Mixing lossy and perfect fifo channels
(Extended abstract)

P. Chambart and Ph. Schnoebelen

LSV, ENS Cachan, CNRS
61, av. Pdt. Wilson, F-94230 Cachan, France
email: {chambart|phs}@Isv.ens-cachan.fr

Abstract. We consider asynchronous networks of finite-state systems commu-
nicating via a combination of reliable and lossy fifo channels. Dependirigeon
topology, the reachability problem for such networks may be decidatdeord/

vide a complete classification of network topologies according to whethgr the
lead to a decidable reachability problem. Furthermore, this classificatioheca
decided in polynomial-time.

1 Introduction

Fifo channels. Channel systems, aka “communicating finite-state machirzee a
classical model for protocols where components commumiasynchronously via fifo
channels [8]. When the fifo channels are unbounded, the mediating-powerful since
channels can easily be used to simulate the tape of a Turichinea

It came as quite a surprise when Abdulla and Jonsson [4, 8],irmtependently
Finkel et al. [13], showed thatossychannel systems (LCS’s), i.e., channel systems
where one assumes that the channels are unreliable so thsages can be lost nonde-
terministically, are amenable to algorithmic verificati@ee also [20]). The model has
since been extended in several directions: message ldssgs@ probability laws [21,
1, 2, 6], channels with other kinds of unreliability [9, 7ice

How this unreliability leads to decidability is paradoXicand hard to explain in
high-level, non-technical terms. It certainly does not m#ke model trivial: we re-
cently proved that LCS verification is exactly at leygl in the Extended Grzegorczyk
Hierarchy, hence it is not primitive-recursive, or even tiply-recursive [12].

An ubiquitous model.In recent years, lossy channels have shown up in unexpected
places. They have been used in reductions showing hardoeles$ frequently decid-
ability) for apparently unrelated problems in modal lodit8], in temporal logics [19],
in timed automata [17], in data-extended models [15], etordvnd more, LCS’s ap-
pear to be a pivotal model whose range goes far beyond asyrals protocols.

Fueling this line of investigation, we recently discovetédt the “Regular Post
Embedding Problem”, a new decidable variant of Post’s Gpoadence Problem, is
equivalent (in a non-trivial way) to LCS reachability [1@]1This discovery was an
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unexpected outcome of our study wfidirectional channel systems (UCS), where a
Sender can send messages to a Receiver via two fifo channelselable and one
lossy, but where there is no communication in the other tjimc(seeTZd in Fig. 1
below). As far as we know, this simple arrangement had nesen istudied before.

Our contribution. This paper considers the general casenifed channel systems,
where some channels are reliable and some are lossy. Theisensycan be Turing-
powerful (one process using one reliable fifo buffer is efuout not all network
topologies allow this (e.g., systems with only lossy chds\ner systems where com-
munication is arranged in a tree pattern with no feedbaclkl@8'’s as above). We pro-
vide a complete classification of network topologies accwydo whether they lead to
undecidable reachability problems, or not. This relies vgioal and non-trivial trans-
formation techniques for reducing large topologies to naines while preserving
decidability.

Beyond providing a complete classification, the presentrimrion has several
interesting outcomes. First, we discovered new decidabdegements of channel sys-
tems, as well as new undecidable ones, and these new resultiien surprising. They
enlarge the existing toolkit currently used when trangfigrresults from channel sys-
tems to other areas, according to the “ubiquitous modetjasto Secondly, the transfor-
mation techniques we develop may eventually prove usefuldducing/delaying the
combinatorial explosion one faces when verifying asynobts protocols.

Outline of the paperWe describemixed channel systenasid their topologies in Sec-
tion 2 and provide in Section 3 a few original results clagsi the basic topologies to
which we reduce larger networks. Section 4 shows that “fuessential channels” pre-
serves decidability. An additional “splitting” techniqisedescribed in Section 5. After
these three sections, we have enough technical tools atbaledcribe our main result,
the complete classification method, and prove its corrsstireSections 6 and 7.

2 Systems with reliable and lossy channels

We classify channel systems according to thedtwork topologywhich is a graph
describing who are the participant processes and what elsatirey are connected to.

2.1 Network topologies

Formally, anetwork topologyor shortly atopology is a tupleT = (N,R L,s,d) where

N, RandL are three mutually disjoint finite sets of, respectivelydes reliable chan-

nels andlossy channelsand where, writingC ®'RUL for the set of channels d :

C — N are two mappings that associatsaurceand adestinationnode to each chan-
nel. We do not distinguish between isomorphic topologiesesN, R and L simply
contain “names” for nodes and channels: these are irrdiéneaa and only the directed
graph structure with two types of edges matters.

