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Abstract. Abstraction is a key technique to combat the state space
explosion problem in model checking probabilistic systems. In this pa-
per we present new ways to abstract Discrete Time Markov Chains
(DTMCs), Markov Decision Processes (MDPs), and Continuous Time
Markov Chains (CTMCs). The main advantage of our abstractions is
that they result in abstract models that are purely probabilistic, which
maybe more amenable to automatic analysis than models with both non-
deterministic and probabilistic steps that typically arise from previously
known abstraction techniques. A key technical tool, developed in this
paper, is the construction of least upper bounds for any collection of
probability measures. This upper bound construction may be of inde-
pendent interest that could be useful in the abstract interpretation and
static analysis of probabilistic programs.

1 Introduction

Abstraction is an important technique to combat state space explosion, wherein
a smaller, abstract model that conservatively approximates the behaviors of the
original (concrete) system is verified/model checked. Typically abstractions are
constructed on the basis of an equivalence relation (of finite index) on the set of
(concrete) states of the system. The abstract model has as states the equivalence
classes (i.e., it collapses all equivalent states into one), and each abstract state
has transitions corresponding to the transitions of each of the concrete states in
the equivalence class. Thus, the abstract model has both nondeterministic and
(if the concrete system is probabilistic) probabilistic behavior.

In this paper, we present new methods to abstract probabilistic systems
modeled by Discrete Time Markov Chains (DTMC), Markov Decision Processes
(MDP), and Continuous Time Markov Chains (CTMC). The main feature of
our constructions is that the resulting abstract models are purely probabilistic in
that they do not have any nondeterministic choices. Since analyzing models that
have both nondeterministic and probabilistic behavior is more challenging than
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analyzing models that are purely probabilistic, we believe that this may make our
abstractions more amenable to automated analysis; the comparative tractability
of model-checking systems without non-determinism is further detailed later in
this section.

Starting from the work of Saheb-Djahromi [19], and further developed by
Jones [11], orders on measures on special spaces (Borel sets generated by Scott
open sets of a cpo) have been used in defining the semantics of probabilistic pro-
grams. Ordering between probability measures also play a central role in defining
the notion of simulation for probabilistic systems. For a probabilistic model, a
transition can be viewed as specifying a probability measure on successor states.
One transition then simulates another if the probability measures they specify
are related by the ordering on measures. In this manner, simulation and bisimu-
lation relations were first defined for DTMCs and MDPs [12], and subsequently
extended to CTMCs [3]. Therefore, in all these settings, a set of transitions is
abstracted by a transition if it is an upper bound for the probability measures
specified by the set of transitions being abstracted.

The key technical tool that we develop in this paper is a new construction
of least upper bounds for arbitrary sets of probability measures. We show that
in general, measures (even over simple finite spaces) do not have least upper
bounds. We therefore look for a class of measurable spaces for which the existence
of least upper bounds is guaranteed for arbitrary sets of measures. Since the
ordering relation on measures is induced from the underlying partial order on
the space over which the measures are considered, we identify conditions on
the underlying partial order that are sufficient to prove the existence of least
upper bounds — intuitively, these conditions correspond to requiring the Hasse
diagram of the partial order to have a “tree-like” structure. Furthermore, we
show that these conditions provide an exact characterization of the measurable
spaces of our interest — for any partial order not satisfying these conditions,
we can construct two measures that do not have a least upper bound. Finally,
for this class of tree-like partial orders, we provide a natural construction that
is proven to yield a well-defined measure that is a least upper bound.

These upper bound constructions are used to define abstractions as follows.
As before, the abstract model is defined using an equivalence relation on the
concrete states. The abstract states form a tree-like partial order with the min-
imal elements consisting of the equivalence classes of the given relation. The
transition out of an abstract state is constructed as the least upper bound of
the transitions from each of the concrete states it “abstracts”. Since each upper
bound is a single measure yielding a single outgoing transition, the resulting ab-
stract model does not have any nondeterminism. This intuitive idea is presented
and proved formally in the context of DTMCs, MDPs and CTMCs.

