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Abstract. We consider two-player zero-sum games on graphs. Thesesgame
be classified on the basis of the information of the playets @nthe mode of
interaction between them. On the basis of information thedification is as fol-
lows: (a) partial-observation (both players have partielwof the game); (b)
one-sided complete-observation (one player has completereation); and (c)
complete-observation (both players have complete vielwsfiame). On the ba-
sis of mode of interaction we have the following classifioati(a) concurrent
(players interact simultaneously); and (b) turn-basedy@is interact in turn).
The two sources of randomness in these games are randommesssition func-
tion and randomness in strategies. In general, randomizategies are more
powerful than deterministic strategies, and randomnessitsitions gives more
general classes of games. We present a complete charatterifor the classes
of games where randomness is not helpful in: (a) the tramsftinction (proba-
bilistic transition can be simulated by deterministic 8iion); and (b) strategies
(pure strategies are as powerful as randomized strategiespnsequence of our
characterization we obtain new undecidability resultgli@se games.

1 Introduction

Games on graphsGames played on graphs provide the mathematical framework t
analyze several important problems in computer scienceedss/mathematics. In par-
ticular, when the vertices and edges of a graph represestdles and transitions of a
reactive system, then the synthesis problem (Church’sl@nmofasks for the construc-
tion of a winning strategy in a game played on a graph [4, 1613 Game-theoretic
formulations have also proved useful for the verificatiojy fgéfinement [10], and com-
patibility checking [7] of reactive systems. Games playedjaphs are dynamic games
that proceed for an infinite number of rounds. In each rourelptayers choose moves;
the moves, together with the current state, determine tbeessor state. An outcome
of the game, called play, consists of the infinite sequence of states that are visited

Strategies and objectivesA strategy for a player is a recipe that describes how the
player chooses a move to extend a play. Strategies can tsfieldsas follows:pure
strategies, which always deterministically choose a movextend the play, vsan-
domizedstrategies, which may choose at a state a probability ligtan over the avail-
able moves. Objectives are generally Borel measurableitunsc[12]: the objective for

a player is a Borel s in the Cantor topology o8“ (whereS is the set of states), and
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the player satisfies the objective iff the outcome of the gsraenember of3. In verifi-
cation, objectives are usually-regular languagesThew-regular languages generalize
the classical regular languages to infinite strings; theguon the low levels of the
Borel hierarchy (they lie in¥’s N I13) and they form a robust and expressive language
for determining payoffs for commonly used specifications.

Classification of gamesGames played on graphs can be classified according to the
knowledge of the players about the state of the game, anddgefchoosing moves.
Accordingly, there are (apartial-observationgames, where each player only has a
partial or incomplete view about the state and the moveseabther player; (bbne-
sided complete-observatiazames, where one player has partial knowledge and the
other player has complete knowledge about the state andsvduwbe other player;
and (c)complete-observatiogames, where each player has complete knowledge of the
game. According to the way of choosing moves, the games gohgrean be classi-
fied into turn-basedand concurrentgames. In turn-based games, in any given round
only one player can choose among multiple moves; effegtitlet set of states can be
partitioned into the states where it is player 1's turn toypénd the states where it is
player 2's turn. In concurrent games, both players may hawipte moves available

at each state, and the players choose their moves simulisliyemd independently.

Sources of randomnessThere are two sources of randomness in these games. First is
the randomness in the transition function: given a curret¢®nd moves of the players,
the transition function defines a probability distributiover the successor states. The
second source of randomness is the randomness in straedies the players play
randomized strategies). In this work we study when rand@scan be obtained for
free i.e., we study in which classes of games the probabilistissition function can

be simulated by deterministic transition function, andd¢tasses of games where pure
strategies are as powerful as randomized strategies.

Motivation. The motivation to study this problem is as follows: (a) if forclass of
games it can be shown that randomness is free for transitibes all future works
related to analysis of computational complexity, strateggnplexity, and algorithmic
solutions can focus on the simpler class with determinisdicsitions (the randomness
in transition may be essential for modeling appropriatelststic reactive systems, but
the analysis can focus on the deterministic subclass)f {tw) & class of games it can be
shown that randomness is free for strategies, then alldwtorks related to correctness
results can focus on the simpler class of deterministidesiies, and the results would
follow for the more general class of randomized strategied;(c) the characterization
of randomness for free will allow hardness results obtafoedhe more general class
of games (such as games with randomness in transitions)¢arbed over to simpler
class of games (such as games with deterministic transjtion