Graphical examples of simple topologies will be found belae use dashed arrows
to single out the lossy channels (reliable channels arectizbwith full arrows).



2.2 Mixed channel systems and their operational semantics

AssumeT = (N,R/L,s,d) is a topology withn nodes, i.e., wittN = {Py,P,,...,P,}.
Write C = RUL for the set of channels. Aiixed channel syste(ICS) having topol-
ogy T is a tupleS= (T,M,Q1,Aq,...,Qn,An) whereM = {a,b,...} is a finitemessage
alphabetand where, foi = 1,...,n, Q; is the finite set of (control) states of a process
(also denoted?) that will be located at nodg € N, and4; is the finite set ofransition
rules or shortly “rules”, governing the behaviour Bf. A rule d € 4 is either awrit-
ing rule of the form(q,c,!,a,q), usually denotedqd—a>q”’, with 9,9 € Q;, s(c) =R,
anda € M, or itis areading rule(q,c, ?,a,q'), usually denotedqc—?iq’”, with this time
d(c) = R. Hence the way a topology is respected by a channel system is via restric-
tions upon the set of channels to which a given participant mead from, or write
to.

Our terminology fixedchannel system” is meant to emphasize the fact that we
allow systems where lossy channels coexist with reliabéobls.

The behaviour of som8= (T,M,Q1,Aq, ...,Qn,An) is given under the form of a
transition system. Assun@= {c,...,c} containsk channels. A configuration @is
atuplec = (q,...,qn, U, ..., Us) where, fori = 1,...,n, g € Q; is the current state d%,
and where, for =1, ...,k, u; € M* is the current contents of chanregl

Assumeo = (qy, ..., 0n, Ui, ..., Ux) andao’ = (qy,...,qn, U, ..., U) are two configura-
tions of some syster8as above, and € A is a rule of participan®. Thend withesses

a transition betweea anda’, also called atep and denotedrio’, if and only if

— the control states agree with, and are modified accordifgite.,q = q, g = ¢,
q; =dj forall j #1i;
— the channel contents agree with, and are modified accordidg.e., either
e 6=(q,q,?a,q) is areading rule, and = a.uj, or
e 5= (q,c,!,a,q) is a writing rule, andif = uj.a, or ¢ € L is a lossy channel
andu = u;
in both cases, the other channels are untouahfled::uj forall j #1.

Such a step is calleda“step by P and we say that iteffectis “readinga onc”, or
“writing a to ¢”, or “losing a”. A run (from ag to 0;) is a sequence of steps of the form

& b 5 . . . .
r= oo—1>01—2>02~~-—p>0p, sometimes shortly wrlttecroimrp. A run is perfectif none

of its steps loses a message.

Remark 2.1.With this operational semantics for lossy channels, messagn only be
lost when a rule writes them to a channel. Once inside thergHanmessages can
only be removed by reading rules. This definition is calleglwhite-lossysemantics
for lossy channels: it differs from the more classical dé&finiwhere messages in lossy
channels can be lost at any time. We use it because it is theamognient one for our
current concerns, and because this choice does not imgaetdbhability questions we
consider (see [12, Appendix A] for a formal comparison). O



2.3 The reachability problem for network topologies

Thereachability problenfor mixed channel systems asks, for a gi&and two config-
urationsoinit = (Qs, - - -, an, &, - - . ,€) @andCfinal = (07, ---,0n, €, - - -, €) in which the chan-
nels are empty, whethe&d has a run fromoi,;; to Gfing. That we restrict reachability
questions to configurations with empty channelsiénotes the empty word M*) is
technically convenient, but it is no real loss of generality

Thereachability problenfor a topologyT is the restriction of the reachability prob-
lem to mixed systems having topolody Hence if reachability is decidable fdr, it
is decidable for all MCS's having topolody. If reachability is not decidable foF, it
may be decidable or not for MCS'’s having topolofybut it must be undecidable for
one of them). Clearly, il is a subgraph of and reachability is decidable far, then
it is for T’ too.

Our goal is to determine for which topologies reach-
ability is decidable. Let us illustrate the question and
outline some of our resultd; " is a topology describ-
ing a directed ring of processes, where each participa
sends to its right-hand neighbour, and receives from i
left-hand neighbour. A folk claim is that such cyclic net-
works have decidable reachability as soon as one cha
nel is lossy (as here withy). The proof ideas behind
this claim have not been formally published and the
do not easily adapt to related questions like “what about
T,"92”, where a lossy channel in the other direction is

added, or abouT, " where more channels are lossy in the ring.

