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Abstract

Asynchronous programming is a paradigm that supports asynchronous function
calls in addition to synchronous function calls. Programs in such a setting can be
modeled by automata with counters that keep track of the number of pending
asynchronous calls for each function as well as a call stack for synchronous recur-
sive computation. These programs have the restriction that an asynchronous call is
processed only when the call stack is empty. The decidability of the control state
reachability problem for such systems was recently established. In this paper, we
consider the problems of checking other branching time properties for such systems.
Specifically we consider the following problems — termination, which asks if there
is an infinite (non-terminating) computation exhibited by the system; control state
maintainability, which asks if there is a maximal execution of the system, where all
the state visited lie in some “good” set; whether the system can be simulated by a
given finite state system; and whether the system can simulate a given finite state
system. We present decision algorithms for all these problems.

1 Introduction

Asynchronous programming [11,8,10,15,16,5,13] is a programming paradigm
for writing multi-threaded applications, as well as event driven embedded pro-
grams. In this paradigm, programs have the ability to make two types of func-
tion calls: conventional synchronous calls where a caller waits until the callee
completes computation, and asynchronous calls that return immediately, but
are processed later when dispatched by a scheduler. Such systems can be con-
veniently abstracted (using standard techniques like predicate abstraction [9])
by automata with a stack to model recursive computation, and a collection of
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pending asynchronous calls, with the restriction that a new asynchronous call
is processed only when the stack is empty.

The invariant verification problem for such systems has been extensively stud-
ied in the recent past. Sen and Viswanathan [17] showed that the control state
reachability problem is decidable, when no assumption is made about the order
in which pending asynchronous calls are serviced; in other words, the pending
asynchronous calls are stored in a bag or multi-set. The proof of decidability
was simplified in [12], and the decidability result was extended to systems
with real time clocks in [4]. Another set of results concerns systems where the
asynchronous calls are dispatched in order. In [4], we showed that the control
state reachability problem is decidable if the pending asynchronous calls are
stored in a lossy FIFO buffer. In addition, it has been shown in [18] that
the control state reachability problem within a bounded number of context
switches is decidable when the asynchronous calls are stored in a FIFO buffer
(that is not lossy).

In this paper, we consider the problem of verifying asynchronous programs
with respect to branching time properties. The asynchronous calls are not as-
sumed to be processed in any particular order. More specifically we consider
systems to be modeled by counter automata with an auxiliary store. These ma-
chines have a finite collection of counters, one for each asynchronous function
— the value of the counter stores the number of pending calls of that func-
tion. In addition, we assume that the automaton has access to auxiliary data
store into which it can store and retrieve information. The additional data
store could be any data structure; for example, it could be a stack to model
synchronous recursive calls, or more generally, it could be a higher-order stack
to model synchronous (safe) higher-order recursive schemes.

It is well-known that the model checking problem for counter automata with-
out zero-test (or petri nets) is undecidable when considering specification logics
in which it is possible to express a zero test for counters [6]. This is shown
by reducing the halting problem of counter machines to the model checking
problem for counter automata/petri nets. Thus, verifying general CTL, CTL∗,
or modal µ-calculus properties is known to be undecidable. In all these log-
ics a zero test can be expressed by checking the enabled-ness of decrement
transitions.

Therefore, we consider verifying 4 types of properties for counter automata
with auxiliary stores. The first is termination, which asks whether the sys-
tem has an infinite (non-terminating) computation. The second property we
consider is that of control state maintainability, which asks whether the sys-
tem has a (maximal) computation such that the control states at all points
during the computation belong to a “good” set. The last two properties we
investigate relate to checking simulation. Given a finite state system, we ask
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whether the counter automaton with auxiliary store is simulated by it, and
whether the finite state system is simulated by the counter automaton. All
these properties are natural and have been long studied within the context of
algorithmic verification of well structured transition systems. Thus our results
here can be seen as a continuation of the work, initiated in [4], wherein one
tries to identify sufficient structural conditions on transition system that al-
low decision procedures for well-structured transition systems to be combined
with other decision procedures for infinite state systems to yield decidability
results. Other than this theoretical reason, the 4 properties considered here are
also practically relevant in the context asynchronous programs. Termination
is a basic property which is often at the foundation of proving many liveness
properties [1]. Control state maintainability if true can be seen as asserting
that there is an execution, where you can never “escape” to a recovery state.
Finally, simulation with finite state systems, allows one to express proper-
ties like “is there a computation that reaches an unsafe state”, or “is there
a computation that visits a sequence of states in order, either consecutively
or not”. Such specifications often need to be verified of any system, including
asynchronous programs.

The main observation proved here is that all these problems are decidable
provided the corresponding problems are decidable for automata with the
same auxiliary store, but without additional counters. More specifically the
termination and control state maintainability problem are decidable, if the
termination problem is decidable for automata without counters but with the
data store. And for checking simulations we require that reachability games
be decidable for game graphs generated by automata without counters. An
immediate consequence of these results is that these problems are decidable
when the auxiliary store is either a stack or a higher-order stack, and hence
for asynchronous programs.

Before presenting the technical details of our results, we would like to highlight
a few aspects of our results. Previous decidability results on reachability for
asynchronous programs [17,4] are based on algorithms that follow the same
template as algorithms for well-structured transition systems (WSTS) [2,7] —
they do exactly what the reachability algorithm for WSTSs would do, except
that some backward steps of the WSTS algorithm are replaced by calls to
decide reachability on automata without counters but with an auxiliary data
store. The same is true for most of the algorithms presented in this paper;
they follow the same template as the algorithm for the corresponding problem
on WSTS, with some of the basic steps being replaced by solving a similar
problem on automata without counters. The only exception to this pattern is
our algorithm for deciding if a finite state system is simulated by a counter
automata with stores. The algorithm we present is very different than the
standard algorithm for the same problem on WSTS [7]. Next, for the control
state reachability problem we were able to generalize the decidability result
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even when the system has real time clocks or when the pending asynchronous
calls are stored in a lossy FIFO buffer [4], by leveraging properties of well-
quasi-orders (wqo) [14]. While we can do the same for the termination and
control state maintainability problems, we cannot extend the results for the
simulation problems. Our proofs rely on crucial properties exhibited by the
special wqo of counters.

Paper Outline. The rest of the paper is organized as follows. We start with
some preliminaries in Section 2 and formally define counter automaton with
an auxiliary store in Section 3. We show the decidability of termination and
control state maintainability in Section 4. We consider the problems of simula-
tion of a counter automaton with store by a finite state transition system and
of a finite transition system by a counter automaton with store in Sections 5
and 6 respectively.

2 Preliminaries

Transition systems. We shall use labeled transition systems as models of
temporal behavior of infinite-state systems. Formally, a transition system S
is a tuple (S, Λ,→, s0) such that S is a set of configurations; Λ is a finite
set of labels; →⊆ S × Λ × S is a set of transitions and s0 ∈ S is the initial
configuration. A transition system is said to be finite if S is finite. A transition
system is said to be finitely branching if for each s ∈ S, the set Succs =
{s′ | ∃λ ∈ Λ. (s, λ, s′) ∈→} is finite. For the rest of the paper, all transition
systems considered will be finitely branching.

