
Formal analysis of privacy for routing protocols
in mobile ad hoc networks?

Rémy Chrétien and Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract. Routing protocols aim at establishing a route between dis-
tant nodes in ad hoc networks. Secured versions of routing protocols have
been proposed to provide more guarantees on the resulting routes, and
some of them have been designed to protect the privacy of the users.
In this paper, we propose a framework for analysing privacy-type prop-
erties for routing protocols. We use a variant of the applied-pi calculus as
our basic modelling formalism. More precisely, using the notion of equiv-
alence between traces, we formalise three security properties related to
privacy, namely indistinguishability, unlinkability, and anonymity. We
study the relationship between these definitions and we illustrate them
using two versions of the ANODR routing protocol.

1 Introduction

Mobile ad hoc networks consist of mobile wireless devices which autonomously
organise their communication infrastructure. They are being used in a large ar-
ray of settings, from military applications to emergency rescue; and are also
believed to have future uses in e.g. vehicular networking. In such a network,
each node provides the function of a router and relays packets on paths to other
nodes. Finding these paths is a crucial functionality of any ad hoc network. Spe-
cific protocols, called routing protocols, are designed to ensure this functionality
known as route discovery.

Since an adversary can easily paralyse the operation of a whole network by
attacking the routing protocol, substantial efforts have been made to provide
efficient and secure routing protocols [21, 14, 18]. For instance, in order to pre-
vent a malicious node to insert and delete nodes inside a path, cryptographic
mechanisms such as encryption, signature, and MAC are used. However, there
is a privacy problem related to the way routes are discovered by those routing
protocols. Indeed, most routing protocols (e.g. [14, 18]) flood the entire network
with a route request message containing the names of the source and the desti-
nation of the intended communication. Thus, an eavesdropper can easily observe
who wants to communicate with whom even if he is not on the route between the
communicating nodes. Since then, in order to limit privacy issues, several anony-
mous routing protocols have been developed, e.g. ANODR [15], AnonDSR [20] to
resist against passive adversaries showing no suspicious behaviours.

? This work has been partially supported by the project JCJC VIP ANR-11-JS02-006.

Because security protocols are in general notoriously difficult to design and
analyse, formal verification techniques are particularly important. For example,
a flaw has been discovered in the Single-Sign-On protocol used e.g. by Google
Apps [4]. It has been shown that a malicious application could very easily gain
access to any other application (e.g. Gmail or Google Calendar) of their users.
This flaw has been found when analyzing the protocol using formal methods,
abstracting messages by a term algebra and using the AVISPA platform [5].

Whereas secrecy and authentication are well-understood notions, anonymity
itself is ill-defined: behind the general concept lie distinct considerations which
share the general idea of not disclosing any crucial information to an attacker
on the network. Thus, formalizing privacy-type properties is not an easy task
and has been the subject of several papers in the context of electronic voting
(e.g. [12, 7]), RFID systems (e.g. [3, 9]), or anonymizing protocols (e.g. [16, 13]).
Whereas some of them rely on a probabilitistic notion of anonymity (e.g. [19]),
we focus on deterministic ones, for which formal analysis appears more natural.
All these definitions share a common feature: they are based on a notion of
equivalence that allows one to express the fact that two situations are similar,
i.e. indistinguishable from the point of view of the attacker.

Our contributions. In this paper, we propose a formal framework for analyzing
privacy-type properties in the context of routing protocols. We use a variant of
the applied-pi calculus as our basic modeling formalism [1], which has the advan-
tage of being based on well-understood concepts and to allow us to model various
cryptographic primitives by the means of an equational theory (see Sections 2
and 3). However, in order to model route discovery protocols, we have to adapt
it to take into account several features of those protocols, e.g. the topology of
the network, broadcast communication, internal states of the nodes, etc

Then, we investigate the different properties a routing protocol could achieve
to be considered indeed anonymous in presence of a passive attacker. We propose
three different families of such properties: indistinguishability, which deals with
the possibility to distinguish some external action undertaken by an agent from
another (see Section 4); unlinkability, which is related to the ability for the
attacker to link certain actions together (see Section 5); and finally anonymity
which concerns the disclosure of information such as the identity of the sender,
or the identity of the receiver (see Section 6). We formalise those properties
using a notion of equivalence between traces. Some difficulties arise due to the
application under study. In particular, to achieve those security properties, we
have to ensure that the network is active enough, and thus we have to provide a
formal definition of this notion. We study the relationship between these privacy-
type properties and we illustrate our definitions on two versions of the ANODR
routing protocol [15].

Related work. Notions of privacy have been studied for RFID protocols [3] such
as the key establishment protocol used in the electronic passport application.
Similarly, formal definitions and proofs of anonymity for anonymizing protocols,
like the onion routing, were proposed in [16, 13]. Nevertheless these formalisms do

2

not allow one to freely specify network topologies, a crucial feature for mobile ad-
hoc routing. Moreover, as an extension of the applied pi-calculus, our formalism
is not bound to a fixed set of primitives but make our definition usable for a
large class of routing protocols. A more detailed version of this paper is available
in [10].

2 Messages and attacker capabilities

As often in protocol analysis, cryptographic primitives are assumed to work per-
fectly. However, we do not consider an active attacker who controls the entire
network as generally done when analyzing more classical protocols. We will con-
sider an eavesdropper who listens to some nodes of the network or even all of
them. Basically, he can see messages that are sent from locations he is spying
on, and can only encrypt, decrypt, sign messages or perform other cryptographic
operations if he has the relevant keys.

2.1 Messages

For modeling messages, we consider an arbitrary term algebra, which provides a
lot of flexibility in terms of which cryptographic primitives can be modelled. In
such a setting, messages are represented by terms where cryptographic primitives
such as encryption, signature, and hash function, are represented by function
symbols. More precisely, we consider a signature (S, Σ) made of a set of sorts S
and a set of function symbols Σ together with arities of the form ar(f) = s1 ×
. . . × sk → s where f ∈ Σ, and s, s1, . . . , sk ∈ S. We consider an infinite set
of variables X and an infinite set of names N which are used for representing
keys, nonces, etc We assume that names and variables are given with sorts.
Terms are defined as names, variables, and function symbols applied to other
terms. Of course function symbol application must respect sorts and arities. For
A ⊆ X ∪N , the set of terms built from A by applying function symbols in Σ is
denoted by T (Σ,A).

We write vars(u) (resp. names(u)) for the set of variables (resp. names) that
occur in a term u. A term u is said to be a ground term if vars(u) = ∅. Regarding
the sort system, we consider a special sort agent that only contains names and
variables. These names represent the names of the agents, also called the nodes
of the network. We assume a special sort msg that subsumes all the other sorts,
i.e. any term is of sort msg.