¢ (lossy), |
, 1 ¢, (lossy)

Our techniques answer all three questions uniformly. Oneuofresults states that
all channels along the path to ¢4 to ¢5 to ¢ to ¢; can be fused into a single channel
going fromP; to P, without affecting the decidability of reachability. Thatisforma-
tions are modular (we fuse one channel at a time). Dependtirijeostarting topology,
we end up with different two-node topologies, from which wesldce thafl;""® and

T4 have decidable reachability, whilg™ does not (see Corollary 4.6 below).



3 Reachability for basic topologies

This section is concerned with the basic topologies to whehwill later reduce all
larger cases.

Theorem 3.1 (Basic topologies)Reachability is decidable for the network topologies
Td and T (see Fig. 1). It is not decidable for the topologie$, T, T§, T#, T, and
Tg' (see Fig. 2).

We start with the decidable cases:

That Tld, and more generally all topologies d.
with only lossy channels (aka LCS's), leads to 11 - 1 €1 (lossy)
decidable problems is the classic result from [4].

RegardingTy, we recently proved it has de- Cz (lossy)
cidable reachability in [10], wher@-systems T2d: @ 7777777 @
are called “unidirectional channel systems”, or ¢1 (reliable
UCS'’s. Our reason for investigating UCS’s was_ . . )
indeed that this appeared as a necessary prepafid- 1. Basic decidable topologies
tion for the classification of mixed topologies. Showingttﬂiﬁ has decidable reacha-
bility is quite involved, going through the introductionthie “Regular Post Embedding

Problem”. In addition, [10, 11] exhibit non-trivial redimbs between reachability for
UCS'’s and reachability for LCS’s: the two problems are egjigmt.

Now to the undecidable cases:

¢ (reliable) ¢, (reliable C3 (lossy)
u. u. u.
Tl . TZ . e-@ T3 . e 777777 @
c1 (reliable cy (reliablé

¢s (lossy) cs (lossy)

\ ”02 (lossy C2 (Iossy\\ /
u. ) X-5----c u. /_\-5----°
T5 . @ @ T6 . @ @
c; (reliable c; (reliable

Fig. 2. Basic topologies with undecidable reachability
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It is well-known thatT' may lead to undecidable problems [8], and this is also
known, though less well, fof,' (restated, e.g., as the non-emptiness problem for the
intersection of two rational transductions). The otherrf@sults mix lossy and reliable
channels and are new. We actually prove all six cases in ammiframework, by re-
duction from Post's Correspondence Problem,R&®, or its directed varian® CPgj;.

Recall that an instance &fCP is a familyx1,y1,%2,¥2, . .., %n, ¥n Of 2n words over
some alphabet. The question is whether there is a non-empiyeace (asolution)
i1,...,Ix of indexes such thag, X, ... X, = Vi, Vi, ---¥i,. PCPdir asks whether there is a
directedsolutioniy, . . ., ik, i.e., a solution such that, in addition, Vi, . .. v, is a prefix of
Xi X, - - X, forallh=1,... k. It is well-known thatPCP andPCPg; are undecidable,
and more preciselié-complete.



ReducingPCP to T;'-networks. With a PCP instance(x;,Y;)i—1,...n, We associate a

IX ColVi
process; having a single statp; andn loopst plw p1, one for each indek=

1,...,n. Proces$; guesses a solutidniiz. .. and sends the concatenatiofns,Xi, . . -
andy;, ¥i,Yi, - .. On, respectivelyg; andcy. Proces$ checks that the two channeds

andc; have the same contents, using reading Iqmﬁém p2, one for each symbol

a,b,...in the alphabet. An extra control state, for examgflevith rules p’lw P1,

is required to check the®, picks a non-empty solution. Then, in the resultifig-
network, (pj, P2,€,€)—(p1, P2, &, €) if and only if thePCP instance has a solution.

ReducingPCP to T'-networks. For T3, the same idea is adapted to a situation with

. calyi cqy11hivil
three channels, two of which are lossy. H&ehas rulesp; 22-¥ 170 o Thus
P sendsx; andy; on lossy channels and simultaneously sends the numbeiterfslét
unary (L is a special tally symbol) on;, the perfect channeR, matches these with

reading loops of the form, 7= %™ %™ v for each lettes. If P, can consume all’s
out of ¢z, this means that no message has been lost on the lossy chaammether,
really witnessed a solution tH&CP instance.