We shall often write s
λ→ s′ if (s, λ, s′) ∈→. As usual, we shall also use Λn to

denote words of length n over the alphabet Λ and Λ∗ to denote the set of all
finite words over Λ. For any word w = λ1λ2 . . . λn ∈ Λn, we say that s

w→ s′ iff

there exists s = s0, s1, . . . sn = s′ such that si
λi+1→ si+1 for all 0 ≤ i < n. For

n = 0, Λn = {ε}, where ε is the empty word. We say that s
ε→ s′ iff s = s′.

We say that s →n s′ if there is some word w ∈ Λn such that s
w→ s′. Finally,

we say that s →∗ s′ if there is some n ≥ 0 such that s →n s′.

Simulation Relation. Given two transition systems S1 = (S1, Λ,→1, si1) and
S2 = (S2, Λ,→2, si2), a relation R ⊆ S1×S2 is said to be a simulation relation

if for each (s1, s2) ∈ R and each s1
λ→1 s′1 there is a s′2 such that s2

λ→2 s′2
and (s′1, s

′
2) ∈ R. We shall say that s1 ∈ S1 is simulated by s2 ∈ S2 (written as

s1 vS1×S2 s2) if there is a simulation relation R such that (s1, s2) ∈ R; when
the transition systems S1 and S2 are clear from the context, we will drop the
superscript and simply write s1 v s2, instead of s1 vS1×S2 s2. We say that the
transition system S1 is simulated by the transition system S2 if si1 v si2 .
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Well-quasi-orders. A pre-order (reflexive and transitive binary relation) �
on a set Q is said to be a well-quasi-order if every countably infinite sequence
of elements q0, q1, . . . , from Q contains elements qr � qs for some 0 ≤ r < s.
The pair (Q,�) is said to be a w.q.o. if � is a well-quasi-order on Q. We shall
often write q � q′ if q′ � q. Given Q′ ⊆ Q, we say that MQ′ ⊆ Q′ is a minor
set for Q′ if i) for all q1 ∈ Q′ there is a q ∈ MQ′ such that q � q1, and ii) for
all q, q′ ∈ MQ′ , q 6= q′ implies q 6� q′. Every subset of Q has a finite minor set.
If the pre-order � is also a partial order (i.e., � is also anti-symmetric) then
every subset of Q has a unique minor set.

A set U ⊆ Q is said to be upward closed if for every q1 ∈ U and q2 ∈ Q, q1 � q2

implies that q2 ∈ U. An upward closed set is completely determined by its
minor set: if MU is a minor set for U then U = {q ∈ Q | ∃qm ∈ MU s.t. qm � q}.
Also any subset Q′ ⊆ Q determines an upward closed set, UQ′ = {q | ∃q′ ∈
Q′ s.t. q′ � q}. The following important observation follows from w.q.o. theory
[14].

Proposition 2.1 For every infinite sequence of upward closed sets U0, U1, . . .
such that Ur ⊆ Ur+1 for each r ≥ 0 there is a j ≥ 0 such that Ui = Uj for all
i ≥ j.

Counter w.q.o.’s, ranks and projections. The usual ≤ relation on the set
of natural numbers N is a well-quasi-order. The set Nl (Cartesian product on
l copies of N) also forms a w.q.o. with the usual pointwise ordering. Given
a finite set Q, the pointwise ordering on Nl can be extended to Q × Nl as
follows– (q, n1, . . . nl) ≤ (q′, n′1, . . . n

′
l) iff q = q′ and nj ≤ n′j for all 1 ≤ j ≤ l.

The resulting order is also a w.q.o.. The resulting order is also easily seen to
be a partial order. For the rest of the paper we shall be mainly concerned with
such w.q.o.’s and henceforth refer to them as counter w.q.o.’s.

Given a counter w.q.o. C = (Q × Nl,≤), we define the monotonic function
rank : Q×Nl → N as rank(q, n1, . . . nl) = max({ni | 1 ≤ i ≤ l}). The function
rank can be extended to upward closed sets [4] as follows : given any upward
closed subset U ⊆ Q×Nl, the function rank is the maximum rank of minimal
elements of U. In other words, rank(U) = max{rank(c) | c ∈ MU}. Note that
as the order ≤ on Q×Nl is a partial order, the function rank is well-defined. 1

For each k ≥ 0, we define a monotonic function prk : Q × Nl → Q × Nl as
prk((q, n1, n2, . . . nl)) = (q, min(n1, k), min(n2, k), . . . min(n2, k)). The impor-
tant property of the function prk is as follows.

Proposition 2.2 If c1 ≤ c and rank(c1) ≤ k then c1 ≤ prk(c). If U is an

1 In fact, given a w.q.o. (Q,�), any monotonic function rank : Q → N, can be
extended to the set of upward closed sub-sets of Q in a similar fashion even if the
underlying order is not a partial-order [4].
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upward-closed set, c ∈ U and k0 = rank(U) then prk(c) ∈ U for each k ≥ k0.

Data structures. We shall model the auxiliary store as pointed data struc-
tures which are defined in [4]. Formally, a pointed data structure is a tuple

D = (D, õp, p̃red, d) such that D is a set, elements of which are called data

values; õp is a finite collection of functions f : D → D; p̃red is a finite col-
lection of unary predicates on D; and d is an element of D, called the initial
data value. It is assumed that õp contains the identity function id and p̃red
contains a predicate p such that p(d) is true iff d = d.

As described in [4], pushdown stores and higher order pushdown stores can
be seen as instances of a pointed data structure. For example, a pushdown
store on a finite alphabet Γ in a pushdown automata can be formalized as
follows. The set Γ∗ (set of all finite strings over Γ) can be taken as the set of
data values with the empty string ε as the initial value. The set of predicates
p̃red can be chosen as {empty} ∪ {topγ | γ ∈ Γ} ∪ {any}, where empty = {ε},
topγ = {wγ |w ∈ Γ∗} (the top of stack is γ) and any = Γ∗ (any stack). The
set of functions õp can be defined as {id} ∪ {pushγ | γ ∈ Γ} ∪ {popγ | γ ∈ Γ}
where id is the identity function and the functions pushγ and popγ are defined
as follows. For all w ∈ Γ∗, pushγ(w) = wγ and popγ(w) = w1 if w = w1γ and
w otherwise. In a pushdown system the function popγ will be enabled only
when the store satisfies topγ. The function pushγ is enabled when the store
satisfies any.

Effective Data Structures. A pointed data structure D = (D, õp, p̃red, d)
is said to be effective if there is a finite binary representation of every d in
D; for every g ∈ õp, there is an algorithm APPLYg which given the binary
representation of d ∈ D returns the binary representation of g(d); and for every

p ∈ p̃red, there is an algorithm CHECKp which given the binary representation
of d ∈ D returns true if p(d) holds and returns false otherwise. For the rest
of paper, we shall assume that our data structures are effective. We shall now
formally define counter automata with auxiliary stores.

