
Towards a model-checker for counter systems ?

S. Demri1, A. Finkel1, V. Goranko2, and G. van Drimmelen2

1 LSV/CNRS UMR 8643 & INRIA Futurs projet SECSI & ENS Cachan
email: {demri,finkel}@lsv.ens-cachan.fr

2 University of the Witwatersrand, Johannesburg
email: {govert,goranko}@maths.wits.ac.za

Abstract. This paper deals with model-checking of fragments and ex-
tensions of CTL* on infinite-state Presburger counter systems, where
the states are vectors of integers and the transitions are determined by
means of relations definable within Presburger arithmetic. We have iden-
tified a natural class of admissible counter systems (ACS) for which we
show that the quantification over paths in CTL* can be simulated by
quantification over tuples of natural numbers, eventually allowing trans-
lation of the whole Presburger-CTL* into Presburger arithmetic, thereby
enabling effective model checking. We have provided evidence that our
results are close to optimal with respect to the class of counter systems
described above. Finally, we design a complete semi-algorithm to verify
first-order LTL properties over trace-flattable counter systems, extend-
ing the previous underlying FAST semi-algorithm to verify reachability
questions over flattable counter systems.

1 Introduction

Background Model-checking of infinite-state systems (for a survey see [BCMS01])
is a rapidly growing area of formal verification. It has been successfully applied
to real-time and hybrid systems, concurrent systems, Petri nets, asynchronous
communication devices (unbounded FIFO channels), infinite and unbounded
data structures (counters, queues, lists), etc. The single most important prop-
erty of practical interest in infinite-state transition systems is state reachability
which is often undecidable in structures with otherwise decidable first-order the-
ories, such as e.g., automatic structures. Therefore, intensive research has been
devoted to identifying classes of finitely presentable infinite structures with de-
cidable reachability and related safety properties.

Transition systems defined by Presburger relations provide a large natu-
ral class of infinite-state transition systems [BFLS05], suitable for modeling in
various applications such as TTP Protocol (embedded system) [BFL04] and
broadcast protocols [EFM99], to quote a few examples. Important cases of
such transition systems with computable reachability have been established in
[Iba78,FO97,CJ98,FL02]. The method of acceleration for computing reachability
has been developed in [Boi98,FL02] and completely implemented in the verifica-
tion tool FAST [BFL04].

? Supported by CNRS/NRF project No 15469.

Motivation For practical (computer-aided) model-checking, an infinite-state sys-
tem must be provided with an effective finitary presentation, and in particular,
must admit a symbolic representation of sets of states and transitions. Presburger
arithmetic is a particularly appropriate platform for symbolic representation of
a wide variety of infinite state systems, such as counter systems (see [BFLP03])
where vectors of integers are subjected to linear transformations from finite
control graph. These strongly extend counter automata and even very simple
examples of counter systems can have notoriously difficult and unpredictable
behaviour, a witness being the Syracuse problem, see e.g. [Lag85]. An important
and natural class of counter systems, in which various practical cases of infi-
nite state systems (e.g. broadcast protocols [FL02]) can be modelled, are those
with a flat control graph, i.e, those where no control state occurs in more than
one simple cycle (see [Boi98,CJ98,CC00,FL02,BFLP03,Ler03]). Strong results
on verifying safety and reachability properties on flat counter systems have been
obtained in [CJ98,FL02]. However, so far such properties have not been consid-
ered in the framework of any formal specification language, and thus a natural
question that arises is to identify expressive logical languages in which formal
specification and verification of properties of counter systems can be conducted.

On the other hand, most of the studies on CTL?-model checking are restricted
to (unfoldings of) finite transition systems, and few decidability results for CTL?-
model checking on essentially infinite state systems are known [BEM97]. Actu-
ally, most of these results are immediate consequences of stronger results about
decidable modal mu-calculus, or even the whole monadic second order logic in
such systems, see e.g. [Wal01]. It is therefore important to search for larger
classes of effectively generated infinite state systems [without necessarily decid-
able MSO], but in which natural first-order extensions of CTL? have decidable
model-checking.

Our contribution We address jointly both problems described above, and we ob-
tain a nearly optimal solution of them. Our main contributions are the following:

1. We introduce a Presburger extension of CTL?, where atomic propositions
range over Presburger-definable sets of configuration states; we interpret
that extension over Presburger counter systems, thus proposing a very pow-
erful specification language for them. Presburger counter systems are under-
stood as infinite-state transition systems with states being vectors of integers
(counter values) and transition relations definable in Presburger arithmetic.
This class of models naturally includes Minsky machines.

2. We identify a class of Presburger counter systems, on which local model
checking problem for the Presburger-CTL? is decidable. These are Pres-
burger counter systems defined over flat control graphs with arcs labelled by
Presburger formulae for which counting acceleration over every cycle in the
control graph is Presburger definable.

3. We show that the decidability result described above persists in a strong
extension with a class of temporal operators defined by means of CQDD
(see [BH99]) in a way analogous to Wolper’s Extended temporal logic [Wol83].

2

4. We provide evidence that our results are close to optimal wrt the class of
Presburger counter systems described above, by showing that small relax-
ations of each of the conditions lead to undecidability.

5. We design a complete semi-algorithm to check whether a given Presburger
counter system satisfies a Presburger-LTL formula extending the underlying
reachability semi-algorithm used in the tool FAST [BFL04].