ReducingPCPy;r to T;'-networks. For T}', we consider the directe®lCPg;;. P, hasn

loops plm p1 where the guessing and the matching is done by a single oces

Since at any step = 1,...,k the concatenatiow;, Xi,...x;, is (partly) consumed while
matching fory;, yi,...yi,, only directed solutions will be accepted.

ReducingPCPg;r to Tg'-networks. For T¢' too, we start fromrPCPg;r and use a variant
of the previous counting mechanism to detect whether sonssages have been lost.

1Pl cqtx g2Vl ety . . .
P: has rules of the formnlC3 LG R G p1, i.€., it sendsg on c; (the reliable

channel) ang; onc; (unreliable) whileP, checks the match with |00@M p2.In

addition,P; also maintains itz a count of the number of symbols writtendp minus

the number of symbols written to, or #, def iy - Xiy| = Vi - --Yip|- The counting
scheme forbids partial sequenggs . .y;, that would be longer than the corresponding
Xi, - .- Xi,, but this is right since we look for directed solutions. yaymbols oncs are
lost, or if part of they;’s on ¢, are lost, then it will never be possible fBs to consume
all messages fromy. Finally a run from(pj, pz, €, €, €) to (p1, p2, €, €, €) must be perfect
and witness a directed solution.

ReducingPCPg;r to Tg'-networks. For T¢', we adapt the same idea, this time having

cl[xi]_‘yi‘ cz!yi]_‘xi‘
- =

P, monitoring the count g#on c3. P, has loopsp; p1 where a guessed

1 Transition rules like plw p1” above, where several reads and writes are combined in
a same rule, and where one writes or reads words rather than justessage at a time,
are standard short-hand notations for sequences of rules usingediargnstates that are left
implicit. We avoid using this notation in situations where the specific orderingeafdmbined
actions is important as, e.g., ir)(below.



solution is sent ort; andc, with interspersed tally symbols. The guessed solution is

checked with the usual Ioon&M p2. Thel's onc; are stored t@z and matched
? ?
@A b In a perfect

(later) with thel’s onc; via two Ioops:pgw p2 and p
run, there are always as many messages;as there are on, andcs together, and
strictly more if a message is lost. Hence a run frop, po,€,€,€) to (p1, P2,€,€,€)
must be perfect and witness a solution. Only direct solstican be accepted since the
tally symbols incs count #, that cannot be negative.

ReducingPCPy;r to T;'-networks. For T,', we further adapt the idea, again with the
count #, stored orcs but now sent fronP, to P;. The loops inP; now are

c1! Czlyil‘xi‘ Cg?l‘yi‘
1 X

ai P1. (*)

Thel’s oncy are sent back vieg to be matched later by, thanks to a IOOpzw P2.
Again a message loss will leave strictly more messagestiman inc, andcg together,
and cannot be recovered from. Only direct solutions can beped since the tally
symbols incz count #,.

4 Fusion for essential channels

Sections 4 and 5 develop techniques for “simplifying” tagies while preserving the
decidability status of reachability problems. We startwétreduction called “fusion”.

LetT = (N,R/L,s,d) be a network topology. For any chanmet C, T — c denotes
the topology obtained frorT by deletingc. For any two distinct nodeB;,P € N,
T[PL = P,] denotes the topology obtained fréfnby mergingP; andP; in the obvious
way: channel extremities are redirected accordingly.

Clearly, any MCS with topolog¥ — c can be seen as having topologyThusT —c¢
has decidable reachability wh&nhas, but the converse is not true in general.

Similarly, any MCS having topology can be transformed into an equivalent MCS
having topologyT [P1 = P;] (using the asynchronous product of two control automata).
ThusT has decidable reachability wharP, = P] has, but the converse is not true in
general.

For any channet such thats(c) # d(c), we letT /c denoteT [s(c) = d(c)] — c and
say thafT /cis “obtained from T by contracting'cHenceT /cis obtained by merging
C's source and destination, and then remowving

SinceT /cis obtained via a combination of merging and channel remadkate is,
in general, no connection between the decidability of rabdity for T and forT /c.
However, there is a strong connection for so-called “ess@rthannels, as stated in
Theorem 4.5 below.

Before we can get to that point, we need to explain what arengiss channels and
how they can be used.



