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Abstract Timed automata are governed by an idealized semantics that assumes a

perfectly precise behavior of the clocks. The traditional semantics is not robust because

the slightest perturbation in the timing of actions may lead to completely different

behaviors of the automaton. Following several recent works, we consider a relaxation

of this semantics, in which guards on transitions are widened by ∆ > 0 and clocks can

drift by ε > 0. The relaxed semantics encompasses the imprecisions that are inevitably

present in an implementation of a timed automaton, due to the finite precision of digital

clocks.

We solve the safety verification problem for this robust semantics: given a timed

automaton and a set of bad states, our algorithm decides if there exist positive values

for the parameters ∆ and ε such that the timed automaton never enters the bad states

under the relaxed semantics.

1 Introduction

Timed automata. Timed and hybrid systems are dynamical systems with both discrete

and continuous components. A paradigmatic example of a hybrid system is a digital
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embedded control program for an analog plant environment, like a furnace or an air-

plane: the controller state moves discretely between control modes, and in each control

mode, the plant state evolves continuously according to physical laws. Behaviors of con-

trollers for physical systems are often subject to real-time constraints. A natural model

for such controllers is the timed automaton model introduced by Alur and Dill [AD94].

Timed automata extend finite state automata with continuous variables called clocks.

Those clocks take their values in the nonnegative real numbers and count time; they

can be reset and compared to other clocks or constants in guards labeling edges and

invariants labeling states of the automaton. Several verification and control problems

have been studied for timed automata, see for example [HNSY92,MPS95,CHR02], and

verification tools have been developed, e.g. [BDL+06].

When a high-level description of a controller has been proven correct it would be

valuable to ensure that an implementation of that controller can be obtained in a

systematic way in order to ensure the preservation of correctness. This is often called

program refinement: given a high-level description P1 of a program, refine that de-

scription into another description P2 such that the “important” properties of P1 are

maintained. Usually, P2 is obtained from P1 by reducing non-determinism. To reason

about the correctness of P2 w.r.t. P1, we often use a notion of simulation [Mil80] which

is powerful enough to ensure conservation of LTL properties for example.

Unfortunately, for timed automata this is often not possible for several fundamental

and/or technical reasons. First, the notion of time used in the traditional semantics of

timed automata is continuous, defining perfect clocks with infinite precision, while im-

plementations can only access time through digital and finitely precise clocks. Second,

timed automata react instantaneously to events and timeouts while implementations

can only react within a given, usually small but non-zero, reaction delay. Third, timed

automata may describe control strategies that are unrealistic, such as Zeno-strategies

or strategies that require the controller to act faster and faster [CHR02]. For those

reasons, a model of a digital controller that has been proven correct in the traditional

semantics may not be implementable (at all) or it may not be possible to turn it

systematically into an implementation that is still correct. correct w.r.t. this model.

Implementability of timed automata. To overcome those problems, [DDR05] proposed

an alternative semantics for timed automata, which takes into account the digital and

imprecise aspects of the hardware in which the automaton is being executed. The

hardware is assumed to repeatedly execute the following procedure: it first reads the

value of the global clock, then evaluates the guard of each transition, and executes

one of the enabled transitions. This procedure is assumed to run in at most ∆L time

units. Moreover, the global (digital) clock is updated at least every ∆P time units,

and its value may drift by some value ε (i.e., the delay u between two updates of the

clock is at most ∆P , and the clock is incremented by some value c between u(1 − ε)
and u(1 + ε)). The resulting set of executions is denoted by JAKPrg

∆L,∆P ,ε
and called

the program semantics. The automaton A is said to be implementable w.r.t. a given

property P iff there exists positive values for the parameters ∆L, ∆P and ε for which all

the executions of JAKPrg
∆L,∆P ,ε

satisfy P. This model of an implementation platform is

clearly implementable by an hardware with bounded imprecision, and the semantics of

the implementation platform is kept deliberately simple: any platform that ensures the

minimal performances that are imposed by the program semantics ensures compliance

with the formal model (see [DDR05] for more discussion and details).
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In [DDR05], a different semantics is also introduced for the purpose of verification.

This new semantics is called the Almost-ASAP semantics and is obtained by enlarg-

ing the guards of A by a parameter ∆. allowing the clocks to drift by ε. The set of

executions of A under this semantics is denoted by JAKAAsap
∆ . We say that A robustly

satisfies a property P if there exists positive values for the parameter∆ such that all the

executions of JAKAAsap
∆ satisfy P. It is shown in [DDR05] that the Almost-ASAP seman-

tics JAKAAsap
∆ over-approximates the program semantics JAKPrg

∆L,∆P ,ε
if ∆ > 3∆L+4∆P

when ε = 0,1 and therefore a timed automaton is implementable w.r.t. a property P if

it robustly satisfies P. In the rest of this paper, we denote by JAKε∆ the semantics of A
enlarged (or perturbed) by ∆ and ε, i.e., whose guards are enlarged by ∆ and whose

clocks may drift by at most ε.

The robust semantics considered here differs from the Almost-ASAP semantics.

First, the Almost-ASAP semantics does not consider drifting clocks, but as we will see

later, enlargements on guards only are sufficient in the sense that guard perturbations

and drifts on clocks give rise to the same reachable states. Second, in the Almost-

ASAP semantics, we make a distinction between the controller and the plant: only the

controller is enlarged. Here we consider enlargements of all the transitions, even those

that belong to the plant. So, clearly, the robust semantics that we consider here over-

approximates the AASAP semantics, and robust correctness considered here implies

implementability in the sense of [DDR05].

Robust verification of timed automata. In this paper, we consider the robust safety veri-

fication problem which asks, given a timed automaton A and a set of Bad states to avoid

(i.e., a safety property), if there exist ∆, ε ∈ Q>0 such that Reach(JAKε∆) ∩ Bad = ∅.

The main result of this paper is to show that the robust safety verification problem

is decidable.2 To show this, we make a strong link with the robust semantics defined

in [Pur98,Pur00] where Puri presents an algorithm to compute the set ∩ε>0Reach(JAKε0).

This is the set of states that can be reached when the clocks drift by an infinitesimal

amount. We show that Puri’s algorithm can be used to compute the following sets

(which are therefore equal):\
ε>0

Reach(JAKε0) =
\
∆>0

Reach(JAK0∆) =
\
∆>0

\
ε>0

Reach(JAKε∆)

The proof of this result follows the general ideas of Puri’s proof and it is based on the

structure of limit cycles of timed automata (a fundamental notion introduced by Puri)

but we need new techniques to handle both the imprecisions on guards and the clock

drifts. To establish the decidability of the robust safety verification problem, we show

that\
∆>0

\
ε>0

Reach(JAKε∆) ∩ Bad = ∅ iff ∃∆ > 0, ε > 0. Reach(JAKε∆) ∩ Bad = ∅.

Hence, to solve the robust safety verification problem, it suffices to compute the setT
∆>0

T
ε>0 Reach(JAKε∆) and check if it has an empty intersection with Bad. We

give a detailed proof of all intermediate results, some of which are useful by them-

selves to develop the robust verification of timed automata for LTL and a fragment

of MTL [BMR06,BMR08]. This paper is an extended and revised version of [DDMR04].

1 For ε > 0, a general constraint of the form ∆ > f(∆L,∆P , ε) is also established
in [DDR05], where f is a simple function such that f(∆L,∆P , ε)→ 0 when ∆L,∆P , ε→ 0.

2 This holds under some assumption that is discussed in Section 2.
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Related works. The problem of designing controllers for embedded systems is an ex-

tremely important subject and a very active area of research. This design problem has

been addressed by a large number of researchers in computer science but also in other

research communities like control theory. Researchers in control theory have studied

the general problem of going from a continuous formulation of the control problem to a

discrete solution which is implementable by digital devices. Here, we focus on the par-

ticular nice mathematical model of timed automata. Timed automata are important

but by no means the only important mathematical model in the context of the model-

based design of embedded control systems (see for instance Matlab-Simulink models,

dynamical systems of control theory, etc.) Timed automata are adequate for modeling

a large variety of real-time constrained behaviors but they abstract away other proper-

ties of systems, like power-consumption, distribution, concurrency etc., properties that

may be important for the correct physical realization of timed controllers. Our paper

thus focuses on an important aspect related to the implementation of real-time behav-

iors but other important aspects must be tackled by other techniques and are treated

elsewhere (and should not be ignored in practice). In the rest of this paragraph, we

concentrate on other works that are related to the specific issue of the robustness of

timed models and their realization by digital devices.

One of the first attempts to make mathematical models of timed systems imple-

mentable was done by Dierks for Programmable Logic Controllers (PLC) [Die99,Die01].

The language used to define the semantics of PLC-automata and to specify real-time

constraints is the Duration Calculus [CHR91], which is a dense time interval-based

temporal logics that allows to fix the delays for the visibility of events, the compu-

tation times, the imprecision of the clocks, etc. That logic is very expressive, but its

major drawback is to be undecidable [CHS93].

Other notions of robustness for timed systems have also been addressed in several

works for timed automata [GHJ97,ALM05] and hybrid automata [Frä99,AB01,AT04],

but none of these works make a link between robustness and implementability.

In [HKSP03], Henzinger et al. introduce a programming model for real-time em-

bedded controllers called Giotto. Giotto is an embedded software model that can

be used to specify a solution to a given control problem independently of an execu-

tion platform but which is closer to executable code than a mathematical model. So,

Giotto can be seen as an intermediary step between mathematical models like hybrid

automata and real execution platforms.

In [AIK+03], Alur et al. consider the more general problem of generating code

from hybrid automata, but they only sketch a solution and state interesting research

questions. In [AFM+02,AFP+03], Yi et al. present a tool called Times, which generates

executable code from timed automaton models. However, they make the synchrony

hypothesis and so they assume that the hardware on which the code is executed is

infinitely fast and precise.

In [AT05], Altisen and Tripakis tackle the problem of the implementability of timed

automata specifications by considering an alternative direction to ours. By contrast

with our approach, they do consider the usual semantics of timed automata and propose

to model the execution platform within this formal semantics. For instance, they show

how drifting clocks or delays in synchronization can be modeled using parametrized

widgets in the form of timed automata. The resulting model is a network of timed

automata composed of the initial model of the controller and a bunch of timed au-

tomata that models the platform. On the one hand, this approach is general in the

sense that different implementation platforms can be modeled accurately by timed au-
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tomata models. On the other hand, one drawback of their approach comes from the

fact that models of specific platforms tend to be very large and may impair the auto-

matic verification step because of the state explosion problem. Also, in early steps of

the design of a timed controller, we may not know the exact platform that will be used

to implement the control strategy but we may already be interested to verify the ro-

bustness of the control strategy with regard to timing imprecisions. The use of a robust

semantics partially avoid those problems by leaving the details of the implementation

unspecified: the proof of implementability makes reference to a naive implementation

schema which imposes very few constraints on the platform that is chosen for the

actual implementation and which is met by any reasonable implementation platform

(see [DDR05] for more details). The price to pay in our setting is that we may be

over-pessimistic and declare some control strategies not to be implementable while a

precise modeling of the execution platform in the setting of Altisen and Tripakis might

allow to establish implementability of the control strategy.

Finally, note that the algorithm presented in this paper to solve the robust safety

verification problem is not usable in practice as it relies on the construction of the

region automaton. Recent works have investigated the development of practical algo-

rithms [DK06,SF07] but, to the best of our knowledge, no efficient implementation has

been released yet.

2 Timed models

This section is devoted to the definitions of timed automata and their perturbed se-

mantics, and of several other important notions that will be used in this paper.

In the sequel, R>0 is the set of nonnegative reals, and N is the set of nonnegative

integers.

Definition 1 A timed transition system (TTS for short) T is a tuple 〈S, ι,Σ,→〉
where S is a (possibly infinite) set of states, ι ∈ S is the initial state, Σ is a finite

set of labels, and → ⊆ S × (Σ ∪ R>0)× S is the transition relation. We write q
σ−→ q′

if (q, σ, q′) ∈ →.

A trajectory of a TTS T = 〈S, ι,Σ,→〉 is a finite sequence π = (s0, t0)
σ1−−→

(s1, t1) . . .
σk−−→ (sk, tk) such that for all 0 6 i 6 k, we have (si, ti) ∈ S × R>0, and for

all 0 6 i < k, we have si
σi−→ si+1, and either σi ∈ Σ and ti+1 = ti, or σi ∈ R>0 and

ti+1 = ti + σi.

Let π = (s0, t0)
σ1−−→ (s1, t1) . . .

σk−−→ (sk, tk) be a trajectory. The i + 1-st state in

π, written statei(π), is the state si. We denote by first(π) = state0(π) and last(π) =

statek(π) the initial and final states of π. We say that π is a trajectory from s0 to sk, and

we sometimes write π more briefly as s0
σ1−−→ s1 . . .

σk−−→ sk. The length of π, written |π|,
is k, and its duration Duration(π) is tk − t0. The sequence of states s0 s1 . . . sk is

called a path in T , and the trace of π is the sequence trace(π) = λ1 . . . λk where for

all 1 6 i 6 k, λi = σi if σi ∈ Σ, and λi = time if σi ∈ R>0 (time is a special symbol

not in Σ).

A trajectory is stutter-free iff its trace contains alternately a symbol in Σ and the

symbol time, i.e., it does not contain two consecutive symbols in Σ or two consecu-

tive time’s.
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A state s′ of T is reachable from a state s if there exists a trajectory π of T such

that first(π) = s and last(π) = s′. Given a set of states Q ⊆ S, we write Reach(T , Q) for

the set of states that are reachable from some state in Q. We abusively write Reach(T )

for Reach(T , {ι}), the set of states that are reachable from the initial state of T .

Given a set Var = {x1, . . . , xn} of clocks, a clock valuation is a function v : Var →
R>0. In the sequel, we often identify a clock valuation with a point in Rn>0. Given

two valuations v and v′ and two nonnegative reals t and λ, we write v + v′ for the

valuation x 7→ v(x) + v′(x), v+ t for the valuation x 7→ v(x) + t and λv for x 7→ λv(x).

If R ⊆ Var, then v[R := 0] denotes the valuation v′ such that v′(x) = 0 for all x ∈ R,

and v′(x) = v(x) for all x 6∈ R.

A closed rectangular guard g over Var is a set of inequalities of the form ai 6 xi 6 bi,
one for each xi, where ai, bi ∈ Q>0 ∪ {+∞} and ai 6 bi. We write Rectc(Var) for the

set of closed rectangular guards over Var. For ∆ > 0, we define JgK∆ = {(x1, . . . , xn) |
ai −∆ 6 xi 6 bi +∆} ⊆ Rn>0. When ∆ = 0, we write JgK instead of JgK0.

We now define timed automata. Our definition is a slightly modified version of the

classical timed automata proposed by [AD94]. In particular, all clocks are assumed to

be bounded by some constant M , and guards on edges are rectangular and closed. The

first requirement is not restrictive (except w.r.t. the conciseness of the models [BC05]),

the second one is discussed below.

Definition 2 A (closed) timed automaton is a tuple A = 〈Loc,Var, q0, Lab,Edg〉 where

– Loc is a finite set of locations representing the discrete states of A.

– Var = {x1, . . . , xn} is a finite set of real-valued variables.

– q0 = (l0, v0), where l0 ∈ Loc, is the initial location and v0 is the initial clock

valuation such that for any x ∈ Var, v0(x) ∈ N ∧ v0(x) 6M .