A few salient features of our abstract models bear highlighting. First, the
fact that least upper bounds are used in the construction implies that for a par-
ticular equivalence relation on concrete states and partial order on the abstract
states, the abstract model constructed is finer than (i.e., can be simulated by)
any purely probabilistic models that can serve as an abstraction. Thus, for veri-



fication purposes, our model is the most precise purely probabilistic abstraction
on a chosen state space. Second, the set of abstract states is not completely
determined by the equivalence classes of the relation on concrete states; there is
freedom in the choice of states that are above the equivalence classes in the par-
tial order. However, for any such choice that respects the “tree-like” requirement
on the underlying partial order, the resulting model will be exponentially smaller
than the existing proposals of [8, 13]. Furthermore, we show that there are in-
stances where we can get more precise results than the abstraction schemes of [8,
13] while using significantly fewer states (see Example 4). Third, the abstract
models we construct are purely probabilistic which makes model checking eas-
ier. Additionally, these abstractions can potentially be verified using statistical
techniques which do not work when there is nondeterminism [24, 23, 21]. Finally,
CTMC models with nondeterminism, called CTMDP, are known to be difficult
to analyze [2]. Specifically, the measure of time-bounded reachability can only be
computed approximately through an iterative process; therefore, there is only an
approximate algorithm for model-checking CTMDPs against CSL. On the other
hand, there is a theoretically exact solution to the corresponding model-checking
problem for CTMCs by reduction to the first order theory of reals [1].

Related Work. Abstractions have been extensively studied in the context of
probabilistic systems. General issues and definitions of good abstractions are
presented in [12, 9, 10, 17]. Specific proposals for families of abstract models in-
clude Markov Decision Processes [12, 5, 6], systems with interval ranges for tran-
sition probabilities [12, 17, 8, 13], abstract interpretations [16], 2-player stochastic
games [14], and expectation transformers [15]. Recently, theorem-prover based
algorithms for constructing abstractions of probabilistic systems based on predi-
cates have been presented [22]. All the above proposals construct models that ex-
hibit both nondeterministic and probabilistic behavior. The abstraction method
presented in this paper construct purely probabilistic models.

2 Least Upper Bounds for Probability Measures

This section presents our construction of least upper bounds for probability mea-
sures. Section 2.1 recalls the relevant definitions and results from measure the-
ory. Section 2.2 presents the ordering relation on measures. Finally, Section 2.3
presents the least upper bound construction on measures. Due to space consid-
erations, many of the proofs are deferred to [4] for the interested reader.

2.1 Measures

A measurable space (X,Σ) is a set X together with a family of subsets,
Σ, of X, called a σ-field or σ-algebra, that contains ∅ and is closed under
complementation and countable union. The members of a σ-field are called the
measurable subsets of X. Examples of σ-fields are {∅, X} and P(X) (the
powerset of X). We will sometimes abuse notation and refer to the measurable



space (X,Σ) by X or by Σ, when the σ-field or set, is clear from the context.
The intersection of an arbitrary collection of σ-fields on a set X is again a σ-field,
and so given any B ⊆ P(X) there is a least σ-field containing B, which is called
the σ-field generated by B.

A positive measure µ on a measurable space (X,Σ) is a function from Σ
to [0,∞] such that µ is countably additive, i.e., if {Ai | i ∈ I} is a countable
family of pairwise disjoint measurable sets then µ(

⋃
i∈I Ai) =

∑
i∈I µ(Ai). In

particular, if I = ∅, we have µ(∅) = 0. A measurable space equipped with a
measure is called a measure space. The total weight of a measure µ on
measurable space X is µ(X). A probability measure is a positive measure
of total weight 1. We denote the collection of all probability measures on X by
M=1(X).

2.2 A Partial Order on Measures

In order to define an ordering on probability measures we need to consider mea-
surable spaces that are equipped with an ordering relation. An ordered measur-
able space (X,Σ,v) is a set X equipped with a σ-field Σ and a preorder on X 3

v such that (X,Σ) is a measurable space. A (probability) measure on (X,Σ,v)
is a (probability) measure on (X,Σ). Finally, recall that a set U ⊆ X is upward
closed if for every x ∈ U and y ∈ X with x v y we have that y ∈ U . The order-
ing relation on the underlying set is lifted to an ordering relation on probability
measures as follows.

Definition 1. Let X = (X,Σ,v) be an ordered measurable space. For any prob-
ability measures µ, ν on X , define µ ≤ ν iff for every upward closed set U ∈ Σ,
µ(U) ≤ ν(U).

Our definition of the ordering relation is formulated so as to be applicable to
any general measurable space. For probability distributions over finite spaces, it
is equivalent to a definition of lifting of preorders to probability measures using
weight functions as considered in [12] for defining simulations. Indeed, Defini-
tion 1 can be seen to be identical to the presentation of the simulation relation
in [7, 20] where this equivalence has been observed as well.

