〉, we haveπ, 0 |= ϕ.
The dual version of this problem with the existential quantification over paths can be
defined in a similar fashion. In the rest of the paper, we only deal with the universal
version but a similar treatment is possible for the existential version, too.

2) GLOBAL MODEL CHECKING: Given a PCSC with Presburger transition sys-
tem SC = 〈S,→〉, and a FOPCTL⋆(PrA)[n] formula ϕ, compute (as a Presburger
formula) the set of configurationsS such that for every pathπ with π(0) ∈ S, we have
π, 0 |= ϕ.

3) VALIDITY CHECKING WITH AN INITIAL CONDITION : Given a PCSC with
Presburger transition systemSC = 〈S,→〉, a Presburger formulaA0(x) and a semi-
closed FOPCTL⋆(PrA)[n] formulaϕ, check whether for every configuration〈q, a〉
satisfying A0(x), for every configuration〈q′,a′〉 reachable from〈q, a〉, we have
C, 〈q′,a′〉 |= ϕ.

Variants of these problems can be defined by considering subclasses of PCS or
other specification languages.

4. Admissible Presburger Counter Systems

As we will show later, local model checking of FOPCTL⋆(PrA) over the whole
class of PCSs is highly undecidable (by reduction from the recurring problem for
nondeterministic Minsky machines (Minsky, 1967; Aluret al., 1994)) even though
reachability can be decided for many classes of counter systems, see e.g. (Ibarraet
al., 2000; Comonet al., 1998; Finkelet al., 2002; Danget al., 2003). In this section
we introduce a subclass ofadmissiblePCS in which model checking FOPCTL⋆(PrA)
will be proved to be decidable in the next section.

DEFINITION 5. — Given a relationR ⊆ Z
n×Z

n we define thecounting iteration of
R as the relationRCI ⊆ Z

n × N × Z
n such that〈a, i,b〉 ∈ RCI iff 〈a,b〉 ∈ Ri. R

has a Presburger counting iterationif its counting iteration is Presburger definable.

The cycle relationRλ of a cycleλ in a PCS is obtained by composing the tran-
sition relations on the cycle. According to Section 2, a cycle λ can be viewed as

a sequencet1, . . . , tα of transitions of the formti = qi
Ai−→ q′i such that for1 ≤

i ≤ α − 1, qi+1 = q′i andq1 = q′α. We define the relationRti as the set of pairs
{〈〈qi,a〉, 〈q

′
i,a
′〉〉 : a,a′ |=PrA Ai(x,x′)}. The relationRλ is then the composition

Rt1 ◦ · · · ◦ Rtα . A cycle has thePresburger counting iteration propertyif its cycle
relation has a Presburger counting iteration.
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DEFINITION 6. — A PCSC has the Presburger counting iteration propertyif every
cycle in the control graph ofC has that property.

Observe that if a PCSC has the Presburger counting iteration property, we can
effectively identify the Presburger formula associated with each cycle. It is sufficient
to enumerate Presburger formulaeA(x, i,y) and test whether

∀x,x
′

, i (A(x, i, x
′) ⇒ i ≥ 0) ∧ (A(x, 0,x

′) ⇔ (x = x
′))∧

(A(x, i + 1,x
′) ⇔ (∃x′′

A(x, i,x
′′) ∧ A

′(x′′

, x
′)))

is valid, whereA′(x,y) is the effect of a given cycle. This is an instance of a more
general result from (Leroux, 2006). Indeed, given a Presburger-definable binary re-
lation R ⊆ Z

n × Z
n, it is undecidable to determine whether the transitive and re-

flexive closureR∗ is Presburger-definable too (Leroux, 2006). We also know that
there exist Presburger counter systems of dimension 1 that do not have the Presburger
counting iteration property (for instance, consider the updatex′1 = 2x1). In general,
we expect that determining whether a counter system has a Presburger counting iter-
ation is an undecidable problem by extending similar results from (Leroux, 2006).
By contrast, given a total affine functionf(x) = Ax + b, by (Boigelot, 1998),
{〈x,Ax + b〉 : x ∈ Z

n}∗ is Presburger-definable iff{An : n ∈ N} is finite. Fol-
lowing (Finkel et al., 2002),{An : n ∈ N} is finite iff {〈x,Ax + b〉 : x ∈ Z

n}
has the Presburger counting iteration. Finiteness of the monoid generated fromA has
been also considered in (Emersonet al., 1998). Indeed, the broadcast protocols intro-
duced in (Emersonet al., 1998) use monotone affine transition functions of the form
f(x) = Ax + b where{An : n ∈ N} is also finite. In (Emersonet al., 1998), it is
shown how to compute the least upper bound offn(x) in order to construct coverabil-
ity graphs. Nevertheless, this fact is not used in order to compute theexactvalue of
the acceleration.

As pointed out in (Finkelet al., 2002),flatnessof the control graph is a key property
enabling the symbolic computation of the reachability relation. That property ensures
that there is only a finite number of ‘schemes’ of configuration paths (see details later
on) in the PCS, and since one can effectively compute Presburger formulae associated
with cycle relations, we obtain the following.