3 Counter automata with stores

Counter automata with stores are automata which have counter w.q.o.’s as the
set of states and have an auxiliary store. There are two kinds of transitions:
transitions that increment counters, and transitions that decrement counters.
We require that decrement transitions only happen when the data stored is
the initial value d.

Definition: Given a pointed data structure D = (D, õp, p̃red, d), a counter D-
automaton with store (CAS) and l counters is a 5-tuple C = (Q, Λ, δinc, δdec, q)
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such that

(1) Q is a finite set of control states and q ∈ Q is an initial control state.
(2) Λ is a finite set of labels.

(3) δinc ⊆ Q×Λ× p̃red× õp×Q×2{0,...,l−1} is the set of increment transitions.
(4) δdec ⊆ Q× Λ× Q× (2{0,...,l−1} \ ∅) is the set of decrement transitions.

The set Q × Nl is said to be the set of states of C. We shall say that C is a
finite D-automaton if the number of counters is 0 (i.e., l = 0).

The semantics of a CAS is described in terms of a transition system with the
set of configurations as {(c, d) | c ∈ Q × Nl and d ∈ D}. The configuration
((q, 0, . . . , 0), d) is the initial configuration. Formally, the transition relation

(c, d)
λ→C (c′, d′) is the union of two relations

λ→C,inc and
λ→C,dec.

• The increment transitions,
λ→C,inc, which increment counters, is formally

defined as follows: ((q, n1, . . . nl), d)
λ→C,inc ((q′, n′1, . . . n

′
l), d

′) if there is a
(q, λ, p, g, q′, B) ∈ δinc such that p(d) is true, g(d) = d′, n′i = ni + 1 for all
i ∈ B and n′i = ni for all i /∈ B.

• The decrement transitions,
λ→C,dec, decrement counters and are enabled only

when the data value is d. Formally, ((q, n1, . . . nl), d)
λ→C,dec ((q′, n′1, . . . n

′
l),

d′) if d = d′ = d and there is a (q, λ, q′, B) ∈ δdec such that ni > 0 for all
i ∈ B, n′i = ni − 1 for all i ∈ B and n′i = ni for all i /∈ B.

Notation: For a word w = λ1λ2 · · ·λn ∈ Λ∗, we say (c, d)
w→C,inc (c′, d′) iff

there are configurations (c, d) = (c0, d0), (c1, d1), . . . , (cn, dn) = (c′, d′) such

that (ci, di)
λi+1→ C,inc (ci+1, di+1) for each i. For the empty word ε, we say that

(c, d)
ε→C,inc (c′, d′) iff c = c′ and d = d′. We say (c, d)→∗

C,inc(c
′, d′) if there

is w ∈ Λ∗ such that (c, d)
w→C,inc (c′, d′). Similarly, (c, d)

w→C,dec (c′, d′) and
(c, d)→∗

C,dec(c
′, d′), can be defined as expected.

Next, given an upward-closed set U ⊆ Q×Nl, we say that (c, d)
λ→C,inc,U (c′, d′)

iff (c, d)
λ→C,inc (c′, d′) and c, c′ ∈ U. We can similarly define (c, d)

w→C,inc,U

(c′, d′) and (c, d)→∗
C,inc,U(c′, d′) (all the states in the intermediate steps must

belong to U). The relations (c, d)
w→C,dec,U (c′, d′), (c, d)→∗

C,dec,U(c′, d′), (c, d)
w→C,U (c′, d′) and (c, d)→∗

C,U(c′, d′) are similarly defined.

The next proposition shows that the transition relation of the CAS is up-
ward compatible. The proof of this proposition follows immediately from the
definition.

Proposition 3.1 The relation →C is upward compatible, that is, (c, d)
λ→C

(c′, d′) implies that for any c1 ≥ c, there is a c′1 ≥ c′ such that (c1, d)
λ→C

(c′1, d
′).
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We say that there is a non-terminating computation of C from a configuration
(c, d) if there is an infinite sequence of configurations (c0, d0), (c1, d1), . . . and

an infinite sequence of labels λi ∈ Λ such that (c0, d0) = (c, d) and (ci, di)
λi→C

(ci+1, di+1) for all i. We shall often write (c, d) ↑C if C has a non-terminating
computation from (c, d). We can define (c, d) ↑C,U, (c, d) ↑C,inc, (c, d) ↑C,inc,U

, (c, d) ↑C,dec and (c, d) ↑C,dec,U similarly.

Please note that we shall often drop the subscript C whenever it is clear from
the context. Also note that there is no zero-test on the counters (zero-test is
not an upward compatible). However, the decrement transitions do have an
implicit non-zero test. The CAS’s are instances of w.q.o. automata discussed
in [4]. Before we proceed to the decidability problems, we first consider an
under-approximation of a CAS which will be useful in the decision algorithms.

3.1 A finite approximation

We shall now give an under-approximation of CAS which captures the incre-
ment transitions in a finite D-automaton. This under-approximation which
essentially cuts-off the counter values at a given k is a modification of the
rank k under-approximation defined in [4].

Definition: Let D = (D, õp, p̃red, d) be a pointed data structure and let
C = (Q, Λ, δinc, δdec, q) be a counter D-automaton with l counters. The k-
bounded semi-approximation is the finite D-automaton C≤k = (C≤k, Λ, δk, ∅, c)
where C≤k = Q× [0, k]l, c = (q, 0, . . . , 0) and δk is defined as follows:

• Given c = (q, n1, n2, . . . , nl) ∈ C≤k and c′ = (q′, n′1, n
′
2, . . . , n

′
l) ∈ C≤k, we

say (c, λ, p, g, c′, ∅) ∈ δk iff there is a B ⊆ {0, 1, . . . , l − 1} such that
(1) (q, λ, p, g, q′, B) ∈ δinc, and
(2) n′i = min(ni + 1, k) for all i ∈ B and n′i = ni all i /∈ B.

The following proposition shows how increment transitions are captured faith-
fully in k-bounded semi-approximations (please recall the function prk defined
in Section 2 cuts off the counter values at k).

Proposition 3.2 Let C = (Q, Λ, δinc, δdec, q) be a CAS with l counters on
data structure D and let C≤k be the k-bounded semi-approximation of C. For

every c, c′ ∈ Q × Nl, if (c, d)
λ→C,inc (c′, d′) then (prk(c), d)

λ→C≤k
(prk(c

′), d′).

Furthermore if (prk(c), d)
λ→C≤k

(c1, d
′) for some c1 ∈ Q× [0, k]l then there is

some c′ ∈ Q× Nl such that c1 = prk(c
′) and (c, d)

λ→C,inc (c′, d′).

The above result can be bootstrapped to (finite and infinite) computations as
follows.
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Lemma 3.3 Let C = (Q, Λ, δinc, δdec, q) be a CAS with l counters on data
structure D and let U ⊆ Q×Nl be an upward closed set. Let k = rank(U) and
let C≤k be the k-bounded semi-approximation of C. Let U≤k = U∩(Q×[0, k]l).