– Lab is a finite alphabet of labels.

– Edg ⊆ Loc × Rectc(Var) × Lab × 2Var × Loc is the set of transitions. A transition

(l, g, σ,R, l′) represents a jump from location l to location l′ with guard g, event σ

and a subset R ⊆ Var of variables to be reset.

We now define a family of semantics for timed automata which is parametrized by

ε ∈ R>0 (drift on clocks) and ∆ ∈ R>0 (imprecision on guards).

Definition 3 Given ε,∆ ∈ R>0, the perturbed semantics of a timed automaton A =

〈Loc,Var, q0, Lab,Edg〉 is the TTS JAKε∆ = 〈S, ι,Σ,→〉 where:

1. S = {(l, v) | l ∈ Loc ∧ v : Var→ [0,M ]};
2. ι = q0;

3. Σ = Lab;

4. The transition relation → is defined by

(a) For the discrete transitions: ((l, v), σ, (l′, v′)) ∈ → whenever there exists an edge

(l, g, σ,R, l′) ∈ Edg such that v ∈ JgK∆ and v′ = v[R := 0];

(b) For the continuous (or timed) transitions: ((l, v), t, (l′, v′)) ∈ → whenever l = l′

and v′(xi)− v(xi) ∈ [(1− ε)t, (1 + ε)t] for i = 1 . . . n.

The traditional semantics of A is JAK00. When ε > 0 or ∆ > 0, we call JAKε∆ the

perturbed semantics of A. In the sequel, we often write JAK, JAK∆, and JAKε instead

of respectively JAK00, JAK0∆, and JAKε0.
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Remark 1 Our definition of timed automata does not allow strict inequalities; This is

not restrictive in the presence of guard enlargement. Indeed, consider a timed automa-

ton A with (possibly open) rectangular guards and the closure automaton bA resulting

from A by replacing all strict inequalities by non-strict ones. It appears obviously that

Reach(J bAKε∆
2

) ⊆ Reach(JAKε∆) and Reach(JAKε∆) ⊆ Reach(J bAKε∆),

and hence the robust safety verification problem for A and Bad (“Do there exist

∆, ε ∈ R>0 such that Reach(JAKε∆) ∩ Bad = ∅?”) is equivalent to the the robust

safety verification problem for bA and Bad. Note that this only holds thanks to guard

enlargement, and the situation is different when only clock drifts are allowed [Dim07].

Remark 2 Notice that guard enlargement and clock drifts are monotone, in the sense

that for any ∆ 6 ∆′ and ε 6 ε′, we have Reach(JAKε∆) ⊆ Reach(JAKε
′

∆′). Thanks to

this observation, we can define the following sets:

Rε∆→0 =
\
∆>0

Reach(JAKε∆) Rε→0
∆ =

\
ε>0

Reach(JAKε∆)

These sets are central in the sequel: we prove that, under some minor restriction,

the sets R0
∆→0 and Rε→0

0 are equal, and they also coincide with
T
∆>0R

ε→0
∆ andT

ε>0R
ε
∆→0. It follows from [Pur98] that those sets are computable; we will reprove

this result in the sequel.

We now recall some additional classical notions related to timed automata. In the

sequel, bxc denotes the integer part of x (the greatest integer k 6 x), and 〈x〉 denotes

its fractional part.

Definition 4 A clock region is an equivalence class of the relation ∼ defined over the

clock valuations in Var→ [0,M ]. We have v ∼ w iff the following three conditions hold:

– ∀x ∈ Var. bv(x)c = bw(x)c;
– ∀x ∈ Var. 〈v(x)〉 = 0 iff 〈w(x)〉 = 0.

– ∀x, y ∈ Var. 〈v(x)〉 6 〈v(y)〉 iff 〈w(x)〉 6 〈w(y)〉;

We denote by (v) the clock region containing v, and by [r] the topological closure

of a region r, which is then abusively called a closed clock region. The clock region (v)

contains the valuations that agree with v on the integer part of the variables, and on

the ordering of their fractional part and zero.

A clock region r′ is a time-successor of a clock region r if r′ 6= r and for some v ∈ r
and t ∈ R>0, we have v + t ∈ r′.

Definition 5 Given the TTS JAK = 〈S, s0, Σ,→A〉 of a timed automaton A, we define

the corresponding region graph G = 〈RA,→G〉 of A:

– RA = {(l, r) | ∃(l, v) ∈ S : r = (v)} is the set of regions;

– →G ⊆ RA× (Σ∪{time})×RA where ((l, r), time, (l′, r)) ∈ →G if and only if l′ = l

and r′ is a time-successor of r, and ((l, r), σ, (l′, r)) ∈ →G for σ ∈ Σ if and only if

(l, v)
σ−→A (l′, v′) for some v ∈ r and v′ ∈ r′.
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Notice that RA is finite (the total number W = |RA| of regions is exponential in

the size of A) and a region (l′, r′) is reachable in G from a region (l, r) if and only if

(l′, v′) is reachable in JAK from a state (l, v) for some v ∈ r, v′ ∈ r′ [AD94].

In the rest of the paper, we often abusively use operators that apply to valuations

v or clock regions r to pairs (`, v) and (`, r) where ` is a location. For example, we

write (`, v) + (`, v′) to denote (`, v + v′) and λ(`, v) to denote (`, λv), and similarly for

distances, norms and neighbourhoods. We write (`, v) ∈ (`, r) instead of v ∈ r, [(`, v)]

instead of (`, [v]), etc.

Since guards are closed, the successors of a closed region by a discrete transition

or by the passage of time is a union of closed regions. Since there are finitely many

regions, the next lemma follows.

Lemma 6 Let A be a (closed) timed automaton. The set Reach(JAK) is a closed set.

Given a path p = p0 p1 · · · pN in the region graph of a timed automaton A, and

a trajectory π of JAK, we say that π follows p if for all i, 0 6 i 6 N , statei(π) ∈ [pi].

Note that, since we consider closed regions, a trajectory could follow several paths of

the region graph.

Definition 7 A zone Z ⊆ Rn>0 is a closed set defined by inequalities of the form

xi − xj 6 mij , αi 6 xi 6 βi

where 1 6 i, j 6 n and mij , αi, βi ∈ Z. A set of states is called a zone-set if it is a

finite union of sets of the form {l} × Z where l is a location and Z is a zone.

Definition 8 A progress cycle in the region graph of a timed automaton is a cycle in

which each clock of the automaton is reset at least once.

The correctness of our algorithm (Theorem 11 below) heavily relies on the fact

that timed automata should not have weird behaviors, like cycles that do not let time

elapse. However, apart from Theorems 11, 39 and 47, all our intermediate results hold

in the general case. We thus formulate the following assumption, but we will always

explicitly refer to it when it is needed.

Assumption 9 We only consider timed automata whose cycles in the region graph

are all progress cycles.

This assumption was made by Puri in [Pur98]. It is weaker than the classical non-

Zeno assumptions in the literature. For example in [AMPS98], the authors impose that

“in every cycle in the transition graph of the automaton, there is at least one transition

which resets a clock variable xi to zero, and at least one transition which can be taken

only if xi > 1”. Other natural hypotheses would be to ask that every cycle in the region

graph has a timed transition (labeled by time), or that every cycle in the region graph

contains a time-elapsing region, that is, a region r such that ∃v ∈ r · ∃t > 0 : v+ t ∈ r.
Again, Assumption 9 is weaker.
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`1 `2 err

x 6 2

x := 0

y > 2

y := 0

x := 1

y := 0

x = 0, y > α

(a) A timed automaton Aα.
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(b) Reach(JAαK) for timed automaton Aα.

`1 `2

x

y

1

1

2

2

3

3

0 1

1

2

2

3

3

x

y

1

1

2

2

3

3

0 1

1

2

2

3

3

(c) The set
T
∆>0

Reach(JAαK0∆) for timed automaton Aα.

Fig. 1 Differences between standard and perturbed semantics.

Example Consider the timed automaton Aα of Fig. 1(a) where α ∈ {2, 3}. The au-

tomaton has two clocks x and y. There is one initial location `1 with initial clock

values x = 1 and y = 0. For locations `1 and `2, the sets of reachable states in the

classical semantics JAαK with ε = ∆ = 0 are depicted in Fig. 1(b). The final states

(or bad states) correspond to the location err with any clock valuation. For both α = 2

and α = 3, the timed automaton Aα does not reach the bad states.

Consider the perturbed semantics JAαK0∆ for ε = 0 and ∆ > 0. In this semantics,

guards are enlarged by ∆. The edge from `1 to `2 has the guard x 6 2+∆ and the edge

from `2 to `1 has the guard y > 2 − ∆. From the initial state (`1, x = 1, y = 0),

the transition to `2 can be taken after ∆ time units, reaching the states (`2, x = 0, y 6
1+∆). Similarly, the transition from `2 back to `1 is enabled ∆ time units earlier than
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before and the states (`1, x > 1−2∆, y = 0) are reachable. It is easy to show that after

having taken k times the transitions of the cycle, the states (`1, x > 1 − 2k∆, y = 0)

(provided x > 0) and (`2, x = 0, y 6 1 + (2k − 1)∆) (provided y 6 2) are reachable.

Hence, for all ∆ > 0 the states (`1, x > 0, y = 0) and (`2, x = 0, y 6 2) are reachable

in JAαK0∆ and were not reachable in the classical semantics JA2K00. Those states are

represented in Fig. 1(c). The same situation occurs in the perturbed semantics JAαKε0
for ∆ = 0 and ε > 0, that is, Rε→0

∆ = Rε∆→0 6= Reach(JAαK).
This example shows that the classical semantics is not robust with respect to small

perturbations in either the timing constraints or the clock rate. The effect of such per-

turbations, no matter how small they are, may lead to dramatically different behaviours

of the system. In this case, the location err is reachable in the perturbed semantics

JA2K0∆ for any ∆ > 0, but not in the classical semantics JA2K00. We say that the safety

property (to avoid the location err) is not robustly satisfied by A2. Such non-robust

systems cannot have a correct implementation because their correctness relies on the

mathematical idealization of the traditional semantics.

On the other hand, for α = 3 the safety property still holds in the limit of the

perturbed semantics. As we will show, this implies that there exists a strictly positive

value of ∆ for which the perturbed semantics JAαK0∆ is safe. In fact, any ∆ < 1
3 fits in

our example.

3 The robust safety verification problem is decidable

The main result of this paper is a detailed proof that the robust safety verification

problem is decidable, for both perturbed guards and drifting clocks (Theorem 11).

Definition 10 The robust safety verification problem asks, given a timed automa-

ton A and a zone-set Bad, if there exist ∆, ε ∈ Q>0 such that Reach(JAKε∆)∩Bad = ∅.

Theorem 11 Under assumption 9, the robust safety verification problem is decidable.

The rest of the paper is devoted to the detailed proof of this result. The main

argument is based on an algorithm presented by Puri in [Pur98,Pur00] to compute a

robust semantics for timed automata, namely the set Rε→0
0 . Puri gives a proof of cor-

rectness of his algorithm, using innovative techniques for the analysis of cycles in timed

automata. However, some of Puri’s important results are proven in broad outline. For

instance, Puri’s claim that Rε→0
0 = R ε→0

∆→0 where R ε→0
∆→0 =

T
∆>0

T
ε>0 Reach(JAKε∆)

is not really justified ([Pur98, Theorem 9.1]). Moreover, several proofs of intermediate

results that are used by Puri to establish the correctness of his algorithm are quickly

sketched, giving a rough idea of the proof scheme. For some of them, we were not able

to complete the proofs, in particular for [Pur98, Lemma 6.4] where the statement of

the lemma itself is actually wrong.

Therefore, we give in the next sections a detailed proof of Theorem 11 and of the

equality R ε→0
∆→0 = Rε→0

0 . Moreover, we show that the same semantics is also obtained

under guard perturbations only, i.e., R0
∆→0 = R ε→0

∆→0 = Rε→0
0 . On the one hand, we

exploit the new techniques introduced by Puri and we clarify and reprove some of his

lemmas, and on the other hand, we also introduce new lemmas and proof techniques

to bridge over some gaps of Puri’s papers, and extend his results to the semantics with

guard perturbations. We proceed with the following steps:
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1. in Section 4, we recall classical results about regions and zones for timed automata.

We essentially follow the work of Puri;

2. in Section 5, we show that the robust safety verification problem reduces to the

computation of the set R ε→0
∆→0 =

T
∆>0

T
ε>0 Reach(JAKε∆) (Theorem 15). This has

no counterpart in [Pur98].

3. in Section 6, we show that Algorithm 1 below (due to Puri) computes R ε→0
∆→0 =

R0
∆→0 = Rε→0

0 :

(a) in Section 6.1, we study the structure of the cycles of timed automata and

of their region graph. This is important because cycles allow perturbations

to accumulate (see the example of Section 2). The material in this section is

essentially due to Puri, and the detailed proofs follow his ideas;

(b) in Section 6.2, we show that Algorithm 1 is sound, i.e., the set J∗ it computes

is contained in R0
∆→0 and in Rε→0

0 (Theorem 39). This part required 3 pages

for R0
∆→0 and 5 pages for Rε→0

0 , to give a precise justification of the 5 lines

in [Pur00, Lemma 7.11];

(c) in Section 6.3, we show that Algorithm 1 is complete, i.e., the set J∗ it com-

putes contains R ε→0
∆→0 (Theorem 46). Our approach to establish the key lemmas

of [Pur00, Section 8.2] uses an original technique based on parametric DBMs,

which allows to extend Puri’s results to both guard perturbations and clock

drifts;

4. in Section 7, we show that the safety verification problem is PSPACE-complete, as

claimed by Puri.

Several results in this paper are highly technical, and all proofs are given in de-

tails. To help the reader, we give overviews of the main technical developments in the

beginning of Sections 6, 6.2 and 6.3.

4 Properties of Regions and Zones

We review the important properties of the clock regions and zones of timed automata,

for a heavy use in the sequel.

Clock regions. According to Definition 4, a clock region of a timed automaton contains

a set of valuations that agree on the integral part of the clocks and on the ordering

of their fractional parts. We make this characterization of clock regions more concrete

with the following representation [Pur98].

Definition 12 Given a timed automaton A with n clocks (Var = {x1, . . . , xn}) and

largest constant M , we represent a clock region of A by:

1. a tuple of (a1, . . . , an) of elements of {0, 1, ...,M,⊥};
2. and a tuple (X0, X1, . . . , Xk) of k + 1 (0 6 k 6 n) sets of clocks that form a

partition of the clocks that have a value less than M . Those sets are required to be

non-empty, except X0. Formally, let Var6M = {xi ∈ Var | ai 6= ⊥}. We require

that Var6M = X0 ∪ · · · ∪Xk, Xi ∩Xj = ∅ if i 6= j and Xi 6= ∅ for all 1 6 i 6 k.

The clock region characterized by a tuple (ai)16i6n and (Xi)06i6k is the set of all

valuations v : Var→ R>0 such that:

1. For all xi ∈ Var: v(xi) > M iff ai = ⊥, and if ai 6= ⊥ then bv(xi)c = ai;
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2. for all x, y ∈ Var6M : 〈v(x)〉 < 〈v(y)〉 iff for some i < j, x ∈ Xi and y ∈ Xj ;
3. and for all x ∈ Var6M : 〈v(x)〉 = 0 iff x ∈ X0.

