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Abstract

Formal, symbolic techniques are extremely useful for modelling and analysing security protocols.

They improved our understanding of security protocols, allowed to discover �aws, and also provide

support for protocol design. However, such analyses usually consider that the protocol is executed

in isolation or assume a bounded number of protocol sessions. Hence, no security guarantee is

provided when the protocol is executed in a more complex environment.

In this paper, we study whether password protocols can be safely composed, even when a

same password is reused. More precisely, we present a transformation which maps a password

protocol that is secure for a single protocol session (a decidable problem) to a protocol that is

secure for an unbounded number of sessions. Our result provides an e�ective strategy to design

secure password protocols: (i) design a protocol intended to be secure for one protocol session;

(ii) apply our transformation and obtain a protocol which is secure for an unbounded number

of sessions. Our technique also applies to compose di�erent password protocols allowing us to

obtain both inter-protocol and inter-session composition.
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1 Introduction

Password-based cryptographic protocols are a prominent means to achieve authentication

or to establish authenticated, shared session keys, e.g. EKE [10], SPEKE [23], or the KOY

protocol [24]. The advantage of such schemes is that they do not rely on a key infrastructure

but only on a shared password, which is often human chosen or at least human memorable.

However, such passwords are generally weak and may be subject to dictionary (also called

guessing) attacks. In an online dictionary attack an adversary tries to execute the protocol

for each possible password. While such attacks are di�cult to avoid they can be made

impracticable by limiting the number of password trials or adding a time-out of few seconds

after a wrong password. In an o�ine guessing attack an adversary interacts with one or

more sessions in a �rst phase. In a second, o�ine phase the attacker uses the collected

data to verify each potential password. In this paper we concentrate on the second type

of attacks.

It has been widely acknowledged that security protocol design is extremely error prone

and rigorous security proofs are a necessity. Formal, symbolic models, in the vein of Dolev

and Yao's seminal work [21], provide e�ective and often automated methods to �nd errors or

prove protocols correct. While most of these methods focus on secrecy and authentication,

resistance against o�ine guessing attacks has been considered in some works [26, 9, 17]. We

will in particular focus on an elegant de�nition of resistance against o�ine guessing attacks

by Corin et al. [17] which was introduced in the framework of the applied pi calculus [1] and

for which tool support exists [11, 9].

Nowadays, state-of-the-art protocol analysis tools are able to analyse a variety of proto-

cols. However, this analysis is generally carried out in isolation, i.e., analysing one protocol

© Céline Chevalier, Stéphanie Delaune and Steve Kremer;

licensed under Creative Commons License NC-ND

Leibniz International Proceedings in Informatics

Schloss Dagstuhl � Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Transforming Password Protocols to Compose

at a time. This is motivated by the fact that in models like the applied pi calculus, se-

curity properties, even if shown in isolation, hold in the presence of an arbitrary (public)

environment. This is similar to universal composition (UC) [14] in computational models.

However, these arbitrary environments are public, in the sense that they don't have access

to the secrets of the protocol under analysis. This is of course necessary as otherwise a com-

pletely arbitrary environment could simply output all secret cryptographic key material and

trivially break the protocol's security. While not sharing key material may be a reasonable

hypothesis in some cases it is certainly not the case when we compose the same sessions of a

same protocol or in a situation where the same password is used in di�erent protocols � it is

indeed unreasonable to assume that all users have di�erent passwords for each application.