Given c, c′ ∈ U, data values d, d′ and word w ∈ Λ∗, if (c, d)
w→C,inc,U (c′, d′) then

(prk(c), d)
w→C≤k,U≤k

(prk(c
′), d′). Furthermore, if (prk(c), d)

w→C≤k,U≤k
(c1, d

′)

for some c1 ∈ Uk then (c, d)
w→C,inc,U (c′1, d

′) for some c′1 ≥ c1.

Thus, (c, d)↑C,inc,U iff (prk(c), d) ↑C≤k,U≤k
.

Proof. Please note that the observation on infinite computations follow di-
rectly from the result on finite computations and Koning’s Lemma. The result
on finite words follows directly from Proposition 3.2 by induction and the
observation that for any c2 ∈ U, it must the case that prk(c2) ∈ U≤k (see
Proposition 2.2). 2

We get as a corollary that for checking termination with increment operations
we can simply ignore counters and consider just the underlying automata.

Corollary 3.4 Let C be a CAS on D with l counters. Let C≤0 be the 0-
bounded semi-approximation C. Then, given a state c and a data value d,
(c, d) ↑C,inc iff (pr0(c), d) ↑C≤0

.

We are now ready to discuss the question of deciding termination and control
state maintainability.

4 Termination and control state maintainability

We shall now show that termination and control state maintainability for
CAS is decidable if the termination for finite D-automaton is decidable. The
decision procedure for these problems follow ideas similar to the ones behind
the algorithms for WSTS [7,3]. For the rest of the section we shall assume a

fixed pointed-data structure D = (D, õp, p̃red, d).

The termination problem for general automata asks if all computations of the
automata terminate. For WSTS, the problem of termination is solved by con-
structing the reachability tree in a breadth-first manner. If all computations
terminate, then the reachability tree constructed is finite. Otherwise, by prop-
erties of well-quasi-orders, we shall find a self-covering path, i.e., two reachable
states q1 and q2 such that q1 is a parent of q2 and q1 is dominated by q2 in
the well-quasi-order. We now adapt the decision algorithm for termination of
WSTS for CAS’s.

Theorem 4.1 (Termination) Assume that for an effective data structure
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D, the termination problem is decidable for finite D-automaton. Then the
termination problem is decidable for CAS’s on D.

Proof. Let C = (Q, Λ, δinc, δdec, q) be a CAS. Let the initial data value be d and
consider the (possibly infinite) tree, T , of reachable configurations where each
node is labeled by a configuration of C. The root is labeled by ((q, 0, . . . , 0), d);
and for every node labeled by a configuration (c, d) it must be the case that

the set of labels of its children is the set {(c′, d′) | ∃λ ∈ Λ s.t. (c, d)
λ→ (c′, d′)}.

Using Koning’s lemma, it is easy to see that C has a non-terminating compu-
tation (i.e., T has an infinite path) iff T is infinite.

If T has an infinite path n0, n1 . . ., then one of the following must happen.

(1) For an infinite number of nodes along the infinite path, the data value
in the labeling configuration is the initial data value d. In other words,
there is an infinite sub-sequence of nodes ni1ni2 . . . with ij < ij+1∀j ≥ 0
such that if (cij , dij) labels nij then dij = d. Now since Q×Nl is a w.q.o.,
there must be some ik < ik′ such that cik ≤ cik′

. Also, please note that by
upward-compatibility of transition relation if there is a path in T such
that there are two nodes n and n′ labeled by (c, d) and (c′, d) respectively
such that n is an ancestor of n′ and c ≤ c′ then T must necessarily have
an infinite path.

(2) There is a node ni on this path labeled by (ci, di) such that di = d and for
all j > i, if nj is labeled by (cj, dj) then dj 6= d. Then by definition, ∀j ≥ i

the transition (cj, dj)
λi→ (cj+1, dj+1) must use increment transitions. Also

please note that if there a reachable configuration (c, d) such that there
is an infinite path from (c, d) that just uses increment transitions then T
must necessarily have an infinite path.

The above observations suggest the following algorithm to solve the termina-
tion problem. The algorithm starts by constructing the tree T in a breadth-
first manner. Whenever we add a node n labeled by (c, d) we check-

(1) if there is an ancestor of the node n labeled by (c′, d) such that c′ ≤ c; or
(2) if there is an infinite path from (c, d) that uses only increment transitions.

Please note that by Corollary 3.4, this is reducible to checking termination
in a finite D-automaton.

If either of the above two conditions hold, then the algorithm returns that
there is a non-terminating computation of C.

If there is no such node, the reachability tree T must be finite and the al-
gorithm returns that all computations of C must terminate once we cannot
extend T . 2
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A maximal computation of a CAS is either an infinite computation or a fi-
nite computation that cannot be extended. Given, an upward closed set of
states U ⊆ Q × Nl (in terms of its minimal elements), the control state
maintainability problem for a CAS C asks if there is a maximal computa-

tion (c0, d)
λ0→ (c1, d1)

λ1→ (c2, d2) . . . such that c0 = (q, 0, . . . , 0) and ci ∈ U
for all i. The algorithm for termination can be modified to give the following
result.

Theorem 4.2 (Control state maintainability) Assume that for an effec-
tive data structure D, the termination problem is decidable for finite D-
automaton. Then the control state maintainability problem is decidable for
CAS’s on D.

Proof. Let C be a CAS and U ⊆ Q× Nl be an upward closed set of states of
C. As in the proof of Theorem 4.1, consider the infinite reachability tree T
with nodes labeled by configurations and the parent-child relation reflecting
the transition relation of C. As in the proof of Theorem 4.1, we can show that
there is a maximal computation of C maintainable in U iff one of the following
holds.

(1) There is a maximal finite path such that if (c, d) labels a node along this
path then c ∈ U.

(2) There are two reachable nodes n and n′ labeled by (c, d) and (c′, d) re-
spectively such that n is an ancestor of n′, c ≤ c′, and if (c′′, d′′) labels a
node from the root to n′ then c′′ ∈ U.

(3) There is a reachable node n labeled by (c, d) such that if (c′, d′) la-
bels a node from the root to n, then c′ ∈ U; and (c, d) ↑C,inc,U, which
means that there is an infinite path starting from (c, d) using only in-
crement transitions and always remaining in U. Now by Lemma 3.3,
please note that if k = rank(U),C≤k = (C≤k, Λ, δk, ∅, c) is the k-bounded
semi-approximation of C and U≤k = U ∩ C≤k then (c, d) ↑C,inc,U iff
(prk(c), d) ↑C≤k,U≤k

. By restricting C≤k to states U≤k, the question

whether (prk(c), d) ↑C≤k,U≤k
is reducible to a question of termination of

the restricted automaton.