Our contribution. Our contributions are as follows:

1. Randomness for free in transitionde show that randomness in the transition func-
tion can be obtained for free for complete-observation oomnt games (and any
class that subsumes complete-observation concurrentgjeand for one-sided
complete-observation turn-based games (and any classuhatimes this class).
The reduction is polynomial for complete-observation eonent games, and ex-
ponential for one-sided complete-observation turn-bgseaes. It is known that for



complete-observation turn-based games, a probabilistisition function cannot
be simulated by deterministic transition function (seeuwd$sion at end of Section 3
for details), and thus we present a complete charactayizathen randomness can
be obtained for free for the transition function.

2. Randomness for free in strategié¥e show that randomness in strategies is free
for complete-observation turn-based games, and for cageppartial-observation
games (POMDPSs). For all other classes of games randomidgies are more
powerful than pure strategies. It follows from a result of rita[12] that for
one-player complete-observation games with probalglistinsitions (MDPS) pure
strategies are as powerful as randomized strategies. \Werira generalization of
this result to the case of one-player partial-observatimmes with probabilistic
transitions (POMDPs). Our proof is totally different fromekdin’s proof and based
on a new derandomization technique of randomized stragegie

3. New undecidability resultsAs a consequence of our characterization of random-
ness for free, we obtain new undecidability results. Inipaldr, using our results
and results of Baier et al. [2] we show for one-sided compddtservation deter-
ministic games, the problem of almost-sure winning for goli“objectives and
positive winning for Biichi objectives are undecidableu$twe obtain the first
undecidability result for qualitative analysis (almostesand positive winning) of
one-sided complete-observation deterministic gamesawitbgular objectives.

2 Definitions

In this section we present the definition of concurrent gaofesartial information
and their subclasses, and notions of strategies and algect®Our model of game is
the same as in [9] and equivalent to the model of stochastitegawith signals [14,
3]. A probability distributionon a finite setd is a functionx : A — [0, 1] such that
> qca kla) = 1. We denote byD(A) the set of probability distributions aa.

Games of partial observation.A concurrent game of partial observatigar simply a
gamg is a tupleG = (S, A1, As, §, 01, O2) with the following components: (Btate
space).S is a finite set of states; (ZActions).4; (i = 1,2) is a finite set of actions
for Playeri; (3) (Probabilistic transition function)s : S x A; x A2 — D(S) is a
concurrent probabilistic transition function that givecLarent state, actionsz; andas
for both players gives the transition probabilftfs, a1, a2)(s’) to the next state’; and
(4) (Observations)©; C 2° (i = 1,2) is a finite set of observations for Playethat
partition the state spac® These partitions uniquely define functiosiss; : S — O;
( = 1, 2) that map each state to its observation suchdh@abbs;(s) forall s € S.

Special casesdlVe consider the following special cases of partial obséwatoncurrent

games, obtained either by restrictions in the observatittresmode of selection of

moves, the type of transition function, or the number of play

— (Observation restriction)The games witlone-sided complete-observatiare the

special case of games whety = {{s} | s € S} (i.e., Player 1 has com-
plete observation) 00, = {{s} | s € S} (Player 2 has complete observa-
tion). The games of complete-observatiane the special case of games where
01 =0, ={{s} | s € S}, i.e., every state is visible to each player and hence both
players have complete observation. If a player has completervation we omit
the corresponding observation sets from the descriptitiheofjame.



— (Mode of interaction restriction)A turn-based statés a states such that eithefi)
d(s,a,b) = d(s,a,b’) foralla € A; and allb, b’ € A (i.e, the action of Player 1
determines the transition function and hence it can bepne¢ed as Player 1's turn
to play), we refer tos as a Player-1 state, and we use the notadigna, —); or
(1) 0(s,a,b) = d(s,a’,b) for all a,a’ € A; and allb € A,. We refer tos as a
Player-2 state, and we use the notatigsn —, b). A states which is both a Player-1
state and a Player-2 state is callepgrababilistic statg(i.e., the transition function
is independent of the actions of the players). We writedfse—, —) to denote the
transition function ins. Theturn-based gameare the special case of games where
all states are turn-based.

— (Transition function restriction)The deterministic gameare the special case of
games where for all states= S and actions € A; andb € Ay, there exists a state
s’ € S'such that(s,a,b)(s") = 1. We refer to such statesas deterministic states.
For deterministic games, it is often convenient to assumgithS x A; x A; — S.