Our contributions

In this paper we propose a simple protocol transformation which ensures that a same pass-

word can safely be shared between di�erent protocols. More precisely, our results can be

summarized as follows. We use a safe transformation which replaces a weak password w by

h(t; w) where t is some tag and h a hash function. Then, we show how to use this tagging

technique to compose di�erent protocols. Consider n password protocols such that each

protocol resists separately against guessing attacks on w. When we instantiate the tag t to

a unique protocol identi�er pid, one for each of the n protocols, we show that the parallel

composition of these tagged protocols resists against guessing attacks on w, where w is the

password shared by each of these protocols. Next we show how to dynamically establish a

session identi�er sid. Instantiating the tag t by this session identi�er allows us to compose

di�erent sessions of a same protocol. Hence it is su�cient to prove resistance against guess-

ing attacks on a single session of a protocol to conclude that the transformed protocol resists

against guessing attacks for an unbounded number of sessions. These techniques can also be

combined into a tag which consists of both the protocol and session identi�er obtaining both

inter-protocol and inter-session composition. One may note that resistance against guessing

attack is generally not the main goal of a protocol, which may be authentication or key

exchange. It follows however from our proofs that trace properties such as authentication

will also be preserved. Detailed proofs of our results can be found in [16].

Related Work

In recent years, compositional reasoning has received a lot of attention. Datta et al. [19]

provide a general strategy whereas our composition result identi�es a speci�c class of pro-

tocols that can be composed. In [22, 5, 18], some criteria are given to ensure that parallel

and in some works sequential composition is safe. In [6] the issue of composition of sessions

of a same protocol is addressed using a transformation similar to the one considered in this

paper. None of these works considers password protocols and resistance to guessing attacks.

Composition of di�erent password protocols (but not of sessions of the same protocol) using

a protocol identi�er tag was shown in [20]. In this paper we generalize these results to allow

composition of sessions of a same protocol. Moreover, the composition theorem given in [20]

only applies to two protocols (and cannot be iterated). This shortcoming was overseen by

the authors of [20] and we adapt their result to apply to an arbitrary number of protocols

in parallel.

In computational models, Boyko et al. [13] presented a security model for password-based

key-exchange based on simulation proofs, ensuring security in case of composition. A more

generic solution was proposed by Canetti et al. [15] who propose a protocol based on KOY,
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which is secure in the UC model [14]. This work has been extended to active adversaries [4],

group key exchange [3] and to de�ne distributed public-key cryptography from passwords

in e.g. [2]. A main di�erence between works in the UC model and our work (besides the

obvious di�erences between symbolic and computational models) is that in the UC model

designers generally apply an �ad-hoc recipe� (often using �magical� session identi�ers given

by the framework) and show that one session of a protocol ful�lls the given requirements.

The UC theorem then ensures composition, i.e., composition follows from the strong security

de�nition which has to be proven. In our work we make explicit the construction of session

identi�ers in our transformation and prove that a generic protocol transformation can be

used to achieve composition. Note, however, that despite this di�erence, both approaches

share many essential ideas.

Finally, we may note that tagging is a well known technique. We have already mentioned

its use to achieve some forms of composition [6, 18]. Other forms of tagging were used to

ensure termination of a veri�cation procedure [12], safely bound the length of messages [7]

or obtain decidability for the veri�cation of some classes of protocols [27].

2 Modeling Protocols

In this section, we recall the cryptographic process calculus de�ned in [20] for describing

protocols. This calculus is a simpli�ed version of the applied pi calculus [1]. In particular

we only consider one channel, which is public (i.e. under the control of the attacker) and

we only consider �nite processes, i.e. processes without replication.

2.1 Messages

A protocol consists of some agents communicating on a network. The messages sent by the

agents are modelled using an abstract term algebra. For this, we assume an in�nite set of

names N , for representing keys, data values, nonces, and names of agents, and we assume

a signature �, i.e. a �nite set of function symbols such as senc and sdec, each with an arity.

Given a signature � and an in�nite set of variables X , we denote by T (�) (resp. T (�;X ))

the set of ground terms (resp. terms) over �[N (resp. �[N [X ). We write fn(M) (resp.

fv(M)) for the set of names (resp. variables) that occur in the term M . A substitution � is

a mapping from a �nite subset of X called its domain and written dom(�) to T (�;X ). The

application of a substitution � to a term T is written T�. We also allow replacement of names

by terms: the term MfN=ng is the term obtained from M after replacing any occurrence of

the name n by the term N (assuming that n does not occur in N). We sometimes abbreviate

the sequence of terms t1; : : : ; tn by ~t and write f~t=~xg for ft1=x1; : : :tn =xng.