Related work On the logical side, temporal logics with Presburger constraints
have been developed in [BEH95,BGP97,CC00,SS04,BDR03], some of which have
quite expressive decidable fragments. However, undecidability of the reachability
problem can be proved for quite restricted counter systems, see e.g. [Cor02] while
at the same time very few classes of counter systems are decidable for CTL? (see
e.g. [FWW97] for one-counter systems). A logical formalism closer to the one
developed in this paper is presented in [BGP97] where an undecidable temporal
logic with CTL-like operators and atomic formulae in Presburger arithmetic is
introduced and the models are counter systems. Model checking discrete timed
automata with parametric timed CTL is also shown decidable by translation
into Presburger arithmetic in [BDR03].

2 Preliminaries

Flat graphs. A directed labelled graph G = 〈Σ,Q,E〉 is a structure such that Q
is a non-empty set,Σ is a non-empty finite alphabet and E ⊆ Q×Σ×Q. As usual,
〈q, a, q′〉 ∈ E is also denoted by q

a
−→ q′. A cycle in a directed labelled graph

is a closed path (where the initial and final vertices coincide) with no repeating
edges. A simple cycle is a cycle in which the only repeated vertex is the initial

(and final) vertex. We define the length of a path λ = q0
ψ0

−→ q1 . . .
ψn−1

−−→ qn
(each qi ∈ Q, ψi ∈ Σ), denoted |λ|, as n. A graph is flat if every cycle in it is a
simple cycle. Graphs with a singleton alphabet are the standard directed graphs.

Presburger arithmetic. This is the first-order theory of the structure
〈N,+〉. Given a Presburger formula ψ(x1, . . . , xn) with free variables in x =
〈x1, . . . , xn〉, and a = 〈a1, . . . , an〉 ∈ N

n, the truth of ψ(x1, . . . , xn) with respect
to the interpretation a is denoted by a |= ψ(x). Elements of N

n will be usually
denoted by a, b, c, . . . and vectors of variables will be denoted by x, y, z, t,
. . . (possibly decorated). A set X ⊆ N

n is said to be Presburger definable
iff there is a Presburger formula ψ(x) with free variables x = 〈x1, . . . , xn〉 such
that X = {a ∈ N

n : a |= ψ(x)}. A binary relation of dimension n > 0 is a
relation R ⊆ N

n × N
n; thus R is Presburger definable iff there is a Presburger

formula ψ(x,x′) with free variables x = 〈x1, . . . , xn〉 and x′ = 〈x′1, . . . , x
′
n〉 such

that R = {〈a,b〉 ∈ N
n × N

n : a,b |= ψ(x,x′)}. Presburger arithmetic is known
to be decidable and therefore, all the problems in the forthcoming sections that
can be reduced to Presburger arithmetic are decidable.

Definition 1. Let f be a partial function from N
n to N

n whose domain is
dom(f).

3

– f is a translation if there exists b ∈ Z
n such that for every a ∈ dom(f) we

have f(a) = a + b.

– f is linear if if there exist a matrix A ∈ N
n×n and b ∈ Z

n such that for
every a ∈ dom(f) we have f(a) = Aa + b.

– f is piecewise-linear if there exists a finite partition of the domain dom(f) =
⋃k

i=1Di so that the restriction on each Di is linear.

– f is Presburger definable iff the graph of f is a Presburger definable re-
lation.

3 Temporal Logics for Presburger Counter Systems

In this section, we introduce a Presburger variant of standard temporal logic
CTL∗ interpreted over Presburger transition systems.

3.1 Presburger Counter Systems

The infinite-state systems for which we investigate model checking are finitely
represented by Presburger counter systems.

Definition 2. A Presburger counter system (PCS) of dimension n, C =
〈Σ,Q, T 〉, is a tuple consisting of a finite set of control states Q, a finite set Σ
composed of Presburger formulae of the form ψ(x,x′) encoding binary Presburger
relations of dimension n and a set of control transitions T ⊆ Q×Σ ×Q.

– C is functional if every element in Σ defines a partial function.

– a functional PCS C, is linear [resp. piecewise-linear] if every element in
Σ defines a linear [resp. piecewise-linear] function.

– a functional PCS C is a counter automaton if every element in Σ defines
a translation.

A PCS is therefore a labelled graph with alphabet made of specific Presburger
formulae. A PCS is flat if its underlying control graph is flat.

Proposition 1. It is decidable whether a given PCS is functional, linear, or a
counter automaton.

Every PCS C = 〈Σ,Q, T 〉 of dimension n naturally induces a graph 〈SC,→C〉
(called a Presburger transition system) such that SC = Q × N

n (set of con-
figurations) and 〈q, a〉 →C 〈q

′,a′〉 iff there is 〈q, ψ(x,x′), q′〉 ∈ T such that
a,a′ |= ψ(x,x′). Wlog, we can assume that SC is a subset of N

n+1. Depending on
the context, the configurations of SC are indifferently written as a ∈ N

n+1 (con-
trol state encoded in the first element of a), 〈q, a〉 ∈ Q×N

n or as 〈q, a〉 ∈ Q×N
n+1

(with redundancy). A configuration path in C is an infinite path in the Pres-
burger transition system of C.