Now the desired algorithm can be constructed similar to the one constructed
in the proof of Theorem 4.1. We start by constructing the reachability tree.
If one of the above three conditions hold at any point then the algorithm
returns that T has a path that is maintainable in U. Otherwise, if U is not
maintainable, then every computation would have a node labeled by some
configuration (c′, d) with c′ 6∈ U and we do not need to extend the tree from
that node. We can call such nodes unsuccessful nodes. The algorithm returns
that U is not maintainable if all computations lead to unsuccessful nodes. 2
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5 Simulation by Finite Transition System

A CAS C is said to be simulated by a finite transition system S if the transition
system defined by C is simulated by S. The algorithm for deciding whether a
WSTS is simulated by a S (which we shall adapt here) depends on the fact
that the non-simulation can be computed as a fix-point.

Proposition 5.1 Let S1 = (S1, Λ,→1, si1) and S2 = (S2, Λ,→2, si2) be two
transition systems. For each s2 ∈ S2, consider the (increasing) sequence Is2,0,
Is2,1, . . . of sub-sets of S1 constructed as follows:

• Is2,0 = ∅.
• Is2,j+1 = Is2,j ∪ {s1 ∈ S1 | ∃λ ∈ Λ, s′1 ∈ S1 s.t. s1

λ→1 s′1 and ∀s′2 ∈
S2.((s2

λ→2 s′2) ⇒ (s′1 ∈ Is′2,j))}.

For s1 ∈ S1 and s2 ∈ S2, s1 6vS1×S2 s2 iff there exists j ≥ 0 such that s1 ∈ Is2,j.

Intuitively, the fix-point characterization can be thought of as follows. Initially,
we do not know if s1 ∈ S1 is simulated by s2 ∈ S2 or not. At the first step we
check if there is some label λ such that s1 has a transition labeled by λ, but
s2 has no such transition. If this is the case, we know that s1 is not simulated
by s2. At the end of step j, we know that for each pair (s′1, s

′
2) in the set

Fj = {(s′1, s′2) | s′2 ∈ S2 and s′1 ∈ Is′2,j}, it is the case that s′1 is not simulated

by s′2. At step j+1, we check if s1 has a transition s1
λ→1 s′1 such that whenever

s2 tries to match the transition by a transition s2
λ→2 s′2, it is the case that

(s′1, s
′
2) ∈ F j. If this is the case we can conclude that s1 is not simulated by

s2. This is because even if s2 can match s1
λ→1 s′1, it cannot match subsequent

transitions. We can think of F j as an “assisting set” which helps to prove that
s1 is not simulated by s2 by just considering 1-step transitions out of s1.

The algorithm for checking whether a WSTS is simulated by a finite transition
system exploits the above fixed point characterization as follows: if S1 is a
WSTS then Is2,j is upward-closed for each s2 ∈ S2, j ≥ 0. By properties of
well-quasi-orders and the fact S2 is a finite, there is a j1 such that Is2,j =
Is2,j1∀j ≥ j1, s2 ∈ S. The algorithm computes this j1 by a backward search.

We shall adopt a similar approach for deciding whether a CAS is simulated by a
finite transition system. However, we first extend the definition of simulations
for our purposes.

Definition: Given transition systems S1 = (S1, Λ,→1, si1), S2 = (S2, Λ,→2

, si2) and a set F ⊆ S1 × S2, we say that R ⊆ S1 × S2 is a simulation relation
with forbidden F if R is a simulation relation and R ∩ F = ∅. We say that
s1 vS1×S2

F s2 if there is a simulation relation R with forbidden F such that
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(s1, s2) ∈ R.

Although the definition of the simulation with forbidden F may seem contrived,
we argue that it is quite natural. First note that the definition of simulation
coincides exactly with the definition of simulation with forbidden F where the
forbidden set F is the empty set. Intuitively, a (possibly non-empty) forbidden
F can be thought of as an “assisting set” which gives a collection of pairs (s′1, s

′
2)

such that s′1 is not simulated by s′2. Indeed if F is a set such that s′1 is not
simulated by s′2 for each (s′1, s

′
2) ∈ F then s1 vS1×S2 s2 iff s1 vS1×S2

F s2. Indeed
for such an “assisting set” we could have started the backward induction in
Proposition 5.1 by taking Is′2,0 = {s′1 | (s′1, s

′
2) ∈ F} for each s′2 ∈ S2.

The following are easy consequences of the definition of simulation with for-
bidden sets.

Proposition 5.2 Given transition systems S1 = (S1, Λ,→1, si1), S2 = (S2, Λ,
→2, si2) and sets F, F0 ⊆ S1 × S2.

• If s1 6vS1×S2
F s2 and F ⊆ F0 then s1 6vS1×S2

F0
s2 also.

• If s1 6vS1×S2
F s2 and s 6vS1×S2 s′ for all (s, s′) ∈ F then s1 6vS1×S2 s2.

The algorithm for deciding whether a WSTS is simulated by a finite transition
system cannot be immediately extended to deciding whether a CAS C is sim-
ulated by a finite transition system S. This is because the set of configurations
of C may not necessarily form a wqo and hence we will not know when to stop
the backward induction in Proposition 5.1. However, given a fixed data value
(say initial data), the sub-set of configurations with that data value is easily
see to be a wqo. We shall make use of this important observation in our algo-
rithm to decide if a CAS is simulated by a finite transition system. We shall
first describe this algorithm informally. We first fix some notation. For the rest
of this section, we shall fix a finite transition system S = (S, Λ,→, si). We shall

also fix a CAS C = (Q, Λ, δinc, δdec, q) on a data structure D = (D, õp, p̃red, d)
with l counters. Let Conf = (Q × Nl) × D. Let c ∈ (Q × Nl) be the element
(q, 0, . . . , 0). Let SC = (Conf, Λ,→, (c, d)) be the transition system generated
by C and let SC,inc = (Conf, Λ,→inc, (c, d)) be the transition system generated
by C which uses only increment transitions.

Now every computation (c, d) →∗
C (c′, d) of C is of the form (c, d) →∗

C,inc

(c1, d) →C,dec (c2, d) →∗
C,inc . . . →C,dec (cn, d) →∗

C,inc (c′, d). Keeping this ob-
servation in mind, our algorithm proceeds informally as follows.

• For each j ∈ N and s ∈ S, we compute an increasing sequence Is,j ⊆ Conf
such that if (c, d) ∈ Is,j then d is the initial data d and (c, d) 6vSC×S s.
(In the actual algorithm, we will just need to keep track of the set Us,j =
{c | (c, d) ∈ Is,j}.)
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• Initially Is,0 = ∅ for each s ∈ S.
• For s ∈ S and even j, let F j = {((c, d), s) | (c, d) ∈ Is,j}. Now, we have that

(c, d) 6v s for each ((c, d), s) ∈ F j. Indeed, F j is the set of all pairs ((c, d), s)
such that our algorithm has concluded (within the first j steps) that (c, d) is
not simulated by s. The set Is,j+1 will be the set of configurations (c, d) such
that given the “assisting set” F j, the non-simulation of (c, d) by s can be
derived by considering only the increment transitions of C. More precisely,
Is,j+1 = Is,j ∪ {(c, d) | (c, d) 6vSC,inc×S

Fj s}.
• For s ∈ S and odd j, the construction of Is,j+1 is very much like in Propo-

sition 5.1 except we only consider decrement transitions. More precisely,

Is,j+1 = Is,j ∪ {(c, d) | ∃λ ∈ Λ, (c′, d) ∈ Conf s.t. (c, d)
λ→dec (c′, d) and ∀s′ ∈

S.((s
λ→ s′) ⇒ ((c′, d) ∈ Is′,j))}.