PROPOSITION7. — (Comonet al., 1998; Finkelet al., 2002) For every flat PCS sat-
isfying the Presburger counting iteration property, one can effectively compute the
reachability relation→∗ for the transition systemSC = 〈S,→〉 by means of a formula
in Presburger arithmetic.

This proof of this folklore result is quite straightforward. Now, we will provide a
sufficient condition for the Presburger counting iterationproperty. First, we need to

recall a few definitions. The transitions in an affine PCS are of the forms
x′=Ax+b
−−−−−→ t

whereA ∈ Z
n×n andb ∈ Z

n.

A cycle λ has the finite monoid propertyif the multiplicative monoid ofAλ is
finite whereAλ = A1 · · ·AN and the cycleλ is labelled by the sequence of matrices
A1 · · ·AN.

12



DEFINITION 8. — A PCSC has the finite monoid propertyif every cycle in the control
graph ofC has that property.

Let us remark that our definition of a PCS having the finite monoid property is
weaker than the one in (Finkelet al., 2002) in which a PCS has the finite monoid
property if the multiplicative monoid generated fromall the matrices occurring in the
PCS is finite. Our weaker condition is sufficient to obtain thefollowing result:

PROPOSITION9. — (Finkel et al., 2002; Boigelot, 2003) Every flat and affine PCS
with the finite monoid property has the Presburger counting iteration property.

As a corollary of Propositions 7 and 9, the Presburger formula defining the reacha-
bility relation in every flat and affine PCS with the finite monoid property is effectively
computable. By contrast, observe that in (Comonet al., 1998), even though flatness is
also assumed, the transition relations are not necessarilyfunctional. Hence, the above-
mentioned consequence appear to be incomparable with the main result from (Comon
et al., 1998). Furthermore, the systems defined in Definition 10 below are more gen-
eral than the ones in (Comonet al., 1998; Bozgaet al., 2009) since we allow a richer
language on transitions.

Finally, we require functionality of the transition relation, in order to ensure effec-
tive enumeration within Presburger arithmetic of all configuration paths in the PCS.
That condition is not always necessary and can be relaxed in various ways, but that
will not be discussed in the paper. Let us mention that decidability still holds true if
the transitions that do not belong to cycles are non-functional.

DEFINITION 10. — An admissible Presburger counter system (ACS)is a flat, func-
tional PCS, that has the Presburger counting iteration property.

In particular, due to Proposition 9, every flat and affine PCS with the finite monoid
property is admissible. As we will see further, relaxing anyof the conditions for
admissibility leads to undecidability, even of the simple reachability problem.

In order to conclude this section, it is worth recalling thatacceleration of a loop is
understood as the computation of the effect of the infinite iteration and to symbolically
represent this effect with a regular language, e.g., with a finite-state automaton. The
first reference to acceleration of loops in counter systems and its representation by
formula appeared in the seminal paper (Boigelotet al., 1994). The authors accelerate
loops of counter systems labelled by an affine functionf(x) = Ax + b whereA is
a diagonal matrix in{0, 1}n×n,b ∈ Z

n and the domain is given by a set of linear
inequalities. In (Boigelotet al., 1994), acceleration is represented by periodic sets
that can be expressed by Presburger formulae. SinceA2 = A, the infinite iteration
can be indeed represented by periodic sets. In (Boigelot, 1998; Boigelot, 2003), this
result is extended to loops labelled by affine functionsf(x) = Ax + b such that
{An : n ∈ N} is finite . A rather more complex but equivalent version is given whose
domain is given by a set of linear inequalities (i.e., a domain defined by a Presburger
formula without quantifiers and modulo). In (Finkelet al., 2002), this is extended to
Presburger-definable domains.
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5. Model-Checking of FOPCTL⋆(PrA)[n] on Admissible Counter Systems

Herein, we show decidability of model checking FOPCTL⋆(PrA) over admissible
Presburger counter systems. The main idea behind our decidability result is the follow-
ing: in an ACS there are only finitely many ‘path schemas’, andalthough each of these
generates a possibly infinite set of configuration paths, theconfiguration paths for each
path schema can be uniformly encoded within Presburger arithmetic by finite vectors
of integer parameters. Thus, the quantification over paths in FOPCTL⋆(PrA)[n] can
be simulated by quantification over tuples of natural numbers, eventually allowing
translation of FOPCTL⋆(PrA)[n] into PrA.

Throughout this section, letC = 〈Σ, Q, δ〉 be an ACS of dimensionn. Recall
that we also assume that there is at most one transition between any two locations, by
taking the disjunction of all formulae labelling the transitions between every pair of
locations.

5.1. Control paths and configuration paths

DEFINITION 11. — A control pathin C is any infinite path in the graph ofC. A path
segmentin C is a single transitiont ∈ δ or a simple cycle inC, that we represent as
a finite sequence of locations. Apath schemain C is a sequence〈σ0, . . . , σk〉 of path
segments inC such that:

1) for every0 ≤ i ≤ k − 1, the last location ofσi is the first location ofσi+1,
2) no single transitionσi occurs in a cycleσj for j > i,
3) the final path segmentσk is a cycle.
4) for i 6= j, we haveσi 6= σj .

Cycles in a path schema that are not the final segment are called interior cyclesof the
schema.