For our cryptographic purposes, it is useful to distinguish a subset Σpub

of Σ, made of public symbols, i.e. the symbols made available to the attacker.
A recipe is a term in T (Σpub,X ∪ N), that is, a term containing no private
(non-public) symbols. Moreover, to model algebraic properties of cryptographic
primitives, we define an equational theory by a finite set E of equations u = v
with u, v ∈ T (Σ,X) (note that u, v do not contain names). We define =E to be
the smallest equivalence relation on terms, that contains E and that is closed
under application of function symbols and substitutions of terms for variables.

3

Example 1. A typical signature for representing secured routing protocols is the
signature (S, Σ) defined by

– S = {agent,msg}, and
– Σ = {〈〉, proj1, proj2, senc, sdec, aenc, adec, pub, prv, req, rep, src, dest, key}

with the following arities:

senc, sdec, aenc, adec, 〈 〉 : msg ×msg→ msg pub, prv : agent→ msg
req, rep, src, dest, key : → msg proj1, proj2 : msg→ msg

The constants req and rep are used to identify the request phase and the
reply phase, src, dest, and key are some other public constants. The function
symbols sdec, senc (resp. adec and aenc) of arity 2 represent symmetric (resp.
asymmetric) decryption and encryption. Pairing is modelled using a symbol of
arity 2, denoted 〈 〉, and projection functions are denoted proj1 and proj2. We
denote by pub(A) (resp. prv(A)) the public key (resp. the private key) associated
to the agent A. Moreover, we assume that prv 6∈ Σpub. Then, we consider the
equational theory E, defined by the following equations (i ∈ 1, 2):

sdec(senc(x, y), y) = x adec(aenc(x, pub(y)), prv(y)) = x proji(〈x1, x2〉) = xi

For sake of clarity, we write 〈t1, t2, t3〉 for the term 〈t1, 〈t2, t3〉〉.

Substitutions are written σ = {x1 . u1, . . . , xn . un} where its domain is
written dom(σ) = {x1, . . . , xn}, and its image is written img(σ) = {u1, . . . , un}.
We only consider well-sorted substitutions, that is substitutions for which xi
and ui have the same sort. The application of a substitution σ to a term u is
written uσ. A most general unifier of two terms u and v is a substitution denoted
by mgu(u, v). We write mgu(u, v) = ⊥ when u and v are not unifiable.

2.2 Attacker capabilities

To represent the knowledge of an attacker (who may have observed a sequence of
messages t1, . . . , t`), we use the concept of frame. A frame φ = new ñ.σ consists
of a finite set ñ ⊆ N of restricted names (those unknown to the attacker), and a
substitution σ of the form {y1.t1, . . . , y`.t`} where each ti is a ground term. The
variables yi enable an attacker to refer to each ti. The domain of the frame φ,
written dom(φ), is dom(σ) = {y1, . . . , y`}.

In the frame φ = new ñ.σ, the names ñ are bound in σ and can be renamed.
Moreover names that do not appear in φ can be added or removed from ñ.
In particular, we can always assume that two frames share the same set of
restricted names. Thus, in the definition below, we will assume w.l.o.g. that the
two frames φ1 and φ2 have the same set of restricted names.

Definition 1 (static equivalence). We say that two frames φ1 = new ñ.σ1
and φ2 = new ñ.σ2 are statically equivalent, φ1 ∼E φ2, when dom(φ1) =
dom(φ2), and for all recipes M,N such that names(M,N) ∩ ñ = ∅, we have
that: Mσ1 =E Nσ1 if, and only if, Mσ2 =E Nσ2.

4

Intuitively, two frames are equivalent when the attacker cannot see the dif-
ference between the two situations they represent, i.e., his ability to distinguish
whether two recipes M,N produce the same term does not depend on the frame.

Example 2. Let φreq = new n.{y1 . senc(〈req, n〉, k)} and φrep = new n.{y1 .
senc(〈rep, n〉, k)} be two frames. Considering the equational theory E introduced
in Example 1, we have that φreq 6∼E φrep since the recipes M = proj1(sdec(y1, k))
and N = req allow one to distinguish the two frames. However, we have that
new k.φreq ∼E new k.φrep. Indeed, without knowing the key k, the attacker is un-
able to observe the differences between the two messages. This is a non-trivial
equivalence that can be established using an automatic tool (e.g. ProVerif [8]).

3 Models for protocols

In this section, we introduce the cryptographic process calculus that we will
use for describing protocols. Several well-studied calculi already exist to analyse
security protocols and privacy-type properties (e.g. [2, 1]). However, modelling
ad-hoc routing protocols requires several additional features. Our calculus is
actually inspired from some other calculi (e.g. [17, 6, 11]) which allow mobile
wireless networks and their security properties to be formally described and
analysed. We adapt those formalisms in order to be able to express privacy-type
properties such as those studied in this paper.

3.1 Syntax

The intended behavior of each node of the network can be modelled by a process
defined by the grammar given below (u is a term that may contain variables,
n is a name, and Φ is a formula). Our calculus is parametrized by a set L of
formulas whose purpose is to represent various tests performed by the agents
(e.g. equality tests, neighbourhood tests). We left this set unspecified since it is
not relevant for this work. For illustration purposes, we only assume that the
set L contains at least equality and disequality tests.

P,Q := 0 null process
in(u).P reception
out(u).P emission
if Φ then P else Q conditional Φ ∈ L
store(u).P storage
read u[Φ] then P else Q reading
P | Q parallel composition
!P replication
new n.P fresh name generation

The process “in(u).P” expects a message m of the form u and then behaves
like Pσ where σ is such that m = uσ. The process “out(u).P” emits u, and
then behaves like P . The variables that occur in u will be instantiated when the

5

evaluation will take place. The process store(u).P stores u in its storage list and
then behaves like P . The process read u[Φ] then P else Q looks for a message of
the form u that satisfies Φ in its storage list and then, if such an element m is
found, it behaves like Pσ where σ is such that m = uσ. Otherwise, it behaves
like Q. The other operators are standard.

Sometimes, for the sake of clarity, we will omit the null process. We also omit
the else part when Q = 0. We write fvars(P) for the set of free variables that
occur in P , i.e. the set of variables that are not in the scope of an input or a
read. We consider ground processes, i.e. processes P such that fvars(P) = ∅, and
parametrized processes, denoted P (z1, . . . , zn) where z1, . . . , zn are variables of
sort agent, and such that fvars(P) ⊆ {z1, . . . , zn}. A routing protocol is a set of
parametrized processes.

3.2 Example: ANODR

ANODR is an anonymous on-demand routing protocol that has been designed to
prevent traffic analysis in ad hoc networks [15]. We consider a simplified version

of this protocol, denoted Psimp
ANODR. For sake of readability, we give below an Alice

and Bob version of this two-phase protocol where we omit some 〈· · · , ·〉 and we
use {·}· instead of senc and aenc.