• As in the case of WSTS, we can argue that there is a j1 such that Is,j1 =
Is,j1+1 = Is,j1+2 for each s ∈ S (and thus Is,j1 = Is,j′ for each j′ ≥ j1, s ∈ S).
C will be simulated by S if (c, d) /∈ Isi,j1 .

We shall now carry out the above algorithm formally and show that the algo-
rithm does indeed solve the problem we set out to solve. For this, as we have
seen above, our algorithm needs to check if SC,inc is simulated by S for some
forbidden sets. The forbidden sets used are of certain kind.

Definition: A set F ⊆ Conf × S is said to be a pointed forbidden set if
((c, d), s) ∈ F implies that d = d. A pointed forbidden set F is said to be
upward-closed if for each s ∈ S the set Us = {c | ((c, d), s) ∈ F} is upward-
closed. If F is pointed and upward-closed, we let rank(F) = 0 if F = ∅, otherwise
rank(F) = max{rank(Us) | s ∈ S}. For k ≥ 0, we let Fk = {((c, d), s) |
((c, d), s) ∈ F and c ∈ Q× [0, k]l}.

The following Lemma says that in order to check if SC,inc is simulated by
a finite transition system with pointed and upward-closed forbidden sets, it
suffices to consider k-bounded semi-approximations.

Lemma 5.3 Let SC,inc be the transition system generated by C and increment
transitions with Conf as the set of configurations. Let S be a finite transition
system with S as the set of configurations. Let F ⊆ Conf × S be a pointed
and upward-closed forbidden set, k be rank(F), C≤k be the k-bounded semi-
approximation of C and SC≤k

be the transition system generated by C≤k. For

any (c, d) ∈ Conf, (c, d) vSC,inc×S
F s iff (prk(c), d) v

SC≤k
×S

Fk
s.

Proof. For each s ∈ S, we define a sequence Is,0, Is,1, . . . of sub-sets of Conf
as follows.

(1) Is,0 = {(c, d) | ((c, d), s) ∈ F}.
(2) Is,j+1 = Is,j ∪ {(c, d) | ∃λ ∈ Λ, (c′, d′) ∈ Conf s.t. (c, d)

λ→C,inc (c′, d′) and
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∀s′ ∈ S we have that ((s
λ→ s′) ⇒ ((c′, d′) ∈ Is′,j))}.

Please note for each s ∈ S, d ∈ D and j ≥ 0 the set {c | (c, d) ∈ Is,j} is

upward closed. It can be shown that (c, d) 6vSC,inc×S
F s iff there is a j such that

(c, d) ∈ Is,j.

Now, we also define a sequence Ik
s,0, I

k
s,1, . . . of sub-sets of Conf≤k = (Q ×

[0, k]l)×D as follows.

(1) Ik
s,0 = {(c, d) | c ∈ Q× [0, k]l, ((c, d), s) ∈ Fk}.

(2) Ik
s,j+1 = Ik

s,j ∪ {(c, d) ∈ Conf≤k | ∃λ ∈ Λ, (c′, d′) ∈ Conf≤k s.t. (c, d)
λ→C≤k

(c′, d′) and ∀s′ ∈ S we have that ((s
λ→ s′) ⇒ ((c′, d′) ∈ Ik

s′,j))}.

It can be shown that for c1 ∈ Conf≤k, (c1, d) 6v
SC≤k

×S

Fk
s iff there is a j such

that (c1, d) ∈ Ik
s,j.

The result thus follows if we can show that for each c ∈ Q × Nl, d ∈ D and
each j ≥ 0, (c, d) ∈ Is,j iff (prk(c), d) ∈ Ik

s,j. We prove this by induction on j.
Please note that for j = 0, the claim is true by construction.

Assume that the claim is true for j ≥ 0. If (c, d) ∈ Is,j+1 \ Is,j then there

is a transition (c, d)
λ→C,inc (c′, d′) such that ∀s′ ∈ S we have that ((s

λ→
s′) ⇒ ((c′, d′) ∈ Is′,j))}. By induction hypothesis, for any s′ ∈ S we have that
(prk(c

′), d′) ∈ Ik
s′,j if (c′, d′) ∈ Is′,j. Furthermore, we also have by Proposition

3.2 that (prk(c), d)
λ→C≤k

(prk(c
′), d′). Thus, by definition of Ik

s,j+1, (prk(c), d) ∈
Ik
s,j+1.

Similarly, if (prk(c), d) ∈ Ik
s,j+1 \ Ik

s,j, we can show that (c, d) ∈ Is,j+1. 2

Please observe that the set Fk in Lemma 5.3 is finite. We are ready to show
the main result of this section.

Theorem 5.4 (Simulation by finite transition systems) Assume that
the simulation of a finite D-automaton by a finite transition system with a
finite pointed forbidden set is decidable. Then there is an algorithm that given
a CAS, C, and a finite state transition S returns true if C is simulated by S
and false otherwise.

Proof. Consider the following increasing sequence (constructed inductively
for each s ∈ S) of upward-closed sets Us,0, Us,1, . . . ⊆ Q× Nl:

• Us,0 = ∅.
• When j is odd, Us,j+1 = Us,j∪{c ∈ Q×Nl | ∃λ ∈ Λ, c′ ∈ Q×Nl s.t. (c, d)

λ→dec

(c′, d) and ∀s′ ∈ S.((s
λ→ s′) ⇒ (c′ ∈ Us′,j))}.
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• When j is even, let Fj = {((c1, d), s1) ∈ Conf × S | c1 ∈ Us1,j} and Us,j+1 =

Us,j ∪ {c ∈ Q× Nl | (c, d) 6vSC,inc×S

Fj s}. Note that checking (c, d) 6vSC,inc×S

Fj s
involves the transition system SC,inc and not SC.

We have the following claim.

Claim: For each c ∈ Q×Nl and s ∈ S, (c, d) 6vSC×S s iff there is a j ≥ 0 such
that c ∈ Us,j.

We postpone the proof of the claim. We show first how the claim allows us
to get a decision procedure for the simulation. Please note that since S has
only a finite number of elements and that each Us,j is an upward closed set,
there must be a j1 such that Us,j1 = Us,j∀s ∈ S and j ≥ j1. Thus, if we can
compute this j1 and minor sets for Us,j for s ∈ S and j ∈ N we can decide the
simulation problem.