4

3.2 A Presburger Temporal Logic FOCTL?(Pr)

We now define a version of first-order CTL? that is appropriate for reasoning
about Presburger transition systems of Presburger counter systems. The logic
FOCTL?(Pr) differs from standard CTL? in the definition of atomic formulae.
Whereas propositional variables are used in the propositional CTL?, we will use
Presburger predicates, interpreted on the set of configurations, as the atomic
formulae in FOCTL?(Pr). We introduce a countable set of individual variables,
say VAR = {y, z, t . . .}, for quantification over counter values. Elements of VAR
are distinct from the distinguished ones in {x0, x1, . . . , xn} that are free vari-
ables interpreted by the values of counters on configurations (the control state
is encoded by x0). In order to match the dimension of the models where such
formulae will be interpreted, the Presburger predicates must have a matching
number of free variables, thus giving a family of logics FOCTL?(Pr)[n] parame-
terised by the dimension n ≥ 1. When the dimension n is clear from the context,
we just refer to FOCTL?(Pr). Atomic formulae are Presburger formulae of the
form ψ(x,y) where x = x0, x1, . . . , xn and y is a vector of variables from VAR.

Formulae of FOCTL?(Pr)[n] are defined as follows:

ϕ ::= ψ(x,y) | ¬φ | ϕ ∧ ϕ | Xϕ | ϕUϕ | A ϕ | ∃ y ϕ,

where y ∈ VAR. We shall freely use standard abbreviations such as the existential
quantifier E , the always operator G and the sometimes operator F. The LTL
fragment of FOCTL?(Pr) is made of formulae of the form either E φ′ or A φ′ where
φ′ has no path quantifiers. We define the strict EF fragment of FOCTL?(Pr)
as the set of FOCTL?(Pr) formulae containing only the temporal operator E F

and no nested occurrences of E F.
Let π be an infinite configuration path of the system. Denote by π≤i the initial

part of π up to and including position i. Denote by πi+ the suffix of π starting
at position i. We will give semantics of FOCTL?(Pr) over Presburger transition
systems. To avoid the technical complications arising from terminating paths,
we will impose the additional assumption that every configuration has some
successor. This requirement can be satisfied by adding additional ‘idle’ states
and corresponding ‘idle’ transitions. The satisfaction relation |= is parameterized
by an environment ρ that is a map VAR → N in order to interpret the free
variables from VAR that occur in formulae (we omit it when irrelevant). For a
PCS C = 〈Σ,Q, T 〉 with Presburger transition system 〈SC ,→C〉, the satisfaction
relation |= is defined at position i of configuration path π as follows:

– π, i |=ρ ψ(x,y) iff π(i), ρ |= ψ(x,y) in Presburger arithmetic,
– π, i |= ¬ϕ iff π, i 6|= ϕ, π, i |= ϕ ∨ ϕ′ iff π, i |= ϕ or π, i |= ϕ′,
– π, i |= Xϕ iff π, i+ 1 |= ϕ,
– π, i |= ϕUϕ′ iff there is some j ≥ i such that π, j |= ϕ′ and for each k, if
i ≤ k < j then π, k |= ϕ,

– π, i |= A ϕ iff for every infinite configuration path π′ such that π′≤i = π≤i we
have π′, i |= ϕ,

– π, i |=ρ ∃yϕ iff there is m ∈ N such that π, i |=ρ[y←m] ϕ where ρ[y ← m] is
the environment obtained from ρ by only forcing y to be interpreted by m.

5

Apart from standard temporal properties encoded in CTL∗ (like liveness for
instance) here are a few interesting properties that can be expressed by adding
quantification over counter values:
Determinism: The graph restricted to the set of configurations reachable from
the initial one is deterministic: A G

∧
0≤i≤n ¬∃y(E X(xi = y) ∧ E X(xi 6= y)).

Boundedness: The transition graph restricted to the set of configurations
reachable from the initial configuration is finite: ∃yA G

∧
1≤i≤n xi ≤ y.

We define below our basic problems. In the local model-checking problem
considered here, we assume that all variables of the FOCTL?(Pr)[n] formula,
except those in x, are bound. We will call such formulae semi-closed. In that
way, we do not need to specify an environment in the statement below.

1. local model checking: Given an PCS C with Presburger transition sys-
tem 〈SC ,→C〉, a configuration 〈q, a〉 ∈ SC , and a FOCTL?(Pr)[n] formula
φ, determine if for every path π such that π(0) = 〈q, a〉, we have π, 0 |= φ

(noted C, 〈q, a〉 |= φ).
2. validity checking with an initial condition: Given a PCS C with

Presburger transition system 〈SC,→C〉, a Presburger formula ψ0(x) and a
FOCTL?(Pr)[n] formula φ, check whether for every configuration 〈q, a〉 sat-
isfying ψ0(x), for every configuration 〈q′,a′〉 reachable from 〈q, a〉, we have
C, 〈q′,a′〉 |= φ.

Variants of these problems can be defined by considering subclasses of PCS
or other specification languages.

4 Towards Verification of Flattable PCS

Local model checking of FOCTL?(Pr) over the whole class of PCS is known to
be highly undecidable even though reachability can be decided for many classes
of counter systems, see e.g. [ISD+00,CJ98,FL02,DPK03]. In the tool FAST, such
a problem is solved by enumerating flattenings of some initial PCS and checking
whether there is a flattening with the same reachability set. Many systems arising
from applications do not have the desired flatness property, but are equivalent
(in terms of the reachability relation) to flat systems. Such flattable systems,
studied in [LS05], include e.g., reversal-bounded counter automata [Iba78]. In
this section, we go one step further and propose a notion of flattening that can
preserve sets of traces.

4.1 PCS with Decidable Reachability

Apart from flatness, Presburger counting acceleration property defined below
is a key property to handle model-checking of PCS with a rich specification
language as FOCTL?(Pr).