The idea behind the definition above is that it allows for auniquedescription of
every control path in the graph ofC. Condition (4.) allows to get a concise description.

From now on we fix an enumerationλ1, . . . , λM of all the cycles inC and assume
thatM > 0.

In Figure 2, we present an example of an ACS (the transitions on the figure that are
not labelled are assigned arbitrary functional Presburgerformulae). We give below
examples of control paths, path segments and path schemata in the ACS with the
following convention: a simple transition is encoded by a pair of the form〈q, q′〉 and
a cycle is encoded by a sequence〈q, . . . , q′〉 such thatq = q′.

simple cycles: λ1 = 〈q1, q3, q6, q1〉 (see dotted arrows in Figure 2),λ2 = 〈q4, q5, q4〉,
λ3 = 〈q7, q7〉
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q0

q2

q1

q4

q5

q3

q6

q7

x′ = 2x

x′ = x + 1

x′ = 2x

x′ = x− 1

x′ = x

Figure 2. A flat counter system

control path: q0q2q4q
ω
7 (see the bold arrows in Figure 2).

path segments:〈q0, q1〉, 〈q1, q3, q6, q1〉, 〈q4, q5, q4〉, 〈q5, q4, q5〉, 〈q1, q3〉.

valid path schema: 〈q0, q1〉, 〈q1, q3, q6, q1〉, 〈q1, q3〉, 〈q3, q7〉, 〈q7, q7〉.

invalid path schema: 〈q0, q1〉, 〈q1, q3〉, 〈q3, q6, q1, q3〉, 〈q3, q7〉, 〈q7, q7〉 (Condition (2)
in Definition 11 is violated).

Note that the last two path schemas above describe the same control path, but the
latter violates condition 2 of the definition: the single transition〈q1, q3〉 also occurs in
a cycle that follows after it:〈q3, q6, q1, q3〉.

Since an ACS is flat and has a finite number of locations, the following holds:

PROPOSITION12. — In every ACSC with at most one transition between two loca-
tions, the number of path schemata is bounded by(N)N whereN = |Q|+ |δ|.

PROOF 13. — The number of path segments is bounded by|Q| (bound on the number
of simple cycles)+|δ| (bound on the number of simple transitions). Hence, the number
of path schemata is bounded byNN . �

Hereafter, we suppose that there areP ≥ 1 path schemas inC. A path schema with
at least one interior cycle corresponds to infinitely many different control paths, since
any interior cycle in the schema may be repeated an arbitrarynumber of times on the
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control path. The number of repetitions of a given cycle in a control path is called the
cycle countof that cycle. Thus, every control path is completely characterized by its
underlying path schema and the cycle counts for its interiorcycles. The next definition
formalizes this idea.

DEFINITION 14. —Let the ACSC haveM > 0 cycles andP path schemas. A
cycle count vectorc is a tuple〈c1, . . . , cM 〉 ∈ N

M , wherecr represents the cycle
count for the cycleλr. A control path descriptionα is a pair α = 〈p, c〉 wherep ∈
{1, . . . , P} denotes the path schema,c is the cycle count vector for the control path
being described,ci > 0 for every interior cycleλi andci = 0 for any cycleλi in C
which is not interior in the path schemap. Hereafter a control path description, may
be written as〈p, c1, . . . , cM 〉. We writeα0 for the path schema associated with control
path descriptionα.

Note that in the definition abovep is simply the identifier of the control pathα0.

The following is immediate from the flatness condition on ACS.

PROPOSITION15. —For every control path in an ACSC, there is a unique control
path description.

So, we can encode control paths by tuples of positive integers. Without risk of
confusion, we identify every control path with its description. For example, in the
system on Figure 2, the description of the control pathq0q1q3(q6q1q3)

3qω
7 with under-

lying path schema〈q0, q1〉, 〈q1, q3, q6, q1〉, 〈q1, q3〉, 〈q3, q7〉, 〈q7, q7〉, labelled by1, is
〈1, 〈3, 0, 0〉〉.

Every configuration path in an ACS is uniquely described by the pair〈α, 〈q, a〉〉
whereα is its control path and〈q, a〉 is the initial configuration. Conversely, due to
the functionality ofC, every such pair〈α, 〈q, a〉〉 with location ofa corresponding to
the first location of the path schemaα0, describes a unique path in the configuration
graph starting at〈q, a〉, and progressing according to the transitions of the control path
α. Note, however, that such a path may terminate and thereforenot be considered as a
configuration path.

In the example on Figure 2, from the control pathq0q2q4q
ω
7 and the initial config-

uration withx = 3, we obtain the configuration path

〈q0, 3〉〈q2, 4〉〈q4, 8〉〈q7, 7〉
ω.

5.2. Encoding the configurations along a path by a Presburger formula

In this section we construct a Presburger formula that exactly describes the config-
uration path associated with a control path and initial configuration. As a corollary of
Theorem 16 below, we obtain Proposition 7.
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THEOREM 16. — Given an ACSC of dimensionn with M > 0 cycles, one can
compute a Presburger formulaPathConfigC(v,x, i,y) such that for allα ∈ N

M+1,
a ∈ Z

n+1, m ∈ N andb ∈ Z
n+1:

α,a, m,b |= PathConfigC(v,x, i,y)

iff α is a valid control path description and themth configuration of the configuration
path〈α,a〉 is b (v, x andy are variable sequences andi is a variable).