Recall that a set D ⊆ X is downward closed if for every y ∈ D and x ∈ X
with x v y we have that x ∈ D. The ordering relation on probability measures
can be dually cast in terms of downward closed sets which is useful in the proofs
of our construction.

Proposition 1. Let X = (X,Σ,v) be an ordered measurable space. For any
probability measures µ, ν on X , we have that µ ≤ ν iff for every downward
closed set D ∈ Σ, µ(D) ≥ ν(D).

3 Recall that preorder on a set X is a binary relation v⊆ X × X such that v is
reflexive and transitive.
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Fig. 1. Hasse Diagram of T . Arrows directed from smaller element to larger element.

In general, Definition 1 yields a preorder that is not necessarily a partial
order. We identify a special but broad class of ordered measurable spaces for
which the ordering relation is a partial order. The spaces we consider are those
which are generated by some collection of downward closed sets.

Definition 2. An ordered measurable space (X,Σ,v) is order-respecting if there
exists D ⊆ P(X) such that every D ∈ D is downward closed (with respect to v)
and Σ is generated by D.

Example 1. For any finite setA, the space (P(A),P(P(A)),⊆) is order-respecting
since it is generated by all the downward closed sets of (P(A),⊆). One spe-
cial case of such a space that we will make use of in our examples is where
T = P({0, 1}) whose Hasse diagram is shown in Figure 1; we will denote the el-
ements of T by ⊥ = ∅, l = {0}, r = {1}, and > = {0, 1}. Then T = (T,P(T ),⊆)
is an order-respecting measurable space. Finally, for any cpo (X,v), the Borel
measurable space (X,B(X),v) is order-respecting since every Scott-closed set
is downward closed.

Theorem 1. For any ordered measurable space X = (X,Σ,v), the relation ≤
is a preorder on M=1(X ). The relation ≤ is additionally a partial order (anti-
symmetric) if X is order-respecting.

Example 2. Recall the space T = (T,P(T ),⊆) defined in Example 1. Consider
the probability measure λ, where l has probability 1, and all the rest have prob-
ability 0. Similarly, τ is the measure where > has probability 1, and the rest
0, and in ρ, r gets probability 1, and the others 0. Now one can easily see that
λ ≤ τ and ρ ≤ τ . However λ 6≤ ρ and ρ 6≤ λ.

2.3 Construction of Least Upper Bounds

Least upper bound constructions for elements in a partial order play a crucial
role in defining the semantics of languages as well as in abstract interpreta-
tion. As we shall show later in this paper, least upper bounds of probabilistic
measures can also be used to define abstract models of probabilistic systems.
Unfortunately, however, probability measures over arbitrary measurable spaces
do not necessarily have least upper bounds; this is demonstrated in the following
example.



Example 3. Consider the space T defined in Example 1. Let µ be the probability
measure that assigns probability 1

2 to ⊥ and l, and 0 to everything else. Let ν
be such that it assigns 1

2 to ⊥ and r, 0 to everything else. The measure τ that
assigns 1

2 to > and ⊥ is an upper bound of both µ and ν. In addition, ρ that
assigns 1

2 to l and r, and 0 to everything else, is also an upper bound. However
τ and ρ are incomparable. Moreover, any lower bound of τ and ρ must assign a
probability at least 1

2 to ⊥ and probability 0 to >, and so cannot be an upper
bound of µ and ν. Thus, µ and ν do not have a least upper bound.

We therefore identify a special class of ordered measurable spaces over which
probability measures admit least upper bounds. Although our results apply to
general measurable spaces, for ease of understanding, the main presentation here
is restricted to finite spaces. For the rest of the section, fix an ordered measurable
space X = (X,P(X),v), where (X,v) is a finite partial order. For any element
a ∈ X, we use Da to denote the downward-closed set {b | b v a}. We begin
by defining a tree-like partial order; intuitively, these are partial orders whose
Hasse diagram resembles a tree (rooted at its greatest element).

Definition 3. A partial order (X,v) is said to be tree-like if and only if (i) X
has a greatest element >, and (ii) for any two elements a, b ∈ X if Da ∩Db 6= ∅
then either Da ⊆ Db or Db ⊆ Da.

We can show that over spaces whose underlying ordering is tree-like, any set
of probability measures has a least upper bound. This construction is detailed
in Theorem 2 and its proof below.

Theorem 2. Let X = (X,P(X),v) be an ordered measurable space where (X,v)
is tree-like. For any Γ ⊆M=1(X ), there is a probability measure ∇(Γ ) such that
∇(Γ ) is the least upper bound of Γ .