A more classical way to represent clock regions is by the set of constraints it satisfies.

Our representation of a clock region r is easily translated to a set of constraints that

are satisfied by (and only by) valuations of r. A valuation v belongs to the clock

region represented by (ai)16i6n and (Xi)06i6k if and only if v satisfies the following

constraints [AD94]:

– xi > M for each xi such that ai = ⊥;

– xi = ai for each xi ∈ X0;

– ai < xi < ai + 1 for each xi ∈ Xl for some l > 0;

– xi−ai < xj−aj for each xi, xj such that xi ∈ Xl and xj ∈ Xm for some 0 < l < m;

– xi − ai = xj − aj for each xi, xj ∈ Xl for some l > 0.

Example. In a timed automaton with 5 clocks and largest constant M = 8, a clock

region r represented by (1, 3, 5,⊥, 2) and ({x1, x3}, {x2}, {x5}) satisfies the following

constraints:

0 = x1 − 1 = x3 − 5 < x2 − 3 < x5 − 2 < 1 ∧ x4 > 8.

The closure [r] of r then satisfies:

0 = x1 − 1 = x3 − 5 6 x2 − 3 6 x5 − 2 6 1 ∧ x4 > 8.

Vertices of a clock region. For a set S ⊆ Rn, let Conv(S) be the convex hull of S, i.e.,

the smallest convex set containing S. Since clock regions are bounded, they are convex

polytopes, and can also be defined as the convex hull of a finite set of points:

Definition 13 Let r be a clock region of a timed automaton. The set of vertices of r

is the smallest set of points S(r) such that [r] = Conv(S(r)).

Lemma 14 shows that the set S(r) is unique and the number of vertices is at

most n+ 1, where n is the number of clocks of the automaton.

Lemma 14 The vertices of a clock region r are the integer vectors of its closure:

S(r) = [r] ∩ Nn.

Proof. Let v ∈ [r]. Let the representation of r be given as (ai)16i6n and (Xi)06i6k.

Then, for all valuations w ∈ [r] we have:

∀0 6 i 6 k. ∀x, y ∈ Xi. 〈w(x)〉 = 〈w(y)〉,
∀0 6 i < j 6 k. ∀x ∈ Xi, y ∈ Xj . 〈w(x)〉 6 〈w(y)〉,

∀x ∈ X0. 〈w(x)〉 = 0,

Let v0 be the valuation such that v0(xi) = ai for each 0 6 i 6 k. We have v0 ∈ [r]

and for all 0 < j 6 k, the valuation vj defined by

vj(x) = v0(x) if x ∈ Xi with i < j

vj(x) = v0(x) + 1 if x ∈ Xi with i > j
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belongs to [r].

We now prove that those valuations generate the whole closed clock region [r].

Let w be a valuation in [r]. We define

w′ = (1− 〈w(xk)〉) · v0 + (〈w(x1)〉 − 〈w(x0)〉) · v1 + · · ·+ (〈w(xk)〉 − 〈w(xk−1)〉) · vk

where each xi is a clock in the corresponding Xi for 1 6 i 6 k, and w(x0) = 0 by

convention. We claim that w′ = w. To show this, let y be a clock in some Xj . Then

w′(y) = (1− 〈w(xk)〉) · v0(y) + (〈w(x1)〉 − 〈w(x0)〉) · v1(y) + · · ·+
(〈w(xk)〉 − 〈w(xk−1)〉) · vk(y)

= (1− 〈w(xk)〉) · v0(y) + (〈w(x1)〉 − 〈w(x0)〉) · (v0(y) + 1) + · · ·+
(〈w(xj)〉 − 〈w(xj−1)〉) · (v0(y) + 1)+

(〈w(xj+1)〉 − 〈w(xj)〉) · (v0(y)) + · · ·+
(〈w(xk)〉 − 〈w(xk−1)〉) · (v0(y))

= v0(y) + 〈w(xj)〉 = w(y)

since y ∈ Xj . Therefore [r] = Conv({v0, . . . , vk}). On the other hand, {v0, . . . , vk} is the

smallest set generating [r], since there is no valuation vi that is a convex combination

of the others. �

Lemma 14 entails that if a clock region r is a sub-region of a clock region r′, then

its set of vertices S(r) is the intersection of [r] and the set S(r′) of vertices of r′.

Zones and DBMs. Related to the algorithmic analysis of timed automata, an efficient

data structure has been introduced to represent zones: the difference bound matri-

ces (DBM) [BM83,Dil90]. We briefly introduce DBMs and show how the basic opera-

tions that are useful for reachability analysis are computed3.

Let x1, . . . , xn be the clocks of a timed automaton. The idea of DBMs is to represent

all constraints uniformly, by constraints of the form xi − xj 6 a with a ∈ Z ∪ {+∞}
and 0 6 i, j 6 n where x0 is the constant 0. For bounded zones, the range of a can be

reduced to Z ∩ [−M,M ] where M is the largest constant of the timed automaton.

A DBM is a (n+ 1)× (n+ 1) matrix M =
`
mi,j

´
06i,j6n where each mi,j is of the

form (ai,j ,≺i,j) where ≺i,j ∈ {<,6} and ai,j ∈ Z is called a bound. In the sequel, we

only consider DBMs that represent closed sets, that is, DBMs where ≺i,j is always 6.

The set of valuations represented by the DBM M =
`
mi,j

´
06i,j6n is:

JMK = {(x1, . . . , xn) ∈ Rn | ∀ 0 6 i, j 6 n : xi − xj 6 mij ∧ x0 = 0}.

A DBM is associated with a complete directed graph with nodes 0, 1, . . . , n and

edges (i, j) labeled by mij . In this graph, the length of a path is the sum of the labels

of the edges in the path. It is easy to see that the length of a path from node i to node j

is an upper bound of the difference xi − xj . The length of the shortest paths between

nodes gives the tightest bounds on the variables and difference of variables. This allows

to define a normal form for DBMs that corresponds to the shortest path closure of the

associated directed graph. If the graph contains a cycle of negative length, the shortest

3 In Section 6.3, we study in more details a parametric extension of DBMs, which we use
for proving completeness of our algorithm.
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path closure does not exist and the DBM represents the empty set as a constraint of

the form xi − xi 6 m with m < 0 is unsatisfiable. Hence, for nonempty DBMs in

normal form, we have mi,i = 0 for all 0 6 i 6 n.

Operations on sets represented by DBMs are executed by syntactic transformations

on the DBM. Some of those operations require the normal form. We present the opera-

tions that will be useful in the sequel. Other operations like the difference of two DBMs

and the inclusion test are definable (see e.g. [ACD+92,Yov96,CGP99] for details).

– Intersection: given two DBMs M =
`
mi,j

´
06i,j6n and M′ =

`
m′i,j

´
06i,j6n, let M′′

be the DBM such that m′′i,j = min{mi,j ,m
′
i,j}. Then, we have JM′′K = JMK∩JM′K.

It is not required that M and M′ are in normal form. In any case the result is not

necessarily in normal form.

– Time passing: given a DBM in normal form M =
`
mi,j

´
06i,j6n, let M↗ be the

DBM
`
m′i,j

´
06i,j6n such that m′i,0 =∞ and m′i,j = mi,j for all 0 6 i, j 6 n with

j 6= 0. This removes the upper bound on all the clocks. We have JM↗K = {v + t |
v ∈ JMK ∧ t ∈ R>0} and M↗ is in normal form.

– Reset: given a DBM in normal form M =
`
mi,j

´
06i,j6n and a clock x, let M[x := 0]

be the DBM
`
m′i,j

´
06i,j6n such that for all 0 6 i, j 6 n with i 6= j:

m′i,j =

8><>:
m0,j if x = xi

mi,0 if x = xj

mi,j otherwise

We have removed all the bounds involving x and set x to zero. We have JM[x :=

0]K = {v[x := 0] | v ∈ JMK}. We define similarly M[R := 0] for R ⊆ {x1, . . . , xn}.
The result is in normal form.

– Emptiness test: given a DBM M =
`
mi,j

´
06i,j6n, we have JMK = ∅ if and only

if there is a cycle in the directed graph associated to M whose length is negative.

The emptiness test is realized by the shortest path algorithm used to put DBMs in

normal form.

5 Removing existential quantification

This first part of the proof of Theorem 11 consists in removing the existential quantifica-

tion on∆ and ε. Given a timed automatonA, we letR ε→0
∆→0 =

T
∆>0

T
ε>0 Reach(JAKε∆).

We then have the following result:

Theorem 15 For any timed automaton A, any zone-set Bad, the following equivalence

holds:

R ε→0
∆→0 ∩ Bad = ∅ iff ∃∆ > 0, ε > 0 : Reach(JAKε∆) ∩ Bad = ∅.

The proof of Theorem 15 is based on several intermediate lemmas. Lemma 16

corrects a wrong claim of Puri about a lower bound on the distance between two zones

with empty intersection. This bound is claimed to be 1
2 in [Pur98, Lemma 6.4]. We show

that 1
n is the tightest bound, where n is the number of clocks.

We introduce the following classical distances over Rn:

d∞(x, y) = ‖x− y‖∞ = max
16i6n

(|xi − yi|) d1(x, y) = ‖x− y‖1 =
X

16i6n

(|xi − yi|).
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Lemma 16 Let Z1, Z2 ⊆ Rn be two zones such that Z1 ∩Z2 = ∅. For all x ∈ Z1 and

y ∈ Z2, we have d∞(x, y) > 1
n . This bound is tight.

Proof. First, we show that 1
n is a lower bound. Clearly, for all v ∈ Rn, ‖v‖1 6

n · ‖v‖∞. We prove that ‖x− y‖1 > 1, which entails the result.

We consider two zones given by two DBMs in normal form: Z1 ≡ J
`
mi,j

´
K and

Z2 ≡ J
`
m′i,j

´
K. Since Z1 ∩ Z2 = ∅, there must exist a “negative cycle”:

m
(′)
i1,i2

+m
(′)
i2,i3

+m
(′)
i3,i4

+ · · ·+m
(′)
ip,i1

6 −1

where each term m(′)
i,j of the sum can be taken either in the matrix of Z1 or in the

matrix of Z2. We may assume that at least one m(′)
i,j comes from Z1 and one from Z2

since otherwise Z1 (or Z2) would be empty and the result would hold vacuously.

Since for DBMs in normal form, we have ma,b +mb,c > ma,c for all indices a, b, c,

we can merge any two consecutive mi,j into one while keeping the inequality. The

same holds for m′i′,j′ , and we can thus assume that mi,j and m′i′,j′ alternate in the

sum above (starting with mi1,i2 , say).

Pick x ∈ Z1 and y ∈ Z2. Then

(xi2 − xi1) + (yi3 − yi2) + (xi4 − xi3) + · · ·+ (yi1 − yip) 6 −1.

Terms can be rearranged in this sum, yielding

(yi1 − xi1)− (yi2 − xi2) + (yi3 − xi3)− · · · − (yip − xip) 6 −1.

If ik = 0 for some k, then xik − yik = 0. Thus, we assume that 1 6 ik 6 n. We

take the absolute value, and apply the triangle inequality:

1 6
˛̨
(yi1 − xi1)− (yi2 − xi2) + (yi3 − xi3)− · · · − (yip − xip)

˛̨
6 |(yi1 − xi1)|+ |(yi2 − xi2)|+ |(yi3 − xi3)|+ · · ·+ |(yip − xip)|

6 ‖x− y‖1.

Now, let us show that this bound is tight. Consider the zones Z1, Z2 ⊆ Rn defined

by the following equations:

– If n is odd

Z1 ≡

x1 = 1

x2i − x2i+1 = 0 1 6 i 6 n−1
2

Z2 ≡

x2i−1 − x2i = 0 1 6 i 6 n−1

2
xn = 0 x1

x3

x2

– If n is even

Z1 ≡

8<:
x1 = 1

x2i − x2i+1 = 0 1 6 i 6 n
2 − 1

xn = 0

Z2 ≡
˘
x2i−1 − x2i = 0 1 6 i 6 n

2 x1

x2
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We have Z1∩Z2 = ∅; indeed combining the equations of Z1 and Z2 yields xi = xj
for all 0 6 i, j 6 n, which leads to a contradiction since x1 = 1 and xn = 0. On the other

hand, let p = (1, n−2
n , n−2

n , n−4
n , n−4

n , . . . ) and q = (n−1
n , n−1

n , n−3
n , n−3

n , n−5
n , . . . )

(take the first n coordinates). It is easy to check that p ∈ Z1 and q ∈ Z2, while

d∞(p, q) = max( 1
n , . . . ,

1
n ) = 1

n . �

In order to prove Lemma 16 in presence of both kinds of perturbation, we have to

extend the previous lemma to sequences of sets as follows:

Lemma 17 Let Aδ be a collection of sets such that Aδ1 ⊆ Aδ2 if δ1 6 δ2. Assume

that Z =
T
δ>0Aδ is a nonempty zone-set. Also assume the existence of a zone-set Z′

such that ∃δ0 > 0 · ∀δ ∈ (0, δ0) ·Aδ ∩Z′ = ∅. Then there exists δ1 > 0 such that for all

0 < δ < δ1, we have d∞(Aδ, Z
′) > 1

2n .

Proof. We pick δ0 > 0 such that ∀0 < δ < δ0 · Aδ ∩ Z′ = ∅, and δ′0 > 0 such that

∀x ∈ Aδ′0 · ∃z ∈ Z : d∞(x, z) <
1

2n
. (1)

Such a δ′0 exists by definition of Z. Assume the lemma is wrong:

∀δ1 > 0 · ∃0 < δ < δ1 · ∃x ∈ Aδ, y ∈ Z′ : d∞(x, y) <
1

2n
.

Applying this result with δ1 = min(δ0, δ
′
0), we pick a δ′1 > 0, and two points x ∈ Aδ′1

and y ∈ Z′ such that d∞(x, y) < 1
2n . From (1), and since Aδ′1 ⊆ Aδ′0 , there exists z ∈ Z

such that d∞(x, z) < 1
2n . Thus d∞(y, z) < 1

n , and with Lemma 16, Z ∩ Z′ 6= ∅. Then

any Aδ intersects Z′, since it contains Z. This contradicts our hypotheses. �

In the sequel, when a distance d or a norm ‖ · ‖ is used, we always refer to d∞
and ‖ · ‖∞.

The following two lemmas rely on the theory of real numbers and the basics of

topology.

Lemma 18 If d(A,B) > 0, then A ∩B = ∅.

Lemma 19 If A ⊆ B, then d(A,C) > d(B,C) for all C.

Our main tool for proving Theorem 15 can then be stated as follows:

Lemma 20 Let A∆(∆ ∈ R>0) be a collection of closed sets such that A∆1 ⊆ A∆2

if ∆1 6 ∆2. Assume that A =
T
∆>0A∆ is nonempty. Let B be a bounded set.

If d(A,B) > 0, then there exists ∆ > 0 such that A∆ ∩B = ∅.

Define N∞(X, η) = {x ∈ Rn | ∃x′ ∈ X : d∞(x, x′) 6 η} and let N∞(x, η) =

N∞({x}, η).

Proof. For a contradiction, assume that for all ∆ > 0, we have A∆ ∩ B 6= ∅. Let

δi = 1
i (for each i > 1). Then, we have:

∀i > 1 · ∃xi ∈ Aδi ∩B.