4.1 Essential channels are existentially-bounded
In this section, we assume a given MSGS: (T,M,Q1,Aq,...) with T = (N,R L,s,d).

Definition 4.1. A channel ¢z C is essentialf s(c) = d(c) and all directed paths from
s(c) tod(c) in T go through c.

In other words, removing modifies the connectivity of the directed graph underlying
T.

The crucial feature of an essential chanaét that causality between the actions
of s(c) and the actions adl(c) is constrained. As a consequence, it is always possible
to reorder the actions in a run so that reading fromaccurs immediately after the
corresponding writing t@. As a consequence, bounding the number of messages that
can be stored in does not really restrict the system behaviour.

Formally, forb € N, we say a channelis b-bounded along a run= cro% .. ﬁon
if |oi(c)| <bfori=0,...,n. We saycis synchronousn tif it is 1-bounded and at least
one ofoj(c) andoi;1(c) is € for all 0 <i < n. Hence a synchronous channel only stores
at most one message at a time, and the message is read inehedftr it has been
written toc.

. . . 5 . )
Proposition 4.2. If ¢ is essential andt= 0p—= . ... ﬁon is arun withop(c) = on(c) =¢,
then S has a rum’ from gy to gy, in which ¢ is synchronous.

This notion is similar to the existentially-bounded systeofi [18] but is applies to a
single channel, not to the whole system.
We prove Proposition 4.2 using techniques and conceptstitggrconcurrency the-

ory and message flow graphs (see, e.g., [14]). With armmoﬁ ... ﬁcn as above, we
associate a s& = {1,...,n} of n events, that can be thought of the actions performed
by then steps offt firing a transition and reading or writing or losing a messagb-
serve that different occurrences of a same transition veitheseffect are two different
events. We simply identify the events with indexes from htdVe writee €, ... to
denote events, and also use the letteandw for reading and writing events.

Any ec E is an event of some proceld$e) € N and we writeE = | Jpcn Ep the cor-
responding partition. There exist several (standard)alayselations between events.
For every procesB € N, the events oP are linearly ordered byp: i <p jiff i, ] € Ep
andi < j. For every channal € C, the events that write to or read fracrare related by
<cWwithi < j iff i is an event that writes sonmeto ¢, andj is the event that reads that
(occurrence ofm. (Here, events that lose messages are considered as irgtetinas
where no channel is involved.) We let (and<) denote the transitive (resp. reflexive-
transitive) closure ofJpcy <p UUcec <c- (E, =) is then a poset, ang is called the
visualorder (also causality order, or dependency order) in teeditire. Foe € E, we
let | edenote the past @, i.e., the se{e€ € E | € x €}

It is well-known that any linear extensiaa, ..., e, of (E, <) is causally consistent

and can be transformed into a roh= 003)2..- starting fromag. This run ends in

op like 1T, though it may go through different intermediary configioas. All the runs
obtained by considering different linear extensions ausally equivalent tar, denoted



T~ 17, and they all give rise to the same po&gt<).

We now state properties enjoyed [y, <) in our context that are useful for prov-
ing Proposition 4.2. First, observe that, since the chanad fifo, and since only one
process, namelgl(c) (resp.s(c)), is allowed to read from (resp. write to) a chanael

(W1 <c¢riandwz <crz)imply (Wy <gg) Wz iff r1 <g(c) ra2). M

(1) is sometimes taken as a definition of fifo communication.
Another important observation is the following: assueng €. Then, and since
is defined as a reflexive-transitive closure, there must bamof the form

0 e=e<pe <, €1<p € <g...<qga<pf=¢

where, for 1<i <1, s(¢;) = B_; andd(c;) = R. HenceT has a pattcy,...,c going
fromPyto R.

Lemma 4.3. If e; < &2 < e3 and c is essential, then & es.

Proof. By contradiction. Assume; < e < e3 ande; <. e3 for an essentiat. Since all
paths fromP = N(g;) = s(c) to P’ = N(e3) = d(c) go throughc (by essentiality), there
must exist a paiw,r € E with e <K W <¢c r < & or, symmetricallyge, < w <¢ r < €3,
depending on whether thg <. r pair occurs before or aftex in the chain frome;
toetoes. If g S W<cr <& < e thenr <p €3, hencew <p e using (T). Ife; <

& W< < e3 thene; <pw, hencees <p r using (1). In both cases we obtain a
contradiction. O

We now assume thatis essential and that hasog(c) = on(c) = € (henceE has
the same number, sag, of events reading from and writing to it). WriteP for s(c)
andP’ for d(c). Letwy <pW;... <p W be them events that write ta, listed in causal
order. Letr; <p &... <p I'm be them events that read fromlisted in causal order.