PROOF 17. — Sketch: First, when a cycleλ has the Presburger counting iteration
property, we writeϕλ(x, y,x′) to denote the Presburger formula encoding its counting
iteration relation. In that case, there is also a Presburgerformula Aλ(x, k,x′) that
expresses thatx′ is obtained fromx by following k transitions along the cycleλ.

Now, we will construct a formulaPathConfigC in accordance with the requirements
of the theorem.

First, letP be the number of path schemas inC. We consider each path schemap

individually, constructing a formulaSchemaConfigp(v,x, i,y) such that for allα ∈
N

M+1, a ∈ Z
n+1 (encoding a configuration),m ∈ N andb ∈ Z

n+1 it is the case
thatα,a, m,b |= SchemaConfigp(v,x, i,y) iff α is a control path description, the
path schema of the control pathα is p, and themth configuration of the configuration
path〈α,a〉 is b. Then our desired formulaPathConfigC will be the disjunction over
all SchemaConfigp wherep is a path schema in the system.

To defineSchemaConfigp for a fixed path schemap, we proceed as follows. Sup-
pose〈σ0, . . . , σk〉 is the sequence of segments inp, andα is a control path with path
schemap. Along the unique (if it exists) configuration path induced by α starting
with configurationa, we will identify somelandmark positionsand landmark con-
figurations: for each segmentσj (where0 ≤ j < k) we would like to identify the
positiontj ∈ N and the configurationwj ∈ Z

n+1 immediately before the segmentσj

is traversed (or entered for the first time, if the segment is acycle).

The landmarks associated with segmentσ0 are the initial positiont0 = 0 and the
initial configurationw0 = a.

We defineκj to be the number of positions in the configuration path that are cov-
ered by segmentσj . If segmentσj is a single transition then the number of positions
covered by that segment is1. Otherwise, the segmentσj is some interior cycleλr with
|λr| transitions in the cycle. Recall that the number of times thecycleλr is traversed
in the control path described byv is given by the cycle countvr. Then, the total
number of positions in the configuration path covered by the segmentσj is vr|λr|.
Formally:

– if σj is a transition〈q, A(x,x′), q′〉 thenκj
def
= 1,

– if σj is a cycleλr thenκj
def
= vr|λr |.

Having definedκj , we can now state that our landmark positionsti will thus satisfy
the following constraints:t0 = 0 andtj+1 = tj + κj for 0 ≤ j < k.
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Next, we consider the landmark configuration that corresponds to each landmark
position. We would like to describe in a uniform way those configurations that appear
while a specific segment is traversed. So, for the segmentσj , we define a Presburger
formula SegmentConfigj(x, i,y) such that for alla ∈ Z

n+1, m ∈ N, andb ∈
Z

n+1, it is the case thata, m,b |= SegmentConfigj(x, i,y) iff the location of the
configurationa appears as one of the locations inσj , and the configurationb is reached
from configurationa afterm transitions, according to the transition(s) ofσj .

When segmentσj is just a single transition, we defineSegmentConfigj using the
transition relation. Otherwise, if the segment is a simple cycle, we use the correspond-
ing counting iteration relation.

Formally, we defineSegmentConfigj as follows:

– if σj is a transitiont = 〈q, A(x,x′), q′〉 then

SegmentConfigj(x, i,y)
def
= x0 = q ∧ ((i = 0 ∧ x = y) ∨ (i = 1 ∧A(x,y))),

– if σj is a simple cycleλ then

SegmentConfigj(x, i,y)
def
= Aλ(x, i,y).

We define the string of quantifiers

ExistLandmarks
def
= ∃t0, . . . ,∃tk, ∃w0, . . . ,∃wk

and define the formula

LandmarkConstraints
def
= (t0 = 0 ∧w0 = x)

k−1∧

j=0

[(tj+1 = tj + κj) ∧ SegmentConfigj(wj, κj ,wj+1)].

If the configuration path is infinite, we are assured that suchlandmarks exist, hence the
formula that claims their existence will be true. Conversely, to ensure that the path in
the Presburger transition system will be infinite, we will extend the formula to confirm
the existence of configurations in all positions after the last landmark:

CheckInfinite
def
= ∀t(tk < t→ ∃z SegmentConfigk(x, t− tk, z)).

The final part of our construction ofSchemaConfigp is to include a subformula that
checks for the occurrence of a given configuration at a given position of the configura-
tion path. We have to take some care to check whether positioni occurs in a segment
before the final cycle segment is entered, or inside the final cycle.

CheckConfig
def
=

k−1∧

j=0

[(tj ≤ i ∧ i < tj+1)→ SegmentConfigj(wj, i− tj ,y)]

∧ [(tk ≤ i)→ SegmentConfigk(wk, i− tk,y)].
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The above formulae are now combined to give the configurationchecking formula for
path schemap

SchemaConfigp(v,x, i,y)
def
= (ξ0 = p)∧

ExistLandmarks [LandmarkConstraints ∧ CheckInfinite ∧ CheckConfig ].

Finally we have:

PathConfigC(v,x, i,y)
def
=

M∨

p=1

PathConfigp(v,x, i,y).