Proof. Recall that for a set S ⊆ X, its set of maximal elements maximal(S) is
defined as {a ∈ S | ∀b ∈ S. a v b ⇒ a = b}. For any downward closed set D,
we have that D = ∪a∈maximal(D)Da. From condition (ii) of Definition 3, if a, b
are two distinct maximal elements of a downward closed set D then Da∩Db = ∅
and the sets comprising the union are pairwise disjoint. For any measure µ, we
therefore have that µ(D) =

∑
a∈maximal(D) µ(Da) for any downward closed set

D.
Define the function ν on downward closed subsets of X as follows. For a

downward closed set of the form Da, where a ∈ X, take ν(Da) = infµ∈Γ µ(Da),
and for any downward closed set D take ν(D) =

∑
a∈maximal(D) ν(Da). We will

define the least upper bound measure ∇(Γ ) by specifying its value pointwise on
each element of X. Observe that for any a ∈ X, the set Da\{a} is also downward
closed. We therefore define ∇(Γ )({a}) = ν(Da)− ν(Da \ {a}), for any a ∈ X.

Observe that ν(D) ≤ infµ∈Γ µ(D). We therefore have that ∇(Γ )({a}) ≥ 0.
For any downward closed set D, we can see that ∇(Γ )(D) = ν(D). Thus,
∇(Γ )(X) = ∇(Γ )(D>) = ν(D>) = infµ∈Γ µ(D>) = 1, and so ∇(Γ ) is a proba-
bility measure on X .



For any downward closed set D, we have that ∇(Γ )(D) = ν(D) and ν(D) ≤
infµ∈Γ µ(D) which allows us to conclude that ∇(Γ ) is an upper bound of Γ . Now
consider any measure τ that is an upper bound of Γ . Then, τ(D) ≤ µ(D) for any
measure µ ∈ Γ and all downward closed sets D. In particular, for any element a ∈
X, τ(Da) ≤ infµ∈Γ µ(Da) = ν(Da) = ∇(Γ )(Da). Thus, for any downward closed
set D, we have that τ(D) =

∑
a∈maximal(D) τ(Da) ≤

∑
a∈maximal(D)∇(Γ )(Da) =

∇(Γ )(D). Hence, ∇(Γ ) ≤ τ , which concludes the proof. ut

We conclude this section, by showing that if we consider any ordered mea-
surable space that is not tree-like, there are measures that do not have least
upper bounds. Thus, the tree-like condition is an exact(necessary and sufficient)
characterization of spaces that admit least upper bounds of arbitrary sets of
probability measures.

Theorem 3. Let X = (X,P(X),v) be an ordered measurable space, where
(X,v) is a partial order that is not tree-like. Then there are probability measures
µ and ν such that µ and ν do not have a least upper bound.

Proof. First consider the case when X does not have a greatest element. Then
there are two maximal elements, say a and b. Let µ be the measure that assigns
measure 1 to a and 0 to everything else, and let ν be the measure that assigns
1 to b and 0 to everything else. Clearly, µ and ν do not have an upper bound.

Next consider the case when X does have a greatest element >; the proof in
this case essentially follows from generalizing Example 3. If X is a space as in
the theorem then since (X,v) is not tree-like, there are two elements a, b ∈ X
such that Da∩Db 6= ∅, Da \Db 6= ∅, and Db \Da 6= ∅. Let c ∈ Da∩Db. Consider
the measure µ to be such that µ({c}) = 1

2 , µ({a}) = 1
2 , and is equal to 0 on all

other elements. Define the measure ν to be such that ν({c}) = 1
2 , ν({b}) = 1

2 ,
and is equal to 0 on all other elments. As in Example 3, we can show that µ and
ν have two incomparable minimal upper bounds. ut

Remark 1. All the results presented in the section can be extended to ordered
measure spaces X = (X,P(X),v) when X is a countable set; see [4].

3 Abstracting DTMCs and MDPs

In this section we outline how our upper bound construction can be used to
abstract MDPs and DTMCs using DTMCs. We begin by recalling the definitions
of these models along with the notion of simulation and logic preservation in
Section 3.1, before presenting our proposal in Section 3.2.

3.1 Preliminaries

We recall 3-valued PCTL and its discrete time models. In 3-valued logic, a
formula can evaluate to either true (>), false (⊥), or indefinite (?); let B3 =



{⊥, ?,>}. The formulas of PCTL are built up over a finite set of atomic propo-
sitions AP and are inductively defined as follows.

ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ | P./p(Xϕ) | P./p(ϕ U ϕ)

where a ∈ AP, ./∈ {<,≤, >,≥}, and p ∈ [0, 1].
The models of these formulas are interpreted over Markov Decision Processes,

formally defined as follows. Let Q be a finite set of states and let Q = (Q,P(Q))
be a measure space. A Markov Decision Process (MDP)M is a tuple (Q,→, L),
where →⊆ Q ×M=1(Q) (non-empty and finite), and L : (Q × AP) → B3 is a
labeling function that assigns a value in B3 to each atomic proposition in each
state. We will say q → µ to mean (q, µ) ∈→. A Discrete Time Markov Chain
(DTMC) is an MDP with the restriction that for each state q there is exactly
one probability measure µ such that q → µ. The 3-valued semantics of PCTL
associates a truth value in B3 for each formula ϕ in a state q of the MDP; we
denote this by [[q, ϕ]]M. We skip the formal semantics in the interests of space
and the reader is referred to [8] 4.

Theorem 4 (Fecher-Leucker-Wolf [8]). Given an MDP M, and a PCTL
formula ϕ, the value of [[q, ϕ]]M for each state q, can be computed in time poly-
nomial in |M| and linear in |ϕ|, where |M| and |ϕ| denote the sizes of M and
ϕ, respectively.

Simulation for MDPs, originally presented in [12] and adapted to the 3-
valued semantics in [8], is defined as follows. A preorder v⊆ Q×Q is said to be
a simulation iff whenever q1 v q2 the following conditions hold.

– If L(q2, a) = > or ⊥ then L(q1, a) = L(q2, a) for every proposition a ∈ AP,
– If q1 → µ1 then there exists µ2 such that q2 → µ2 and µ1 ≤ µ2, where
µ1 and µ2 are viewed as probability measures over the ordered measurable
space (Q,P(Q),v).

We say q1 � q2 iff there is a simulation v such that q1 v q2. A state q1 in an
MDP (Q1,→1, L1) is simulated by a state q2 in MDP (Q2,→2, L2) iff there is a
simulation v on the direct sum of the two MDP’s (defined in the natural way)
such that (q1, 0) v (q2, 1).

Remark 2. The ordering on probability measures used in simulation definition
presented in [12, 8] is defined using weight functions. However, the definition
presented here is equivalent, as has been also observed in [7, 20].

Finally, there is a close correspondence between simulation and the satisfac-
tion of PCTL formulas according to the 3-valued interpretation.

Theorem 5 (Fecher-Leucker-Wolf [8]). Consider q, q′ states of MDP M
such that q � q′. For any formula ϕ, if [[q′, ϕ]]M 6=? then [[q, ϕ]]M = [[q′, ϕ]]M 5.
4 In [8] PCTL semantics for MDPs is not given; however, this is very similar to the

semantics for AMCs which is given explicitly.
5 This theorem is presented only for AMC. But its generalization to MDPs can be

obtained from the main observations given in [8]. See [4].



3.2 Abstraction by DTMCs

Abstraction, followed by progressive refinement, is one way to construct a small
model that either proves the correctness of the system or demonstrates its failure
to do so. Typically, the abstract model is defined with the help of an equivalence
relation on the states of the system. Informally, the construction proceeds as
follows. For an MDP/DTMC M = (Q,→, L) and equivalence relation ≡ on
Q, the abstraction is the MDP A = (QA,→A, LA), where QA = {[q]≡ | q ∈
Q} is the set of equivalence classes of Q under ≡, and [q]≡ has a transition
corresponding to each q′ → µ for q′ ∈ [q]≡.

However, as argued by Fecher-Leucker-Wolf [8], model checking A directly
may not be feasible because it has large number of transitions and therefore a
large size. It maybe beneficial to construct a further abstraction of A and an-
alyze the further abstraction. In what follows, we have an MDP, which maybe
obtained as outlined above, that we would like to (further) abstract; for the rest
of this section let us fix this MDP to be A = (QA,→A, LA). We will first present
the Fecher-Leucker-Wolf proposal, then ours, and compare the approaches, dis-
cussing their relative merits.

Fecher et al. suggest that a set of transitions be approximated by intervals
that bound the probability of transitioning from one state to the next, according
to any of the non-deterministic choices present in A. The resulting abstract
model, which they call an Abstract Markov Chain (AMC) is formally defined as
follows.