— (Player restriction). The 11h-player games also calledpartially observable
Markov decision processésr POMDP), are the special case of games wheie
or A, is a singleton. Note that4-player games are turn-based. Games without
player restriction are sometimes callethplayer games.

The 15-player games of complete-observation are Markov decigionesses (or
MDP), and 1%;-player deterministic games can be viewed as graphs (andftme
called one-player games).

Classes of game graph%ve will use the following abbreviations: we will udea
for partial observation©Os for one-sided complete-observatio@p for complete-
observationC for concurrent, and for turn-based. For exampl€oC will denote
complete-observation concurrent games, &sl will denote one-sided complete-
observation turn-based games. Eoe {Pa, Os, Co} x {C, T}, we denote byj¢ the
set of allC games. Note that the following strict inclusion: partiakebvation Pa) is
more general than one-sided complete-observa@im) &nd Os is more general than
complete-observatiop), and concurrent) is more general than turn-basdg.(We
will denote byGp, the set of all games with deterministic transition function

Plays.In a game structure, in each turn, Playezthooses an actiom € A, Player2
chooses an action ihe A, and the successor of the current staiechosen according
to the probabilistic transition functiof(s, a, b). A playin G is an infinite sequence of
statesp = sgs1 ... such that for alk > 0, there exists;; € A; andb; € As with
0(si,ai,bi, siv1) > 0. Theprefix up tos,, of the playp is denoted by (n), its length
is |p(n)] = n + 1 and itslast elemenis Last(p(n)) = s,. The set of plays in7

is denotedPlays(G), and the set of corresponding finite prefixes is den®ets(G).
The observation sequena# p for playeri (i = 1,2) is the unique infinite sequence
obs;(p) = 0po1 ... € O suchthats; € o; forall j > 0.

StrategiesA pure strategyin G for Player1 is a functiono : Prefs(G) — A;. A
randomized strategin G for Playerl is a functiono : Prefs(G) — D(A;1). A (pure
or randomized) strategy for Player1 is observation-based for all prefixesp, p’ €
Prefs(G), if obsy(p) = obsi(p’), theno(p) = o(p’). We omit analogous definitions
of strategies for Playe?. We denote by>q, XS, XL, I, 11§ and 11} the set of
all Playerd strategies, the set of all observation-based Playsrategies, the set of all



Fig. 1. A game with one-sided complete observation.

pure Playert strategies, the set of all Play2istrategies irz, the set of all observation-
based Playe?-strategies, and the set of all pure Plagestrategies, respectively. Note
that if Playerl has complete observation, th&f = Y.

ObjectivesAn objectivefor Playerl in G is a setp C S“ of infinite sequences of states.
A play p € Plays(G) satisfieghe objectivep, denotedh = ¢, if p € ¢. Objectives are
generally Borel measurable: a Borel objective is a Borelrséte Cantor topology on
S“ [11]. We specifically considew-regular objectives specified as parity objectives
(a canonical form to express all-regular objectives [17]). For a play = sgs1 ...
we denote bynf(p) the set of states that occur infinitely oftengdnthat is,Inf(p) =

{s | s; = sforinfinitely manyj's}. Ford € N, letp : S — {0,1,...,d} be a
priority function, which maps each state to a nonnegative integer prioritg. petmity
objectiveParity(p) requires that the minimum priority that occurs infinitelytesf be
even. FormallyParity(p) = {p | min{p(s) | s € Inf(p)} is ever}. The Buchi and
coBlichi objectives are the special cases of parity oljestith two prioritiesp : S —
{0,1} andp : S — {1, 2} respectively. We say that an objectiyés visiblefor Player:

if for all p, p’ € S¥, if p = ¢ andobs;(p) = obs;(p’), thenp’ = ¢. For example if the
priority function maps observations to priorities (ie:, O; — {0,1,...,d}), then the
parity objective is visible for Playet