�

We define two auxiliary formulae that will be used in the following proof. Firstly,
we can check that a pair(v,x) denotes a valid configuration path, by checking that
the initial configuration of the path is correct and that the path is infinite:

ValidPath (v,x)
def
= PathConfigC(v,x, 0,x) ∧ ∀i ≥ 0∃zPathConfigC(v,x, i, z)

Secondly, for two configuration paths denoted by(v,x) and(v′,y) we would like to
express that the paths agree on all configurations up to and including positioni. To
this end, we construct the formula

CommonPathPrefix (v,x,v′,y, i)
def
=

∀j ≥ 0[j ≤ i⇒ ∀z(PathConfigC(v,x, j, z)⇔ PathConfig(v′,y, j, z))],

This formula will be used when quantifying over paths with identical finite past.

5.3. A decision procedure to verify an admissible counter system

We are now ready to show that model-checking FOPCTL⋆(PrA)[n] can be reduced
to satisfiability in Presburger arithmetic.

THEOREM 18. — Given an ACSC of dimensionn with Presburger transition system
SC = 〈S,→〉, for every semi-closed FOPCTL⋆(PrA)[n] formulaϕ, one can compute
a Presburger formulaAϕ(x) such that for every〈q, a〉 ∈ SC , 〈q, a〉 |= Aϕ(x) iff
C, 〈q, a〉 |= ϕ (no need for environment sinceϕ is semi-closed).

PROOF 19. — We show that, given an ACSC, for every FOPCTL⋆(PrA)[n] formula
ϕ, one can define a Presburger formulaT (〈v,x, i〉; ϕ) with free variablesv,x, i such
thatα,a, m |= T (〈v,x, i〉; ϕ) iff for the configuration pathπ with control pathα and
initial configurationa, we have thatπ, m |= ϕ, if such configuration path exists.

We defineT recursively onϕ as follows:
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T (〈v,x, i〉; θ(x,y))
def
= ∀z[PathConfigC(v,x, i, z)⇒ θ(z,y)];

T (〈v,x, i〉;¬ϕ)
def
= ¬T (〈v,x, i〉; ϕ);

T (〈v,x, i〉; ϕ ∧ ϕ′)
def
= T (〈v,x, i〉; ϕ) ∧ T (〈v,x, i〉; ϕ′);

T (〈v,x, i〉; Xϕ)
def
= ∃j[(j = i + 1) ∧ T (〈v,x, j〉; ϕ)];

T (〈v,x, i〉; ϕUϕ′)
def
= ∃j((j ≥ i ∧ [T (〈v,x, j〉, ϕ′) ∧ ∀k(i ≤ k < j ⇒

T (〈v,x, k〉, ϕ)]));

T (〈v,x, i〉; X−1ϕ)
def
= i > 0 ∧ ∃j[(i = j + 1) ∧ T (v,x, j, ϕ)];

T (〈v,x, i〉; ϕSϕ′)
def
= ∃j((j ≤ i ∧ [T (〈v,y, j〉; ϕ′) ∧ ∀k(j < k ≤ i ⇒

T (〈v,x, k〉; ϕ)]));

T (〈v,x, i〉; A ϕ)
def
= ∀v′,y[CommonPathPrefix(v,x,v′,y, i)⇒ T (〈v′,y, i〉; ϕ)];

T (〈v,x, i〉; ∃ y ϕ)
def
= ∃ y T (〈v,x, i〉; ϕ).

The formulaAϕ(x) is defined as follows:

Aϕ(x)
def
= ∀ v(ValidPath(v,x)⇒ T (〈v,x, 0〉; ϕ)).

�

Note that, for a fixed ACS, the size ofAϕ(x) is linear in the size ofϕ. However,
when the ACS is not fixed, presently we have no way to measure the size ofAϕ(x)
in function of the size of the ACS. Indeed, we have no measure on the size of the
Presburger formulae witnessing the Presburger counting iteration property.

THEOREM 20. — The following problems for FOPCTL⋆(PrA) restricted to ACSs
are decidable: local model checking, global model checking, validity checking with
an initial configuration.

PROOF 21. — Indeed, in order to decide the local model checking problem, it is suf-
ficient to check whether〈q, a〉 |= A(x) holds true where the Presburger formulaA(x)
is computed from the proof of Theorem 18. Global model checking can be solved
by computing precisely the formulaA(x) and testing Presburger validity. Finally, by
Proposition 7, there is a Presburger formulaA′(x,x′) computing the reachability re-
lation in the configuration graph of some ACS. In order to solve validity checking by
an initial conditionA0(x), it is sufficient to check Presburger validity of the formula
∀ x,x′ (A0(x) ∧A′(x,x′)⇒ A(x′)). �

Theorem 20 can be extended to systems and temporal logics such that PrA is
replaced by any decidable extensionPrA+ of PrA, closed under first-order quan-
tification and Boolean operators, obtained by adding new predicates. The notion of
Presburger counter system is extended by allowing transitions labelled by elements of
PrA+. Similarly, FOPCTL⋆(PrA+) is obtained from FOPCTL⋆(PrA) by allowing
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atomic formulae fromPrA+. The model-checking problems for FOPCTL⋆(PrA+)
are defined as for FOPCTL⋆(PrA). Finally, the notions of counting iteration property
and admissible counter systems are defined withPrA+ instead of PrA.