Lemma 4.4. There exists a linear extension(®, <) where, fori=1,...,m, w occurs
just before r.

Proof. The linear extension is constructed incrementally. Folymir i =1,...,m, let

E d:Efl ri andF def Ei ~ {wi,ri}. Observe thaFy C E; C F,---F C E C K41, with the
convention thatFn.1 = E. EveryE; is a<-closed subset dE, also called a down-cut
of (E, ). Furthermorel; is a down-cut oE; by Lemma 4.3. Hence a linear extension
of F followed by w;.r; gives a linear extension d@&;, and following it with a linear
extension of .1 \ Ej gives a linear extension &, 1. Any linear extension df; 1 \ E;
can be chosen since this subset does not contain reads frarites to,c. O

The linear extension we just built gives rise to a mitin which ¢ is synchronous. This
concludes the proof of Proposition 4.2.

Observe that when several channels are essentigliinis in general not possible
to replace a rumwith an equivalent? where all essential channels are simultaneously
synchronous.



4.2 Decidability by fusion

We call “fusiorf the transformation ofT to T/c wherec is essential, andréliable
fusior! the special case whereis also a reliable channel.

Theorem 4.5 (Decidability by fusion).Let ¢ be an essential channel in T:
1. T has decidable reachability if/€ has.
2. If cis a reliable channel, then /& has decidable reachability if T has.

Proof. 1. LetShe aT-MCS. We replace it by a syste® wherec has been removed
and where the processes at noBes s(c) andP, = d(c) have been replaced by a larger
process that simulate bol andP, and where communication alormgs replaced by
synchronizing the sends & with the reads irP, (message losses are simulated even
more simply by theP; part). S has topologyT /c and simulatesS restricted to runs
where ¢ is synchronou®y Proposition 4.2, this is sufficient to reach any reachabl
configuration. Since reachability 8 is decidable, we conclude that reachability3n

is decidable.

2. We now also assume thatis reliable and consider @ /c)-MCS S. With S we
associate -MCS S that simulatess. S has two node®; andP, whereSonly had a
mergedP node.

7 h 7 h 7 h 7

\”/\(\31 C(f/\” ’ \”/\(\:l CC?/\” /
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AP p3 ' )pé AP]_ p3_< <>)pé APZ % <4 > 4 *
Csq04 cl(cs,! s
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Fig. 3. Associating a -MCS with aT /c-MCS

The construction is illustrated in Fig. 3. Informally; inherits states fron® and
all rules that read from channeds with d(c1) = Py in T, or write to channels; with
s(cp) = P1. Regarding the other rules, the communication action (nggidom somecs
or writing to somec,) is sent toP, via c. S uses an extended alphalbét that extends
the message alphabidtfrom Svia M’ L'MU (Cx {21} xM). P, only has simple loops
around a central statethat read communication instructions frdp via c and carry
them out.

S simulatesSin a strong way. Any step i can be simulated i, perhaps by two
consecutive steps if a communication operation has toitrfros P, to P, via c. In the



other direction, there are some runs3drthat cannot be simulated directly 18/ e.g.,
whenP, does not carry out the instructions senty(or carries them out with a delay).
But all runs inS in which ¢ is synchronous are simulated By

Since runs in whicle is synchronous are sufficient to reach any configuratiorhreac
able inS (Proposition 4.2), the two-way simulation reduces reattitain Sto reach-
ability in S, which is decidable i has decidable reachability. ad

The usefulness of Theorem 4.5 is illustrated by the follgatimo corollaries.

Corollary 4.6. T, and T{"? (from Section 2.1) have decidable reachability"
does not.

Proof. Building T,""? /cs/ca/cs/cs/c1 only fuses essential channels and ends up with
a decidable topology (only lossy channels).

Starting withT,", we can buildT = T,"%/c3/ca/cs/ce but have to stop there is

not essential). The resulting, isomorphic toT,' from Fig. 2, does not have decidable
reachability. Hencd,"® does not have decidable reachability since we fused reliabl
channels only. _

with T;"9, it is better to buildT;"® /c3/ca/cs/c1. Here too we cannot fuse any more
because ot} but the end result is a topology with decidable reachahdiihcecs is
lossy. Hencedl,"" has decidable reachability. i

Corollary 4.7. A topology in the form of an undirected forest has decidabéehabil-
ity.