Since B is bounded, so is the set {xi | i > 1}. By Bolzano-Weierstrass Theorem, there

exists a point x such that:

∀ε > 0 · ∀i > 1 · ∃j > i : xj ∈ N∞(x, ε) ∩Aδj .
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Let us show that x is in the closure of Aδi for all i > 1. Since Aδj ⊆ Aδi for all j > i,

we have:

∀i > 1 · ∀ε > 0 · ∃j : xj ∈ N∞(x, ε) ∩Aδi ,

that is:

∀i > 1 · ∀ε > 0 : N∞(x, ε) ∩Aδi 6= ∅.

Hence, for all i > 1 the point x is in the closure of the closed set Aδi , and thus x ∈ Aδi .
Since, for all ∆ > 0 there exists i > 1 such that δi 6 ∆ and thus Aδi ⊆ A∆, we have

∀∆ ∈ R>0 : x ∈ A∆. This entails that x ∈ A. Now observe that:

∀i > 1 : d∞({x}, B) 6 d∞(x, xi) + d∞({xi}, B).

Observe that d∞(x, xi) can be made arbitrarily small for sufficiently large i, and that

for all i > 1, d∞({xi}, B) = 0 since xi ∈ B. Therefore, we get:

∀ε > 0 : d∞({x}, B) 6 ε,

and d∞({x}, B) = 0, which is a contradiction. �

We conclude this section by the proof of Theorem 15.

Proof of Theorem 15. Let Rε→0
∆ =

T
ε>0 Reach(JAKε∆), for any ∆ > 0. If R ε→0

∆→0∩
Bad = ∅, since R ε→0

∆→0 and Bad are unions of sets of the form {l} × Zl where Zl is

a zone4, Lemma 16 applies and we have d(R ε→0
∆→0,Bad) > 0. From Lemma 20, we

obtain that there exists ∆ > 0 such that Rε→0
∆ ∩Bad = ∅. Clearly, Rε→0

∆ satisfies the

conditions of Lemma 17, hence the existence of some ∆1 such that ∀∆ ∈ (0,∆1), we

have d(Rε→0
∆ ,Bad) > 0. We pick such a ∆0 ∈ (0,∆1). Applying Lemma 20 to Rε→0

∆0
,

we get the existence of ε0 such that Reach(JAKε0∆0
) ∩ Bad = ∅.

Conversely, if there exists ∆ > 0 and ε > 0 such that Reach(JAKε∆) ∩ Bad = ∅,

then trivially R ε→0
∆→0 ∩ Bad = ∅. �

It should be noted that a simpler proof could be achieved in the presence of only one

perturbation (for guard enlargement only, such a proof can be found in [DDMR04]).

6 An algorithm for computing R0
∆→0, Rε→0

0 and R ε→0
∆→0

In this section, we prove that R0
∆→0 = Rε→0

0 = R ε→0
∆→0, and that those sets are

computed by Algorithm 1 (originally proposed in [Pur98] to compute Rε→0
0 ). The

following example illustrates the algorithm, and informally justifies its correctness.

The rest of this section is devoted to a formal proof of correctness.

Example. Consider the timed automaton Aα of Fig. 1(a) (the value of α does not

matter here). The reachable states ofAα in locations `1 and `2 are depicted on Fig. 1(b)

and are computed in J∗ by the algorithm at line 3. Then, in the while-loop, the

algorithm adds to J∗ the progress cycles of the region graph of Aα that “touch”

the set J∗, and performs a reachability analysis from the new states in the classical

semantics. In the example, the progress cycle (`1, R1), (`1, R2), (`1, R3), (`2, R4) shown
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Algorithm 1: Algorithm for computing the limit sets R ε→0
∆→0, R0

∆→0 and Rε→0
0 of a

closed timed automaton A.

Data: A timed automaton A = 〈Loc,Var, q0, Lab,Edg〉.
Result: The set J∗, which we will prove equals R ε→0

∆→0, R0
∆→0 and Rε→0

0
begin

Construct the region graph G = (RA,→G) of A ;1

Compute the set C(G) of simple cycles of G ;2

J∗ ← Reach(G, [q0]) ;3

while for some p = p0 p1 . . . pk ∈ C(G), [p0] 6⊆ J∗ and J∗ ∩ [p0] 6= ∅ do4

J∗ ← J∗ ∪ [p0] ;5

J∗ ← Reach(G, J∗) ;6

return J∗ ;7

end
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Fig. 2 A progress cycle R1, R2, R3, R4 in the region graph of Aα of Fig. 1(a).

in Fig. 2 is added, and the set J∗ computed by the algorithm is the set R0
∆→0 shown

in Fig. 1(c).

Observe that the algorithm manipulates only closed regions. In particular, the

set J∗ is closed by Lemma 6. The condition J∗ ∩ [p0] 6= ∅ at line 4 implies that some

points of J∗ belong to the frontier of p0. It is clear that in the perturbed semantics

of timed automata, no matter the values of ε,∆ > 0, some states of p0 are reachable.

Moreover, as we show in the sequel, every state of p0 can actually be reached from

every state of [p0] (and thus from J∗ ∩ [p0]), by repeating the cycle p = p0 p1 . . . pk
sufficiently many times (the number of iterations increases as ε and ∆ tend to 0).

The main technique to prove that a state u ∈ [p0] can reach a state v ∈ [p0] in JAK0∆
and in JAK0ε is the following. Assume that there is a trajectory in JAK00 that starts and

ends in u and follows the cycle p, called a limit cycle. We modify this trajectory using

the perturbation ε or ∆ to reach a state u1 in the neighborhood of u. This is done in

Theorem 29 for JAK0∆ and in Theorem 31 for JAK0ε. By repeating this, we construct

u2, . . . uk = v such that ui is reachable from ui−1 in JAK0∆ (Theorem 28) and in JAK0ε
(Theorem 30). Unfortunately, we cannot assume in general that u ∈ [p0] has a limit

cycle in JAK00, even though p0 has a cycle in the region graph of A [Pur98]. We are

saved by Theorem 23 which shows that (i) from all states x ∈ [p0], there is a trajectory

4 Assuming Algorithm 1 is correct, the set J∗ = R ε→0
∆→0 it computes is a union of closed

regions.
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in JAK00 that reaches a state u ∈ [p0] that has a limit cycle, and dually (ii) all states

y ∈ [p0] are reachable in JAK00 from some state v ∈ [p0] that has a limit cycle. Notice

that Theorem 23 does not involve perturbations.

6.1 Limit cycles

Definition 21 (Limit Cycle) A limit cycle of a timed automaton A is a finite trajec-

tory π of JAK that contains at least one discrete transition and such that last(π) = first(π).

As suggested in [Pur98], not all states of a progress cycle have a limit cycle.

Definition 22 Let p = p0 p1 . . . pN be a cycle in the region graph of a timed automa-

ton A (i.e., pN = p0). For Q0 ⊆ [p0], define the return map Rp(Q0) as follows:

Rp(Q0) =

(
q ∈ [p0]

˛̨̨̨
˛ there exists a trajectory π of JAK that follows p

such that first(π) ∈ Q0 and last(π) = q

)

For i > 2, define recursively Rip(Q0) = Rp(Ri−1
p (Q0)) and let Li,p be the set of states

that can return back to themselves after i cycles through p: Li,p = {q | q ∈ Rip({q})}.
We write Lp = ∪i∈N>0Li,p the set of states having a limit cycle.

The following key property of Lp is central to the proof of correctness of Algo-

rithm 1. It states that Lp is both forward and backward reachable from all valuations

in a cycle p.

Theorem 23 ([Pur98, Lemma 7.10]) Let p = p0 . . . pN be a cycle in the region

graph of a timed automaton. For all z ∈ [p0], there exists z′ and z′′ in Lp, and trajec-

tories π and π′ in JAK, such that:

– first(π) = z and last(π) = z′ and

– first(π′) = z′′ and last(π′) = z.

The proof proposed by Puri is quite sketchy. We develop here a full proof of this

result, following the same steps.

Lemma 24 ([Pur98, Lemma 7.1]) Let p = p0 p1 . . . pN be a path in the region

graph of a timed automaton A, let π and π′ be two trajectories of JAK that follow p.

Then for all λ ∈ [0, 1], there exists a trajectory π′′ of JAK that follows p and such that

first(π′′) = λ.first(π) + (1− λ).first(π′) and last(π′′) = λ.last(π) + (1− λ).last(π′).

Proof. Let π = (q0, t0)σ1 (q1, t1)σ2 · · · σN (qN , tN ) and π′ = (q′0, t
′
0)σ′1 · · · σ′N (q′N , t

′
N ).

Consider the sequence

π′′ = (q′′0 , t
′′
0 )σ′′1 (q′′1 , t

′′
1 )σ′′2 · · · σ′′N (q′′N , t

′′
N )

where for all 0 6 i 6 N , q′′i = λ.qi + (1 − λ).q′i and t′′i = λ.ti + (1 − λ).t′i and for all

1 6 i 6 N , σ′′i = λ.σi + (1 − λ).σ′i if σi ∈ R>0 and σ′′i = σi otherwise. It is easy to

show that π′′ is a trajectory in JAK since regions are convex sets. �

Lemma 25 ([Pur98, Lemma 7.3]) Let p be a cycle in the region graph of a timed

automaton. Then Lp is convex.
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Proof. Let x, y ∈ Lp, and λ ∈ [0, 1]. There exists natural numbers k and l such

that x ∈ Lk,p and y ∈ Ll,p. Then x, y ∈ Lk.l,p, and according to Lemma 24, we have

λ.x+ (1− λ).y ∈ Lk·l,p ⊆ Lp. �

Definition 26 Let p = p0 p1 . . . pN be a cycle in the region graph of a timed au-

tomaton (i.e. p0 = pN ). The orbit graph of p is the graph Θp = (VΘ,→Θ) such that

VΘ = S(p0) is the set of vertices of p0 and for all v, w ∈ VΘ, v →Θ w iff w ∈ Rp({v}).

For m ∈ N and v ∈ VΘ, we define

Succm(v) = {w ∈ VΘ | v →m
Θ w} and Predm(v) = {w ∈ VΘ | w →m

Θ v}.

Given a vertex v ∈ VΘ, the set Rp({v}) is a closed region according to Lemma 6,

and thus we have Rp({v}) = Conv({w ∈ VΘ | v →Θ w}) as a closed region contains

all its vertices. More generally, we have Rkp({v}) = Conv({w ∈ VΘ | v →k
Θ w}) for all

k > 1.

Lemma 27 ([Pur98, Lemma 7.4]) Let p = p0 . . . pk be a path in the region graph of

a timed automaton A. For all vertices v ∈ S(p0) of p0, there exists a vertex v′ ∈ S(pk)

of pk such that there exists a trajectory of JAK from v to v′, and conversely, for all

vertices v′ ∈ S(pk) of pk, there exists a vertex v ∈ S(p0) of p0 such that there exists a

trajectory of JAK from v to v′.

Proof. Let v be a vertex of [p0]. Then {v} is a subregion of [p− 0], and the set of its

successors in [pk] is a closed subregion of [pk]. According to Lemma 14, a subregion of

[pk] necessarily contains a vertex.

The same argument can be applied backwardly, since the predecessor of a subregion

of pk is a closed subregion of p0. �

Proof of Theorem 23. Let Θp = (VΘ,→Θ) be the orbit graph of p. Let V =

{v ∈ VΘ | ∃m ∈ N. v ∈ Succm(v)}. Lemma 27 entails that every vertex in the orbit

graph has an outgoing edge. Thus for all v ∈ VΘ, there exists an integer mv such that

for any m > mv, the intersection Succm(v) ∩ V is non-empty, because VΘ is finite.

Let M = max{mv | v ∈ VΘ} be the largest such mv. Then SuccM (v)∩V 6= ∅ for all v.

A similar argument proves the existence of M ′ such that PredM
′
(v)∩ V 6= ∅ for all v.

Since z ∈ [p0], we can write z =
P
i λi vi, where λi ∈ [0, 1],

P
i λi = 1 and vi ∈ VΘ.

For each vi, let wi be an element of SuccM (vi) ∩ V . From Lemma 24, there is a path

from z to z′ =
P
i λiwi and z′ ∈ Conv(V ). By Lemma 25 we have Conv(V ) ⊆ L and

thus z′ ∈ L.

Conversely, if xi is a vertex in PredM
′
(vi)∩V , there is a path from z′′ =

P
i λi xi ∈

Conv(V ) ⊆ L to z. �

6.2 Soundness of Algorithm 1: J∗ ⊆ R0
∆→0 and J∗ ⊆ Rε→0

0

We show that the set J∗ computed by Algorithm 1 is reachable in the limit sets R0
∆→0

and Rε→0
0 . In particular, for all progress cycles that are added to J∗ by the algorithm,

we show that every point of the cycle is reachable if either a drift on clocks or an

enlargement of the guards is allowed, no matter how small it is.
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The proof is based on Theorem 23 and on the fact that for all progress cycles p,

the set Lp is a strongly connected component of both JAK0∆ and JAKε0 for all ∆, ε > 0.

Hence in Lp, every state is reachable from every state for the perturbed semantics, and

thus similarly, in each region of the cycle p every state is reachable from every state

by Theorem 23.

Apart from Theorem 39, all the results of this section apply to progress cycles but

do not require Assumption 9.

Imprecise guards: J∗ ⊆ R0
∆→0.

Theorem 28 Let A be a timed automaton, let p = p0 p1 · · · pN be a progress cycle of

the region graph of A, and ∆ ∈ R>0. For all states u, v ∈ Lp, there exists a trajectory

π of JAK0∆ such that first(π) = u and last(π) = v.

This theorem results immediately from the following lemma.

Lemma 29 Let A be a timed automaton, let p = p0 p1 · · · pN be a progress cycle of

the region graph of A. For all ∆ ∈ R>0, for all state u ∈ Lp and for all neighbour state

v ∈ [p0] ∩ N∞(u, ∆2 ), there exists a trajectory π′ of JAK0∆ such that first(π′) = u and

last(π′) = v.

Proof. Let A = 〈Loc,Var, q0, Lab,Edg〉. Since u ∈ Lp, there exists a trajectory π

of JAK00 that follows p a certain number of times and such that first(π) = last(π) = u.

We slightly modify π to make it stutter-free (we insert a zero length timed transition

between two consecutive discrete transitions, and we merge consecutive timed transi-

tions). Assume that5:

π = (`0, u0)
t0−→ (`0, u

′
0)

σ0−−→
R0

(`1, u1)
t1−→ (`1, u

′
1)

σ1−−→
R1
· · ·

· · ·
σm−2−−−−→
Rm−2

(`m−1, um−1)
tm−1−−−−→ (`m−1, u

′
m−1)

σm−1−−−−→
Rm−1

(`m, um)
tm−−→ (`m, u

′
m)

with u0 = u′m = u. Each ti ∈ R>0 and σi ∈ Σ. We annotate π with sets of clocks

Ri ⊆ Var that are reset by discrete transitions σi. Note that
Si=m−1
i=0 Ri = Var by

Assumption 9.

Intuitively, we prove the lemma by modifying the length of the timed transitions of

π so that the clocks are reset slightly earlier or later than in π. We obtain a trajectory

of JAK0∆ because the guards are enlarged and therefore they are enabled in the states

of the new trajectory.