THEOREM 22. — The following problems for FOPCTL⋆(PrA+) restricted to ACSs
are decidable: local model checking, global model checking, validity checking with an
initial configuration.

6. Testing the boundaries of decidable model checking in Presburger counter
systems

Here we give some results and examples indicating that our result in Theorem 20
is close to optimal. Before that, call a PCSpiecewise-affinewhenever each transition
is labelled by a disjunction of expressions of the formθ(x) ∧ x′ = Ax + b.

PROPOSITION23. —The reachability problem is not decidable in any of the follow-
ing classes:

1) all flat affine PCSs;
2) all affine PCSs with the finite monoid property (even counter automata);
3) all flat piecewise-affine PCSs with a single location.

PROOF 24. —

(1) Follows from results in (Cortier, 2002) about very basiccontrol graphs but
having cycles without the Presburger counting iteration property.

(2) Follows from undecidability of the halting problem for Minsky ma-
chines (Minsky, 1967).

(3) Follows from (Minsky, 1967), too. As a matter of fact, anycounter automaton
can be encoded as a flat piecewise-affine PCS with a single location q0. Indeed, sup-

pose thatq
x:=x+1
−−−−→ q′ is a transition in the counter automaton with the integern [resp.

n′] attached toq [resp. q′], then the unique transition in the piecewise-affine PCS is

of the formq0
(x0=n∧x′

0
=n′∧x′=x+1)∨...

−−−−−−−−−−−−−−−−−→ q0. There is an obvious correspondence be-
tween the transitions in the original counter automaton andthe number of disjuncts in
the Presburger formula labelling the unique transition. �

To show how close to optimal our class of ACSs is, we give belowan undecidabil-
ity result for a fixed PCSCu that is almost an ACS, but not flat. It is obtained from
an ACS by only adding a reset transition while preserving thePresburger counting
iteration property and functionality (see Figure 3).

Cu is of dimension 4, with countersx1, x2 andx3, x0 is the additional counter
representing the location, and “id” denotes the identity function on the countersx1, x2

andx3.
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q0 q1 q2
id id

x′1 = x′2 = x′3 = 0

x′1 = x1 + 1 x′2 = x2 + 1 x′3 = x3 + 1

Figure 3. Almost an admissible counter system

THEOREM 25. — Local model-checking onCu with FOLTL(Pr)[3] is Σ1
1-hard

(highly undecidable).

PROOF 26. — The proof is by reducing the recurrence problem for nondeterministic
2-counter machines that is shownΣ1

1-hard in (Aluret al., 1994). A nondeterministic
2-counter machineM consists of two countersC1 andC2, and a sequence ofn ≥ 1
instructions. Thek-th instruction is written as one of the following:

k : Ci := Ci + 1; gotok1 or gotok2.

k : if Ci = 0 then gotok0 elseCi := Ci − 1; gotok1 or gotok2.

We represent the configurations ofM by triples 〈c1, c2, l〉 where1 ≤ l ≤ n,
c1 ≥ 0 andc2 ≥ 0. A computation ofM is a finite sequence of related configurations,
starting with the initial configuration〈0, 0, 1〉 (location encoded as last element). The
recurrence problem can be stated as the existence of an infinite execution that passes
through the instruction 1 infinitely often. We shall build a formulaϕ of FOLTL(Pr)[3]
such thatM visits 1 infinitely often iff 〈q2, 〈0, 0, 1〉〉 |= ϕ. The formulaϕ is of the
form

E (GF(x3 = 1 ∧ X(x0 = 0)) ∧
∧

1≤k≤n

Gϕ′k),

whereϕ′k encodes thek-th instruction. For instance, thek-th instruction “C1 :=
C1 + 1; gotok1 or gotok2” is encoded by

∀y, z (x1 = y ∧ x2 = z ∧ x3 = k ∧ X(x0 = 0))⇒

X(¬(X(x0 = 0)) U (X(x0 = 0) ∧

increase C1

︷ ︸︸ ︷

x1 = y + 1 ∧ x2 = z ∧ (x3 = k1 ∨ x3 = k2))).

Other instructions can be encoded similarly. �

It is worth mentioning thatCu can be simulated by an ACS (‘flattened’) in a sense
preserving the reachability sets, and therefore the strictEF fragment of FOLTL(Pr)[3]
has a decidable local model-checking problem forCu.
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Furthermore, by using the idea in the proof of Theorem 25 one can show that
FOLTL(PrA)[3] has an undecidable local model-checking problem for the PCSde-
scribed in Figure 4 (that is flat, has the Presburger countingiteration but is not func-
tional) with variablesx1, x2, x3, andx0 representing the location, where⊤ denotes
the truth constant.

q0

⊤

This PCS has a unique transition that accepts any update of the countersx1, x2

andx3. Hence, any sequenceN → {q0} × Z
3 is an infinite configuration path of this

PCS. By way of example, as done above, thek-th instruction “C1 := C1 + 1; gotok1

or gotok2” is encoded by

∀ y, z (x1 = y ∧ x2 = z ∧ x3 = k) ⇒

X(x1 = y + 1 ∧ x2 = z ∧ (x3 = k1 ∨ x3 = k2)).