S → V1 : 〈req, id , {D, chall}pub(D), {S, src}kS 〉
V1 → V2 : 〈req, id , {D, chall}pub(D), {V1, {S, src}kS}k1〉
V2 → D : 〈req, id , {D, chall}pub(D), {V2, {V1, {S, src}kS}k1}k2〉

D → V2 : 〈rep, ND, chall , {V2, {V1, {S, src}kS}k1}k2〉
V2 → V1 : 〈rep, N2, chall , {V1, {S, src}kS}k1〉
V1 → S : 〈rep, N1, chall , {S, src}kS 〉

Request phase. The source initiates route discovery by locally broadcasting a
request. The constant req is used to identify the request phase whereas id is an
identifier of the request. The third component of the request is a cryptographic
trapdoor that can only be opened by the destination; and the last one is a
cryptographic onion that is used for route establishment. At this stage, the
onion built by the source contains only one layer.

Then, intermediate nodes relay the request over the network, except if they
have already seen it. However, contrary to what happen in many routing pro-
tocols, the names of the intermediate nodes are not accumulated in the route
request packet. This is important to prevent traffic analysis.

Reply phase. When the destination D receives the request, it opens the trapdoor
and builds a route reply.

During the reply phase, the message travels along the route back to S. The
intermediary node decrypt the onion using its own key which has been generated
during the request phase. If its own identity does not match the first field of
the decrypted result, it then discards the packet. Otherwise, the node is on the
anonymous route. It generates a random number (namely ND, N1, or N2), stores

6

the correspondence between the nonce it receives and the one it has generated.
It peels off one layer of the onion, replaces the nonce with its own nonce, and
then locally broadcasts the reply packet.

Formally, this protocol is composed of four parametrized processes that can
be modelled using the signature given in Example 1. Let id be a name, zS , zV , zD
be variables of sort agent, and xN , xid , xtr and xonion be variables of sort msg.

The process executed by the agent zS initiating the search of a route towards a
node zD is:

Psrc(zS , zD) = new id .new chall .new kS .out(u1).in(u2).store(〈zD, xN 〉)

where

{
u1 = 〈req, id , aenc(〈zD, chall〉, pub(zD)), senc(〈zS , src〉, kS)〉
u2 = 〈rep, xN , chall , senc(〈zS , src〉, kS)〉

The source zS builds a request message and sends it. Then, the source is
waiting for a reply containing the same cryptographic onion as the one used in
the request, a proof of global trapdoor opening (here modelled as a nonce chall),
and a locally unique random route pseudonym N . Lastly, the source will store
that destination D can be reached using the route pseudonym N as the next
hop.

The process executed by an intermediary node zV during the request phase
is described below. For sake of simplicity, we did not model the fact that a
duplicated request message is directly discarded.

P req
int (zV) = in(w1).if ¬Φreq then (new kV .store(〈key, kV 〉).out(w2))

where

{
w1 = 〈req, xid , xtr, xonion〉 Φreq = proj1(adec(xtr, prv(zV))) = zV
w2 = 〈req, xid , xtr, senc(〈zV , xonion〉, kV)〉

The process executed by the destination node zD is the following:

Pdest(zD) = in(v1). if Φdest then (new N.out(v2))

where

{
v1 = 〈req, xid , xtr, xonion〉 Φdest = proj1(adec(xtr, prv(zD))) = zD
v2 = 〈rep, N, proj2(adec(xtr, prv(zD))), xonion〉

The process executed by an intermediary node zV during the reply phase is as
follows:

P rep
int (zV) = in(w′1).read 〈key, y〉 [Φrep] then (new N ′.store(〈xN , N ′〉).out(w′2))

where

{
w′1 = 〈rep, xN , xpr, xonion〉 Φrep = proj1(sdec(xonion , y)) = zV
w′2 = 〈rep, N ′, xpr, proj2(sdec(xonion , y))〉

Once, a route between S and D has been established using this protocol,
a data packet can then be sent from S to D using the route pseudonyms that
nodes have stored in their storage list.

7

3.3 Configuration and topology

Each process is located at a node of the network, and we consider an eavesdropper
who observes messages sent from particular nodes. More precisely, we assume
that the topology of the network is represented by a pair T = (G,M) where:

– G = (V,E) is an undirected finite graph with V ⊆ {A ∈ N | A of sort agent},
where an edge in the graph models the fact that two agents are neighbors.

– M is a set of nodes, the malicious nodes, from which the attacker is able to
listen to their outputs.

We consider several malicious nodes, and our setting allows us to deal with
the case of a global eavesdropper (i.e. M = V). A trivial topology is a topology
T = (G,M) with M = ∅.
A configuration of the network is a quadruplet (E ;P;S;σ) where:

– E is a finite set of names that represents the names restricted in P, S and σ;
– P is a multiset of expressions of the form bP cA that represents the process P

executed by the agent A ∈ V . We write bP cA ∪ P instead of {bP cA} ∪ P.
– S is a set of expressions of the form bucA with A ∈ V and u a ground term.
bucA represents the term u stored by the agent A ∈ V .

– σ = {y1 . u1, . . . , yn . un} where u1, . . . , un are ground terms (the messages
observed by the attacker), and y1, . . . , yn are variables.

3.4 Execution model

Each node broadcasts its messages to all its neighbors. The communication sys-
tem is formally defined by the rules of Figure 1. They are parametrized by the
underlying topology T . The Comm rule allows nodes to communicate provided
they are (directly) connected in the underlying graph, without the attacker ac-
tively interfering. We do not assume that messages are necessarily delivered to
the intended recipients. They may be lost. The exchange message is learnt by
the attacker as soon as the node that emits it is under its scrutiny.

The other rules are quite standard.

We write → instead of→T when the underlying network topology T is clear
from the context. Let A be the alphabet of actions where the special symbol

τ ∈ A represents an unobservable action. For every ` ∈ A, the relation
`−→ has

been defined in Figure 1. For every w ∈ A∗ the relation
w−→ on configurations

is defined in the usual way. By convention K
ε−→ K where ε denotes the empty

word. For every s ∈ (A r {τ})∗, the relation
s
=⇒ on configurations is defined

by: K
s
=⇒ K ′ if, and only if, there exists w ∈ A∗ such that K

w−→ K ′ and s
is obtained from w by erasing all occurrences of τ . Intuitively, K

s
=⇒ K ′ means

that K transforms into K ′ by experiment s.

An initial configuration associated to a topology T = (G,M) and a routing
protocol Prouting is a configuration K0 = (E0;P0;S0;σ0) such that:

P0 =
⋃

P∈Prouting

A,B1,...,Bk∈V

b!P (A,B1, . . . , Bk)cA.