Definition 3. For relation R ⊆ N
n×N

n we define the counting acceleration
of R, as a relation RCA ⊆ N

n×N×N
n such that 〈a, i,b〉 ∈ RCA iff 〈a,b〉 ∈ Ri.

6

R has a Presburger counting acceleration if its counting acceleration is
Presburger definable.

The cycle relation Rλ of a cycle λ in a PCS is the composition of local
transition relations of the transitions on the cycle. More formally, a cycle λ

is a sequence t1, . . . , tα of transitions of the form ti = qi
ψi
−→ q′i such that for

0 ≤ i ≤ α− 1, qi+1 = q′i and q1 = q′α. We define the local relation Rti as the set
of pairs {〈〈qi,a〉, 〈q

′
i,a
′〉〉 : a,a′ |= ψi(x,x

′)}. The relationRλ is thenRt1◦· · ·◦Rtα

(α − 1 compositions). A cycle has the Presburger counting acceleration
property if its cycle relation has a Presburger counting acceleration.

Definition 4. A PCS C has the Presburger counting acceleration prop-
erty if every cycle in the control graph of C has that property.

Observe that if a PCS C has the Presburger counting acceleration property,
we can effectively compute the Presburger formula associated to each cycle. It
is sufficient to enumerate Presburger formulae ψ(x, i,y) and test whether

∀x,x′ (ψ(x, 0,x′) ⇔ (x = x
′))∧(∀ x,x

′

, i ψ(x, i+1,x′) ⇔ (∃x′′

ψ(x, i,x′′)∧ψ′(x′′

,x
′)))

is valid, where ψ′(x,y) is the effect of a given cycle. This is an instance of a
more general result from [Ler06]. We also know that there exist counter systems
of dimension 1 that do not have the Presburger counting acceleration property
(for instance, consider the update x′1 = 2x1). In general, we expect that deter-
mining whether a counter system has a Presburger counting acceleration is an
undecidable problem by extending similar results from [Ler06].

Flatness is another key property for PCS. For instance, every flat and linear
PCS with the finite monoid property has the Presburger counting acceleration
property [FL02] where a linear PCS has the finite monoid property if for every
cycle λ in the system, the multiplicative monoid generated by the matrix of the
linear function defining Rλ is finite (linear functions are closed under compo-
sition). Consequently, the Presburger formula defining the reachability relation
in every flat and linear PCS with the finite monoid property is effectively com-
putable. This consequence is incomparable with the main result from [CJ98].
Indeed, flatness is assumed in [CJ98] but not the finiteness of the monoid. More-
over [CJ98] and [FL02] have different and incomparable Presburger formulae
labelling the transitions. For instance, transition relations in [CJ98] are not nec-
essarily functional but they are restricted to relations on two variables. In Def-
inition 5, the systems are more general than the ones in [CJ98] since we allow
richer Presburger transition formulae.

Here we identify a large and natural class of Presburger counter systems for
which model-checking of CTL* is decidable in addition to reachability.

Definition 5. An admissible Presburger counter system (ACS) is a flat,
functional PCS, that has the Presburger counting acceleration property.

In particular, every flat and linear PCS with the finite monoid property is
admissible. As observed in [FL02], flatness is the key property to be able to
compute the reachability relation.

7

Proposition 2. For every flat PCS satisfying the Presburger counting accel-
eration property (including ACS), one can effectively compute the reachability
relation →∗C for 〈SC,→C〉.

The proof of Proposition 2 is based on the fact that essentially there is a
finite number of types of configuration paths (see details later on) and one can
effectively compute Presburger formulae associated to cycles. Definition 5 is close
to optimal because relaxing any of the conditions for admissibility could easily
lead to undecidability of the reachability problem, as indicated below.

Proposition 3. The reachability problem is not decidable for all: (1) flat linear
PCSs [Cor02], (2) linear PCSs with the finite monoid property (even counter
automata) [Min67] and (3) flat piecewise-linear PCSs with a single control state
and control transition [Min67].

As a matter of fact, any counter automaton can be encoded as a flat piecewise-
linear PCS with a single control state q0 and control transition. Indeed, suppose

that q
x:=x+1
−−−−→ q′ is a transition in the counter automaton with the integer n [resp.

n′] attached to q [resp. q′], then in the piecewise-linear PCS the unique transition

is of the form q0
(x0=n∧x

′

0
=n′∧x′=x+1)∨...

−−−−−−−−−−−−−−−−−→ q0. There is an obvious correpondence
between the transitions in the original counter automaton and the number of
disjuncts in the Presburger formula labelling the unique transition.

4.2 Model-Checking for Three Main Classes of Flattable Systems

We establish in Section 5 that ACS have numerous desirable properties. For
instance, FOCTL?(Pr) local model checking is decidable. However, it should not
come as a surprise that the class of ACS forms a quite restricted subclass of PCS
and numerous abstractions of communication protocols, concurrent systems and
the like are not exactly ACS. More interestingly, many questions on specific
classes of PCS can be reduced in a systematic way to reachability questions on
ACS, see e.g. [FO97,CJ98,BFLP03] and a more thorough study in [LS05]. In
this section, we provide the basis to understand how our results on ACS can be
used to verify more general classes of PCS and under which hypotheses (see also
Section 5.2). The most standard way to reduce a PCS to an ACS is via a graph
homomorphism, aka a flattening [BFLS05].