To model algebraic properties of cryptographic primitives, we de�ne an equational theory

by a �nite set E of equations U = V with U; V 2 T (�;X ) such that U; V do not contain

names. We de�ne =E to be the smallest equivalence relation on terms, that contains E and

that is closed under application of function symbols and substitutions of terms for variables.

▶ Example 1. Consider the signature � = fsdec; senc; h i; proj1; proj2; expg. The function

symbols sdec, senc, h i and exp of arity 2 represent respectively symmetric encryption and

decryption, pairing as well as exponentiation. Functions proj1 and proj2 of arity 1 model

projection of the �rst and the second component of a pair. As an example that will be useful

for modelling the SPEKE protocol [23], we consider the equational theory E, de�ned by the

following equations:
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sdec(senc(x; y); y) = x proji(hx1; x2i) = xi (i 2 f1; 2g)

senc(sdec(x; y); y) = x exp(exp(x; y); z) = exp(exp(x; z); y)

Let T1 = senc(proj2(ha; bi); k) and T2 = senc(b; k). We have that the terms T1 and T2 are

equal modulo E, written T1 =E T2, while obviously the syntactic equality T1 = T2 does not

hold.

To represent the knowledge of an attacker (who may have observed a sequence of mes-

sages M1; : : : ;M`), we use the concept of frame. A frame � = �~n:� consists of a �nite

set ~n � N of restricted names (those unknown to the attacker), and a substitution � of the

form fM1=z1 ; : : : ;
M`=z`g where eachMi is a ground term. The variables zi enable an attacker

to refer to each Mi. The domain of the frame �, written dom(�), is dom(�) = fz1; : : : ; z`g.

Given a frame � that represents the information available to an attacker, and an equa-

tional theory E on �, we may ask whether a given ground term M may be deduced from �.

This relation is written � `E M and is formally de�ned below.

▶ De�nition 2 (deduction). LetM be a ground term and � = �~n:� be a frame. We have that

M is deducible from �, denoted �~n:� `E M , if and only if there exists a term N 2 T (�;X )

such that fn(N) \ ~n = ; and N� =E M . N is called a recipe of the term M .

Intuitively, the set of deducible messages is obtained from the messages Mi in �, the

names that are not restricted in �, and closed under equality modulo E and application of

function symbols.

▶ Example 3. Consider the theory E given in Example 1. Let � = �b; k:fsenc(b;k)=z1 ;
k=z2g.

We have that � `E k, � `E b and � `E a. Indeed z2, sdec(z1; z2) and a are recipes of the

terms k, b and a respectively.

Two frames are considered equivalent when the attacker cannot detect the di�erence

between the two situations they represent, that is, his ability to distinguish whether two

recipes M;N produce the same term does not depend on the frame. Formally,

▶ De�nition 4 (static equivalence). We say that two frames �1 = �~n:�1 and �2 = �~n:�2 are

statically equivalent, �1 �E �2, when dom(�1) = dom(�2), and for all terms M;N such that

fn(M;N) \ ~n = ;, we have that: M�1 =E N�1 if, and only if, M�2 =E N�2.

Static equivalence is useful to model the notion of security we consider in this paper,

namely resistance against guessing attacks. To resist against a guessing attack, the protocol

must be designed such that the attacker cannot decide on the basis of the data collected

whether his current guess of the password is the actual password or not. Assume � = � ~w:�0

is the frame representing the information gained by the attacker by eavesdropping one or

more sessions and let ~w be the sequence of weak passwords. The frame � is resistant to

guessing attacks if the attacker cannot distinguish between a situation in which he guesses

the correct passwords ~w and a situation in which he guesses incorrect ones, say ~w0.