Let the representation of p0 be given by (ax)x∈Var and (Xi)06i6k. For all valua-

tions w ∈ p0, we have:

– for all x ∈ Var: bw(x)c = ax;

– for all x ∈ X0: 〈w(x)〉 = 0;

– for all i and for all x, y ∈ Xi: 〈w(x)〉 = 〈w(y)〉;
– for all i < j and for all x ∈ Xi, y ∈ Xj : 〈w(x)〉 < 〈w(y)〉;

5 It is not restrictive to assume that π starts and ends with a timed transition as timed
transitions of length zero are allowed.
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By hypothesis, p is a progress cycle and each clock is reset at least once along π.

For each clock x ∈ Var, let αx be the index of the last transition of π in which x is

reset. Formally, we have:

x ∈ Rαx ∀i > αx : x 6∈ Ri (2)

Then, for each clock x ∈ Var, we have:

u0(x) = u′m(x) = u(x) =

mX
i=αx+1

ti (3)

Let v ∈ [p0]∩N∞(u, ∆2 ) and for each x ∈ Var let δx = v(x)−u(x). Clearly, we have

|δx| 6 ∆
2 . Moreover since v ∈ [p0], the closed version of the above inequalities defining

p0 are satisfied by v. Let 〈〈v(x)〉〉 = v(x)− ax, we have:

– for all x ∈ Var: 0 6 〈〈v(x)〉〉 6 1;

– for all x ∈ X0: 〈〈v(x)〉〉 = 0;

– for all i and for all x, y ∈ Xi: 〈〈v(x)〉〉 = 〈〈v(y)〉〉;
– for all i < j and for all x ∈ Xi, y ∈ Xj : 〈〈v(x)〉〉 6 〈〈v(y)〉〉;

This entails that:

– for all i and for all x, y ∈ Xi: δx = 〈〈v(x)〉〉 − 〈u(x)〉 = 〈〈v(y)〉〉 − 〈u(y)〉 = δy;

– for all x, y ∈ Var such that u(x) < u(y) (and hence αx > αy from Eq. (3)), we have

v(x) 6 v(y) and thus u(x) + δx 6 u(y) + δy, that is:

δx − δy 6 u(y)− u(x) =

αxX
i=αy+1

ti (4)

Let Γ = {αx | x ∈ Var} = {α1, . . . , αl} be the set of positions in π where a clock is

reset for the last time. Assume without loss of generality that α1 < α2 < · · · < αl and

that for all 1 6 i 6 l, the clock xi ∈ Var is such that that αxi = αi. Consider the time

stamps in π as the following block-sequence, and construct the sequence (t′i)06i6m by

adding a shift given as follows:ˆ
t0 . . . tα1

˜̂
tα1+1 . . . tα2

˜
. . .
ˆ
tαj−1+1 . . . tαj

˜
. . .
ˆ
tαl−1+1 . . . tαl

˜̂
tαl+1 . . . tm

˜
+0 +δ1 − δ2 . . . +δj−1 − δj . . . +δl−1 − δl +δl

=
ˆ
t′0 . . . t

′
α1

˜̂
t′α1+1 . . . t

′
α2

˜
. . .
ˆ
t′αj−1+1 . . . t

′
αj

˜
. . .
ˆ
t′αl−1+1 . . . t

′
αl

˜̂
t′αl+1 . . . t

′
m

˜
where each t′i is obtained from ti by distributing the shift of each block over the time

stamps of the block. This can be done in such a way that each t′i is nonnegative for all

0 6 i 6 m since for all i 6 α1 we have t′i = ti, for all 2 6 j 6 l we have:

αjX
i=αj−1+1

t′i =

0@ αjX
i=αj−1+1

ti

1A+ δj−1 − δj > 0 (by Eq. (4))
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and finally for all i > αl + 1 we have:

mX
i=αl+1

t′i =

mX
i=αl+1

ti + δl = u(xl) + δl = v(xl) > 0.

We now construct the trajectory π′ from π by replacing each ti by t′i:

π′ = (`0, v0)
t′0−→ (`0, v

′
0)

σ0−−→
R0

(`1, v1)
t′1−→ (`1, v

′
1)

σ1−−→
R1
· · ·

· · ·
σm−2−−−−→
Rm−2

(`m−1, vm−1)
t′m−1−−−−→ (`m−1, v

′
m−1)

σm−1−−−−→
Rm−1

(`m, vm)
t′m−−→ (`m, v

′
m)

where v0 = u0 = u, for all 0 6 i 6 m : v′i = vi + t′i and for all 1 6 i 6 m : vi =

v′i−1[Ri−1 := 0]. We claim that π′ is a trajectory of JAK0∆. To show this, we must

verify that the guard (which is enlarged by ∆ in JAK0∆) of each discrete transition σi
is satisfied by v′i. Since π is a trajectory of JAK, we know that each u′i satisfies the

corresponding guard under the classical semantics. Therefore, it is sufficient to prove

that the difference |u′i(x)− v′i(x)| is bounded by ∆ for all x ∈ Var. To do that, let j

be the greatest index such that j 6 i and uj(x) = vj(x) (such an index exists because

u0 = v0). Clearly, the difference |u′i(x)− v′i(x)| is bounded by the sum of the shifts

that we have introduced between index j and i. For uniformity, let the first shift be

δ0− δ1 with δ0 = δ1 and the last shift be δl− δl+1 with δl+1 = 0. Notice that |δi| 6 ∆
2

holds for all i = 0, . . . , l + 1. If a block
ˆ
tαp−1+1 . . . tαp

˜
is such that j 6 αp−1 + 1

and αp 6 i, then the whole shift δp−1 − δp counts in the sum. On the other hand, if i

or j lies inside the block, then only a portion α(δp−1 − δp) of the shift counts where

α ∈ [0, 1]. Accordingly, the sum of the shifts can take one of the three forms (where

α, β ∈ [0, 1]):

• s1 = α(δp − δp+1) (if i and j lie in the same block)

• s2 = α(δp − δp+1) + β(δp+1 − δp+2) (if i and j lie in consecutive blocks)

• s3 = α(δp − δp+1) + δp+1 − δq + β(δq − δq+1) (otherwise)

It is easy to show the following bounds:

• |s1| 6 α · 2 · ∆2 6 ∆

•
|s2| = |α(δp − δp+2) + (β − α)(δp+1 − δp+2)| 6 α ·∆+ |β − α|∆

|s2| = |(α− β)(δp − δp+1) + β(δp − δp+2)| 6 |α− β|∆+ β ·∆

)
⇒|s2| 6 ∆

•
|s3| = |α(δp − δq+1) + (1− β)(δp+1 − δq) + (β − α)(δp+1 − δq+1)|

|s3| = |(α− β)(δp − δq) + (1− α)(δp+1 − δq) + β(δp − δq+1)|

)
⇒|s3| 6 ∆

which shows that |u′i(x)− v′i(x)| 6 ∆ for all x ∈ Var.

Finally, since the sets of clocks Ri that are reset in π′ are the same as in π, Eq. (3)

applies and we get for all x ∈ Var:

v′m(x) =

mX
i=αx+1

t′i =

mX
i=αx+1

ti + δx = u′m(x) + δx = u(x) + δx

Hence v′m = v. It follows that first(π′) = u and last(π′) = v as required. �
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Drifting clocks: J∗ ⊆ Rε→0
0 .

We prove a result similar to Theorem 28 for drifting clocks.

Theorem 30 (See also [Pur98, Lemma 7.11]) Let A be a timed automaton, let

p = p0 p1 · · · pN be a progress cycle of the region graph of A, and ε ∈ R>0. For all

states u, v ∈ Lp, there exists a trajectory π of JAKε0 such that first(π) = u and last(π) =

v.

The proof of Theorem 30 relies on the following lemma, implying that it is possible

to go from a state x0 = u ∈ Lp to a state xk = v ∈ Lp in JAKε0 by successively reaching

x1, x2, . . . xk where xi+1 is at bounded distance from xi. The key is that the bound

depends only on the extremal states u and v.

Lemma 31 Let A be a timed automaton and p = p0 p1 · · · pN be a progress cycle of

the region graph of A. For all u, v ∈ Lp, for all ε ∈ R>0, there exists δ > 0 such that for

all x ∈ Conv({u, v}) and for all y ∈ Lp ∩N∞(x, δ), there exists a trajectory π in JAKε0
such that first(π) = x and last(π) = y.

To prove Lemma 31, we apply a drift on a limit cycle trajectory starting in u. Since

the effect of drifts is proportional to the duration of the trajectory, we need a bound on

the minimal duration of such a trajectory, in order to guarantee a lower bound on the

perturbation that we can enforce. This is done in Lemma 32. Then, to show that every

state in N∞(x, η) is reachable from a state x, we need to establish the relationship

between numbers δ and η in the following statement:

∀x′ ∈ [r′] ∩N∞(xi+1, δ) · ∃x ∈ [r] ∩N∞(xi, η) : x
τ−→ x′ in JAKε0 for some τ ∈ R>0.

This statement can be used inductively to show that a neighborhood of xk = v

(and thus v itself) can be reached from x0 = u, as in Theorem 30. When ε = 0, we

show in Lemma 33 that η = 2δ fits. To have a proof of Lemma 31, we would need

that η = 0 while δ > 0. To obtain this, we use the drifts on clocks. The proof is quite

involved because Lemma 33 tends to require a larger value of η to guarantee some δ,

while the drifts help us to decrease η.

In the next lemma, we show that every limit-cycle trajectory of strictly positive

duration can be extended to a limit-cycle trajectory of duration at least 1
2 without

increasing the size of π more than twice. This last condition is important as otherwise,

the lemma would be trivially true.

Lemma 32 Let A be a timed automaton, let p = p0 p1 p2 . . . pN be a progress cycle in

the region graph of A. If there exists a limit cycle π of JAK that follows p such that

Duration(π) > 0, then there exists a limit cycle π′ of JAK with first(π′) = first(π) and

such that |π′| 6 2|π| and Duration(π′) > 1/2.

Proof. The result is immediate if Duration(π) > 1/2. Assume Duration(π) < 1/2, and

let k = |π| and u = first(π) = last(π). Let π2 be the trajectory obtained by repeating π

twice. We have |π2| = 2k and first(π2) = statek(π2) = last(π2) = u. Since all clocks are

reset along π, their value remain strictly less than 1/2 in every state of π and π2. By

the fact that Duration(π) > 0, there must be at least one timed transition in π with a

strictly positive time stamp. Consider the first such transition in π2, and let increase

its length by 1/2 time units, yielding a new trajectory π′ in which each clock remains

below 1. Therefore, the same transitions as in π2 can be taken as the guards satisfied



Robust Safety of Timed Automata 25

by a state of π are also satisfied by the corresponding state in π′. Observe that we keep

in the second half of the trajectory π′ the same sequence of transitions as in π, and

since all clocks are reset along π, we obtain last(π′) = u = first(π′), |π′| = 2|π| and

Duration(π′) > 1/2. �

Lemma 33 Let A be a timed automaton, let r and r′ be two regions of A s.t. (`, r)
time−−−→

(`, r′) in the region graph of A. For all u ∈ r, v ∈ r′ and τ ∈ R>0 such that (`, u)
τ−→

(`, v) in JAK00, and for all δ > 0, for all y ∈ N∞(v, δ)∩ [r′], there exists x ∈ N∞(u, 2δ)∩
[r] and τ ′ ∈ R>0 such that (`, x)

τ ′−→ (`, y) in JAK00.

Proof. Let n be the number of clocks of A. Reminiscent of the normal form DBM

representation of regions, let αi, βi,mi,j ∈ Z and α′i, β
′
i,m
′
i,j ∈ Z be the tightest

constants such that for all valuations u, v, we have u ∈ [r] and v ∈ [r′] if and only if

for all 1 6 i, j 6 n:

ui − uj 6 mi,j αi 6 ui 6 βi ( [r] )

vi − vj 6 m′i,j α′i 6 vi 6 β
′
i ([r′])

In particular, this entails that −mj,i 6 ui−uj 6 βi−αj and −m′j,i 6 vi−vj 6 β
′
i−α

′
j

for all 1 6 i, j 6 n, and since the constants are tight:

−mj,i 6 mi,j 6 βi − αj −m′j,i 6 m
′
i,j 6 β

′
i − α

′
j (5)

Now, let u ∈ r, v ∈ r′ and τ ∈ R>0 such that (`, u)
τ−→ (`, v) in JAK00, and let δ > 0

and y ∈ N∞(v, δ)∩ [r′]. Since r′ is a time successor of r and v = u+ τ , we have for all

1 6 i, j 6 n:

mi,j = m′i,j vi − vj = ui − uj (6)

We define the valuation D = y − v. Since y ∈ N∞(v, δ), we have ‖D‖∞ 6 δ and since

y ∈ [r′], we have for all 1 6 i, j 6 n:

(vi +Di)− (vj +Dj) 6 m
′
i,j α′i 6 vi +Di 6 β

′
i (7)

Now let z = u + D. As shown on Fig. 3, we might have z 6∈ [r]. Thus, we have

to construct a neighbour x of z that belongs to [r] and such that x
τ ′−→ y for some

τ ′ ∈ R>0. By Eq. (6) and (7), we have for all 1 6 i, j 6 n:

zi − zj = (ui +Di)− (uj +Dj) = (vi +Di)− (vj +Dj) 6 mi,j (8)

1 First, assume that for some i0, we have αi0 = βi0 : This means that the interior of r

is empty, as on Fig. 3(a). Let t = −Di0 . Notice that the value of t is independent of

the choice of i0. Indeed, if for some j 6= i0 we have αj = βj , then using Eq. (5) we get:

αi0 − βj 6 −mj,i0 6 mi0,j 6 βi0 − αj

and −mj,i0 = mi0,j since αi0 − βj = βi0 − αj . By Eq. (6), we have −m′j,i0 = m′i0,j
and thus in the region [r′], we have vi0 − vj = −m′j,i0 = m′i0,j = yi0 − yj and thus

Di0 = Dj .
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[r]

v

y

u

zx

(a) The interior of [r] is empty.

[r]

v

y

u
z

x

(b) The interior of [r] is not empty.

Fig. 3 Construction of a predecessor of y in the closed region [r].

Now, let x = z + t so that xi0 = ui0 . We show that x ∈ [r]. Clearly, by Eq. (8) we

have:

xi − xj = zi − zj 6 mi,j

And in particular, for all 1 6 j 6 n : −mi0,j 6 xj − xi0 6 mj,i0 . Since xi0 = ui0 =

αi0 = βi0 and by Eq. (5) we have:

αj 6 βi0 −mi0,j 6 xj 6 mj,i0 + αi0 6 βj

Now, we have ‖x− u‖∞ = ‖D + t‖∞ 6 2‖D‖∞ 6 2δ and thus x ∈ N∞(u, 2δ) ∩ [r].

2 Second, assume that for all i, we have αi < βi: This means that the interior of r is

not empty, as on Fig. 3(b). We define the following sets:

I ={i | αi > zi} I ′ ={i | zi > βi}

– If I = ∅ and I ′ = ∅, then z ∈ [r] by Eq. (8) and we take x = z. We have

‖x− u‖∞ = ‖z − u‖∞ = ‖D‖∞ 6 δ.
– If I 6= ∅, then define t = max{αi − zi | i ∈ I} and let i0 be an index in I such

that t = αi0 − zi0 . Clearly t > 0 and since t = αi0 − ui0 −Di0 and αi0 6 ui0 , we

have t 6 −Di0 . We take x = z+ t so that xi0 = αi0 . We show that x ∈ [r]. Clearly,

by Eq. (8) we have:

xi − xj = zi − zj 6 mi,j

In particular, for all 1 6 i 6 n we have xj − xi0 6 mj,i0 6 βj − αi0 by Eq. (5).