Definition 4. The Abstract Markov Chain (AMC) associated with A is formally
the tuple M = (QM,→`,→u, LM), where QM = QA is the set of states, and
LM = LA is the labeling function on states. The lower bound transition →` and
upper bound transition →u are both functions of type QM → (QM → [0, 1]), and
are defined as follows:

q →` µ iff ∀q′ ∈ QM. µ(q′) = minq→Aν ν({q′})
q →u µ iff ∀q′ ∈ QM. µ(q′) = maxq→Aν ν({q′})

Semantically, the AMC M is interpreted as an MDP having from each state q
any transition q → ν, where ν is a probability measure that respects the bounds
defined by →` and →u. More precisely, if q →` µ` and q →u µu then µ` ≤ ν ≤
µu, where ≤ is to be interpreted as pointwise ordering on functions.

Fecher et al. demonstrate that the AMCM (defined above) does indeed sim-
ulate A, and using Theorem 5 the model checking results ofM can be reflected
to A. The main advantage ofM over A is thatM can be model checked in time
that is a polynomial in 2|QM| = 2|QA|; model checking A may take time more
than polynomial in 2|QA|, depending on the number of transitions out of each
state q.

We suggest using the upper bound construction, presented in Section 2.3, to
construct purely probabilistic abstract models that do not have any nondeter-
minism. Let (X,v) be a tree-like partial order. Recall that the set of minimal



elements of X, denoted by minimal(X), is given by minimal(X) = {x ∈ X | ∀y ∈
X. y v x ⇒ x = y}.

Definition 5. Consider the MDP A = (QA,→A, LA). Let (Q,v) be a tree-like
partial order, such that minimal(Q) = QA. Let Q = (Q,P(Q),v) be the ordered
measurable space over Q. Define the DTMC D = (QD,→D, LD), where

– QD = Q,
– For q ∈ QD, let Γq = {µ | ∃q′ ∈ QA. q′ v q and q′ →A µ}. Now, q →D
∇(Γq), and

– For q ∈ QD and a ∈ AP, if for any q1, q2 ∈ QA with q1 v q and q2 v q,
we have L(q1, a) = L(q2, a) then L(q, a) = L(q1, a). Otherwise L(q, a) =?

Proposition 2. The DTMC D simulates the MDP A, where A and D are as
given in Definition 5.

Proof. Consider the relation Rv over the states of the disjoint union of A and
D, defined as Rv = {((q, 0), (q, 0)) | q ∈ QA} ∪ {((q′, 1), (q′′, 1)) | q′, q′′ ∈
QD, q

′ v q′′}∪{((q, 0), (q′, 1)) | q ∈ QA, q′ ∈ QD, q v q′}. ¿From the definition
of D, definition of simulation and the fact that ∇ is the least upper bound
operator, it can be shown that Rv is a simulation. ut

The minimality of our upper bound construction actually allows to conclude
that D is as good as any DTMC abstraction can be on a given state space. This
is stated precisely in the next proposition.

Proposition 3. Let A = (QA,→A, LA) be an MDP and (Q,v) be a tree-like
partial order, such that minimal(Q) = QA. Consider the DTMC D = (QD,→D
, LD), as given in Definition 5. If D′ = (QD,→′D, LD) is a DTMC such that the
relation Rv defined in the proof of Proposition 2 is a simulation of A by D′ then
D′ simulates D also.

Comparison with Abstract Markov Chains. Observe that any tree-like partial
order (Q,v) such that minimal(Q) = QA is of size at most O(|QA|); thus, in
the worst case the time to model check D is exponentially smaller than the time
to model check M. Further, we have freedom to pick the partial order (Q,v).
The following proposition says that adding more elements to the partial order
on the abstract states does indeed result in a refinement.

Proposition 4. Let A = (QA,→A, LA) be an MDP and (Q1,v1) and (Q2,v2)
be tree-like partial orders such that Q1 ⊆ Q2, v2 ∩(Q1 × Q1) =v1, and QA =
minimal(Q1) = minimal(Q2). Let D1 be a DTMC over (Q1,v1) and D2 a DTMC
over (Q2,v2) as in Definition 5. Then, D1 simulates D2.

Thus, one could potentially identify the appropriate tree-like partial order to be
used for the abstract DTMC through a process of abstraction-refinement.