▶ De�nition 5 (frame resistant to guessing attacks). The frame � ~w:�0 is resistant to guessing

attacks against the sequence of names ~w if � ~w:�0 � � ~w:� ~w0:�0f ~w0

= ~wg where ~w0 is a sequence

of fresh names.

This de�nition was proposed in [17, 9]. A slightly simpler formulation requiring �0 �

�0f ~w0

= ~wg (without the name restrictions) was shown equivalent in [20] and will be used in

this paper.
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▶ Example 6. Consider the following protocol where h is a unary function symbol modelling

a hash function (no equation on h):

A! B : senc(n;w) B! A : senc(h(n); w)

An interesting problem arises if the shared key w is a weak secret, i.e. vulnerable to brute-

force o�-line testing. Indeed, the frame representing the knowledge of the attacker at the

end of a normal execution of this protocol is � = �w:�0 = �w:�n:fsenc(n;w)=z1 ;
M=z2g where:

M = senc(h(sdec(senc(n;w); w)); w) =E senc(h(n); w):

The frame � is not resistant to guessing attacks against the password w. Indeed, the test

h(sdec(z1; w))
?
= sdec(z2; w) is a witness of the non-equivalence �0 6�E �

0fw
0

=wg.

2.2 Protocol Language and Semantics

Syntax

The grammar for processes is given below. One has plain processes P;Q;R and extended

processes A;B;C that allow the use of active substitutions and restrictions.

P;Q;R := plain processes

0 null process

P j Q parallel composition

in(x):P message input

out(M):P message output

if M = N then P else Q conditional

A;B;C := extended processes

P plain processes

A j B parallel composition

�n:A restriction

fM=xg active substitution

As usual, names and variables have scopes, which are delimited by restrictions and inputs.

We write fv(A), bv(A), fn(A), bn(A) for the sets of free and bound variables (resp. names).

Moreover, we consider processes such that bn(A) \ fn(A) = ;, bv(A) \ fv(A) = ;, and each

name and variable is bound at most once in A. An extended process is closed if all free

variables are in the domain of an active substitution. An instance of an extended process is

a process obtained by a bijective renaming of its bound names and variables. We observe

that given processes A and B, there always exist instances A0 and B0 of A, respectively B,

such that the process A0 j B0 will respect the disjointness conditions on names and variables.

▶ Example 7. We illustrate our syntax with the SPEKE protocol (see [23] for a complete

description).

A ! B : M1 = exp(w; ra)

B ! A : M2 = exp(w; rb)

A ! B : M3 = senc(ca; exp(exp(w; rb); ra))

B ! A : M4 = senc(hca; cbi; exp(exp(w; ra); rb))

A ! B : M5 = senc(cb; exp(exp(w; rb); ra))

The goal of this protocol is to mutually authenticate A and B with respect to each other,

provided that they share an initial secret w. This is done by a simple Di�e-Hellman exchange

from a shared secret w, creating a common key exp(exp(w; ra); rb) =E exp(exp(w; rb); ra),

followed by a challenge-response transaction. The data ra; ca (resp. rb; cb) are nonces that

are freshly generated by A (resp. B). In our calculus, we model one session of the protocol

as �w:(A j B):

A = �ra; ca:out(exp(w; ra)):in(x1): B = �rb; cb:in(y1):out(exp(w; rb)):

out(senc(ca; ka)):in(x2): in(y2):out(senc(hsdec(y2; kb); cbi; kb)):

out(senc(proj2(sdec(x2; ka)); ka)) in(y3): if sdec(y3; kb) = cb then P else 0:
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where ka = exp(x1; ra), kb = exp(y1; rb), and P models an application that is executed

when B has been successfully authenticated.

An evaluation context is an extended process with a hole instead of an extended process.

Given an extended process A we denote by �(A) the frame obtained by replacing any

embedded plain processes in it with 0.