Since xi0 = αi0 , this yields xj 6 βj . Moreover, for all i ∈ I we have xi = zi+t > αi
by definition of t, and for all i 6∈ I we have xi = zi + t > zi > αi. Finally, we have

‖x− u‖∞ = ‖D + t‖∞ 6 2‖D‖∞ 6 2δ.

– If I ′ 6= ∅, then define t = min{βi − zi | i ∈ I ′} and let i0 be an index in I ′ such

that t = βi0 − zi0 . Clearly t < 0 and since t = βi0 − ui0 −Di0 and ui0 6 βi0 , we

have t > −Di0 . We take x = z+ t so that xi0 = βi0 . We show that x ∈ [r]. Clearly,

by Eq. (8) we have:

xi − xj = zi − zj 6 mi,j
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In particular, for all 1 6 j 6 n we have xi0−xj 6 mi0,j 6 βi0−αj by Eq. (5). Since

xi0 = βi0 , this yields xj > αj . Moreover, for all i ∈ I ′ we have xi = zi + t 6 βi by

definition of t, and for all i 6∈ I ′ we have xi = zi + t 6 zi 6 βi. Finally, we have

‖x− u‖∞ = ‖D + t‖∞ 6 2‖D‖∞ 6 2δ.

In each case, we have x ∈ N∞(u, 2δ)∩ [r] and (`, x)
τ ′−→ (`, y) in JAK00 for τ ′ = τ − t

(obviously we have τ ′ > 0 because r′ is a time successor of r). �

Lemma 34 Let A be a timed automaton. Let (`, x) and (`, y) be two states of JAK,

and τ ∈ R>0 such that (`, x)
τ−→ (`, y) in JAK. For all ε ∈ R>0, for all x′ ∈ N∞(x, ετ) :

(`, x′)
τ−→ (`, y) in JAKε0.

Proof. The result is immediate if τ = 0. Otherwise, it suffices to set the rate of each

clock c of A to 1− (x′(c)− x(c))/τ , which lies between 1− ε and 1 + ε. �

Lemma 35 Let A be a timed automaton, let r and r′ be two regions of A such

that r→r′ in the region graph of A. For all u ∈ [r], v ∈ [r′] and ε ∈ R>0:

– if there is a timed transition u
τ−→ v in JAK, then for all η ∈ R>0, we have:

∀y ∈ N∞(v,
η + ετ

2 + 3ε
) ∩ [r′] · ∃x′ ∈ N∞(u, η) ∩ [r] : x′

τ ′−→ y in JAKε0;

– if there is an action transition u
σ−→ v in JAK, then for all η ∈ R>0, we have

∀y ∈ N∞(v, η) ∩ [r′] · ∃x ∈ N∞(u, η) ∩ [r] : x
σ−→ y in JAKε0.

Proof. We only prove the first part of the lemma, the second part being quite obvious.

We have v = u+τ . Let δ = (η+ετ)/(2+3ε) and let y ∈ N∞(v, δ)∩[r′]. From Lemma 33,

there exists x ∈ N∞(u, 2δ) ∩ [r] such that x
τ ′−→ y in JAK for some τ ′ ∈ R>0. So we

have y = x+ τ ′. Using the triangle inequalities, we have:

τ ′ = ‖y − x‖∞ = ‖(v − u)− [(x− u) + (v − y)]‖∞ > τ − 3δ (9)

Consider the set S = N∞(x, ετ ′) ∩ Conv({u, x}). Since d∞(u, x) 6 2δ, there exists

x′ ∈ S such that:(
d∞(u, x′) = 0 if d∞(u, x) 6 ετ ′ (take x′ = u)

d∞(u, x′) 6 2δ − ετ ′ if d∞(u, x) > ετ ′

Since [r] is convex and x, u ∈ [r], we have x′ ∈ [r], and since x
τ ′−→ y in JAK, Lemma 34

entails that x′
τ ′−→ y in JAKε0. To complete the proof, we have to show that x′ ∈

N∞(u, η), that is d∞(u, x′) 6 η. Starting from Eq. (9), we have:

ε(τ − τ ′) 6 3εδ = (2 + 3ε)δ − 2δ = η + ετ − 2δ

and thus 2δ − ετ ′ 6 η which entails d∞(u, x′) 6 η. �
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Lemma 36 Let A be a timed automaton, let ε ∈ R>0 and Kε = 1/(2 + 3ε). Let

p = p0 p1 · · · pN be a path in the region graph of A. Let π be a trajectory of JAK
that follows p and let u = first(π), v = last(π) and T = Duration(π). For all y ∈
N∞(v,KN

ε εT ) ∩ [pN ], there exists a trajectory π′ in JAKε0 that follows p and such

that first(π′) = u and last(π′) = y.

Proof. Let π = (q0, t0)σ1(q1, t1)σ2 . . . σN (qN , tN ) with t0 = 0 and tN = T . Define

εi = Ki
εεti. We show that for all 0 6 i < N , for all y ∈ N∞(qi+1, εi+1) ∩ [ri+1], there

exists x ∈ N∞(qi, εi) ∩ [ri] such that there exists a transition from x to y in JAKε0:

– if qi
σi+1−−−→ qi+1 is a discrete transition, then we have εi+1 6 εi because ti+1 = ti

and Kε 6 1. The claims follows then directly from Lemma 35.

– otherwise, we have a timed transition qi
τ−→ qi+1 and ti+1 = ti + τ . By Lemma 35

with η = εi, we have:

∀y ∈ N∞(qi+1,Kε(εi + ετ)) ∩ [ri+1] · ∃x′ ∈ N∞(qi, εi) ∩ [ri] : x′
τ ′−→ y in JAKε0.

Since Kε 6 1, we have:

Kε(εi + ετ) = Ki+1
ε εti +Kεετ > K

i+1
ε ε(ti + τ) = Ki+1

ε εti+1 = εi+1

Hence, N∞(qi+1, εi+1) ⊆ N∞(qi+1,Kε(εi + ετ)) and we have:

∀y ∈ N∞(qi+1, εi+1) ∩ [ri+1]. ∃x′ ∈ N∞(qi, εi) ∩ [ri]. x
′ τ ′−→ y in JAKε0.

Applying this result for each 0 6 i < N , we obtain immediately that for all y ∈
N∞(qN , εN ) ∩ [rN ], there exists x ∈ N∞(q0, ε0) ∩ [r0] such that there exists a trajec-

tory π′ in JAKε0 that follows p with first(π′) = x and last(π′) = y. Finally, we have

qN = last(π) and q0 = first(π) so that x = u since ε0 = 0 and N∞(q0, 0) = {q0}.
�

Lemma 37 Let A be a timed automaton and p be a progress cycle of the region graph

of A. For all u, v ∈ Lp, there exists an n ∈ N such that Conv({u, v}) ⊆ Ln,p.

Proof. Let k and l be such that u ∈ Lk,p and v ∈ Ll,p. Take n = kl. The result

follows from Lemma 24. �

We proceed with the proofs of Lemma 31 and Theorem 30.

Proof of Lemma 31. If p is not a time-elapsing progress cycle, then Lp is a singleton

that contains the valuation in which all clocks are equal to zero. In this case, the result

is immediate.

Assume that p contains a time-elapsing region. For u, v ∈ Lp, let n ∈ N be given by

Lemma 37. We are in the conditions of Lemma 32: for all x ∈ Conv({u, v}) there exists a

limit cycle π on x with Duration(π) > 0 and |π| 6 nW where W is the number of regions

of A. Therefore, there exists a limit cycle π′ on x with Duration(π′) > 1/2 and |π′| 6
2nW . Let N = 2nW and take δ = 1

2εK
N
ε . By Lemma 36, for all y ∈ N∞(x, δ) ∩ [p0]

there exists a trajectory π in JAKε0 such that first(π) = x and last(π) = y. Finally, the

result follows from the fact that Lp ⊆ [p0]. �



Robust Safety of Timed Automata 29

Proof of Theorem 30. For u, v ∈ Lp, let δ as given by Lemma 31 and let k = d 1δ e.
Consider the points x0 = u, xk = v, and xi = u + iδ(v − u) for i = 1, . . . , k − 1. It is

easy to see that d∞(xi, xi+1) 6 δ · d∞(u, v) 6 δ (because the ∞-distance between two

points of a region is at most 1). Thus from Lemma 31, for all 0 6 i 6 k−1 there exists

a trajectory from xi to xi+1 in JAKε0, and thus a trajectory π such that first(π) = u

and last(π) = v. �

Soundness of Algorithm 1.

The second part of the next theorem corresponds to [Pur98, Theorem 7.3].

Theorem 38 Let A be a timed automaton. Let p = p0 p1 . . . pN be a progress cycle of

the region graph of A. For all x, y ∈ [p0], we have:

– For all ∆ ∈ R>0, there exists a trajectory π in JAK0∆ such that first(π) = x and

last(π) = y;

– For all ε ∈ R>0, there exists a trajectory π′ in JAKε0 such that first(π′) = x and

last(π′) = y.

Proof. From Theorem 23, there exist u, v ∈ Lp and two trajectories π1 and π3 of JAK
such that first(π1) = x and last(π1) = u, and first(π3) = v and last(π3) = y. By Theo-

rem 28, there exists a trajectory π2 of JAK0∆ such that first(π2) = u and last(π2) = v.

We construct π by concatenating the three trajectories π1, π2 and π3. The proof is

similar for the second part of the theorem, based on Theorem 30. �

As a consequence, we get the following extension of [Pur98, Theorem 5.1].

Theorem 39 Let A be a timed automaton satisfying Assumption 9. Let J∗ be the set

computed by Algorithm 1. Then J∗ ⊆ R0
∆→0 and J∗ ⊆ Rε→0

0 .

Proof. For all ∆ > 0, if a set of regions J∗ is reachable in JAK0∆, then:

– so is the set Reach(G, J∗) of regions reachable from J∗ in the region graph G of A;

– any cycle p is a progress cycle, so that Theorem 38 applies: if p0 is a region in p

such that [p0] ∩ J∗ 6= ∅, then the set J∗ ∪ [p0] is reachable in JAK0∆.

Since J∗ is obtained by iterating the above two operations (lines 3, 5 and 6 of the

algorithm) from the set of initial states [q0], this ensures that J∗ ⊆ Reach(JAK0∆). This

holds for all ∆ > 0, and hence J∗ ⊆ R0
∆→0.

The proof for drifts on clocks is similar. �

6.3 Completeness of Algorithm 1: R ε→0
∆→0 ⊆ J

∗

To prove the completeness of Algorithm 1, we have to show that any state that is

reachable in the semantics JAKε∆ no matter how small are ε and ∆, lies in the set J∗

computed by Algorithm 1. First, we show that if the number of transitions in trajecto-

ries is fixed, then there is a bound on the distance between a state reachable in JAKε∆
and the set of reachable states Reach(JAK) in the classical semantics (Theorem 44).

This bound vanishes when ε→ 0 and ∆→ 0. This shows that a state x ∈ R ε→0
∆→0 that
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is reachable in a fixed number of steps from the initial states in JAKε∆ for all ε,∆ > 0

is at distance zero from the reachable states in the classical semantics. An argument

related to topologically closed sets then shows that x ∈ Reach(JAK). Second, to extend

the result to the whole set R ε→0
∆→0, we roughly use the fact that longer trajectories neces-

sarily contain a cycle that is added to J∗ by the algorithm. Therefore, only a bounded

part of those trajectories can take the state far from J∗. By a similar argument as

above, this distance to J∗ is shown to vanish when ε → 0 and ∆ → 0 (Theorem 45).

The proofs of the theorems are based on a detailed study of the reachability properties

of the perturbed semantics, for which we need parametric DBM, an extension of DBM

(that we have presented in Section 4).

A parametric DBM (PDBM) in Rn is a matrix M =
`
mi,j

´
06i,j6n where mi,j ∈

Z×N is called a parametric bound. In a PDBM, each mi,j is a couple (a, b) of integers

with b > 0. Given a number Ω ∈ R>0, the value of mi,j is JmKΩ = a + bΩ. The set

represented by M is:

JMKΩ = {(x1, . . . , xn) ∈ Rn | ∀ 0 6 i, j 6 n : xi − xj 6 JmijKΩ ∧ x0 = 0}.

As usual, we often write JMK for JMK0. More general definitions of PDBM have been

introduced in [AAB00,HRSV01], with implementations. Here, we use PDBM for purely

theoretical purposes, so we keep the definition as simple as possible.

For a PDBM M =
`
mij

´
06i,j6n with mij = (aij , bij), we define the width of M

by w(M) = max{bij | 0 6 i, j 6 n}. Thus a DBM is a zero-width PDBM. Any closed

rectangular guard g can be represented by a PDBM Mg with w(Mg) = 2 such that

for all Ω ∈ R>0 we have JMgKΩ = N∞(JgK, Ω). In particular, JgK = JMgK.

Example Let g ≡ x = 4 ∧ 1 6 y 6 3. Then,

0 x y

0
0@ (0, 0) (−4, 1) (−1, 1)

(4, 1) (0, 0) (3, 2)

(3, 1) (−1, 2) (0, 0)

1AMg = x

y

When the reachable states in the perturbed semantics of a timed automaton A are

computed parametrically using PDBM, it would be nice that the classical semantics

JMK gives exactly the reachable states in JAK and that the perturbed semantics JMKΩ
gives the reachable states in JAKε∆. This can be obtained when ε = 0 by taking Ω = ∆.

For the general case ε > 0, the set JMKΩ over-approximates the reachable states,

provided ε is sufficiently small. We are more precise in Lemma 42 and Lemma 43.

In that context, the width of PDBM records the accumulation of the deviations

allowed by the perturbed semantics. This is useful to bound the distance between

states that are reachable in the perturbed semantics and states that are reachable in

the classical semantics. The following lemma gives such a bound.

Lemma 40 (See also [Pur98, Lemma 7.4]) Let M be a PDBM in Rn and let Ω ∈
R>0 such that Ω · (2n+ 1) ·w(M) < 1. Let Z = JMK and Z′ = JMKΩ. For all x′ ∈ Z′,
there exists x ∈ Z such that ‖x′ − x‖∞ 6 n · w(M) ·Ω.

Proof. First, assume that x′ is a vertex of Z′. Then x′ can be obtained by solving a

system of n equations of the form x′i − x
′
j = JmijKΩ , x′i = Jmi0KΩ or x′i = −Jm0iKΩ .

Therefore, each x′i is the sum or difference of at most n coefficients JmijKΩ . Since the
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bounds mij are entries of M, for all 1 6 i 6 n, if x′i = li + kiΩ for some li, ki ∈ Z,

then |ki| 6 n ·w(M) and we take xi = li. Then ‖x′ − x‖∞ 6 n ·w(M) ·Ω and we claim

that x ∈ Z. Let l0 = k0 = 0. Then, for all 0 6 i, j 6 n we have (for mij = (aij , bij)):

x′i − x
′
j = li − lj + (ki − kj) ·Ω 6 aij + bijΩ

Hence,

li − lj 6 aij + (bij − ki + kj) ·Ω

Since li, lj and aij are integers and |(bij − ki + kj) ·Ω| 6 (2n+ 1) ·w(M) ·Ω < 1, we

have xi − xj = li − lj 6 aij = JmijK0. Therefore x ∈ Z.