Finally, we can demonstrate that even though the DTMC D is exponentially
more succinct than the AMC M, there are examples where model checking D
can give a more precise answer than M.
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Fig. 5. Transition out of 1 in DTMC D

Example 4. Consider an MDP A shown in Figure 2 where state 1 has two tran-
sitions one shown as solid edges and the other as dashed edges; transitions out
of other states are not shown since they will not play a role. Suppose the atomic
proposition a is > in {1, 2} and ⊥ in {3, 4}, and the proposition b is > in {1, 3}
and ⊥ in {2, 4}. The formula ϕ = P≤ 3

4
(Xa) evaluates to > in state 1.

The AMC M as defined in Definition 4, is shown in Figure 3. Now, because
the distribution ν, given by ν({1}) = 1

2 , ν({2}) = 1
2 , ν({3}) = 0, and ν({4}) = 0

satisfies the bound constraints out of 1 but violates the property ϕ, ϕ evaluates
to ? in state 1 of M.

Now consider the tree-like partial order shown in Figure 4; arrows in the
figure point from the smaller element to the larger one. If we construct the
DTMC D over this partial order as in Definition 5, the transition out of state 1
will be as shown in Figure 5. Observe also that proposition a is > in {1, 2, 5}, ⊥
in {3, 4, 6} and ? in state >; and proposition b is > in {1, 3}, ⊥ in {2, 4} and ?
in {5, 6,>}. Now ϕ evaluates to > in state 1, because the measure of paths out
of 1 that satisfy X¬a is 1

4 . Thus, by Theorem 5, M is not simulated by D. It is
useful to observe that the upper bound managed to capture the constraint that
the probability of transitioning to either 3 or 4 from 1 is at least 1

4 . Constraints
of this kind that relate to the probability of transitioning to a set of states,
cannot be captured by the interval constraints of an AMC, but can be captured
by upper bounds on appropriate partial orders.



4 Abstracting CTMCs

We now outline how our upper bound construction gives us a way to abstract
CTMC by other CTMCs. We begin with recalling the definitions of CTMCs,
simulation and logical preservation, before presenting our abstraction scheme.

4.1 Preliminaries

The formulas of CSL are built up over a finite set of atomic propositions AP
and are inductively defined as follows.

ϕ ::= true | a | ¬ϕ | ϕ ∧ ϕ | P./p(ϕ U t ϕ)

where a ∈ AP, ./∈ {<,≤, >,≥}, p ∈ [0, 1], and t a positive real number.
The 3-valued semantics of CSL is defined over Continuous Time Markov

Chains (CTMC), where in each state every atomic proposition gets a truth
value in B3. Formally, let Q be a finite set of states and let Q = (Q,P(Q))
be a measure space. A (uniform) CTMC 6 M is a tuple (Q,→, L,E), where
→: Q→M=1(Q), L : (Q×AP)→ B3 is a labeling function that assigns a value
in B3 to each atomic proposition in each state, and E ∈ R≥0 is the exit rate
from any state. We will say q → µ to mean (q, µ) ∈→. Due to lack of space the
formal semantics of the CTMC is skipped; the reader is referred to [18].

CSL’s 3-valued semantics associates a truth value in B3 for each formula ϕ
in a state q of the CTMC; we denote this by [[q, ϕ]]M. The formal semantics is
skipped and can be found in [13]. The model checking algorithm presented in [1]
for the 2-valued semantics, can be adapted to the 3-valued case.

Simulation for uniform CTMCs, originally presented in [3], has been adapted
to the 3-valued setting in [13] and is defined in exactly the same way as simulation
in a DTMC; since the exit rate is uniform, it does not play a role. Once again,
we say q1 is simulated by q2, denoted as q1 � q2, iff there is a simulation v such
that q1 v q2. Once again, there is a close correspondence between simulation
and the satisfaction of CSL formulas according to the 3-valued interpretation.

Theorem 6 (Katoen-Klink-Leucker-Wolf [13]). Consider any states q, q′

of CTMC M such that q � q′. For any formula ϕ, if [[q′, ϕ]]M 6=? then
[[q, ϕ]]M = [[q′, ϕ]]M.

4.2 Abstracting based on Upper Bounds

Abstraction can, once again, be accomplished by collapsing concrete states into
a single abstract state on the basis of an equivalence relation on concrete states.
The transition rates out of a single state can either be approximated by intervals
giving upper and lower bounds, as suggested in [13], or by upper bound measures
as we propose. Here we first present the proposal of Abstract CTMCs, where
transition rates are approximated by intervals, before presenting our proposal.
We conclude with a comparison of the two approaches.
6 We only look at uniform CTMCs here; in general, any CTMC can be transformed

in a uniform one that is weakly bisimilar to the original CTMC.