Semantics

We here only give an informal account of the semantics and refer the reader to [20] for the

complete de�nition. We consider a basic structural equivalence, denoted �, which includes

for instance A j B � B j A, A j 0 � A and �n1; n2:A � �n2; n1:A. In particular, using

structural equivalence, every extended process A can be rewritten to consist of a substitution

and a plain process with some restricted names, i.e.,

A � �~n:(fM1=z1g j : : : j f
Mk=zkg j P ):

Moreover, any frame can be rewritten as �n:� matching the notion of frame introduced in

Section 2.1.

Labelled operational semantics is the smallest relation A
`
�! A0 between extended pro-

cesses which is closed under structural equivalence (�), application of evaluation context,

and a few usual rules for input, output and conditional where ` is a label of one of the

following forms:

a label in(M), where M is a ground term such that �(A) `E M ;

a label out(M), where M is a ground term, which corresponds to an output of M and

which adds an active substitution fM=zg in A0;

a label � corresponding to a silent action (the evaluation of a conditional).

We denote by ! the relation
� `
�! j ` 2 fin(M); out(M); �g; M 2 T (�)

	
and by !� its re-

�exive and transitive closure. Note that these semantics take the viewpoint that the attacker

controls the entire network. Any message is sent to the attacker (who may or not forward it

to the intended recipient) and the processes do not have any means to communicate directly.

▶ Example 8. We illustrate our semantics with the SPEKE protocol presented in Example 7.

The derivation below represents a normal execution of the protocol. For simplicity of this

example we suppose that fv(P ) = ;.

�w:(A j B)
out(exp(w;ra))
���������! �w; ra; ca:(in(x1):out(senc(ca; ka)):in(x2): : : : j fM1=z1g j B)
in(exp(w;ra))
��������! �w; ra; ca; rb; cb:(in(x1):out(senc(ca; ka)):in(x2): : : : j fM1=z1g j B

0)

!� �w; ra; ca; rb; cb:(fM1=z1 ;
M2=z2 ;

M3=z3 ;
M4=z4 ;

M5=z5g j P )

where B0 represents the remaining actions of B in which y1 is replaced by exp(w; ra), and

M1; : : : ;M5 are de�ned in Example 7. The �rst step is an output of M1 performed by A.

The active substitution fM1=z1g allows the environment (i.e. the attacker) to access the

message M1 via the handle z1. The handle z1 is important since the environment cannot

itself describe the term that was output, except by referring to it using z1. Since M1 is

accessible to the environment via z1, the next input action can be triggered: we have that

�w; ra; ca:fM1=z1g `E exp(w; ra) using the the recipe z1.

In the remaining, we will focus our attention on password-based protocols.
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▶ De�nition 9 (`-party password protocol speci�cation). An `-party password protocol speci-

�cation P is a process such that:

P = �w:(� ~m1:P1 j : : : j � ~m`:P`)

where each Pi is a closed plain processes. The processes � ~mi:Pi are called the roles of P.

The process �w:(A j B) described in Example 7 is a 2-party password protocol speci�cation

with roles A and B. The notion of security we will mainly concentrate on is resistance

against guessing attacks.

▶ De�nition 10 (process resistant to guessing attacks). Let A be an extended, closed process

and ~w � bn(A). We say that a process A is resistant to guessing attacks against ~w if, for

every process B such that A !� B, we have that the frame �(B) is resistant to guessing

attacks against ~w.

3 Composition Results for Password-based Protocols

In this section, we present several composition results that hold for an arbitrary equational

theory E. The only requirement we have is that there exists a function symbol h, which is

a free symbol in E, i.e. h does not occur in any equation in E. Intuitively, h models a hash

function.

3.1 Disjoint State

First, we note that, as usual, composition preserves security properties as soon as protocols

have disjoint states, i.e., they do not share any restricted names. Intuitively, this is due to

the fact that when other protocols do not share any secrets of the analyzed protocol, then

the attacker can completely simulate all messages sent by these other protocols. This has

been formally shown in [20].