Second, if x′ is not a vertex, then it can be written as x′ =
P
i λiv

′
i with λi > 0 andP

i λi = 1 and each v′i is a vertex of Z′. From the proof above, for each v′i there exists

vi ∈ Z such that ‖v′i − vi‖∞ 6 n ·w(M) ·Ω. We take x =
P
i λivi. Clearly x ∈ Z, and

we have:

‖x′ − x‖∞ =
‚‚‚X

i

λi(v
′
i − vi)

‚‚‚
∞
6
X
i

λi‖v′i − vi‖∞

6
X
i

λi(n · w(M) ·Ω) 6 n · w(M) ·Ω

�

Now, we show how to extend to PDBM the operations that we have presented

in Section 4 for DBM. To do so, we have to define the minimum of two parametric

bounds (for intersection of PDBM). We define a lexicographic order on parametric

bounds: (a, b) 6 (a′, b′) if and only of either a < a′, or a = a′ and b 6 b′. This

(syntactical) definition is justified by the following observation: for all Ω such that

bΩ 6 1, if (a, b) 6 (a′, b′) then J(a, b)KΩ 6 J(a′, b′)KΩ . Thus if we take a sufficiently

small Ω, the order is preserved at the semantic level. In the sequel, this will imply

that provided Ω is below some threshold, the operations on PDBM can be performed

independently of the value of Ω. The sum of two parametric bounds (a, b) and (a′, b′)
is (a+ a′, b+ b′).

We review the important operations on PDBM:

– Intersection: the intersection of two PDBM M1 and M2 is the PDBM M whose en-

tries are the minimum (according to the lexicographic order on parametric bounds)

of the corresponding entries of M1 and M2. Hence w(M) 6 max{w(M1), w(M2)}.
– Time passing and reset: those operations only substitute entries of the matrix with

other entries of the matrix and they preserve the normal form. Thus the width

cannot increase.

– Normalization: to obtain the normal form of a PDBM M in Rn, each entry mij

is replaced by the length of the shortest path from node i to node j, which has at

most n edges. Therefore, the width of the normal form is bounded by n · w(M).

– Emptiness test: given a PDBM M, let M′ be its normal form. The emptiness

test checks whether one of the diagonal entries is negative (a parametric bound

m = (a, b) is negative iff m < (0, 0) iff a 6 −1).

A summary of the above observations is given in Table 1. Their correctness is

established in the following lemma.

Lemma 41 For all PDBM M, M′ in Rn, we have:
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PDBM in Rn Input in NF Output in NF Width of the result

Intersection M1 ∩M2 No No 6 max{w(M1), w(M2)}
Time passing M↗ Yes Yes 6 w(M)

Reset M[R := 0] Yes Yes 6 w(M)

Normalization of M
No Yes 6 n · w(M)

Emptiness test of M

Table 1 Operations on PDBM (NF = normal form).

– JM ∩M′KΩ = JMKΩ ∩ JM′KΩ for all 0 6 Ω 6 1/max{w(M), w(M′)};
– JM↗KΩ = JMKΩ↗ for all Ω ∈ R>0, if M is in normal form;

– JM[R := 0]KΩ = JMKΩ [R := 0] for all Ω ∈ R>0 and all R ⊆ {x1, . . . , xn}, if M is

in normal form;

– if M′ is the normal form of M, then the DBM
`
Jm′ijKΩ

´
06i,j6n is the normal form

of the DBM
`
JmijKΩ

´
06i,j6n, for all 0 6 Ω 6 1/max{w(M), w(M′)};

– JMKΩ = ∅ iff JMK0 = ∅, for all 0 6 Ω 6 1/(n · w(M)).

Proof. The argument is similar for the five claims. We give the details for the last

one. First, we have JMK0 ⊆ JMKΩ for all Ω. Thus it suffices to show that JMK0 = ∅
implies that JMKΩ = ∅ for all Ω < 1/(n · w(M)). If JMK0 = ∅ then there exists a

parametric bound m′ = (a, b) in the diagonal of the normal form PDBM M′ such that

a 6 −1. Since b 6 n · w(M), we have Jm′KΩ = a + bΩ < 0 and therefore JMKΩ is

empty. �

Notations. Given a TTS T = 〈S, ι,Σ,→〉, let U ⊆ S and σ ∈ Σ. We define the

following operators:

postσT (U) = {s′ ∈ S | ∃s ∈ U. s σ−→ s′}

posttime
T (U) = {s′ ∈ S | ∃s ∈ U. ∃t ∈ R>0. s

t−→ s′}

We use the PDBM to characterize the relationship between the reachable states of

the classical semantics JAK and those of the perturbed semantics JAKε∆.

By an abuse of notation, we omit the location in the argument of post(·), that is

we use Z = JMK instead of Z = {`} × JMK for ` ∈ Loc. Finally, we assume that the

edges of timed automata are identified by their label. This is clearly not restrictive for

reachability analysis.

In Lemma 42, the PDBM M′ contains the exact information about the timed

successors of M in the classical semantics, and it is an over-approximation of the timed

successors in the perturbed semantics. Lemma 43 is similar for discrete successors.

Lemma 42 Let A be a timed automaton with n clocks and largest constant M . Let M

be a PDBM in Rn in normal form. There exists a PDBM M′ in normal form such

that:

– ∀Ω ∈ R>0 · ∀∆ ∈ R>0 · ∀ε 6 Ω/(2(M + 1)) : posttime
JAKε∆

(JMKΩ) ⊆ JM′KΩ;

– posttime
JAK00

(JMK0) = JM′K0;

– w(M′) = w(M) + 1.
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Proof. Assume that Ω,∆ ∈ R>0 and ε 6 Ω/(2(M + 1)). First, observe that in

the classical semantics JAK, the length of a timed transition is bounded by M . In the

perturbed semantics JAKε∆ however, a timed transition may be longer than M because

clocks can progress more slowly, namely at the rate 1 − ε. Therefore, the length of a

timed transition is bounded by M/(1 − ε) and thus by M + 1 since ε 6 1/(M + 1).

Second, we obtain M′ by constructing the time successor of M as described above (in

the exact semantics), and then by replacing each bound (a, b) of the PDBM by (a, b+1),

except on the diagonal. Clearly we have w(M′) = w(M) + 1 and JM↗K0 = JM′K0 and

thus posttime
JAK00

(JMK0) = JM′K0. On the other hand, if we have (`, x)
t−→ (`, x′) in JAKε∆

and xi − xj 6 JmijKΩ , then:

x′i − x
′
j 6 JmijKΩ + 2εt 6 JmijKΩ + 2ε(M + 1) 6 JmijKΩ +Ω = Jm′ijKΩ

Therefore posttime
JAKε∆

(JMKΩ) ⊆ JM′KΩ . �

Lemma 43 Let A be a timed automaton with n clocks and alphabet Lab. Let M be a

PDBM in Rn. For all σ ∈ Lab, there exists a PDBM M′ in normal form such that:

– ∀Ω 6 1/(max{2, w(M)}) · ∀∆ 6 Ω · ∀ε ∈ R>0 : postσJAKε∆
(JMKΩ) ⊆ JM′KΩ;

– postσJAK00
(JMK0) = JM′K0;

– w(M′) 6 n ·max{2, w(M)}.

Proof. Assume that Ω, ε ∈ R>0 and ∆ 6 Ω. Let (`, `′, g, σ,R) be the edge of A
associated with σ. Let Mg be the PDBM that represents the guard g (with w(Mg) =

2). To construct M′, let M∩ be the PDBM M ∩Mg put in normal form, and let

M′ = M∩[R := 0] which is in normal form. According to Table 1, we have w(M′) 6
n ·max{2, w(M)} and

postσJAKε∆
(JMKΩ) ⊆ postσJAKεΩ

(JMKΩ) = JM′KΩ (by Lemma 41)

For Ω = ∆ = ε = 0, the sets collapse and postσJAK00
(JMK0) = JM′K0. �

With the previous two lemmas, we have characterized how much the set of reachable

states can increase by taking one transition (either timed or discrete) in the perturbed

semantics JAKε∆ instead of the classical semantics JAK00. That increase is measured in

terms of the width of a PDBM. In the next theorem, we use an argument by induction

to give a bound on the increase after a given number of transitions. However, this is

not sufficient to prove the completeness of Algorithm 1. We need in addition to show

that every trajectory π′ in JAKε∆ can be approached by a trajectory π in JAK00 where

each intermediate state in π is “close” to the corresponding state in π′. To obtain

this result, we introduce the notion of automaton refinement that roughly divides the

guards into small pieces of size6 1/γ (with γ ∈ N) so that two valuations that satisfy

the same guard are necessarily “close” to each other (by choosing γ sufficiently large).

This is the core of Theorem 44.

6 The size of a set is the maximal distance (for d∞) between two points in the set.
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Automaton refinement. Given a timed automaton A with n clocks and a positive in-

teger γ, the γ-refinement of A is the timed automaton Aγ constructed from A as

follows:

– we first substitute each constant c appearing in the rectangular constraints (guards,

invariants, initial and final conditions) of A with cγ

– we then replace each edge (l, l′, g, σ,R) in the resulting automaton with the set of

all edges (l, l′, g′, σ, R) where g′ ranges over the set of all unit constraints (i.e., con-

junctions of constraints of the form xi = a or a 6 xi 6 a + 1) that imply g.

Equalities of the form xi = a are used only if g implies xi = a.

Roughly, the γ-refinement of A is a scaling of the constants by a factor γ (and thus

a scaling of the time), followed by a partitioning of the guards such that the distance

between two valuations that satisfy the guard is at most 1 (instead of being a multiple

of γ, as is the case after the first step).

The important property of such refinements is that for all ∆, ε ∈ R>0, the two

TTS JAKε∆ and JAγKεγ∆ are bisimilar, witnessed by the bijection µγ : QA → QAγ such

that µγ(`, v) = (`, γv). We extend µγ to trajectories as expected (states are mapped

according to µγ and the time stamps are multiplied by γ). Finally, for all v, v′ ∈ QAγ
we have ‖µ−1

γ (v)− µ−1
γ (v′)‖∞ = ‖v − v′‖∞/γ

Example. For γ = 2, an edge (`, `′, g, σ,R) in A with g ≡ (x = 4) ∧ (1 6 y 6 3) is

replaced in Aγ with the following four edges:

(`, `′, {x = 8 ∧ 2 6 y 6 3}, σ, R) (`, `′, {x = 8 ∧ 4 6 y 6 5}, σ, R)

(`, `′, {x = 8 ∧ 3 6 y 6 4}, σ, R) (`, `′, {x = 8 ∧ 5 6 y 6 6}, σ, R)

The next theorem extends and clarifies Theorem 8.2 in [Pur98].

Theorem 44 Let A be a timed automaton with n > 1 clocks and largest constant M .

For all distances 0 < α < 1, for any number of steps k ∈ N, there exist two numbers

D,E ∈ R>0 such that for all ∆ ∈ [0, D], for all ε ∈ [0, E] and for all stutter-free

trajectories π′ of JAKε∆ such that |π′| = k, there exists a trajectory π of JAK such that:

– first(π) ∈ [first(π′)];
– trace(π) = trace(π′);

– π is “close” to π′ in the following sense: ∀ 0 6 i 6 k, if statei(π) = (`i, vi) and

statei(π
′) = (`′i, v

′
i), then `i = `′i and ‖vi − v′i‖∞ < α.

Proof. Given 0 < α < 1 and k ∈ N, let γ = d2/αe and:

D =
α

4γ(n+ 1)k+1
E =

D

2(γM + 1)

Let ∆ ∈ [0, D] and ε ∈ [0, E] and let Ω = γD. Let trace(π′) = σ1σ2 . . . σk. Let

ρ′ = µγ(π′). Then ρ′ is a trajectory of JAγKεγ∆. Let M0 be a PDBM in normal form

such that JM0K = [first(π′)] and w(M0) = 0 (in fact M0 can be seen as a DBM).

Observe that γ∆ 6 Ω and ε 6 Ω/(2(Mγ + 1)) where Mγ = γM is the largest constant

of Aγ . Therefore, by Lemma 42 and 43, there exists PDBM M1,M2, . . . ,Mk in normal

form such that, for all 1 6 i 6 k and provided that Ω 6 1/(max{2, w(Mi)}),

(a) postσiJAγKεγ∆
(JMi−1KΩ) ⊆ JMiKΩ ;
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(b) postσiJAγK(JMi−1K0) = JMiK0;

(c) w(Mi) 6 max{w(Mi−1) + 1, n ·max{2, w(Mi−1)}.

Let us show that w(Mi) 6 2(n + 1)i. We proceed by induction. The claim holds

for i = 1 since w(M0) = 0. Assume that it holds up to some index i − 1, with i > 2.

Then we have

w(Mi) 6 max
˘
w(Mi−1) + 1, n ·max{2, w(Mi−1)}

¯
6 max{1 + 2(n+ 1)i−1, 2n · (n+ 1)i−1} (by (c))

6 2(n+ 1)i−1 + 2n · (n+ 1)i−1

6 2(n+ 1)i

Notice that the condition Ω 6 1/(max{2, w(Mi)}) is satisfied. For each 0 6 i 6 k, let

q′i = statei(π
′). By (a), we have µγ(q′k) ∈ JMkKΩ . Since α < 1, it is easy to see that:

Ω =
α

4(n+ 1)k+1
<

1

(2n+ 1)w(Mk)

and thus by Lemma 40, there exists qk ∈ JMkK such that:

‖µγ(q′k)− qk‖∞ 6 n · w(Mk) ·Ω < 2(n+ 1)k+1 ·Ω 6 α.

Using (b), we can construct in a backward fashion a trajectory ρ of JAγK such that:

– last(ρ) = qk;

– trace(ρ) = trace(π′);
– first(ρ) ∈ JM0K = [q′0].

For each 0 6 i 6 k, let qi = statei(ρ). For all i such that σi 6= time, we have qi ∈ Jg′iK
and µγ(q′i) ∈ N∞(Jg′iK, γ∆) where g′i is the guard of the edge of Aγ associated to σi
that has been taken in ρ. Since the size of g′i is at most 1, we have:

‖µγ(q′i)− qi‖∞ 6 1 + γ∆ 6 1 +Ω (10)

Observe that the effect of discrete transitions is to reset some clocks and that does not

increase the∞-distance between two states: we also have ‖µγ(q′i)− qi‖∞ 6 1 +γ∆ for

all i such that σi−1 6= time. Since π′ is stutter-free and trace(ρ) = trace(π′), Eq. (10)

holds for all 0 6 i 6 k. Now, let π = µ−1
γ (ρ) which is a trajectory of JAK since ρ is a

trajectory of JAγK. Thus, we have for all 0 6 i 6 k:

‖q′i − µ
−1
γ (qi)‖∞ 6

1 +Ω

γ
<

2

γ
6 α

which entails that π is “close” to π′ as required. �

The following theorem is the key of the proof of completeness. It shows that for all

distances α > 0, we can choose sufficiently small values of ∆ and ε such that from J∗

the points that are reachable in JAKε∆ are at distance at most α from J∗. By contrast

with Theorem 44, we do not make the hypothesis that the length of the trajectories is

bounded. This result is similar to Theorem 8.3 in [Pur98], but the constants are different

because only drifting clocks were considered by Puri and the bound of Lemma 16 was

wrong.
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Theorem 45 Let A be a timed automaton with n > 1 clocks and largest constant M

that satisfies Assumption 9. For all distances α ∈ R>0, there exist two numbers D,E ∈
R>0 such that for all ∆ ∈ [0, D], for all ε ∈ [0, E] and for all trajectories π′ of JAKε∆
such that first(π′) ∈ J∗, we have d∞(last(π′), J∗) < α.