Now, please note we can compute the minor sets for Us,j by backward induc-
tion. When j is odd, we can compute the minor set for Us,j+1 by inspection of
the decrement edges. When j is even, we can compute the minor set for Us,j

by taking recourse to Lemma 5.3. We stop when Us,j = Us,j+1 = Us,j+2 for
each s. This j is the required j1. Now, we prove the above claim.

Proof the claim:
(⇒) We show by induction on j that if c ∈ Us,j then (c, d) 6vSC×S s. Please
note that the claim is true for j = 0. Assume that the claim is true for any
j ≤ k. We now consider j = k + 1. There are two cases:

(1) k is even. Pick c ∈ Us,k+1. By definition, (c, d) 6vSC,inc×S

Fk s. Observe that
the transition system SC,inc has the same set of configuration as SC but
has fewer transitions. Thus, (c, d) 6vSC×S

Fk s. Also, by induction hypothesis
(c0, d0) 6vSC×S s0 for all ((c0, d0), s0) ∈ Fk. Hence, we get by Proposition
5.2 that (c, d) 6vSC×S s.

(2) k is odd. This case is straightforward. If c ∈ Us,k+1 then either it is
already in Us,k and the result follows from induction hypothesis or there

is a transition (c, d)
λ→ (c′, d) which cannot be matched by s.

(⇐) We need to show that if (c0, d) 6vSC×S s0 then there is a j ≥ 0 such that
c0 ∈ Us0,j. Given s ∈ S, consider the following increasing sequence of sets
Ms,k ⊆ Conf:

• Ms,0 = ∅.
• When j is odd, Ms,j+1 = Ms,j ∪ (Us,j+1 × {d}).
• When j is even, let Ms,j+1 = Ms,j ∪ {(c, d) ∈ Conf | (c, d) 6vSC,inc×S

Fj s}.

Please note that it is easy to see by construction that for all j ∈ N, c ∈
Q × Nl and s ∈ S, c ∈ Us,j iff (c, d) ∈ Ms,j. Now, consider the relation

16



R = {((c, d), s) ∈ Conf × S | (c, d) /∈ ∪∞j=0Ms,j}. We claim that the result will
follow if we can demonstrate that R is a simulation relation. Indeed, if R is a
simulation relation then as (c0, d) 6vSC×S s0, we get that ((c0, d), s0) /∈ R. By
definition of R, this implies that (c0, d) ∈ ∪∞j=0Ms0,j. Thus, there is a j0 such

that (c0, d) ∈ Ms0,j0 and hence c0 ∈ Us0,j0 . Therefore, the result follows if we
can show that R is a simulation relation.

In order to show that R is a simulation relation, we need to show that whenever

((c, d), s) ∈ R and (c, d)
λ→ (c′, d′) then there is a s′ such that ((c′, d′), s′) ∈ R

and s
λ→ s′. There are two cases.

(1) The transition (c, d)
λ→ (c′, d′) is a decrement transition. In this case

d = d′ = d. Let S1 = {s′ | s
λ→ s′}. Please note that if S1 = ∅ then

(c, d) ∈ Ms,2 and hence ((c, d), s) /∈ R. Hence, S1 6= ∅. Assume now, by
way of contradiction, that for each s′ ∈ S1 it is the case that ((c′, d), s′) 6∈
R. Hence for each s′ ∈ S1, there is a unique js′ > 0 such that c′ ∈ Us′,js′

\
Us′,js′−1. Now, S1 is finite and thus there is an odd j0 such that j0 ≥ js′ for
all s′ ∈ S1. Now, we get c′ ∈ Us′,j0 for all s′ ∈ S1. Hence, by construction
c ∈ Us,j0+1 which implies that ((c, d), s) 6∈ R. A contradiction.

(2) The transition (c, d)
λ→ (c′, d′) is an increment transition. Again, let S1 =

{s′ | s
λ→ s′}. Please note that S1 6= ∅ (otherwise (c, d) ∈ Ms,1). Assume

now, by way of contradiction, that for each s′ ∈ S1 it is the case that
((c′, d′), s′) /∈ R. Hence for each s′ ∈ S1, there is a unique js′ > 0 such
that (c′, d′) ∈ Ms′,js′

\ Ms′,js′−1. Pick j0 such that j0 is an even number
≥ js′ for all s′ ∈ S1. Now there are two cases depending on d′.

The first case is that d′ is not the initial data value d. We have by
definition, that (c′, d′) 6vSC,inc×S

Fjs′−1 s′ for all s′ ∈ S1. Please note that since Fk

is an increasing sequence, we have by Proposition 5.2 that (c′, d′) 6vSC,inc×S

Fj0

s′ for all s′ ∈ S1. It is easy to see that this implies that (c, d) 6vSC,inc×S

Fj0
s

and hence ((c, d), s) ∈ Ms,j0+1. Thus, ((c, d), s) /∈ R. A contradiction.
If d′ is the initial data value d then ((c′, d′), s′) ∈ Fj0 for all s′ ∈ S1 and

we again get by definition (c, d) ∈ Ms,j0+1. Hence ((c, d), s) /∈ R which
contradicts ((c, d), s) ∈ R. 2

We observe here that for a finite D-automaton C, finite pointed F and finite
transition system S the question of deciding whether C vF S can be restated
as a reachability game and hence is decidable if D is pushdown store or a
higher-order store.
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6 Simulation of finite transition systems

A CAS C is said to simulate a finite transition system S if S is simulated by
the transition system defined by the CAS C. The key ingredient in the proofs
of decidability for WSTS’s of termination, control state maintainability and
simulation by finite state automaton is the existence of a trace with special
properties. This allows the algorithms for WSTS’s to be extended to CAS’s.
Each trace of a CAS is of special form in which increment and decrement
transitions alternate and the decrement only happens at the initial data value.
This property essentially allows one to combine the counter w.q.o. properties
and adapt the algorithms for WSTSs. The algorithm for whether a WSTS
simulates a finite transition system [3] is, however, based on the construction
of an and-or reachability tree; and essentially exploits the properties of the
whole tree rather than just traces. For this reason, we were not able to extend
the algorithm for WSTS to CAS.

We were, however, able to come up with an algorithm for deciding whether a fi-
nite transition system is simulated by a CAS by using new under-approximations.
These under-approximations capture both the increment and decrement tran-
sitions in a finite D-automaton. The states of the under-approximation are
obtained by bounding the counter values. Since they capture the decrement
transitions also, they are different from the under-approximations discussed
in Section 3.1. Formally,

Definition: Let D = (D, õp, p̃red, d) be a pointed data structure and let
C = (Q, Λ, δinc, δdec, q) be a CAS with l counters. The k-bounded approximation
is a finite D-automaton Cf

≤k = (C≤k, Λ, δk, ∅, c) where C≤k = Q × [0, k]l, c =
(q, 0, . . . , 0) and δk is defined as follows.