▶ Theorem 11. [20] Let A1; : : : ; Ak be k extended processes such that for all i, we have

that Ai is resistant to guessing attack against wi. We have that A1 j � � � j Ak is resistant to

guessing attack against w1; : : : ; wk.

3.2 Joint State

As soon as two protocols share a restricted name, e.g. a password, composition does not

necessarily preserve security properties (see [20] for an example). We will use a tagging

technique to avoid confusion between messages that come from di�erent protocols. More

precisely we will tag each occurrence of a password. Intuitively, we consider protocols that

are well-tagged w.r.t. a secret w: all occurrences of w are of the form h(t; w) for some tag t.

Composing protocols

When each process is well-tagged with a di�erent tag, it can be shown that the processes

can be safely composed. One may think of these tags as protocol identi�ers, which uniquely

identify which protocol is executed, and avoid messages from di�erent protocols to interfere

with each other.

▶ Theorem 12. Let �1; : : : ; �k be k distinct names, and �w:A1; : : : ; �w:Ak be k processes

such that �i 62 bn(Ai) for any i 2 f1; : : : ; kg. If each �w:Ai is resistant to guessing attack
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against w then the process �w:(A1fh(�1;w)=wg j � � � j Akfh(�k;w)=wg) is resistant to guessing

attack against w.

Actually, this result is a small adaptation from [20] (the result was shown for k = 2 only).

This result can also be seen as a consequence of Proposition 15 and Lemma 16 (stated in

Section 4) and a theorem showing that adding tags preserves resistance against guessing

attacks (this last theorem is stated and proved in [20]).

The previous result is useful to compose distinct protocols. However, when we want to

compose di�erent sessions from the same protocol, we cannot assume that participants share

a distinct tag for each possible session. In the following, we de�ne a way to dynamically

establish such a session tag.

Composing sessions from the same protocol

We now de�ne a protocol transformation which establishes a dynamic tag that will guaran-

tee composition. To establish such a tag that serves as a session identi�er all participants

generate a fresh nonce, that is sent to all other participants. This is similar to the estab-

lishment of session identi�ers proposed by Barak [8]. The sequence of these nonces is then

used to tag the password. Note that an active attacker may interfere with this initialization

phase and may intercept and replace some of the nonces. However, since each participant

generates a fresh nonce, these tags are indeed distinct for each session. This transformation

is formally de�ned as follows.

▶ De�nition 13 (transformation P). Let P = �w:(� ~m1:P1 j : : : j � ~m`:P`) be a password

protocol speci�cation. Let n1; : : : ; n` be fresh names and fxji j 1 ⩽ i; j ⩽ `g be a set of fresh

variables. We de�ne the protocol speci�cation P = �w:(� ~m1; n1:P1 j : : : j � ~m`; n`:P`) as

follows:

Pi = in(x1i ): : : : in(x
i�1
i ):out(ni):in(x

i+1
i ):in(x`i):Pif

h(tagi;w)=wg

where tagi = hx1i ; h: : : hx
`�1
i ; x`iiii and x

i
i = ni.

We can now state our composition result for sessions of a same protocol: if a protocol

resists against guessing attacks on w then any number of instances of the transformed

protocol will also resist to guessing attacks on w.

▶ Theorem 14. Let P = �w:(� ~m1; P1 j : : : j � ~m`:P`) be a password protocol speci�cation

that is resistant to guessing attacks against w. Let P 0 be such that P = �w:P 0, and P 0

1; : : :P
0

p

be p instances of P 0. Then we have that �w:(P 0

1 j : : : j P
0

p) is resistant to guessing attacks

against w.