Proof. Without loss of generality, we may assume that α < 1
2n . Let W be the number

of regions of A, let γ = d2/αe and:

D =
α

4γ(n+ 1)2W+1
E =

D

2(γM + 1)

Let ∆ ∈ [0, D] and ε ∈ [0, E] and let π′ be a stutter-free trajectory of JAKε∆ such that

first(π′) ∈ J∗. Let m = |π′| and for each 0 6 i 6 m, let q′i = statei(π
′).

– If m 6 2W . By Theorem 44, there exists a trajectory π of JAK such that first(π) ∈
[first(π′)] and for all 0 6 i 6 m, ‖qi − q′i‖∞ < α where qi = statei(π). Since

q0 ∈ [q′0] ⊆ J∗, the state qm is reachable from J∗ and thus qm ∈ J∗. Since

‖qm − q′m‖∞ < α this yields d∞(last(π′), J∗) < α.

– If m > 2W . By induction, assume that d∞(q′i, J
∗) < α for all 0 6 i 6 m −

1. Consider the sub-trajectory of π′ from state q′m−2W to q′m, and according to

Theorem 44, let π be a trajectory such that for all m − 2W 6 i 6 m, it holds

‖qi − q′i‖∞ < α, where qi = statei−(m−2W )(π). Then for all i with m− 2W 6 i 6
m− 1, we have :

d∞(qi, J
∗) 6 ‖qi − q′i‖∞ + d∞(q′i, J

∗) 6 2α <
1

n
,

and by Lemma 16, this implies [qi]∩ J∗ 6= ∅ for all m− 2W 6 i 6 m− 1 (since J∗

is a zone-set).

On the other hand, the trajectory π has the same trace as the sub-trajectory of

π′ from q′m−2W to q′m and thus it is stutter-free and |π| = 2W . Therefore, π has

2W + 1 states and thus there exists two states qk and qk′ in π with k < k′ such

that [qk] = [qk′ ] and a discrete transition occurred along π between qk and qk′ in

π, and thus there exists a path from [qk] to itself in the region graph of A. Since

[qk] ∩ J∗ 6= ∅, we have [qk] ⊆ J∗ by line 5 of Algorithm 1 and [qi] ⊆ J∗ for all

i > k by line 6 of the algorithm. So we have qm ∈ J∗ and since ‖qm − q′m‖∞ < α,

this yields d∞(last(π′), J∗) < α. �

Theorem 46 Let J∗ be the set computed by Algorithm 1. Then R ε→0
∆→0 ⊆ J

∗.

Proof. For all y ∈ R ε→0
∆→0, for all ∆ > 0 and ε > 0 there exists a trajectory π of

JAKε∆ such that first(π) ∈ J∗ (because J∗ contains the initial states) and last(π) = y.

Therefore, by Theorem 45 for all α ∈ R>0 we have d∞(y, J∗) < α. This implies that

d∞(y, J∗) = 0 and since J∗ is a closed set (a finite union of closed regions) we have

y ∈ J∗. �

With Theorems 39 and 46 we have proven the following inclusions:
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R ε→0
∆→0 J∗

R0
∆→0

Rε→0
0

R ε→0
∆→0⊆

⊆
⊆

⊆

⊆

All those sets are thus equal:

Theorem 47 Under Assumption 9, we have R0
∆→0 = Rε→0

0 = R ε→0
∆→0, and those sets

are computed by Algorithm 1.

7 Complexity

The complexity issues have been studied in [Pur98]. We mention the main theorem

and we give a detailed proof of the hardness result.

Theorem 48 ([Pur98]) Given a timed automaton A = 〈Loc,Var, q0, Lab,Edg〉 satis-

fying Assumption 9 and a location ` ∈ Loc, deciding whether there exists a valuation v

such that (`, v) ∈ R0
∆→0 (or equivalently (`, v) ∈ Rε→0

0 , or (`, v) ∈ R ε→0
∆→0) is PSPACE-

complete.

The proof uses the following definition of Linear Bounded Turing Machines (LBTM).

A LBTM is a non-deterministic Turing machine that can only use a number of tape

cells equal to the length of its input.

Definition 49 (Linear Bounded Turing Machine) A LBTM M = (Q,Σ, q0, qf , E)

consists of:

– a finite set of control states Q,

– a finite alphabet Σ,

– an initial state q0 ∈ Q, a final state qf ∈ Q,

– and a set of transitions E ⊆ Q×Σ ×Σ × {left, right} ×Q.

A configuration of M is a triple (q, w, i) ∈ Q×Σ∗×N where q is a control location,

w ∈ Σ∗ is the content of the tape, and i is the position of the tape head. A configu-

ration (q′, w′, i′) is a successor of a configuration (q, w, i) iff there exists a transition

(q, σ, σ′, d, q′) ∈ E such that:

(1) wi = σ;

(2) w′i = σ′ and w′j = wj for all j 6= i;

(3) i′ = i− 1 if d = left and i′ = i+ 1 if d = right with 1 6 i′ 6 |w|.

We assume that the condition 1 6 i′ 6 |w| is realized using input delimiters.

An execution of M on the input x ∈ Σ∗ is a sequence s0s1 . . . sn of configurations

starting with s0 = (q0, x, 1) and such that si+1 is a successor of si for every 0 6 i < n.

We say that M accepts x iff M has an execution on x finishing in sn = (qf , w, i) for

some w ∈ Σ∗ and i ∈ N. The acceptance problem for LBTM asks, given a LBTM M

and an input word x ∈ Σ∗ whether M accepts x.

Proof of Theorem 48. First, we prove PSPACE-membership. It is not possible

to use Algorithm 1 because we should construct the region graph G, which may have

a number of states exponential in the number of clocks of the timed automaton A.
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However, we can check the reachability of a region r by guessing a path in the region

graph from the initial regions to r in polynomial space. This is a fairly standard trick

used for showing PSPACE-membership of the reachability problem for classical timed

automata with an on-the-fly algorithm [AD94]. The difficult point is that the successor

of a given region r can be a neighbour region r′ such that [r] ∩ [r′] 6= ∅ provided r′

lies in a progress cycle S of G. As we have shown, the entire region r′ can be reached

from r in JAK∆ no matter how small ∆ is, by repeating the cycle S. Hence we can

add S in one step in the set of reachable states. Such an acceleration has been proven

correct (Theorem 39) and complete (Theorem 46). So, when guessing the successor of

a region r, we must take into account the neighbour regions of r and decide whether

they are in a progress cycle or not. This can be checked in PSPACE using the same

procedure as for classical timed automata [AD94]. A polynomially bounded part of the

memory is reserved for executions of this procedure. Since the content of this part of

the memory is not necessary for further computations, it can be reused by subsequent

calls and PSPACE-membership follows.

We establish PSPACE-hardness using a reduction of the acceptance problem for

LBTM The reduction is similar to [CY91], where a configuration (q, w, i) of a LBTM is

encoded by a location (q, i) (that records the control state q and the tape position i) and

by the clocks y1, . . . , y|w|, one for each tape cell. We assume without loss of generality

that Σ = {a, b}. A clock yi has the value yi = na if wi = a and yi = nb > na if wi = b.

This encoding is not preserved by time passing. Thus we need to periodically refresh

the values of the clocks. This is done in two phases: (I) resetting the clocks coding

a ’b’ (by checking yi = nb), then letting nb − na time unit elapse, and (II) resetting the

clock coding an ’a’ (by checking yi = nb again) and finally letting na time unit elapse.

During phase (I), the clock that encodes the tape cell pointed by the head, is updated

according to the transitions of the LBTM.

We show how to adapt this reduction to the perturbed semantics of timed automata.

Due to guards enlargements, equality cannot be tested precisely and the clocks can not

store precise values na and nb. However, if ∆ is sufficiently small and na and nb are

not too close, we can still distinguish clocks coding an ‘a’ and clocks coding a ‘b’. The

details of this proof follow.

Let M = (Q,Σ, q0, qf , δ) be a LBTM and x ∈ Σ∗ be an input word. Let n = |x|,
na = 3 and nb = 6. We construct a timed automaton A(M,x) with n + 1 clocks

and a location `f such that M accepts x iff (`f , v) ∈ R0
∆→0 for some valuation v.

Let A(M,x) = 〈Loc,Var, qA0 , Lab,Edg〉 with:

– Loc = {s0, s1, `f} ∪ {(q, i, j, ϕ, d) | q ∈ Q ∧ 1 6 i 6 n ∧ 1 6 j 6 n + 1 ∧ ϕ ∈
{I, II} ∧ d ∈ {left, right}}; a location (q, i, j, ϕ, d) encodes the control state q, the

tape position i, the number j of the next clock to be treated, the phase ϕ of the

simulation, and the direction d of the next head movement;

– Var = {yi | 1 6 i 6 n} ∪ {z};
– qA0 = (s0, v0) with v0(t) = 0 for all t ∈ Var;

– Lab = {τ};
– The set Edg contains the following edges (we write `

g,R−−→ `′ when (`, `′, g, τ, R) ∈
Edg):

– Initialization:

• s0
z=3,{yi|xi=a}∪{z}−−−−−−−−−−−−−−→ s1

• s1
z=3,{z}−−−−−−→ (q0, 1, 1, I, left)
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– Refresh: for every (q, i, j, ϕ, d) ∈ Loc with j 6= i and j 6 n,

• (q, i, j, ϕ, d)
z60∧ yj64,∅
−−−−−−−−−−−→ (q, i, j + 1, ϕ, d)

• (q, i, j, ϕ, d)
z60∧ yj>5,{yj}−−−−−−−−−−−→ (q, i, j + 1, ϕ, d)

• (q, i, i, II, d)
z60∧ yi64,∅−−−−−−−−−−−→ (q, i, i+ 1, II, d)

• (q, i, i, II, d)
z60∧ yi>5,{yi}−−−−−−−−−−−−→ (q, i, i+ 1, II, d)

– Execution: for every q ∈ Q, 1 6 i 6 n, d ∈ {left, right}, and for every transition

(q, σ, σ′, d′, q′) ∈ E,

• If (σ, σ′) = (a, a) then (q, i, i, I, d)
z60∧ yi64,∅−−−−−−−−−−−→ (q′, i, i+ 1, I, d′)

• If (σ, σ′) = (a, b) then (q, i, i, I, d)
z60∧ yi64,{yi}−−−−−−−−−−−→ (q′, i, i+ 1, I, d′)

• If (σ, σ′) = (b, a) then (q, i, i, I, d)
z60∧ yi>5,∅−−−−−−−−−−−→ (q′, i, i+ 1, I, d′)

• If (σ, σ′) = (b, b) then (q, i, i, I, d)
z60∧ yi>5,{yi}−−−−−−−−−−−→ (q′, i, i+ 1, I, d′)

– Phase change: for every q ∈ Q, 1 6 i 6 n, j = n+ 1 and d ∈ {left, right},

• (q, i, n+ 1, I, d)
z=3,{z}−−−−−−→ (q, i, 1, II, d)

• (q, i, n+ 1, II, left)
z=3,{z}−−−−−−−→ (q, i− 1, 1, I, left)

• (q, i, n+ 1, II, right)
z=3,{z}−−−−−−→ (q, i+ 1, 1, I, right)

– Termination: for every 1 6 i 6 n, d ∈ {left, right},
• (qf , i, 1, I, d)

true,∅−−−−→ `f

After the initialization step, the automaton is in the location (q0, 1, 1, I, left) and

we have the following relations between the tape content w and the clocks y1, . . . , yn
when z = 0: (

3−∆ 6 yi 6 3 +∆ if wi = a

6− 2∆ 6 yi 6 6 + 2∆ if wi = b

After executing one transition (q, σ, σ′, d′, q′) of M , let w′ be the new tape content

(w′ differs from w by at most one symbol). If we simulate that transition by the refresh

steps, the execution step, and the phase changes, it is easy to check that in location

(q, i, 1, I, d), when z = 0 we have:

(
3− 2∆ 6 yi 6 3 +∆ if w′i = a

6− 3∆ 6 yi 6 6 + 2∆ if w′i = b
(11)

Note that two clocks coding the same symbol are not necessarily equal (however, their

difference is bounded by ∆). The reader can check that after having executed a

second transition of M , there is no accumulation of the imprecisions and the con-

ditions (11) still hold. Hence, provided ∆ is sufficiently small (in fact ∆ < 1/2), the

automaton A(M,x) will correctly distinguish clocks coding ’a’ from clocks coding ’b’

for any number of transitions, and thus simulate faithfully the execution of M on x.

It is now easy to see that the location `f is reachable in R0
∆→0 iff `f is reachable in

JAK00 iff M accepts x. This concludes the proof since our construction is polynomial in

the size of M and x. �
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[Frä99] Martin Fränzle. Analysis of hybrid systems: An ounce of realism can save an
infinity of states. In CSL, Lecture Notes in Computer Science 1683, pages 126–
140. Springer-Verlag, 1999.

[GHJ97] Vineet Gupta, Thomas A. Henzinger, and Radha Jagadeesan. Robust timed au-
tomata. In O. Maler, editor, Proc. Int. Workshop Hybrid and Real-Time Systems
(HART’97), volume 1201 of Lecture Notes in Computer Science, pages 331–345.
Springer Verlag, March 1997.

[HKSP03] Thomas A. Henzinger, Christoph M. Kirsch, Marco A. Sanvido, and Wolfgang
Pree. From control models to real-time code using giotto. IEEE Control Systems
Magazine, 23(1):50–64, 2003.

[HNSY92] Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. In Proc. 7th Annual Symposium Logic in
Computer Science (LICS’92), pages 394–406. IEEE Comp. Soc. Press, 1992.

[HRSV01] Thomas Hune, Judi Romijn, Marielle Stoelinga, and Frits W. Vaandrager. Linear
parametric model checking of timed automata. In Proc. 7th Int. Conf. Tools and
Algorithms for Construction and Analysis of Systems (TACAS’01), pages 189–203,
2001.

[Mil80] Robin Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes
in Computer Science. Springer-Verlag, 1980.

[MPS95] Oded Maler, Amir Pnueli, and Joseph Sifakis. On the synthesis of discrete con-
trollers for timed systems (an extended abstract). In STACS, pages 229–242, 1995.

[Pur98] Anuj Puri. Dynamical properties of timed automata. In Proc. 5th Int. Symposium
Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’98), vol-
ume 1486 of Lecture Notes in Computer Science, pages 210–227. Springer, 1998.

[Pur00] Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic
Systems, 10(1-2):87–113, Jan 2000.



42 Martin De Wulf et al.

[SF07] Mani Swaminathan and Martin Fränzle. A symbolic decision procedure for robust
safety of timed systems. In Proceedings of the 14th International Symposium on
Temporal Representation and Reasoning (TIME’07), page 192. IEEE Comp. Soc.
Press, June 2007.

[Yov96] Sergio Yovine. Model checking timed automata. In European Educational Forum:
School on Embedded Systems, pages 114–152, 1996.