Proof (Sketch)If T is a forest, every channelis essential, and evef¥/c is still a
forest. Hencd reduces to a topology with lossy channels only. ad

5 Splitting along lossy channels

Let Ty = (Ni,Ry,L1,81,d1) and Cs (lossy

To= <N2, Ro, Lo, s, d2> be two dis- e B ”_7” loss
joint topologies. We say thaf = s (reliable 09( )
(N,R,L,s,d) is a(lossy) gluing of cg (lossy) )

T1 on T if T is a juxtaposition Cz (lossy ‘ o7 (lossy 047(!%?};)
Tt bl (3L
with an additional sets of lossy 1 (reliable 3 (reliable

channels (henc® = R{ UR; and
L = L1 ULy UL3) connecting from
Ty to T, in a unidirectional ways(Lz) C N; andd(L3) C Nj.

This situation is written informally T = T; > T,", omitting details onL3 and its
connections. In practice this notion is used to split a largato subparts rather than
build larger topologies out of; andTs.

Fig. 4. A topology that splits in three

Theorem 5.1 (Decidability by splitting). Reachability is decidable fon & T2if, and
only if, it is for both T and .



The proof of Theorem 5.1 (omitted here, see full version &f paper) uses techniques
that are standard for LCS’s but that have to be adapted to tre general setting of
MCS’s.

We can apply Theorem 5.1 to prove that the topology in Fig.sideidable reach-
ability. Indeed, this topology can be split along lossy afela (first{cs, c9}, thency),
giving rise to two copies of§ (from Fig. 1) and a two-node ring that can be reduced to
T by fusion.

6 A complete classification

In this section, we prove that the results from the previagisns provide a complete
classification.

Theorem 6.1 (Completeness)A network topology T has decidable reachability if,
and only if, it can be reduced tozd'l'(from Fig. 1) and LCS’s using fusion and splitting
only?

Note that, via splitting, the reduction above usually tfanes T into severaltopolo-
gies. All of them must b&§! or LCS's for T to have decidable reachability.

The “<" direction is immediate in view of Theorems 4.5.1 and 5.1,

For the =" direction, we can assume w.l.0.g. thitis reduced i.e., it cannot be
split as somd; > T, and it does not contain any reliable essential channe ¢thad
be fused).

We now assume, by way of contradiction, thiatannot be transformed, via general
fusions, toT{ or to a LCS. From this we show that reachability is not dedielédr T.
When showing this, we sometimes mention three additionakfoamations (“simpli-
fication”, “doubling of loops” and “non-essential fusiorthat are described in the full
version of this paper. We now start an involved case analysis

1. SinceT cannot be transformed to a LCS, it contains a reliable cHamnknking
nodeA = s(c;) to nodeB = d(c;). We can assum@ # B, otherwiseT containsT;"'
(from Fig. 2) and we conclude immediately with undecidayili

2. T must contain a patB of the formA = Py, cy,P1,Cp,...,Ch, Py = B that links
A to B without usingc;, otherwisec, would be essential, contradicting the assumption
thatT is reduced. We pick the shortest suit is a simple path) and we call’ the
subgraph ofl that only contain®, c¢;, and the nodes to which they connect.

3.Ifall ¢’s alongB are reliableT’ can be transformed ' (from Fig. 2) by reliable
fusions, hencd”’, and thenT itself, have undecidable reachability. Therefore we can
assume that at least onealong® is lossy.

4. Assume that there exist two nod@sP; along® that are connected via a third path
@ disjoint fromc; and®. We put no restrictions on the relative position$o&ndP; but
we assume th# is not a trivial empty path if = j. In that case, IeT” be the subgraph
of T that contains;, 6, and®’, and where all channels exceptare downgraded to
lossy if they were reliable. Using simplification and doniliof lossy loopsT” can

2 As is well-known, it is possible to further reduce any LCS if‘iﬁ) However, we preferred a
statement for Theorem 6.1 where only our two main transformationis\artved.



be transformed to an undecidable topology am¢my, T,', T2, T{'}. HenceT” does
not have decidable reachability. Neither fasince taking subgraphs and downgrading
channels can only improve decidability.

5. If we are not in case 4, the nodes aldhglo not admit a third path liké'.
Therefore all channels alofgmust be lossy, since we assumids reduced. Thug’
can be transformed fqd by general fusion. Since we assunmiedannot be transformed
to Tzd, T must contain extra nodes or channels beyond thos€E.dh particular, this
must include extra nodes since we just assumedThia@s no third patt®’ between
the T’ nodes. Furthermore these extra nodes must be connectelltopart otherwise
splitting T would be possible. There are now several cases.