Discussion

Note that it is possible to combine these two ways of tagging. Applying successively the

two previous theorems we obtain that a tag of the form h(hn1; : : : ; n`i; h(�;w)) allows to

safely compose di�erent sessions of a same protocol, and also sessions of other protocols.

It would also be easy to adapt the proofs to directly show that a simpler tag of the form

h(h�; hn1; : : : ; n`ii; w) could be used.

The notion of security we consider is resistance to guessing attacks. While generally

resistance against guessing attacks is indeed a necessary condition to ensure security prop-

erties, this property is not a goal in itself. However, the way we prove our composition
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results allows us also to ensure that those protocols can be safely composed w.r.t. more

classical trace-based security properties such as secrecy or authentication.

Finally, we note that our composition result yields a simple design methodology. It

is su�cient to design a protocol which is secure for a single session. After applying the

above protocol transformation we conclude that the transformed protocol is secure for an

arbitrary number of sessions. Note that even though our protocol language does not include

replication, our composition results for sessions ensure security for an unbounded number

of sessions. Indeed, as any attack requires only a �nite number of sessions, any attack on a

transformed protocol which is secure for a single instance would yield a contradiction. As

deciding resistance to guessing attacks is decidable for a bounded number of sessions (for a

large class of equational theories) [9] our result can also be seen as a new decidability result

for an unbounded number of sessions on a class of tagged protocols.

4 Proof of our main result

The goal of this section is to give an overview of the proof of Theorem 14. This proof is

done in 4 main steps.

Step 1

Assume, by contradiction, that P = �w:(P 0

1 j : : : j P
0

p) admits a guessing attack on w. Hence

there exists an attack derivation P !� Q for some process Q such that �(Q) is not resistant

to a guessing attack against w.

Thanks to our transformation, we know that each role involved in P has to execute its

preamble, i.e., the preliminary nonce exchange of our transformation, at the end of which it

computes a tag. Let t1; : : : ; tk be the distinct tags that are computed during this derivation.

Then, we group together roles (i.e. a process) that computed the same tag in order to

retrieve a situation that is similar to when we use static tags. We note that the tags are

constructed such that each group contains at most one instance of each role of P. Our aim

is to show that an attack already exists on one of these groups, and so the attack is not due

to composition. However, one di�culty comes from the fact that once the preambles have

been executed, the tags that have been computed by the di�erent roles may share some

names in addition to w.

Step 2

The fact that some names are shared between the processes we would like to separate in order

to retrieve the disjoint case signi�cantly complicates the situation. Indeed, if composition

still works, it is due to the fact that names shared among di�erently tagged processes only

occur at particular positions. To get rid of shared names, we show that we can mimic a

derivation by another derivation where tags t1; : : : ; tk are replaced by constants c1; : : : ; ck and

di�erent password are used (w1; : : : ; wk instead of w). We denote by �wi;w the replacement

fw=w1
g : : : fw=wk

g, by �wi;h(ci;wi) the replacement fh(c1;w1)=w1
g : : : fh(ck;wk)=wk

g and by �ci;ti
the replacement ft1=c1g : : : f

tk=ckg.

▶ Proposition 15. Let t1; : : : ; tk be distinct ground terms modulo E and c1; : : : ; ck; w1; : : : ; wk

be distinct fresh names. Let �~n:A be an extended process such that bn(A) = ;, w 62 fn(A),

and A =E A
0�wi;h(ci;wi) for some A0 such that c1; : : : ; ck 62 fn(A0). Moreover, we assume that

w;w1; : : : ; wk; c1; : : : ; ck 62 ~n.
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Let B be such that �w:�~n:(A�ci;ti�wi;w)
`
�! B. Moreover, when ` = in( ~M) we assume

that w1; : : : ; wk; c1; : : : ; ck 62 fn( ~M). Then there exists extended processes B, B0, and labels

`0, `
0 such that:

B � �w:�~n:(B�ci;ti�wi;w) with bn(B) = ; and w 62 fn(B), ` = `0�ci;ti�wi;w, and

B =E B
0�wi;h(ci;wi) with c1; : : : ; ck 62 fn(B0), `0 =E `

0�wi;h(ci;wi), and

�w1 : : : �wk:�~n:A
`0�! �w1 : : : �wk:�~n:B.