• For each (q, λ, q′, B) ∈ δdec, (c, λ, p, id, c′, ∅) ∈ δk if c = (q, n1, . . . , nl), c
′ =

(q′, n′1, . . . n
′
l) for some n1, . . . , nl and n′1, . . . , n

′
l such that n′i = ni − 1 ≥ 0

for i ∈ B and n′i = ni for i /∈ B.
• For each (q, λ, p, g, q′, B) ∈ δinc, (c, λ, p, g, c′, ∅) ∈ δk if c = (q, n1, . . . , nl), c

′ =
(q′, n′1, . . . n

′
l) for some n1, . . . , nl and n′1, . . . , n

′
l such that n′i = min(ni+1, k)

for i ∈ B and n′i = ni for i /∈ B.

Remark: Please note that the under-approximations used for proving de-
cidability results in this paper differ from the approximations used by Jhala
and Majumdar [12] to prove control-state decidability for the special case of
CAS with a pushdown store. They use an over-approximation and an under-
approximation both of which cut-off the counter values at a given k. For the
over-approximation, once the cut-off k for a counter is reached, both incre-
ment and decrement edges do not change the counter value. For the under-
approximation, there is a transition in the under-approximation only if there
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is a transition in the original CAS– if an increment edge causes a counter
value to go beyond the cut-off k then the transition is not reflected in the
under-approximation.

For the rest of this Section, we shall fix the data structure D = (D, õp, p̃red, d)
and a CAS C = (Q, Λ, δinc, δdec, q) on D. The set Q×Nl shall be denoted by C
and C ×D, the set of configurations of C shall be denoted by Conf. Given k,
Cf
≤k = (C≤k, Λ, δk, ∅, c) will denote the k-bounded approximation of C. The

k-bounded approximation is sound for simulation relation.

Lemma 6.1 (Soundness of bounded approximation) If the k-bounded
approximation Cf

≤k of a CAS C simulates a transition system S then C sim-
ulates the transition system S.

Proof. Let S be the set of configurations of S. If the relation R ⊆ S×(C≤k×D)
witnesses the simulation of S by Cf

≤k, then the relation R↑ ⊆ S × (C × D)
defined as

{(s, (c, d)) | ∃c′ ≤ c s.t. (s, (c′, d)) ∈ R}
witnesses the simulation of S by C. 2

We next show that if S is simulated by C, then there must be some bounded
approximation that simulates it.

Lemma 6.2 (Faithfulness of bounded approximations) Assume that a
CAS C simulates a finite transition system S. Then there is a k0 such that S
is simulated by the k0-bounded approximation Cf

≤k0
.

Proof. Let S be the set of configurations of S. Recall that d is the initial data
value. Given s ∈ S, let Sims ⊆ C be the set {c | s v (c, d)}. The set Sims

is upward closed. Let k0 = max({rank(Sims) | s ∈ S, Sims 6= ∅}). Please note
that since S is a finite transition system, k0 exists and is finite.

Recall that Cf
≤k0

is the k0-bounded approximation of C and has C≤k0 = Q×
[0, k]l as the set of control states. Consider the relation Sim↓ ⊆ S × (C≤k0 ×
D) defined as the union of two relations Sim<k0 and Sim=k0 . The relation
Sim<k0 = {(s, (c, d)) | rank(c) < k0 and s v (c, d)}. The definition of Sim=k0

is more subtle and uses the function prk0
defined in Section 2 which cuts-off

counter values at k0. The relation Sim=k0 = {(s, (c, d)) | rank(c) = k0 and ∃c′ ≥
c s.t. (s v (c′, d) and prk0

(c′) = c)}.

We claim that the relation Sim↓ is a simulation of S by Cf
≤k0

. In order to prove
this, we check the definition of what it means to be a simulation relation. Thus
given (s, (c, d)) ∈ Sim↓, we need to check that every transition of s is matched
by (c, d). There are two cases depending on rank(c).

• (rank(c) < k0). In this case, every step of s can be matched as it would be
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matched in the original CAS C.
• (rank(c) = k0). Then there must exist c′ such that rank(c′) ≥ k0, prk0

(c′) = c
and (s v (c′, d)). There are two cases depending on the data value d.
· (d = d). Then c′ ∈ Sims. Since Sims is upward closed and rank(Sims) ≤ k0

(by definition of k0), we get by Proposition 2.2 that c = prk0
(c′) ∈ Sims.

Thus s v (c, d) also and (c, d) will match each step of s in Cf
≤k0

as it
would match it in C.

· If d 6= d, then we observe that all transitions out of (c′, d) in C must be

increment transitions. Furthermore, if (c′, d)
λ→C,inc (c′′, d1), then it can be

shown that (prk0
(c′), d)

λ→Cf
≤k0

(prk0
(c′′), d1). Hence any step of s can be

matched in the k0-bounded approximation.

Thus, we get the desired result. 2

We get as a consequence of Lemmas 6.1 and 6.2:

Corollary 6.3 Assume that the simulation between a finite transition system
and a finite D-automaton is decidable. There is a semi-decision procedure that
given a finite transition system S and a CAS C returns true if S is simulated
by C.

In order to get the algorithm for deciding simulation, we need another semi-
decision procedure which checks if S is not simulated by C:

Proposition 6.4 There is a semi-decision procedure that given a finite tran-
sition system S and a CAS C returns true if S is not simulated by C.

Proof. Let S and Conf be the set of configurations of S and C respectively.
For each n ∈ N consider the relation vn⊆ S × Conf defined inductively as

• s v0 (c, d) for all s ∈ S and (c, d) ∈ Conf.

• s vn+1 (c, d) iff s vn (c, d), and for each s
λ→ s′ there is a configuration

(c′, d′) such that (c, d)
λ→C (c′, d′) and s′ vn (c′, d′).

Since the CAS C is finitely branching, it can be shown that s v (c, d) iff
s vn (c, d) for all n. Hence, in order to check if s 6v (c, d) one needs to find a
n such that s 6vn (c, d). Also note that given s,(c, d) and n there is a decision
procedure to check if s 6vn (c, d) which gives us a semi-decision procedure that
returns true if S is not simulated by C. 2

Combining Corollary 6.3 and Proposition 6.4, we get:

Theorem 6.5 (Simulation of finite transition systems) Assume that
the simulation of a finite transition system by a finite D-automaton is decid-
able. There is an algorithm that given a finite transition system S and a CAS
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C returns true if S is simulated by C, otherwise it returns false.

7 Conclusions and future work

We gave sufficient conditions under which the problems of termination, control
state maintainability, simulation of and by finite state systems for counter au-
tomata with store (CAS) are decidable; the problem of verifying general CTL,
CTL∗, and modal µ-calculus problems is known to be undecidable. An imme-
diate consequence of our observation is that these problems are decidable for
asynchronous programs. We can also show that the algorithms to decide ter-
mination and control state reachability can be generalized to w.q.o. automata
(automata whose control states are general w.q.o.s rather than counter w.q.o.),
though we do not report these results here. Problems for future research in-
clude verifying LTL (or ω-regular) properties of CAS, and checking if the
simulation algorithms can be generalized to w.q.o.. automata as well.
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