6. We first consider the case of an extra n@deith a reliable channet from C to
T’. SinceT is reducedc is not essential and there must be a second @dtiom C to
T’. Call T” the subgraph of that only containg’, C, c and®’. Applying non-essential
fusion onc, & becomes a path between soReP; and we are back to case 4. Hence
undecidability.

7. Next is the case of an extra no@evith a reliable channet from T’ to C. Again,
sincec is not essential, there must be a second paftom T’ to C. Again, the induced
subgraphl” can be shown undecidable as in case 6, reducing to case 4.

8. If there is no extra node linked B’ via a reliablec, the extra nodes must be
linked to T’ via lossy channels. Now the connection must go both waysraike
splitting would be possible. The simplest case is an extde@owith a lossyc from C
to T’ and a lossy’ from T’ to C. But this would have been covered in case 4.

9. Finally there must be at least two extra no@eandC’, with a lossy channet
from C to T’ and a lossyc’ from T’ to C'. We can assume that all paths betwd@én
andC,C’ go throughc andc/, otherwise we would be in one of the cases we already
considered. Furthermof@andC’ must be connected otherwi$ecould be split. There
are several possibilities here.

10. If there is a path fror®’ to C we are back to case 4. Hence undecidability.

11. Thus all paths connectit@andC’ go fromC to C'. If one such path is made of
reliable channels only, reliable fusion can be applied ennlduced subgraph, merging
C andC’ and leading to case 8 where undecidability has been shotheyfall contain
one lossy channel, can be split, contradicting our assumption. that it is rediic

We have now covered all possibilities whéns reduced but cannot be transformed
to a LCS or toT{'. In all cases is has been shown that reachability is not dbtador
T. This concludes the proof of Theorem 6.1.

7 A classification algorithm

Theorem 7.1 (Polynomial-time classification)There exists a polynomial-time algo-
rithm that classifies topologies according to whether thayehdecidable reachability.
The algorithm relies on Theorem 6.1:

Stage 1: Starting from a topologyl, apply splitting andeliable fusion as much as
possible. When several transformations are possible, pigkohthem nondeter-
ministically. At any step, the transformation reduces tize &f the topologies at



hand, hence termination is guaranteed in a linear numbetepssAt this stage
we preserved decidability in both directions, hefficdas decidability iff all the
reduced topologi€¥, ..., T, have.

Stage 2: EachT; is now simplified using general fusion (not just reliableidug. If
this ends with a LCS or witszd, decidability forT; has been proved. When fusion
can be applied in several ways, we pick one nondetermialtia consequence of
Theorem 6.1's proof is that these choices lead to the san@usion when starting
from a system that cannot be reduced with splitting or rédidlsion. Thus stage 2
terminates in a linear number of steps. When it terminatdseegéveryT; has been
transformed into a LCS dF¢, and we conclude that reachability is decidableTor
or oneT; remains unsimplified and we conclude that reachability isdezidable
forT.

We observe that when stage 1 finishes, there will never be anwyapportunity for
reliable fusion or for splitting since stage 2, i.e., gehdéuaion, does not create or
destroy any path between nodes.

8 Concluding remarks

Summary.We introducednixed channel systefrise., fifo channel systems where both
lossy and reliable channels can be combined in arbitrayiogies. These systems are
a generalization of the lossy channel system model (whéhahnels are lossy and
where reachability is decidable) and of the standard moalith Unbounded reliable
fifo channels, where reachability is undecidable).

For mixed systems, we provide a complete classificationehttwork topologies
according to whether they lead to decidable reachabiliplems or not. Our main tool
are reductions methods that transform a topology into ®mtppologies with an equiv-
alent decidability status. These reductions produce dwmaslt topologies for which the
decidability status is established in Section 3.

Directions for future work.At the moment our classification is given implicitly, via a
simplification procedure. A more satisfactory classificativould be a higher-level de-
scription, in the form of a structural criterion, prefenabkpressible in logical form (or
via excluded minors, . ..). Obtaining such a descriptioruisroore pressing objective.

Beyond this issue, the two main avenues for future work atenghing the MCS
model (e.g., by considering other kinds of unreliabilitytie style of [9], or by allowing
guards in the style of [5], etc.) and considering questianmhd just reachability and
safety (e.g., termination and liveness).
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