8

Comm (E ; bout(t).P cA ∪ {bin(uj).PjcAj |mgu(t, uj) 6= ⊥ ∧ (A,Aj) ∈ E} ∪ P;S;σ)
`−→T (E ; {bPjσjcAj} ∪ bP cA ∪ P;S;σ′)

where


σj=mgu(t, uj)
σ′ = σ ∪ {y . t} where y is a fresh variable and ` = (out(y), A) if A ∈M;
σ′ = σ and ` = τ otherwise

Store (E ; bstore(t).P cA ∪ P;S;σ)
τ−→T (E ; bP cA ∪ P; btcA ∪ S;σ)

Read-Then (E ; bread u[Φ] then P else QcA ∪ P; btcA ∪ S;σ)
τ−→T (E ; bPλcA ∪ P; btcA ∪ S;σ)

when λ = mgu(t, u) exists and Φλ is evaluated to true

Read-Else (E ; bread u[Φ] then P else QcA ∪ P;S;σ)
τ−→T (E ; bQcA ∪ P;S;σ)

if for all t such that btcA ∈ S, mgu(t, u) = ⊥ or Φmgu(t, u) is evaluated to false

If-Then (E ; bif Φ then P else QcA ∪ P;S;σ)
τ−→T (E ; bP cA ∪ P;S;σ)

if Φ is evaluated to true

If-Else (E ; bif Φ then P else QcA ∪ P;S;σ)
τ−→T (E ; bQcA ∪ P;S;σ)

if Φ is evaluated to false

Par (E ; bP1 | P2cA ∪ P;S;σ)
τ−→T (E ; bP1cA ∪ bP2cA ∪ P;S;σ)

Repl (E ; b!P cA ∪ P;S;σ)
τ−→T (E ; bP cA ∪ b!P cA ∪ P;S;σ)

New (E ; bnew n.P cA ∪ P;S;σ)
τ−→T (E ∪ {n′}; bP{n

′
/n}cA ∪ P;S;σ)

where n′ is a fresh name

Fig. 1. Transition system.

Such a configuration represents the fact that each node can play any role of
the protocol an unbounded number of times. Moreover, the agent who executes
the process is located at the right place. A typical initial configuration will consist
of E0 = S0 = σ0 = ∅, but depending on the protocol under study, we may want
to populate the storage lists of some nodes.

Example 3. Let T0 = (G0,M0) be a topology where G0 is described below, and
consider a global eavesdropper, i.e. M0 = {A,B,C,D}.

A B C D

We consider the execution of the protocol Psimp
ANODR where B acts as a source

to obtain a route to D. Receiving this request, and not being the destination,
its neighbour C acts as a request forwarding node. We have that:

tr = K0
τ−→ τ−→ τ−→ out(y1),B−−−−−−→ (E1;P1;S1;σ1)

τ−→ τ−→ τ−→ out(y2),C−−−−−−→ (E2;P2;S2;σ2)

9

where:



K0 = (∅;P0; ∅; ∅) initial configuration associated to T0 and Psimp
ANODR.

E1 = {id , chall , kB} E2 = {id , chall , kB , kC}
S1 = ∅ S2 = {b〈key, kC〉cC}
σ1 = {y1 . u} σ2 = {y1 . u, y2 . v}
u = 〈req, id , aenc(〈D, chall〉, pub(D)), senc(〈B, src〉, kB)〉
v = 〈req, id , aenc(〈D, chall〉, pub(D)), senc(〈C, senc(〈B, src〉, kB)〉, kC)〉

The process bPsrc(B,D)cB that occurs in K0 will first follow the rule New
three times to generate the nonces id , chall and kB leading to a new set of
restricted names E1. The rule Comm is then applied between nodes B and C.
As B ∈M0, the message is included in σ1 to represent the knowledge gained by
the attacker. As the node C is not the destination, bP req

int (C)cC can evolve (rule
If-Then). It generates a key (rule New) added in E2, and stores it in S2 (rule
Store) and finally it uses Comm to broadcast the resulting message, which is
also added to current substitution σ2. Actually, in case we are only interested
by the visible actions, this trace tr could also be written as follows:

tr = K0
out(y1),B
=======⇒ (E1;P1;S1;σ1)

out(y2),C
=======⇒ (E2;P2;S2;σ2).

3.5 Extension and equivalence of traces

We cannot expect that privacy-type properties hold in any situation. We have
to ensure that the traffic is sufficient. For this we need to introduce the notion
of extension of a trace. Roughly, we say that a trace tr+ is an extension of a
trace tr if tr+ contains at least all the actions that are exhibited in tr. In order
to track of the actions, we consider annotated traces. This need comes from the
fact that our calculus (and many others cryptographic calculi) does not provide
us with information that allow us to retrieve who performed a given action.

We will denote K
τ−−→
A,R

K ′ (resp. K
out(y),A−−−−−→
A,R

K ′) instead of K
τ−→ K ′ (resp.

K
out(y),A−−−−−→ K ′) to explicit the annotations. We have that A ∈ V and R is a

constant. Intuitively A is the node that performs the action (resp. the output)
whereas R is a constant that represents the role who is responsible of this action
(resp. output). Thus, to formalise this notion of annotated trace, we associate a
constant to each parametrized process part of the routing protocol under study.
Theses annotations are nonetheless invisible to the attacker: she has only access
to the labels of the transitions defined in our semantics. Annotations are meant
to be used to specify privacy properties.

Example 4. Going back to our running example, Psimp
ANODR is made up of 4 roles

and we associate a constant to each of them, namely Src, Req, Dest, and Rep.
The annotated version of the trace tr described in Example 3 is:

K0
τ−−−→

B,Src

τ−−−→
B,Src

τ−−−→
B,Src

out(y1),B−−−−−−→
B,Src

K1
τ−−−→

C,Req

τ−−−→
C,Req

τ−−−→
C,Req

out(y2),C−−−−−−→
C,Req

K2

with K1 = (E1;P1;S1;σ1) and K2 = (E2;P2;S2;σ2).

10

Given two configurations K = (E ;P;S;σ) and K+ = (E+;P+;S+;σ+), we
write K ⊆ K+ if E ⊆ E+, P ⊆ P+, S ⊆ S+, and σ+

|dom(σ) = σ.

Definition 2 (extension of a trace). Let tr+ be an annotated trace:

tr+ = K0
`1−−−−→

A1,R1

K+
1

`2−−−−→
A2,R2

. . .
`n−−−−→

An,Rn

K+
n .

We say that tr+ is an extension of tr, denoted tr 4 tr+, if

tr = K0

`k1−−−−−→
Ak1

,Rk1

Kk1

`k2−−−−−→
Ak2

,Rk2

. . .
`k`−−−−−→

Ak`
,Rk`

Kk`

where 0 < k1 < k2 < . . . < k` ≤ n, and Kki ⊆ K+
ki

for each i ∈ {1, . . . , `}.
Given an indice i corresponding to an action in tr (1 ≤ i ≤ `), we denote by

indi(tr, tr
+) the indice of the corresponding action in tr+, i.e. indi(tr, tr

+) = ki.