Definition 6. Let C = 〈Σ,Q, T 〉 and C′ = 〈Σ′, Q′, T ′〉 be PCS of the same
dimension and f be a function f : Q′ → Q. C′ is a f-flattening of C iff C′ is
flat, Σ′ ⊆ Σ, for every 〈q, ψ(x,x′), q′〉 ∈ T ′, we have 〈f(q), ψ(x,x′), f(q′)〉 ∈ T .

When C′ is a f -flattening of C, C can be viewed as an abstraction of C′.
The tool FAST [BFL04] generates flattenings via an exhaustive search algo-

rithm. However, verification of FOCTL?(Pr) properties of C by using a flattening
C′ can only be done for those FOCTL?(Pr) properties that are preserved under
such flattenings. Hence, it is important to determine which FOCTL?(Pr) proper-
ties are preserved when C and C′ satisfy given relationships (see Theorem 1). The

8

most common relationship is precisely the equality of reachability sets (leading
to the notion of post∗-flattening). Let C = 〈Σ,Q, T 〉 be a PCS. The reachability
sets from a configuration and from a set of Presburger definable configurations

are defined as follows: post∗C(〈q, a〉)
def

= {〈q′,a′〉 : 〈q, a〉 →∗ 〈q′,a′〉 in SC} and

post∗C(q, ψ(x))
def

=
⋃
〈q,a〉|=ψ(x) post∗C(〈q, a〉).

Definition 7. 〈C′, q′〉 is a f-post∗-flattening (post∗-flattening for short) of
〈C, q〉 wrt ψ(x) iff post∗C(q, ψ(x)) = f(post∗C′(q

′, ψ(x))) and C′ is a f-flattening
of C (f is naturally extended to states of 〈SC ,→C〉).

Even though it is undecidable whether a PCS has a post∗-flattening [BFLS05,
Theorem 4.9], we can decide if a PCS is a post∗-flattening of another one.

Lemma 1. Let 〈C′, q′〉 be an f-flattening of 〈C, q〉 such that C′ is an ACS. It is
decidable to check whether 〈C′, q′〉 is a post∗-flattening of 〈C, q〉 wrt ψ(x).

Let C = 〈Σ,Q, T 〉 be a PCS. A trace for 〈q, a〉 is a (possibly infinite) sequence
of the form 〈q0,a0〉 〈q1,a1〉 〈q2,a2〉 . . . such that 〈q0,a0〉 = 〈q, a〉, and for every
i, 〈qi,ai〉 → 〈qi+1,ai+1〉 in 〈SC,→C〉. The set of traces for 〈q, a〉 in C is denoted

by tracesC(〈q, a〉). By extension, tracesC(q, ψ(x))
def

=
⋃
〈q,a〉|=ψ(x) tracesC(〈q, a〉).

Definition 8. 〈C′, q′〉 is a f-trace-flattening (trace-flattening for short) of
〈C, q〉 wrt ψ(x) iff tracesC(q, ψ(x)) = f(tracesC′(q

′, ψ(x))) and C′ is a f-flattening
of C.

We can decide if a PCS is a trace-flattening of another PCS as stated below.

Lemma 2. Let 〈C′, q′〉 be an f-flattening of 〈C, q〉 such that C′ is an ACS. It is
decidable to check whether 〈C′, q′〉 is a trace-flattening of 〈C, q〉 wrt ψ(x).

Here is the more elaborate notion of flattenings but difficult to check.

Definition 9. 〈C′, q′〉 is a f-bisimulation-flattening (bisimulation-flattening
for short) of 〈C, q〉 with respect to ψ(x) iff C′ is a f-flattening of C and for every
a such that a |= ψ(x), 〈post∗C′(〈q

′,a〉),→a

C′〉 where →a

C′ is the restriction of →C′

to post∗C(〈q, a〉) is bisimilar to 〈post∗C(〈q, a〉),→
a

C〉.

Lemma 3 below states a few easy results about flattenings and their hierarchy.

Lemma 3. Let 〈C′, q′〉 be an f-flattening of 〈C, q〉.

(I) For any ψ(x), f(post∗C′(q
′, ψ(x))) ⊆ post∗C(q, ψ(x)).

(II) For any ψ(x), f(tracesC′(q
′, ψ(x))) ⊆ tracesC(q, ψ(x)).

(III) Every bisimulation-flattening [resp. trace-flattening] is a trace-flattening
[resp. post∗-flattening].

Based on standard properties of temporal logics, we provide below sufficient
conditions to verify flattable PCS that are not necessarily ACS.

Theorem 1. Let 〈C′, q′〉 be a post∗-flattening [resp. trace-flattening, bisimulation-
flattening] of the PCS 〈C, q〉 wrt a. Then, for every formula φ in the strict EF
fragment [resp. the LTL fragment, FOCTL?(Pr)[n]], C′, 〈q′,a〉 |= φ iff C, 〈q, a〉 |=
φ.

9

5 Model-Checking Flattable Counter Systems

Herein, we show decidability of model checking FOCTL?(Pr) over ACS and we
propose a complete semi-algorithm for model checking FOLTL(Pr) formulae over
trace-flattable PCS, extending what is done in [BFLS05] for post*-flattable PCS.

5.1 A FOCTL?(Pr) decision procedure to verify ACS

Throughout this section, let C = 〈Σ,Q, T 〉 be ACS of dimension n. Recall that
all cycles in an ACS are simple cycles.

Definition 10. A control path in C is any infinite path in C. A path segment
in C is a single transition t ∈ T or a cycle in C, and so is uniformly described as a
finite sequence of control states. A path schema in C is a sequence 〈σ0, . . . , σk〉
of different path segments in C such that: (1) for every 0 ≤ i ≤ k − 1, the last
control state of σi is the first control state of σi+1, (2) any path segment occurs
at most once and (3) σk is a cycle. Cycles in a path schema that are not the
final segment are called interior cycles of the schema.