Almost-sure winning, positive winning and value functin eventis a measurable set
of plays, and given strategiesand« for the two players, the probabilities of events
are uniquely defined [18]. For a Borel objectigewe denote byPr? ™ (¢) the proba-
bility that ¢ is satisfied by the play obtained from the starting statéhen the strate-
gieso andr are used. Given a game structd¥eand a states, an observation-based
strategyo for Player1 is almost-sure winning (almost winning in shoftesp.posi-
tive winning for the objectivep from s if for all observation-based randomized strate-
giesw for Player2, we havePrl" (¢) = 1 (resp.Pr2™(¢) > 0). Thevalue function
(1p&, : S — R for Player 1 and objective assigns to every state the maximal
probability with which Player 1 can guarantee the satigfaabf ¢ with an observation-
based strategy, against all observation-based stratiegi®tayer 2. Formally we have
(NG (p)(s) = SUP, ¢ o infrc 7o Pro™(¢). Fore > 0, an observation-based strat-

val
egy ise-optimalfor ¢ from s if we haveinf, c ;o Pr{™(¢) = (NG (#)(s) —e. An
optimalstrategy is &-optimal strategy.



Pa - partial observation

Os - one-sided complete observation

C - concurrent

T - turn-based
Th. 3

Co - complete observation

Th. 2

Fig. 2. The various classes of game graphs. The curves materihkzelasses for which ran-
domness is for free in transition relation (Theorem 2 andoféwa 3). For21/>-player games,
randomness is not free only in complete-observation taset games.

Example 1.Consider the game with one-sided complete observatiop¢Pldas com-
plete information) shown in Fig. 1. Consider the Bichi atijee defined by the state
sq4 (i.e., states, has priority0 and other states have priority. Because Player has
partial observation (given by the partitid® = {{s1}, {s2, 5}, {s3,54},{s4}}), she
cannot distinguish between ands), and therefore has to play the same actions with
same probabilities iny ands), (while it would be easy to win by playing; in s; anda,

in s, this is not possible). In fact, Playércannot win using a pure observation-based
strategy. However, playing; andas uniformly at random in all states is almost-sure
winning. Every time the game visits observatien for any strategy of Playe?, the
game visitssz and s with probability 1, and hence also reacheswith probability

%. It follows that against all Playe? strategies the play eventually reachgswith
probability 1, and then stays there.

3 Randomness for Free in Transition Function

In this section we present a precise characterization ofldsses of games where the
randomness in transition function can be obtainedra in other words, we present
the precise characterization of classes of games with pilidtac transition function
that can be reduced to the corresponding class with detitinitransition function.
We present our results as three reductions: (a) the firsttieduallows us to separate
probability from the mode of interaction; (b) the secondugtn shows how to simu-
late probability in transition function witoC (complete-observation concurrent) de-
terministic transition; and (c) the final reduction showsvito simulate probability in
transition withOsT(one-sided complete-observation turn-based) detertigirirainsi-
tion. All our reductions arécal: they consist of a gadget construction and replacement
locally at every state. Our reductions preserve valuestexie oE-optimal strategies
for e > 0, and also existence of almost-sure and positive winnirajesgies. A visual
overview is given in Fig. 2.

3.1 Separation of probability and interaction

A concurrent probabilistic game of partial observat@rsatisfies thenteraction sep-
aration condition if the following restrictions are satisfied: theate spaceS can



be partitioned into(S4, Sp) such that (1)d : Sa x A; x A2 — Sp, and (2)
6 : Sp x Ay x A2 — D(S4) such that for alls € Sp and alls’ € S4, and for
all a1, as, ay, ah, we haved (s, a1, az)(s’) = d(s, al,ah)(s") = d(s,—, —)(s’). In other
words, the choice of actions (or the interaction) of the ptayakes place at statesin
and actions determine a unique successor stafie jrand the transition function &p

is probabilistic and independent of the choice of the playkrthis section, we reduce
a class of games to the corresponding class satisfyingaictten separation.

Reduction to interaction separation.Let G = (S, A1, A2, §, O1, O2) be a concurrent
game of partial observation with an objective\We obtain a concurrent game of partial
observatiorG = (S4 U Sp, Ay, As,5,01,02) whereSy = S, Sp = S x Ay x As,
and:
— ObservationFori € {1,2},if O; = {{s} | s € S}, thenO; = {{s'} | s’ €
SaUSp}; otherwiseO; contains the observationJ {(s, a1, a2) | s € o} for each
0 E< Ol
— Transition functionThe transition function is as follows:
1. We have the following three cases: (a} is a Player 1 turn-based state, then
pick an actiona’ and for allay let 6(s,a1,a2) = (s,a1,a}); (b) if sis a
Player 2 turn-based state, then pick an actipand for alla; leté(s, ay, az) =
(s,a%,as); and (c) otherwisei(s, a1, az) = (s, a1, az);
2. forall(s,ay,a2) € Sp we haved((s, a1, as), —, —)(s') = 6(s, a1, a2)(s").
— Objective mappingGiven the objectivep in G we obtain the objectived =
{(sosps18)-..) | (s0s1-...) € ¢} iNG.
Itis easy to map observation-based strategies of the gato@bservation-based strate-
gies inG and vice-versa that preserves satisfaction ahd¢ in G andG, respectively.
Let us refer to the above reductionReduction: i.e.,Reduction(G, ¢) = (G, $). Then
we have the following theorem.