Example 5. An extension of the trace tr described in Example 3 could be to
let A initiate a new session before B tries to discover a route to D. Such an
execution is formalised by the trace tr+ written below:

K0
τ−−−→

A,Src

τ−−−→
A,Src

τ−−−→
A,Src

out(y0),A−−−−−−→
A,Src

K+
0

τ−−−→
B,Src

τ−−−→
B,Src

τ−−−→
B,Src

out(y1),B−−−−−−→
B,Src

K+
1

τ−−−→
C,Req

τ−−−→
C,Req

τ−−−→
C,Req

out(y2),C−−−−−−→
C,Req

K+
2 .

where the configurations are not detailed, but (Ei;Pi;Si;σi) ⊆ K+
i (i ∈ {1, 2}).

Privacy-type security properties are often formalised using a notion equivalence
(see e.g. [12, 3, 9]). Here, we consider the notion of equivalence between two traces.

Definition 3 (equivalence of two traces). Let tr1 = K1
s1==⇒ (E1;P1;S1;σ1)

and tr2 = K2
s2==⇒ (E2;P2;S2;σ2) be two traces. They are equivalent, denoted

tr1 ≈E tr2, if s1 = s2 and new E1.σ1 ∼E new E2.σ2.

Note that only observable actions are taken into account in the definition of
equivalence between two traces. Roughly, two traces are equivalent if they process
the same sequence of visible outputs. The two sequences may differ (we do not
require the equality between σ1 and σ2) but they should be indistinguishable
from the point of view of the attacker.

Example 6. In the execution tr+ provided in Example 5 one could hope to hide
the fact that the node B is initiating a route discovery and let the attacker think
A is the actual source. Let tr′ be the execution below where A initiates a route
discovery towards D, while nodes B and C act as forwarders.

K0
τ−−−→

A,Src

τ−−−→
A,Src

τ−−−→
A,Src

out(y0),A−−−−−−→
A,Src

K ′0
τ−−−−→

B,Req

τ−−−−→
B,Req

τ−−−−→
B,Req

out(y1),B−−−−−−→
B,Req

K ′1

τ−−−→
C,Req

τ−−−→
C,Req

τ−−−→
C,Req

out(y2),C−−−−−−→
C,Req

K ′2.

where the configurations are not detailed.
Unfortunately the attacker is able to tell the difference between tr+ and tr′.

Indeed, we have tr+ 6≈E tr′ since the test proj2(proj1(y0))
?
= proj2(proj1(y1)) can

be used to distinguish the two traces. The equality test will hold in tr′ and not
in tr+. Note that, as the annotations are invisible to the attacker, she cannot
know a priori that B is playing a forwarder in tr′.

11

4 Indistinguishability

Intuitively, indistinguishability deals with the ability for the attacker to distin-
guish a specific action from another. For a routing protocol such actions take
the form of the various roles of the protocol. In particular we could hope, in an
execution of the protocol, to make actions of the initiator or recipient indistin-
guishable from actions of forwarding nodes. Our definition of indistinguishability,
and later of other privacy properties, depends on the network topology we are
considering. Incidentally, when designing anonymous protocols, these properties
should hold for large enough classes of topologies.

4.1 Formalizing indistinguishability

Let Roles be a set of roles for which indistinguishability has to be preserved.
A very naive definition would be to ensure that for any annotated trace tr is-
sued from K0 (the initial configuration associated to the protocol under study)
where at some position i the role R ∈ Roles is played and observed by the at-
tacker, there exists an equivalent annotated trace tr′ where the role played at
position i is not in the set Roles. However, without appropriate traffic on the
network, this definition is far too strong. Indeed, as soon as the source role is the
only role able to spontaneously start a session, we will have no hope to achieve
indistinguishability.

Definition 4 (indistinguishability). Let K0 be an initial configuration asso-
ciated to a routing protocol and a topology, and Roles be a set of roles. We say
that K0 preserves indistinguishability w.r.t. Roles if for any annotated trace tr

tr = K0
`1−−−−→

A1,R1

K1
`2−−−−→

A2,R2

. . .
`n−−−−→

An,Rn

Kn = (E ;P;S;σ)

and for any i ∈ {1, . . . , n} such that Ri ∈ Roles and `i 6= τ (i.e. `i is an action
observed by the attacker), there exist two annotated traces tr+ and tr′ such that:
tr 4 tr+, tr+ ≈ tr′, and R′indi(tr,tr+) 6∈ Roles where

tr′ = K ′0
`′1−−−−→

A′
1,R

′
1

K ′1
`′2−−−−→

A′
2,R

′
2

K ′2 . . .
`′
n′−−−−−→

A′
n′ ,R

′
n′

K ′n′ .

The trace tr+ enables us to deal with the aforementioned traffic needed to aim
at preserving indistinguishability. Indeed rather than imposing the equivalence
of tr with another trace, indistinguishability will be achieved if there exist two
other traces tr+ and tr′ which look the same to the attacker, and in which the
action of interest is played by a different role.

4.2 Analysis of ANODR

Now, we apply our formalisation of indistinguishability to the ANODR protocol.

12

Proposition 1. Let T be a topology with a malicious node that has only mali-
cious neighbours, and K0 be an initial configuration associated to Psimp

ANODR and T .
We have that K0 does not preserve indistinguishability w.r.t. Src (resp. Dest).

Indeed, given a node A which is, together with its neighbors, under the
scrutiny of the attacker, consider a situation, i.e. a trace tr, where the node A
starts a new session by acting as a source. Of course, if this action is the only
activity of the network, there is no hope to confuse the attacker. The idea is to see
whether the attacker can be confused when the traffic is sufficient. In particular,
we may want to consider a situation, i.e. a trace tr+, where a request also arrives
at node A at the same time, so that the node A has also the possibility to act
as a forwarder. However, since a request conveys a unique identifier id , it will
be easy for the attacker to observe whether A is acting as a source (the request
will contain a fresh identifier) or as a forwarder (the request will contain an
identifier that has been previously observed by the attacker). Actually, the same
reasoning allows us to conclude that indistinguishability is not preserved w.r.t.
the role Dest: a reply conveys a globally unique nonce (namely chall).

The updated version of ANODR proposed in [15] and informally described
below (see the appendice for a formal description) fixes the issue regarding in-
distinguishability w.r.t. Roles = {Dest}. In this version, KT is a symmetric en-
cryption key shared between the source A and the destination D; KA, KB and
KC are symmetric keys known only to their owners A, B, C, whereas KseedB ,
KseedC , KseedD are fresh keys shared between consecutive nodes on the reply
route. The key KD is generated by A and will be known by every node on the
route by the end of a session. The routes are stored as a correspondence between
route pseudonyms (the Ni) by each intermediate node. The proof of opening
takes the form of the key KD which is embedded in an onion which is different
from the onions used during the request phase. For sake of clarity, we use {·}·
instead of senc and aenc, and we omit some 〈·, ·〉.