From now on we fix an enumeration λ1, . . . , λM of all the cycles in C and
assume that M > 0. Since an ACS is flat and has a finite number of control
states, the following holds:

Proposition 4. In every ACS C, there is a finite number of path schemas.

The number of path schemas is generally exponential in the size of the ACS.
Hereafter we fix an enumeration 〈1, . . . , P 〉 of the path schemas of C. A path
schema with at least one interior cycle corresponds to infinitely many different
control paths, since any interior cycle in the schema may be repeated an arbitrary
number of times on the control path. The number of repetitions of a given cycle
in a control path is called the cycle count of that cycle. Thus, every control
path is completely characterised by its underlying path schema and the cycle
counts for its interior cycles. The next definition formalises this idea.

Definition 11. Let the ACS C have M > 0 cycles and P path schemas. A
cycle count vector c is a tuple 〈c1, . . . , cM 〉 ∈ N

M , where cr represents the
cycle count for the cycle λr. A control path description α is a pair α = 〈p, c〉
where p ∈ {1, . . . , P} denotes the path schema, c is the cycle count vector for the
control path being described, ci > 0 for every interior cycle λi and ci = 0 for any
cycle λi in C which is not interior in the path schema p. Hereafter a control path
description, may be written as 〈p, c1, . . . , cM 〉. We write α0 for the path schema
associated with control path description α.

The following is immediate from the flatness condition on ACS.

Proposition 5. For every control path in C there is a unique control path de-
scription.

10

Without risk of confusion, we identify every control path with its description.
Every configuration path is uniquely described by the pair 〈α, 〈q, a〉〉 where

α is its control path and 〈q, a〉 is the initial configuration. Conversely, due to
the functionality of C, every such pair 〈α, 〈q, a〉〉 describes a unique path in the
configuration graph starting at 〈q, a〉, and progressing according to the transi-
tions of the control path α. Note, however, that such a path may terminate and
therefore not be considered as a configuration path. There exists a Presburger
formula that exactly describes the configuration path associated with a control
path and initial configuration as stated below.

Theorem 2. Given the ACS C of dimension n with M > 0 cycles, one can
compute a Presburger formula PathConfigC(ξ,x, i,y) such that for all α ∈ N

M+1,
a ∈ N

n+1, m ∈ N and b ∈ N
n+1 α,a,m,b |= PathConfigC(ξ,x, i,y) iff α is a

valid control path description and the mth configuration of the configuration path
〈α,a〉 is b.

Now we are ready to show that model-checking FOCTL?(Pr)[n] can be re-
duced to satisfiability in Presburger arithmetic.

Theorem 3. Given an ACS C of dimension n with Presburger transition system
〈SC ,→C〉, for every FOCTL?(Pr)[n] formula ϕ, one can compute a Presburger
formula ψ(x) such that for every 〈q, a〉 ∈ SC, 〈q, a〉 |= ψ(x) iff C, 〈q, a〉 |= ϕ.

For a fixed ACS, the size of ψ(x) is linear in the size of ϕ.

Theorem 4. The two problems in Section 3.2 are decidable.

Theorem 4 can be easily extended to allow past-time operators such as ‘pre-
vious’ X−1 and ‘since’ S. By contrast, we state below an undecidability result
for a fixed PCS that is almost an ACS. We present a PCS Cu that is obtained
from an ACS by only adding a reset transition while preserving the Presburger
counter acceleration property and functionality (see below).

q0 q1 q2
id id

x′1 = x′2 = x′3 = 0

x′1 = x1 + 1 x′2 = x2 + 1 x′3 = x3 + 1

Cu is of dimension 4 with counters x0, x1, x2 and x3 and x0 is the counter
related to the control state. “id” denotes the identity function on the counters
x1, x2 and x3.

Theorem 5. Local model-checking on Cu with FOLTL?(Pr)[3] is Σ1
1 -hard.

Observe that Cu admits a post∗-flattening with an ACS and therefore the
strict EF fragment has a decidable local model-checking problem for Cu.

11

5.2 Model-Checking of Trace-Flattable Counter Systems

Suppose we have a functional PCS C with the Presburger counting acceleration
property. Typically, C can be a linear PCS with finite monoid. Let 〈q, a〉 be a
configuration for which we want to check a FOLTL(Pr) formula φ. We propose
below the basis of a semi-algorithm model-check to verify whether C, 〈q, a〉 |= φ.

procedure model-check(C, 〈q, a〉, φ)

1. found := false;

2. while not found do

(a) Choose fairly a flattening 〈C′, q′〉 of 〈C, q〉;

(b) if 〈C′, q′〉 is a trace-flattening of 〈C, q〉 then found := true;

3. return C′, 〈q′,a〉 |= φ.

To become efficient, the semi-algorithm has to be refined in order to obtain
an efficient enumeration of the flat PCS as that is done with the tool FAST. As
a first step, heuristics implemented in FAST can be used, see e.g. [BFLS05]. The
semi-algorithm model-check extends the underlying FAST algorithm [BFLS05]
to trace-flattable Presburger counter systems and LTL temporal properties which
paves the way to design the new generation of the tool. Using previous results
shown in the paper, we can establish the following key result of the paper.