Theorem 1. Let G be a concurrent game of partial observation with an objectly
and let(G, ¢) = Reduction(G, ¢). Then the following assertions hold:

1. The reductionReduction is restriction preservingif G is one-sided complete-
observation, then so I§; if G is complete-observation, then saGs if G is turn-
based, then so i§.

2. Forall s € S, there is an observation-based almost-sure (resp. pe3itinning
strategy forg from s in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy fop from s in G.

3. The reduction is objective preservinguiis a parity objective, then so i; if ¢ is
an objective in thé-the level of the Borel hierarchy, then sodis

4. For all s € S we have(1)€ ,(¢)(s) = (1)% ,(¢)(s). For all s € S there is an

observation-based optimal strategy forfrom s in G iff there is an observation-
based optimal strategy faf froms in G.

Since the reduction is restriction preserving, we have agtoh that separates the
interaction and probabilistic transition maintaining testriction of observation and
mode of interaction.

Uniform-n-ary concurrent probabilistic games. The class olniform-n-ary proba-
bilistic gamesare the special class of probabilistic games such that estatgs € Sp



hasn successors and the transition probability to each sucr:'es%o It follows from
the results of [19] that ever@oC probabilistic game with rational transition probabili-
ties can be reduced in polynomial time to an equivalent pmiyial size uniform-binary
(i.e.,n = 2) CoC probabilistic game for all parity objectives. The reduntis achieved
by adding dummy states to simulate the probability, and #gaction extends to all
objectives (in the reduced game we need to consider thetolgechose projection in
the original game gives the original objective).

In the case of partial information, the reduction to unifeomary probabilistic
games of [19] is not valid (see [5] for an example). We redugeadabilistic game
G to a uniformsn-ary probabilistic game with, = 1/r wherer is the greatest common
divisor of all probabilities in the original gan& (a rational- is a divisor of a rationgb
if p = ¢ - r for some integey). Note that the number = 1/r is an integer. We denote
by [n] the set{0,1,...,n — 1}. For a probabilistic state € Sp, we define the:-tuple
Succ(s) = (sg,. .., s,_1) in which each state’ € S occursn - 6(s, —, —)(s’) times.
Then, we can view the transition relatiéfs, —, —) as a function assigning the same
probabilityr = 1/n to each element Bucc(s) (and then adding up the probabilities
of identical elements). Note that the above reduction isstvoase exponential (because
so can be the least common multiple of all probability denmators). This is necessary
to have the property that all probabilistic states in the gdrave the same number of
successors. This property is crucial because it deterntlirgesumber of actions avail-
able to Player 1 in the reductions presented in Section 323 and the number of
available actions should not differ in states that have #meesobservation.

3.2 Simulating probability by complete-observation concurent determinism

In this section, we show that probabilistic states can beisitad byCoC deterministic
gadgets (and hence also BC andPaC deterministic gadgets). By Theorem 1, we
focus on games that satisfy interaction separation. A ghitibic state with uniform
probability over the successors is simulated by a commbgervation concurrent de-
terministic state where the optimal strategy for both ptaye to play uniformly over
the set of available actions (more details are given in [H})s gives us Theorem 2.

Theorem 2. Leta € {Pa,Os,Co} andb € {C, T}, and letC = ab andC’ = aC. Let
G be a game g with probabilistic transition function with rational praibilities and
an objectivep. A gameG € Ger N Gp (in the class that subsumégg with concurrent
interaction) with deterministic transition function car bonstructed in (a) polynomial
time ifa = Co, and (b) in exponential time if = Pa or Os, with an objectivep such
that the state space ¢f is a subset of the state space(ofind we have:

1. For all s € S there is an observation-based almost-sure (resp. pojitivening
strategy froms for ¢ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy fop from s in G.