A→ B : 〈req, id , pub(A), {dest,KD}KT
, {dest}KD

, {src}KA
〉

B → C : 〈req, id , pub(B), {dest,KD}KT
, {dest}KD

, {NB , {src}KA
}KB
〉

C → D : 〈req, id , pub(C), {dest,KD}KT
, {dest}KD

, {NC , {NB , {src}KA
}KB
}KC
〉

D → C : 〈rep, {KseedD}pub(C), {KD, {NC , {NB , {src}KA
}KB
}KC
}KseedD

〉
C → B : 〈rep, {KseedC}pub(B), {KD, {NB , {src}KA

}KB
}KseedC

〉
B → A : 〈rep, {KseedB}pub(A), {KD, {src}KA

}KseedB
〉

Considering a topology T such that any malicious node has at least two
distinct neighbours other than itself, and an initial configuration K0 associated
to the updated version of ANODR and T , we have that K0 preserves indistin-
guishability w.r.t. Roles = {Dest}, according to Definition 4.

Intuitively, for each trace tr in which the node A (under the scrutiny of the
attacker) acts as a destination, we will consider a trace tr+ which extends tr and
such that the node A has at least two reply to treat (one as a destination and

13

one as a forwarder). Since the proof of opening and the onion are modified at
each hop of the route, the attacker will not be able to observe whether two reply
packets come from the same session or not. Thus, he can not be sure that the
action of interest has been done by the role Dest.

5 Unlinkability

We focus here on a different kind of anonymity: the (un)ability for the attacker
to determine whether two messages belong to the same session. Note that an
attacker able to determine whether two reply messages belong to the same session
will gain valuable information about the route being established.

5.1 Augmented process

To define unlinkability, we need a notion of session. Note that, in our setting,
a session may involve an arbitrary number of actions since we do not know in
advance the length of the path from the source to the destination. In order to
define this notion formally, we need to be able to track an execution of the
process through the entire network, goal which is achieved through a notion
of augmented processes. Thus, given a routing protocol Prouting, we define its

augmentation P̃routing and modify the operational semantics accordingly to trace
an execution of one session of the protocol. We also add some information about
the source and the destination. This information will be useful later on to define
our notion of anonymity (see Section 6).

For sake of simplicity, we consider a routing protocol that is made up of
parametrized processes of two different kinds. Even if these syntactic restrictions
seem to be very specific, our definition actually captures most of the routing
protocols and are quite natural.

Initiator: a parametrized process with two parameters P (zS , zD) such that
its first communication action is an output possibly followed by several in-
puts. In such a case, its augmentation P̃ (zS , zD) is obtained from P (zS , zD)
by adding the prefix new sid . to it, by replacing the action out(u) with
out(〈u, 〈sid , zS , zD〉〉, and replacing each action in(u) with in(〈u, 〈x1, x2, x3〉〉)
where x1, x2, x3 are fresh variables.

Responder: a parametrized process with one parameter P (zV) such that its
first communication action is an input possibly followed by several outputs.
In such a case, its augmentation P̃ (zV) is obtained from P (zV) by replacing
the action in(u) with in(〈u, 〈x1, x2, x3〉〉) where x1, x2, x3 are fresh variables,
and each action out(u) with out(〈u, 〈x1, x2, x3〉〉).

Now, to prevent the additional information that is conveyed by the messages
to occur in the frame, we need to adapt our operational semantics. Basically,
when we perform a communication, we only add the first projection of the out-
putted term in the frame. The second projection of the outputted term is added
under the arrow as an annotation.

14

Example 7. Back to Example 3, the counterpart of the trace tr, where only
visible actions have been exhibited, is succinctly depicted below:

K̃0
out(y1),B

==========⇒
B,Src,sid,B,D

K̃1
out(y2),C

==========⇒
C,Req,sid,B,D

K̃2

where the configurations K̃0, K̃1 and K̃2 are the counterpart of K1, K2, and K3.
The annotations under the arrows witness the fact that the two messages come
from the same session sid which was initiated by B to obtain a route towards D.

Note that only observable action will benefit from this annotation. For sake

of simplicity, we write K
`−−−−−−−−→

A,R,[sid,S,D]
K ′ even in presence of an unobservable

action ` (i.e. when ` = τ) and we add the brackets to emphasize the fact that
[sid , S,D] is optional. Actually, the annotation is undefined in this case.

5.2 Formalising unlinkability

Intuitively, unlinkability means that an attacker cannot tell whether two visible
actions of a trace tr belong to the same session. As it was the case for indistin-
guishability, one cannot expect to achieve this goal without any sufficient traffic
on the network. Moreover, due to the globally unique identifier that occur for
efficiency purposes in many routing protocols (e.g. the nonce id in ANODR),
there is no hope to achieve unlinkability for request messages. However, this is
not a big issue since these messages are flooded in the network and thus tracking
them is useless. We may want to study unlinkability for particular sets of roles,
and our definition allows one to do that.

Definition 5 (unlinkability). Let K0 be an initial configuration associated to
a routing protocol and a topology, and Roles1, Roles2 be two sets of roles. We say
that K0 preserves unlinkability w.r.t. Roles1/Roles2 if for any annotated trace tr

tr = K0
`1−−−−−−−−−−−−→

A1,R1,[sid1,S1,D1]
K1

`2−−−−−−−−−−−−→
A2,R2,[sid2,S2,D2]

. . .
`n−−−−−−−−−−−−−→

An,Rn,[sidn,Sn,Dn]
Kn

and for any i, j ∈ {1, . . . , n} such that Ri ∈ Roles1, Rj ∈ Roles2, sid i = sid j,
and `i, `j 6= τ (i.e. `i, `j are actions observed by the attacker), there exist two
annotated traces tr+ and tr′ such that: tr 4 tr+, tr+ ≈ tr′, and sid ′indi(tr,tr+) 6=
sid ′indj(tr,tr+) where

tr′ = K ′0
`′1−−−−−−−−−−−−→

A′
1,R

′
1,[sid

′
1,S

′
1,D

′
1]
K ′1

`′2−−−−−−−−−−−−→
A′

2,R
′
2,[sid

′
2,S

′
2,D

′
2]
. . .

`′
n′−−−−−−−−−−−−−−→

A′
n′ ,R

′
n′ ,sid

′
n′ ,S

′
n′ ,D

′
n′

K ′n′ .

Unlinkability versus indistinguishability. Note that unlinkability is a distinct no-
tion from the indistinguishability notion exposed in Section 4. Protocols un-
linkable w.r.t. any reasonable topology can be designed so as not to be in-
distinguishable for any role. An example of such a protocol would be P =
{P1(zS , zD), P2(zV)} defined as follows:

15

P1(zS , zD) = out(src).in(x) P2(zV) = in(x).out(dest)

where src and dest are two constants. The unlinkability is a consequence of
emitting the same messages for every session, whereas the indistinguishability
fails as the constant src (resp. dest) identifies the role P1 (resp. P2).

Reciprocally one can design protocols preserving indistinguishability for cer-
tain roles but not unlinkability for any two subsets of roles. The protocol P ′
made up of the three roles described below fails clearly at preserving the unlink-
ability w.r.t. any non-trivial topology for any sets of roles Roles1 and Roles2 as
it mimicks the session identifiers introduced formerly.