Theorem 6. (I) model-check(C, 〈q, a〉, φ) terminates iff C has a trace-flattening
wrt to 〈q, a〉. (II) When model-check(C, 〈q, a〉, φ) terminates, it returns whether
C, 〈q, a〉 |= φ holds true.

Proof. It is sufficient to observe the following facts:

– Checking whether 〈C′, q′〉 is a flattening of 〈C, q〉 can be done in exponential-
time.

– Checking whether C′ is an ACS is easy since C has the Presburger counting
acceleration property and it is functional. Hence C is an ACS and one can
compute effectively the Presburger formulae related to cycles.

– Checking whether 〈C′, q′〉 is a trace-flattening of 〈C, q〉 is decidable as a con-
sequence of Lemma 2.

– Checking whether C′, 〈q′,a〉 |= φ is decidable by Theorem 4.

– Finally, C′, 〈q′,a〉 |= φ iff C, 〈q, a〉 |= φ by Theorem 1. ut

We do not know yet how to extend the above complete semi-algorithm to
deal with bisimulation-flattening. Indeed, in order to have a decision procedure
for the step (3) with bisimulation, we would need decidability of some kind of
modal mu-calculus over ACS, which is open so far.

12

5.3 Decidable Extension with CQDD Patterns

We present below an extension of FOCTL?(Pr)[n] for which model-checking
over ACS can be also encoded into Presburger satisfiability. In a seminal paper,
Wolper extends LTL to an extended temporal logic that has the same power
as Büchi automata [Wol83]. In this section, we extend the set of path formulae
from FOCTL?(Pr)[n] by allowing temporal operators defined by another class
of language acceptors, namely the CQDD (constrained queue-content decision
diagrams) [BH99]. This formalism has been introduced for representing sym-
bolically infinite sets of configurations in FIFO automata. Our use of CQDD is
different and non-regular languages can be defined with CQDD. Moreover, the
model-checking problem for LTL augmented with operators defined from CQDD
is undecidable [Dem06] unlike the extension with regular languages [Wol83]. By
contrast, we show that the model-checking problem for FOCTL?(Pr)[n] extended
with CQDD-based operators is decidable over ACS. Regain of decidability is due
to the flatness restriction in CQDD. Hence, we show evidence in this section
that we can take advantage of flatness in models and in formulae. A CQDD is
a structure A = 〈Σ,S, S0, E, l, ψ(y1, . . . , ym), F 〉 such that:

– Σ is a finite alphabet and S is a finite set of states,
– S0 ⊆ S [resp. F ⊆ S] is the set of initial [resp. final] states,
– E ⊆ S ×Σ × S is a set of transitions of cardinality m and 〈S,E〉 is flat,
– l is a bijection from E to {1, . . . ,m} and ψ(y1, . . . , ym) is a Presburger for-

mula.

An accepting run is a sequence q0
a0−→ q1

a1−→ q2 . . .
ak−1
−−→ qk such that q0 ∈ S0, qk ∈

F , for every i ∈ {0, . . . , k−1}, 〈qi, ai, qi+1〉 ∈ E, and n1, . . . , nm |= ψ(y1, . . . , ym)
in Presburger arithmetic, where each ni is the number of occurrences of the
transition l−1(i) in the sequence. The word σ ∈ Σ∗ is accepted by the accepting

run q0
a0−→ q1

a1−→ q2 . . .
ak−1

−−→ qk whenever σ = a0a1a2 . . . ak−1. The word σ is also
said to be accepted by the automaton A. We write L(A) to denote the set of
words accepted by A.

Let A = 〈Σ,S, S0, E, l, ψ(y1, . . . , ym), F 〉 be a CQDD with the letters from
Σ linearly ordered: a1 < . . . < ak. The extension EFOCTL?(Pr)[n] of the logic
FOCTL?(Pr)[n] consists in considering formulae of the form A(φ1, . . . , φk) de-
fined as follows: π, i |= A(φ1, . . . , φk) iff: either ε ∈ L(A), or there is a finite
word ai1ai2 . . . ain ∈ L(A) such that for every 1 ≤ j ≤ n, π, i + (j − 1) |= φij .
For instance, in EFOCTL?(Pr)[n] we can state that there is a path and some
n 6= 0 such that φ1 holds true at the n first positions, then φ2 holds true at the
n next positions and then neither φ1 nor φ2 holds true forever. It is known that
ETL is more expressive that LTL [Wol83] and this result can be lifted between
FOCTL?(Pr)[n] and EFOCTL?(Pr)[n]. Theorem 3 can be extended by allowing
CQDD-based operators.

Theorem 7. Given an ACS C of dimension n with Presburger transition system
〈SC ,→C〉, for every EFOCTL?(Pr)[n] formula ϕ, one can compute a Presburger
formula ψ(x) such that for every 〈q, a〉 ∈ SC, 〈q, a〉 |= ψ(x) iff C, 〈q, a〉 |= ϕ.

13

As a corollary, local model-checking problem for EFOCTL?(Pr)[n] over ACS
is decidable.

6 Concluding Remarks

We have designed a complete semi-algorithm to verify first-order LTL properties
over trace-flattable counter systems, extending the underlying semi-algorithm to
verify reachability questions over post∗-flattable systems in the tool FAST. We
expect a smooth extension of FAST [BFLS05] to deal with trace-flattable sys-
tems. This result takes strongly advantage of the decidability of model-checking
FOCTL?(Pr) over admissible counter systems, a new result we establish in the
paper. Hence, we have improved the decidability boundary for model-checking
ACS with CTL?-like languages. The decidability of model-checking question is
open when adding fixed-point operators (Presburger mu-calculus) or monadic
second-order quantification over ACS. Another direction for further work is to
analyze and extend further the class of ACS. For instance, giving up the func-
tionality assumption on transitions that do not belong to a cycle preserves de-
cidability, while it is open whether giving up the full functionality assumption
still preserves decidability in the absence of first-order quantification. Finally,
we plan to verify experimentally which post∗-flattable case studies [BFLS05] are
indeed trace-flattable.