7. Decidable Extension of FOPCTL⋆(PrA)[n] with CQDD Patterns

We present below an extension of FOPCTL⋆(PrA)[n] for which model-checking
over ACS can still be encoded into Presburger satisfiability.

In (Wolper, 1983) Wolper extends linear-time temporal logic LTL to an extended
temporal logic that has the same expressive power as Büchi automata. In this section,
we similarly extend the set of path formulae from FOPCTL⋆(PrA)[n] by allowing
temporal operators defined by another class of language acceptors, namely the CQDD
(constrained queue-content decision diagrams) (Bouajjaniet al., 1999). This formal-
ism has been introduced for symbolically representing infinite sets of configurations
in FIFO automata – our use of CQDD is different. Non-regular languages can be de-
fined with CQDD; moreover, the model-checking problem for LTL augmented with
operators defined from CQDD is undecidable (Demriet al., 2009), unlike the exten-
sion with regular languages (Wolper, 1983). The proof of that result is inspired from
the undecidability proof of propositional dynamic logic (PDL) augmented with pro-
grams over the context-free language{an

1 · a2 · a
n
1 : n ≥ 0} (see (Harelet al., 2000,

Chapter 9)). This context-free language can be easily recognized by a CQDD. By
contrast, we show that the model-checking problem for FOPCTL⋆(PrA)[n] extended
with CQDD-based operators is decidable over ACS. Decidability is regained due to
the flatness restriction in CQDD. Hence, in this section we show evidence that we can
take advantage of flatness both in modelsandin formulae.

Before introducing the formal definition for CQDDs, let us mention that CQDD
are finite-state automata attached to Presburger formulae that provide constraints on
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the number of times transitions are taken. Moreover, the underlying graphs of CQDDs
is flat by definition.

A CQDD is a structureA = 〈Σ, S, S0, E, l, A(y1, . . . , ym), F 〉 such that:

– Σ is a finite set of symbols (the alphabet),
– S is a finite set of states,
– S0 ⊆ S is the set of initial states,
– E ⊆ S × Σ× S is a set of transitions of cardinalitym and〈S, Σ, E〉 is flat,
– F ⊆ S is a set of final (or accepting) states,
– l is a bijection fromE to {1, . . . , m},
– A(y1, . . . , ym) is a Presburger formula.

An accepting runfor the wordσ = a0a1a2 . . . ak−1 is a sequenceq0
a0−→ q1

a1−→

q2 . . .
ak−1
−−→ qk such that

– q0 ∈ S0, qk ∈ F (the standard acceptance conditions for finite-state automata),
– for everyi ∈ {0, . . . , k − 1}, 〈qi, ai, qi+1〉 ∈ E,
– n1, . . . , nm |= A(y1, . . . , ym) in Presburger arithmetic, where eachni is

the number of occurrences of the transitionl−1(i) in the sequence (alternatively,
(n1, . . . , nm) is the Parikh image ofσ).

The wordσ is also said to be accepted by the automatonA. We writeL(A) to
denote the set of words accepted byA.

Figure 4 presents a CQDD with its constraint on the number of occurrences (each
transition is related to a unique letter and to a unique variable in the constraint).

q0 q1 q2
b d

a c e

ya + yc = ye

Figure 4. A CQDD

Let A = 〈Σ, S, S0, E, l, A(y1, . . . , ym), F 〉 be a CQDD with the letters fromΣ
linearly ordered:a1 < . . . < ak. The extension EFOPCTL⋆(Pr)[n] of the logic
FOPCTL⋆(PrA)[n] consists in considering formulae of the formA(φ1, . . . , φn) de-
fined as follows:

– π, i |= A(φ1, . . . , φn) iff either ǫ ∈ L(A),
or there is a finite wordai1ai2 . . . ain

∈ L(A) such that for every1 ≤ j ≤ n, π, i +
(j − 1) |= φij

.
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Thus,π, i |= A(φ1, . . . , φn) holds when a finite pattern induced fromL(A) sat-
isfies the respective arguments on the suffix path starting from positioni. Note the
correspondence between the lettersa1, . . . , ak and the argumentsφ1, . . . , φn. These
automata-based operators are defined like those in (Wolper,1983) except that the lan-
guages of finite words we consider are not exactly the regularlanguages. Of the regular
languages only the bounded ones are allowed, and some context-free languages can
be obviously defined.

For instance, in EFOPCTL⋆(Pr)[n] we can state that there is a path and some
m 6= 0 such thatφ1 holds true at them first positions, thenφ2 holds true at them
next positions and then neitherφ1 nor φ2 holds true forever. It is known that ETL
is more expressive that LTL (Wolper, 1983) and this result could be lifted between
FOPCTL⋆(PrA)[n] and EFOPCTL⋆(Pr)[n]. However, at the present moment, we do
not have a formal proof of this. Theorem 18 can be extended by allowing CQDD-based
operators.

THEOREM 27. — Given an ACSC of dimensionn with Presburger transition system
SC = 〈S,→〉, for every EFOPCTL⋆(Pr)[n] formulaϕ, one can compute a Presburger
formulaAϕ(x) such that for every〈q, a〉 ∈ SC , 〈q, a〉 |= Aϕ(x) iff C, 〈q, a〉 |= ϕ.