P ′1(zS , zD) = new n.out(n).in(x) P ′2(zV) = in(x).out(x)

P ′3(zV) = in(x).store(x).out(x)

On the other hand, the indistinguishability w.r.t. any topology for either P ′2
or P ′3 is trivially preserved as the roles are essentially the same.

5.3 Analysis of ANODR

As discussed at the beginning of Section 5.2, ANODR, as many other routing
protocols, does not preserve unlinkability (as soon as the underlying topology is
non-trivial topology) for sets Roles1 = Roles2 = {Src,Req} due to the forwarding
of the same id by every intermediate node during the request phase. Actually,
the simplified version of ANODR presented in Section 3.2 does not preserve
unlinkability for sets Roles1 = Roles2 = {Dest,Rep} due to the forwarding of the
nonce chall by every intermediate node during the reply phase. This version does
not preserve unlinkability for sets {Src,Req}/{Dest,Rep} either. Indeed, during
the request phase, the nodes will emit a message containing an onion, and during
the reply phase, they are waiting for a message that contains exactly the same
onion. This allows the attacker to link a request message with a reply message
and to identify them as coming from the same session.

The updated version of ANODR (see Section 4.2) actually fixes the two last
issues. Again, we need for this to consider topologies T for which any malicious
node has at least two distinct neighbours other than itself. In such a situation,
following the same ideas as the one used to establish indistinguishability, we can
show that an initial configuation K0 preserves unlinkability w.r.t. {Dest,Rep}/
{Dest,Rep}, and {Src,Req}/{Dest,Rep} (according to Definition 5).

6 Anonymity

Anonymity is concerned with hiding who performed a given action. Here, we are
not concerned by hiding the identity of the sender (or the receiver) of a given
message, but we would like to hide the identity of the source (or the destination)
of the request/reply message. When the identity of the source is hidden, we
speak about source anonymity. Similarly, when the identity of the destination is

16

hidden, we speak about destination anonymity. Again, we consider both types
of anonymity with respect to an external eavesdropper that is localised to some
nodes (possibly every one of them) of the network.

As in Section 5, to define the anonymity, we need to link messages occurring
at various places in the network to their respective source and destination, thus
we consider the augmented version of the protocol as in Section 5.1

6.1 Formalising anonymity

Intuitively, source (resp. destination) anonymity can be achieved if the attacker
is unable to tell the source (resp. the destination) of an observed message. This
idea can actually be interpreted as the existence of anonymity sets of cardinal
greater or equal than two. As for the previous privacy-type notions, one cannot
expect to hide the source (resp. destination) of an action in a trace tr without
any sufficient traffic as it would be easy for an attacker to observe the first node
to output a request (resp. a reply) and deduce the source (resp. destination)
of this execution. For this reason, anonymity will be achieved if there exist two
other traces tr+ and tr′ of the system which look the same to the attacker, and in
which the corresponding transitions have different sources (resp. destinations).

Definition 6 (anonymity). Let K0 be an initial configuration associated to
a routing protocol and a topology. We say that K0 preserves source anonymity
(resp. destination anonymity) if for any annotated trace tr

tr = K0
`1−−−−−−−−−−−−→

A1,R1,[sid1,S1,D1]
K1

`2−−−−−−−−−−−−→
A2,R2,[sid2,S2,D2]

. . .
`n−−−−−−−−−−−−−→

An,Rn,[sidn,Sn,Dn]
Kn

and for any i ∈ {1, . . . , n} such that `i 6= τ (i.e. `i is an action observed by
the attacker), there exist two annotated traces tr+ and tr′ such that tr 4 tr+,
tr+ ≈ tr′, and S′indi(tr,tr+) 6= Si (resp. D′indi(tr,tr+) 6= Di) where

tr′ = K ′0
`′1−−−−−−−−−−−−→

A′
1,R

′
1,[sid

′
1,S

′
1,D

′
1]
K ′1

`′2−−−−−−−−−−−−→
A′

2,R
′
2,[sid

′
2,S

′
2,D

′
2]
. . .

`′
n′−−−−−−−−−−−−−−−→

A′
n′ ,R

′
n′ ,[sid

′
n′ ,S

′
n′ ,D

′
n′]

K ′n′

6.2 Anonymity versus indistinguishability/unlinkability.

The notions of source and destination anonymity are distinct from indistin-
guishability for a set of roles and unlinkability of two sets of roles. The proto-
col P = {P1(zS , zD), P2(zV)} where P1(zS , zD) = out(zS).in(x), and P2(zV) =
in(x).out(x) preserves both the indistinguishability of P1 (a node can play P2 as
a response to a session it initiated previously as P1) and the unlinkability of any
two subsets of {P1, P2} (as every session with the same node as a source will
generate the exact same messages) but not source anonymity as the identity of
the source is obvious for any attacker along the route. A symmetrical protocol
can be built by replacing zS with zD in P1 to disclose the destination of a session
without breaking the indistinguishability.

Conversely, the protocol P = {P1(zS , zD), P2(zV)} defined as

17

P1(zS , zD) = new n.out(〈src, n〉).in(x) P2(zV) = in(〈x, y〉).out(〈dest, y〉)
preserves destination anonymity as any node can play P2 in response to a request,
whatever the original destination was. Indeed, given such a topology T , a trace
tr of the protocol, and a visible action `i = (out(y), A) associated to a a source
Si = S and a destination Di = A, we can let tr+ be equal to tr and define tr′

to be the trace mimicking tr but with S as the source and destination of the
request associated to `i. The equivalence of tr and tr′ comes from the content
of their frames which is limited to the names of the request sources, identical in
both cases. On the other hand, P does not preserve indistinguishability of P1

or P2, nor unlinkability of any two subsets of {P1, P2} as session identifiers and
constants to distinguish roles are embedded in the protocol.

However, intuitively, there is a relation between source anonymity (resp. des-
tination anonymity) and indistinguishability of the role source (resp. destina-
tion). Indeed, source anonymity seems to imply that the action of interest can
be mimicked by someone different from source, and thus who should not play the
role source. Thus, restricting ourselves to “reasonable” routing protocols, we are
indeed able to establish this relation. For this, we define source and destination
roles as roles which are only used by nodes acting as sources or destinations.

Definition 7 (acting as a source (resp. destination)). Let K0 be an initial
configuration associated to a routing protocol and a topology. We say that Roles
is the set of roles acting as a source (resp. acting as a destination) if for any
annotated trace tr with `1, . . . , `n 6= τ

tr = K0
`1============⇒

A1,R1,sid1,S1,D1

K1
`2============⇒

A2,R2,sid2,S2,D2

. . .
`n=============⇒

An,Rn,sidn,Sn,Dn

Kn

and for any i ∈ {1, . . . , n}, Ri ∈ Roles if and only if Ai = Si (resp. if and only
if Ai = Di).