Definition 6. Consider a CTMC M = (QM,→M, LM, EM) with an equiva-
lence relation ≡ on QM. An Abstract CTMC (ACTMC) [13] that abstracts M
is a tuple A = (QA,→`,→u, LA, EA), where

– QA = {[q] | q ∈ QM} is the set of equivalence classes of ≡,
– EA = EM,
– If for all q1, q2 ∈ [q], LM(q1, a) = LM(q2, a) then LA([q], a) = LM(q, a).

Otherwise, LA([q], a) =?,
– →`: QA → (QA → [0, 1]) where

[q]→` µ iff ∀[q1] ∈ QA µ([q1]) = min
q′∈[q] ∧ q′→Aν

ν([q1])

– Similarly, →u: QA → (QA → [0, 1]) where

[q]→u µ iff ∀[q1] ∈ QA µ([q1]) = max
q′∈[q] ∧ q′→Aν

ν([q1])

Semantically, at a state [q], the ACTMC can make a transition according to any
transition rates that satisfy the lower and upper bounds defined by →` and →u,
respectively.

Katoen et al. demonstrate that the ACTMC A (defined above) does indeed
simulate M, and using Theorem 6 the model checking results of A can be re-
flected toM. The measure of paths reaching a set of states within a time bound
t can be approximated using ideas from [2], and this can be used to answer
model checking question for the ACTMC (actually, the path measures can only
be calculated upto an error).

Like in Section 3.2, we will now show how the upper bound construction
can be used to construct (standard) CTMC models that abstract the concrete
system. Before presenting this construction, it is useful to define how to lift a
measure on a set with an equivalence relation ≡, to a measure on the equivalence
classes of ≡.

Definition 7. Given a measure µ on (Q,P(Q)) and equivalence ≡ on Q, the
lifting of µ (denoted by [µ]) to the set of equivalence classes of Q is defined as
[µ]({[q]}) = µ({q′ | q′ ≡ q}).

Definition 8. Let M = (QM,→M, LM, EM) be a CTMC with an equivalence
relation ≡ on QM. Let (Q,v) be a tree-like partial order with >, such that
minimal(Q) = {[q] | q ∈ QM}. Let Q = (Q,P(Q),v) be the ordered measurable
space over Q. Define the CTMC C = (QC ,→C , LC , EC), where

– QC = Q,
– EC = EM,
– For q ∈ QC, let Γq = {[µ] | ∃q′ ∈ QA. [q′] v q and q′ →A µ}. Now,
q →C ∇(Γq), and

– If for all q1, q2 ∈ QM such that [q1] v q and [q2] v q, LM(q1, a) = LM(q2, a)
then LC(q, a) = LM(q1, a). Otherwise, LC(q, a) =?.



Once again, from the properties of least upper bounds, and definition of
simulation, we can state and prove results analogous to Propositions 2 and 3.
That is the CTMC C does indeed abstract M and it is the best possible on a
given state space; the formal statements and proofs are skipped in the interests
of space.

Comparison with Abstract CTMCs. All the points made when comparing the
DTMC abstraction with the AMC abstraction scheme, also apply here. That is,
the size of C is exponentially smaller than the size of the ACTMC A. Moreover,
we can choose the tree-like partial order used in the construction of C through
a process of abstraction refinement. And finally, Example 4 can be modified to
demonstrate that there are situations where the CTMC C gives a more precise
result than the ACTMC A. However, in the context of CTMCs there is one
further advantage. ACTMCs can only be model checked approximately, while
CTMCs can be model checked exactly. While it is not clear how significant this
might be in practice, from a theoretical point of view, it is definitely appealing.

5 Conclusions

Our main technical contribution is the construction of least upper bounds for
probability measures on measure spaces equipped with a partial order. We have
developed an exact characterization of underlying orderings for which the in-
duced ordering on probability measures admits the existence of least upper
bounds, and provided a natural construction for defining them. We showed how
these upper bound constructions can be used to abstract DTMCs, MDPs, and
CTMCs by models that are purely probabilistic. In some situations, our abstract
models yield more precise model checking results than previous proposals for ab-
straction. Finally, we believe that the absence of nondeterminism in the abstract
models we construct might make their model-checking more feasible.

In terms of future work, it would be important to evaluate how these abstrac-
tion techniques perform in practice. In particular, the technique of identifying the
right tree-like state space for the abstract models using abstraction-refinement
needs to be examined further.
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