References

[BCMS01] O. Burkart, D. Caucal, F. Moller, and B. Steffen. Verification of infinite
structures. In Handbook of Process Algebra, pages 545–623. Elsevier, 2001.

[BDR03] V. Bruyère, E. Dall’Olio, and J.F. Raskin. Durations, parametric model-
checking in timed automata with presburger arithmetic. In STACS’03, vol-
ume 2607 of LNCS, pages 687–698. Springer, 2003.

[BEH95] A. Bouajjani, R. Echahed, and P. Habermehl. On the verification problem of
nonregular properties for nonregular processes. In LICS’95, pages 123–133,
1995.

[BEM97] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown
automata: Application to model checking. In CONCUR’97, volume 1243 of
LNCS, pages 135–150. Springer, 1997.

[BFL04] S. Bardin, A. Finkel, and J. Leroux. FASTer acceleration of counter au-
tomata in practice. In TACAS’04, volume 2988 of LNCS, pages 576–590.
Springer, March 2004.

[BFLP03] S. Bardin, A. Finkel, J. Leroux, and L. Petrucci. FAST: Fast Acceleration
of Symbolic Transition systems. In CAV’03, volume 2725 of LNCS, pages
118–121. Springer, 2003.

[BFLS05] S. Bardin, A. Finkel, J. Leroux, and P. Schnoebelen. Flat acceleration in
symbolic model checking. In ATVA’05, volume 3707 of LNCS, pages 474–
488. Springer, 2005.

[BGP97] T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infi-
nite state systems using Presburger arithmetic. In CAV’97, volume 1254 of
LNCS, pages 400–411. Springer, 1997.

14

[BH99] A. Bouajjani and P. Habermehl. Symbolic reachability analysis of FIFO-
channel systems with nonregular sets of configurations. TCS, 221(1–2):211–
250, 1999.

[Boi98] B. Boigelot. Symbolic methods for exploring infinite state spaces. PhD thesis,
Université de Liège, 1998.

[CC00] H. Comon and V. Cortier. Flatness is not a weakness. In CSL’00, volume
1862 of LNCS, pages 262–276. Springer, 2000.

[CJ98] H. Comon and Y. Jurski. Multiple counters automata, safety analysis and
Presburger analysis. In CAV’98, volume 1427 of LNCS, pages 268–279.
Springer, 1998.

[Cor02] V. Cortier. About the decision of reachability for register machines. Theo-

retical Informatics and Applications, 36(4):341–358, 2002.
[Dem06] S. Demri. Temporal logics. Lecture notes for MPRI, 2005/2006. www.lsv.

ens-cachan.fr/∼demri/.
[DPK03] Z. Dang, P. San Pietro, and R. Kemmerer. Presburger liveness verification

of discrete timed automata. TCS, 299:413–438, 2003.
[EFM99] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast proto-

cols. In LICS’99, pages 352–359, 1999.
[FL02] A. Finkel and J. Leroux. How to compose Presburger accelerations: Ap-

plications to broadcast protocols. In FST&TCS’02, volume 2256 of LNCS,
pages 145–156. Springer, 2002.

[FO97] L. Fribourg and H. Olsén. Proving safety properties of infinite state systems
by compilation into presburger arithmetic. In CONCUR’97, volume 1243 of
LNCS, pages 213–227. Springer, 1997.

[FWW97] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems (extended abstract). In INFINITY’97, volume 9
of ENTCS. Elsevier Science, 1997.

[Iba78] O. Ibarra. Reversal-bounded multicounter machines and their decision prob-
lems. JACM, 25(1):116–133, 1978.

[ISD+00] O. Ibarra, J. Su, Z. Dang, T. Bultan, and A. Kemmerer. Counter machines:
Decidable properties and applications to verification problems. In MFCS’00,
volume 1893 of LNCS, pages 426–435. Springer, 2000.

[Lag85] J. Lagarias. The 3x + 1 problem and its generalizations. The American

Mathematical Monthly, 92(1):3–23, 1985.
[Ler03] J. Leroux. Algorithmique de la vérification des systèmes à compteurs. Ap-

proximation et accélération. Implémentation de l’outil FAST. PhD thesis,
ENS de Cachan, France, 2003.

[Ler06] J. Leroux. Regular acceleration for number decision diagrams. Technical
Report 1385-06, LABRI, January 2006.

[LS05] J. Leroux and G. Sutre. Flat counter systems are everywhere! In ATVA’05,
volume 3707 of LNCS, pages 489–503. Springer, 2005.

[Min67] M. Minsky. Computation, Finite and Infinite Machines. Prentice Hall, 1967.
[SS04] T. Schuele and K. Schneider. Global vs. local model checking: A comparison

of verification techniques for infinite state systems. In SEFM’04, pages 67–
76. IEEE, 2004.

[Wal01] I. Walukiewicz. Pushdown processes: games and model-checking. I & C,
164(2):234–263, 2001.

[Wol83] P. Wolper. Temporal logic can be more expressive. I & C, 56:72–99, 1983.

15