In case of ANODR (both versions), the set of roles acting as a source is {Src}.
This is the only role able to spontaneously start a session and it is unable to
reply to a request. The set of roles acting as a destination is limited to {Dest}.
The proof of opening prevents any node other than the destination to play it
and, conversely, a destination node can only play the role Dest as a response
to such a request. Note that, for some badly designed routing protocols, it may
happen that the set of roles acting as a source (resp. destination) is empty. In
such a case, the proposition below is trivially true.

Proposition 2. Let K0 be an initial configuration associated to a routing pro-
tocol and a topology. If K0 preserves source (resp. destination) anonymity, then
it preserves indistinguishability w.r.t. the set of roles acting as a source (resp.
destination).

6.3 Analysis of ANODR

In this section, we apply our formalisation of anonymity to the ANODR routing
protocol. As a consequence of Propositions 1 and 2, we have the following result.

18

Corollary 1. Let T be a topology with a malicious node that has only malicious
neighbours, and K0 be an initial configuration associated to Psimp

ANODR and T . We
have that K0 preserves neither source nor destination anonymity.

For the updated version of ANODR, similarly, we can show that it does not
preserve source anonymity. However, this protocol seems to have been designed
to achieve destination anonymity. Indeed, considering topologies for which any
malicious node has at least one neighbour other than itself, we can show that
any trace tr can be extended to tr+ so that the node of interest has at least two
reply to treat (one as the destination of the request, and the other one as the
forwarder). This is actually sufficient to confuse the attacker who observes the
network, and to establish anonymity of the destination according to Definition 6.

7 Conclusion

We have defined a framework for modeling routing protocols in ad hoc networks
in a variant of the applied pi-calculus. Within this framework we can stipulate
which agents are subject to the attention of a global eavesdropper. We were
able to propose several definitions for privacy-type properties that encompass
the specificity of a given network topology. We illustrate these definitions on
the anonymous routing protocol ANODR, considered in two versions, and thus
provide a partial formal security analysis of its anonymity.

As future work, it would be interesting to have a more general model of proto-
cols to represent high-level operations in routing protocols (e.g. reversing a list).
However, since our definitions are expressed in terms of traces, this should not
impact so much the privacy definitions proposed in this paper. Another direc-
tion is the enrichment of our attacker model, so as to model fully compromised
nodes which disclose their long-term keys or fresh nonces generated during the
execution of the protocols, and active attackers able to forge messages and in-
teract with honest agents. Finally, from the point of view of the verification,
a reduction result on network topologies as presented in [11] would make the
perspective of automated proofs of anonymity easier.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication.
In Proc. 28th Symposium on Principles of Programming Languages (POPL’01),
pages 104–115. ACM Press, 2001.

2. M. Abadi and A. Gordon. A calculus for cryptographic protocols: The spi calculus.
In Proc. 4th Conference on Computer and Communications Security (CCS’97),
pages 36–47. ACM Press, 1997.

3. M. Arapinis, T. Chothia, E. Ritter, and M. Ryan. Analysing unlinkability and
anonymity using the applied pi calculus. In Proc. 23rd Computer Security Foun-
dations Symposium (CSF’10), pages 107–121. IEEE Computer Society Press, 2010.

19

4. A. Armando, R. Carbone, L. Compagna, J. Cuéllar, and M. L. Tobarra. Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based single
sign-on for google apps. In Proc. of the 6th ACM Workshop on Formal Methods
in Security Engineering (FMSE 2008), pages 1–10. ACM, 2008.

5. A. Armando et al. The AVISPA Tool for the automated validation of internet
security protocols and applications. In Proc. 17th International Conference on
Computer Aided Verification, CAV’2005, volume 3576 of LNCS. Springer, 2005.

6. M. Arnaud, V. Cortier, and S. Delaune. Modeling and verifying ad hoc routing pro-
tocols. In Proc. 23rd IEEE Computer Security Foundations Symposium (CSF’10),
pages 59–74. IEEE Computer Society Press, July 2010.

7. M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic
voting protocols in the applied pi-calculus. IEEE Comp. Soc. Press, 2008.

8. B. Blanchet. An efficient cryptographic protocol verifier based on prolog rules. In
Proc. 14th Computer Security Foundations Workshop (CSFW’01). IEEE Comp.
Soc. Press, 2001.

9. M. Bruso, K. Chatzikokolakis, and J. den Hartog. Formal verification of pri-
vacy for RFID systems. In Proc. 23rd Computer Security Foundations Symposium
(CSF’10). IEEE Computer Society Press, 2010.

10. R. Chrétien and S. Delaune. Formal analysis of privacy for routing protocols in
mobile ad hoc networks. Research Report LSV-12-21, Laboratoire Spécification et
Vérification, ENS Cachan, France, Dec. 2012. 24 pages.

11. V. Cortier, J. Degrieck, and S. Delaune. Analysing routing protocols: four nodes
topologies are sufficient. In Proc. of the 1st International Conference on Principles
of Security and Trust (POST’12), LNCS, pages 30–50. Springer, Mar. 2012.

12. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of
electronic voting protocols. Journal of Computer Security, (4):435–487, July 2008.

13. F. D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable anonymity.
In Proc. ACM workshop on Formal methods in security engineering (FMSE’05),
pages 63–72. ACM, 2005.

14. Y.-C. Hu, A. Perrig, and D. Johnson. Ariadne: A Secure On-Demand Routing
Protocol for Ad Hoc Networks. Wireless Networks, 11:21–38, 2005.

15. J. Kong and X. Hong. ANODR: anonymous on demand routing with untraceable
routes for mobile ad-hoc networks. In Proc. 4th ACM Interational Symposium on
Mobile Ad Hoc Networking and Computing, (MobiHoc’03). ACM, 2003.

16. S. Mauw, J. Verschuren, and E. P. de Vink. A formalization of anonymity and
onion routing. In Proc. 9th European Symposium on Research Computer Security
(ESORICS’04), volume 3193 of LNCS, pages 109–124. Springer, 2004.

17. S. Nanz and C. Hankin. A Framework for Security Analysis of Mobile Wireless
Networks. Theoretical Computer Science, 367(1):203–227, 2006.

18. P. Papadimitratos and Z. Haas. Secure routing for mobile ad hoc networks. In
Proc. SCS Communication Networks and Distributed Systems Modelling Simula-
tion Conference (CNDS), 2002.

19. A. Serjantov and G. Danezis. Towards an information theoretic metric for
anonymity. In Privacy Enhancing Technologies, pages 41–53, 2002.

20. R. Song, L. Korba, and G. Lee. AnonDSR: Efficient anonymous dynamic source
routing for mobile ad-hoc networks. In Proc. ACM Workshop on Security of Ad
Hoc and Sensor Networks (SASN’05). ACM, 2005.

21. M. G. Zapata and N. Asokan. Securing ad hoc routing protocols. In Proc. 1st
ACM workshop on Wireless SEcurity (WiSE’02), pages 1–10. ACM, 2002.

20