2. Forall s € S we have(1)% (¢)(s) = (1)G ,(#)(s). For all s € S there is an
observation-based optimal strategy forfrom s in G iff there is an observation-
based optimal strategy fa¥ from s in G.



3.3 Simulating probability by one-sided complete-obsent#on turn-based
determinism

We show that probabilistic states can be simulateddsf (one-sided complete-
observation turn-based) states, and by Theorem 1 we comgdees that satisfy inter-
action separation. The reduction is as follows: each pritibab states is transformed

into a Player? state withn successor Playdrstates (where is chosen such that the
probabilities ins are integer multiples of /n). Because all successors ohave the
same observation, Playghas no advantage in playing after Player 2, and because by
playing all actions uniformly at random each player canateilally decide to simulate
the probabilistic state, the value and properties of sjiateof the game are preserved.
Due to lack of space, the proof of Theorem 3 is given in [5].

Theorem 3. Leta € {Pa,Os,Co} andb € {C, T}, and leta’ = a if a # Co, and
a’ = Os otherwise. Let = ab andC’ = d'b. LetG be a game irG¢ with probabilistic
transition function with rational transition probabiligis and an objective. A game
G’ € Ger N Gp (in the class that subsumes one-sided complete-obsematio-based
games and the clagg:) with deterministic transition function can be constritia
exponential time with an objectivg such that the state space 6fis a subset of the
state space aff’ and we have:

1. For all s € S there is an observation-based almost-sure (resp. po}itivening
strategy froms for ¢ in G iff there is an observation-based almost-sure (resp. posi-
tive) winning strategy fop’ froms in G'.

2. Forall s € S we have(1)S,,(6)(s) = (1)S.,(¢')(s). Forall s € S there is an
observation-based optimal strategy forfrom s in G iff there is an observation-
based optimal strategy fa’ fromsin G'.

Role of probabilistic transition in CoT games andPOMDPs. We have shown that
for CoC games an@®sT games, randomness in transition can be obtained for free. We
complete the picture by showing that f6oT (complete-observation turn-based) games
randomness in transition cannot be obtained for free. loied from the result of Mar-
tin [12] that for allCoT deterministic games and all objectives, the values areeith
or 0; howeverMDPs with reachability objectives can have values in the irgklf; 1]
(not value 0 and 1 only). Thus the result follows fooT games. It also follows that
“randomness in transitions” can be replaced by “randomimesgategies” is not true:

in CoT deterministic games even with randomized strategies theesare either 1
or 0 [12]; wherea$/DPs can have values in the intervél 1]. ForPOMDPs, we show

in Theorem 5 that pure strategies are sufficient, and it\igdlthat forPOMDPs with
deterministic transition function the values are 0 or 1, sindeMDPs with reachability
objectives can have values other than 0 and 1 it follows #wadlomness in transition
cannot be obtained for free fROMDPs. The probabilistic transition also plays an im-
portant role in the complexity of solving games in caseCofl games: for example,
CoT deterministic games with reachability objectives can Heesbin linear time, but
for probabilistic transition the problem is in NPcoNP and no polynomial time algo-
rithm is known. In contrast, foEoC games we present a polynomial time reduction
from probabilistic transition to deterministic transitioTable 1 summarizes our results



215-player 11h-player
complete| one-sideq partial| MDP | POMDP
turn-based  not free free | not not

concurrent  free free free | (NA) | (NA)

Table 1. When randomness is for free in the transition function. Irtipalar, probabilities can
be eliminated in all classes of 2-player games except cdmpleservation turn-based games.

characterizing the classes of games where randomnesséitiva can be obtained for
free.

4 Randomness for Free in Strategies

It is known from the results of [8] that ifoC games randomized strategies are more
powerful than pure strategies; for example, values actibyeure strategies are lower
than values achieved by randomized strategies and randdraimost-sure winning
strategies may exist whereas no pure almost-sure winmaiggl exists. Similar results
also hold in the case @sT games (see [6] for an example). By contrast we show that
in one-player games, restricting the set of strategieste stwategies does not decrease
the value nor affect the existence of almost-sure and pesitinning strategies. We
first start with a lemma, then present a result that can beetkfiom Martin’s theorem

for Blackwell games [12], and finally present our resultcigely in a theorem.

Lemma 1. LetG be aPOMDP with initial states, and an objective C S«. Then for
every randomized observation-based strategy Yo there exists gureobservation-
based strategyp € X'p N Yo such thatPr] (¢) < Pri"(¢).