PROOF 28. — First, one can show that any language recognized by a CQDD A can
be recognized by an ACS augmented with an alphabet. In such enriched ACS, the

transitions between control states are of the formq
A(x,x′),a
−−−−−→ q′ wherea is a letter

from a finite alphabet. Any transitiont = q
a
−→ q′ in the CQDD is translated in the

enriched ACS by a transition of the formq
xt:=xt+1,a
−−−−−−→ q′ wherext is a variable at-

tached to the transitiont. To any final stateq of the CQDD, we associate the transition

q
A(xt1

,...,xtm ),ǫ
−−−−−−−−−→ qnew the CQDD havingm distinct transitions andqnew being a new

control state. There is a natural correspondence between the accepting runs of the
CQDD and paths in the enriched ACS from initial states andqnew. In that way, the
final constraintA(y1, . . . , ym) on them transitions can be simulated in some ACS by
increasing theith counter whenever theith transition is visited in the accepting run and
checking the final constraint amounts to adding a final transition with identity func-
tion and domain precisely the values of the counters satisfying A(y1, . . . , ym). Hence,
the proof technique from Theorem 16 can be used again. Typically, the following
formulae can be defined in Presburger Arithmetic:

– By replacing valid control paths with accepting runs, there is a formula
PathConfigA(v, i, j) stating that theith transition of the accepting runv is aj.

– The formulaLength(v, l) states that the accepting runv hasl transitions.
– The formulaAcceptingRun(v) states thatv encodes an accepting run. Typi-

cally, we also use a path schema (starting from an initial state) and a cycle count vector
which is possible because of the flat structure ofA.

Once these formulae are defined, it remains to defineT (〈v,x, i〉;A(φ1, . . . , φk)) as
follows (we omit the obvious case whenε ∈ L(A)):

∃ v′, l, AcceptingRun(v′) ∧ Length(v′, l)∧
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((l = 0)∨∀ 1 ≤ i′ ≤ l,
∧

c∈{1,...,k}

PathConfigA(v′, i′, c)⇒ T (〈v,x, i+i′−1〉; φc)).

Then, the formulaAϕ(x) can be defined as in the proof of Theorem 18. �

As a corollary, local model-checking problem for EFOPCTL⋆(Pr)[n] over ACS is
decidable.

COROLLARY 29. —The following problems for EFOPCTL⋆(Pr)[n] are decidable:
local model checking, global model checking, validity checking with an initial config-
uration.

8. Concluding Remarks

In this paper we have established decidability of various model-checking problems
for FOPCTL⋆(PrA) and related CTL⋆-like languages over Presburger arithmetic on
a class of counter systems, by translation into Presburger arithmetic. Indeed, encod-
ing quantification over paths can be performed by quantification over tuples of natural
numbers. Hence, we have improved the decidability boundaryfor model-checking
ACS with CTL⋆-like languages. The decidability of model-checking is currently
open on extensions with fixed-point operators (e.g., Presburgerµ-calculus) or monadic
second-order quantification over ACS.

Another direction for further work is to analyze and extend further the class of
ACS. For instance, giving up the functionality assumption on transitions that do not
belong to a cycle preserves decidability, while it is open whether giving up the full
functionality assumption still preserves decidability inthe absence of first-order quan-
tification. Similarly, the complexity of local model checking ACS with quantifier-free
Presburger transition formulae over FOPCTL⋆(PrA) is not fully characterized.

There are several related questions that have at least theoretical interest, which
we have no addressed in the paper. For instance, how are the configuration graphs
of ACSs placed relative to Caucal’s hierarchy (Caucal, 2003)? It is not difficult to
construct examples of ACS, like the one shown in Figure 5, with configuration graphs
which are not pushdown graphs (Mulleret al., 1985). In the ACS displayed in Figure 5
the transitions fromq2 to q3 andq4 are only enabled whenx = 0. It is easy to see that
the configuration graph generated from the initial state(0, 0, 0, 0) has infinitely many
non-isomorphic ends, and therefore, by Muller-Schupp’s theorem (Mulleret al., 1985)
it is not a pushdown graph.

We currently do not know whether all ACS generate prefix-recognizable configura-
tion graphs, or any graphs from higher levels of Caucal’s hierarchy. Of course, decid-
ability of MSO in a configuration graph does not imply decidability of FOPCTL⋆(PrA),
but it could suggest further strengthening of the results inthe current paper.

Finally, the results in this paper can be extended to non-admissible counter sys-
tems, which are behaviorally equivalent in a suitable senseto ACSs. Typically, such
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q1 q2

q3

q4

z′1 := z1 + 1

z′2 := z2 + 1

x′ := x + 1 x′ := x− 1, y′ := y + 1

z′1 := z1 + 1

z′2 := z2 + 1

Figure 5. A simple ACS with a non-pushdown graph and non-terminating paths

equivalence can be achieved by ‘flattening’ of the control graph. Extensions of the
scope of model checking methods for FOPCTL⋆(PrA) by means of flatability and
other bisimulation equivalences to ACSs will be studied in asequel paper.
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