This proposition shows how to map an execution of P � �n1 : : : �nk�w:(A1�ci;ti�wi;w j

� � � j Ak�ci;ti�wi;w) (same password) to an execution of �n1�w1:A1 j � � � j �nk�wk:Ak (dif-

ferent password) by maintaining a strong connection between these two derivations. Intu-

itively, the process Aj�ci;ti�wi;w contains the roles in P that computed the tag tj in the

attack derivation.

Note that, except for w, a name that is shared between Aj�ci;ti�wi;w and Aj0�ci;ti�wi;w

(j 6= j0) necessarily occurs in a tag position in one of the process. Now that tags have been

replaced by some constants, and the password w has been replaced by di�erent passwords

according to the tag, the processes Aj and Aj0 do not share any name.

This proposition is actually su�cient to establish that security properties, like authen-

tication, are preserved by composition. However, to establish resistant against guessing

attacks, we need more.

Step 3

We show that if a frame, obtained by executing several protocols that share a same password

and that are tagged with terms ti, is vulnerable to guessing attacks then the frame obtained

by the corresponding execution of the protocols with di�erent passwords and tagged with

constants ci is also vulnerable to guessing attacks.

▶ Lemma 16. Let t1; : : : ; tk be distinct ground terms modulo E. Let c1; : : : ; ck; w1; : : : ; wk be

distinct fresh names, and � = �~n:� be a frame such that c1; : : : ; ck; w1; : : : ; wk 62 ~n, and � =E

�0�wi;h(ci;wi) for some substitution �0. Let w be a fresh name, and  = �~n:(��ci;ti�wi;w).

For each 1 ⩽ i ⩽ k, we also assume that �w: ` ti.

If � ~w:� is resistant to guessing attacks against ~w = fw1; : : : ; wkg, then �w: is resistant

to guessing attacks against w.

The proof of the lemma is technical because mapping all wi's on the same password can

introduce additional equalities between terms. However, each occurrence of the password

is tagged, and the purpose of this design is to avoid the introduction of equalities between

terms. Again, the lemma holds because the frames are well-tagged.

Thanks to Proposition 15 and Lemma 16 we obtain a guessing attack on the process

�n1�w1:A1 j � � � j �nk�wk:Ak against w1; : : : ; wk.

Step 4

Applying Theorem 11 (combination for disjoint state protocols), we conclude that there is

a guessing attack on �ni�wi:Ai for some i 2 f1; : : : ; kg. Then, it remains to show that the

attack also works on the original protocol, i.e. the non-tagged version of the protocol. This

is a direct application of Theorem 2 in [20]. This leads us to a contradiction since we have

assumed that P is resistant to guessing attacks against w.
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5 Conclusion

In this paper we propose a transformation for password protocols based on a simple tag-

ging mechanism. This transformation ensures that security is preserved when protocols are

composed with other protocols which may use the same password. We show that when

protocols are tagged using a simple protocol identi�er, we are able to compose di�erent pro-

tocols. Computing a dynamic session identi�er allows one to also compose di�erent sessions

of a same protocol. Hence, it is su�cient to prove that a protocol is secure for one session

in order to conclude security under composition.

Currently, as stated, our composition results allow to preserve resistance against o�ine

guessing attacks. As already discussed it also follows from our proofs that trace properties

would be preserved. Formalizing for instance preservation of authentication should be a

rather straightforward extension. A more ambitious direction for future work would be the

composition of more general, indistinguishability properties, expressed in terms of observa-

tional equivalence. We also plan to investigate su�cient conditions to ensure composition

of protocols in the vein of [25] avoiding to change existing protocols.
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