The main argument in the proof of Lemma 1 relies on showingtthavaluePr? (¢)

of any randomized observation-based strategy equal to the average of the values
Pr?%(¢) of (uncountably many) pure observation-based strategiekherefore, one of
the pure strategies; has to achieve at least the value of the randomized strategy
The theory of integration and Fubini's theorem make thisiargnt precise (see [5] for
details).

Theorem 4 ([12]).Let G be aCoT stochastic game with initial state. and an ob-
jectivep C S“. Then the following equalities holdnf ¢, sup, ¢, Pri"(¢) =
SUP, e 5, infrem, Pr]™(¢) = SUP,exonsp iMfreno Pr7 ™ ().

We obtain the following result as a consequence of Lemma 1.

Theorem 5. Let G be aPOMDP with initial states, and an objectivey C S“. Then
the following assertions hold:
1. sup,e, P17 (6) = Sup,e v s, PY2 (6).
2. Ifthere is arandomized optimal (resp. almost-sure wignpositive winning) strat-
egy for¢ from s,., then there is a pure optimal (resp. almost-sure winningitpee
winning) strategy for) from s.,.



215-player 11h-player
complete| one-sideq partial| MDP | POMDP
turn-based e >0 not not [e>0| ¢>0
concurreny  not not not | (NA) | (NA)

Table 2. When deterministicd-optimal) strategies are as powerful as randomized siegteghe
casec = 0 in complete-observation turn-based games is open.

Theorem 4 can be derived as a consequence of Martin’s prodétefrminacy of
Blackwell games [12]: the result states that @oT stochastic games pure strategies
can achieve the same value as randomized strategies, anspasial case the result
also holds foMDPs. Theorem 5 shows that the result can be generalizB@DPs,
and a stronger result (item (2) of Theorem 5) can be proveB@vIDPs (andMDPs
as a special case). It remains open whether result simiiggrto(2) of Theorem 5 can
be proved forCoT stochastic games. The results summarizing when randonoaass
be obtained for free for strategies is shown in Table 2.

Undecidability result for POMDPs. The results of [2] shows that the emptiness prob-
lem for probabilistic coBuichi (resp. Buichi) automata enthe almost-sure (resp. pos-
itive) semantics [2] is undecidable. As a consequencelivia that forPOMDPs the
problem of deciding if there is a pure observation-basedatraure (resp. positive)
winning strategy for coBuchi (resp. Bichi) objectivesiisdecidable, and as a conse-
quence of Theorem 5 we obtain the same undecidability résuitandomized strate-
gies. This result closes an open question discussed in [#.uhdecidability result
holds even if the coBuchi (resp. Biichi) objectives aréolés

Corollary 1. Let G be aPOMDP with initial state s, and let7 C S be a subset of
states (or subset of observations). Whether there existgeaqr randomized almost-
sure winning strategy for Player 1 fromin G for the objectivecoBuchi(7) is unde-
cidable; and whether there exists a pure or randomized p@siwinning strategy for
Player 1 froms in G for the objectiveBuchi(7) is undecidable.

Undecidability result for one-sided complete-observatio turn-based games.The
undecidability results of Corollary 1 also holds f0sT stochastic games (as they sub-
sumePOMDPs as a special case). It follows from Theorem 3 st stochastic games
can be reduced tOsT deterministic games. Thus we obtain the first undecidgliit
sult for OsT deterministic games (Corollary 2), solving the open quoastif [6].

Corollary 2. LetG be anOsT deterministic game with initial state. and let7 C §
be a subset of states (or subset of observations). WhetreréRists a pure or random-
ized almost-sure winning strategy for Player 1 frein G for the objectiveoBuchi(7)

is undecidable; and whether there exists a pure or randotipinsitive winning strategy
for Player 1 froms in G for the objectiveBuchi(7') is undecidable.
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Conclusion

In this work we have presented a precise characterizatiooldsses of games where
randomization can be obtained for free in transitions andtiategies. As a conse-
qguence of our characterization we obtain new undecidgbégults. The other impact
of our characterization is as follows: for the class of gamvegre randomization is

free in transition, future algorithmic and complexity aygé can focus on the simpler
class of deterministic games; and for the class of gamesenrhedomization is free in

strategies, future analysis of such games can focus onrtipdesiclass of deterministic

strategies. Thus our results will be useful tools for simplealysis techniques in the
study of games.
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