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Abstract. Temporal Equilibrium Logic (TEL) is a formalism for tem-
poral logic programming that generalizes the paradigm of Answer Set
Programming (ASP) introducing modal temporal operators from stan-
dard Linear-time Temporal Logic (LTL). In this paper we solve some
problems that remained open for TEL like decidability, bounds for com-
putational complexity as well as computation of temporal equilibrium
models for arbitrary theories. We propose a method for the latter that
consists in building a Büchi automaton that accepts exactly the temporal
equilibrium models of a given theory, providing an automata-based de-
cision procedure and illustrating the ω-regularity of such sets. We show
that TEL satisfiability can be solved in exponential space and it is hard
for polynomial space. Finally, given two theories, we provide a decision
procedure to check if they have the same temporal equilibrium models.

1 Introduction

Stable models. Stable models have their roots in Logic Programming and in
the search for a semantical interpretation of default negation [9] (or answer set
semantics). They have given rise to a successful declarative paradigm, known as
Answer Set Programming (ASP) [18,15], for practical knowledge representation.
ASP has been applied to a wide spectrum of domains for solving several types
of reasoning tasks: making diagnosis for the Space Shuttle [19], information in-
tegration of different data sources [13], distributing seaport employees in work
teams [10] or automated music composition [3] to cite some examples. Some
of these application scenarios frequently involve representing transition-based
systems under linear time, so that discrete instants are identified with natu-
ral numbers. ASP offers interesting features for a formal treatment of temporal
scenarios. For instance, it provides a high degree of elaboration tolerance [16],
allowing a simple and natural solution to typical representational issues such as
the frame problem and the ramification problem, see respectively [17] and [12].
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Another interesting feature is that it allows a uniform treatment of different
kinds of reasoning problems such as prediction, postdiction, planning, diagnosis
or verification. However, since ASP is not a temporal formalism, it also involves
some difficulties for dealing with temporal problems. In particular, since most
ASP tools must deal with finite domains, this additionally requires fixing a finite
path length with an obvious impossibility for solving problems such as proving
the non-existence of a plan for a given planning scenario, or checking whether
two temporal representations are strongly equivalent (i.e., they are interchange-
able inside any context and for any path length).
Temporal Equilibrium Logic. To overcome these difficulties, in [1] a tempo-
ral extension of ASP, called Temporal Equilibrium Logic (TEL), was considered.
This extension is an orthogonal combination of linear-time temporal logic (LTL)
(see e.g. [22]) with the nonmonotonic formalism of Equilibrium Logic [20], prob-
ably the most general and best studied logical characterisation of ASP. TEL
extends the stable model semantics to arbitrary LTL theories, that is, sets of
formulae that combine atoms, the standard Boolean connectives, and the tem-
poral operators X (read “next”), G (read “always”), F (read “eventually”), U

(read “until”) and R (read “release”).
Towards arbitrary TEL theories. The definition of TEL has allowed study-
ing problems like the aforementioned strong equivalence [1] of two temporal
theories, but it had mostly remained as a theoretical tool, since there was no
method for computing the temporal stable models of a temporal theory, at least
until quite recently. In a first step in this direction, the paper [2] started from the
normal form for TEL called temporal logic programs (TLPs) from [5] and showed
that, when a syntactic subclass is considered (the so-called splitable TLPs), its
temporal stable models can be obtained by a translation into LTL. This method
has been implemented in a tool called STeLP [6] that uses an LTL model checker
as a backend and provides the temporal stable models of a splitable TLP in
terms of a Büchi automaton.
Although the splitable TLPs are expressive enough to capture most temporal
scenarios treated in the ASP literature, a general method to compute the tem-
poral equilibrium models for arbitrary TEL theories was not available until now.
The interest for obtaining such a method is not only to cover the full expres-
siveness of this logic, but also to show its decidability and assess the complexity
associated to its main reasoning tasks. In this sense, it is not convenient to use
TLPs as a starting point since, despite of being a normal form for TEL, they are
obtained by introducing new auxiliary atoms not present in the original propo-
sitional signature.
Our contributions. In this paper we cover this gap and introduce an automata-
based method to compute the temporal equilibrium models of an arbitrary tem-
poral theory. We will pay a special attention to recall standard relationships
between LTL and Büchi automata in order to facilitate the connection between
ASP concepts and those from model-checking with temporal logics. More pre-
cisely, we propose automata-based decision procedures as follows:



1. We show that the satisfiability problem for the monotonic basis of TEL
– the so-called logic of Temporal Here-and-There (THT) – can be solved
in PSpace by translation into the satisfiability problem for LTL. Whence,
any decision procedure for LTL (automata-based, tableaux-based, resolution-
based, etc.) can be used for THT. We are also able to demonstrate the
PSpace-hardness of the problem.

2. For any temporal formula, we effectively build a Büchi automaton that ac-
cepts exactly its temporal equilibrium models which allows to provide an
automata-based decision procedure. We are able to show that TEL satisfia-
bility can be solved in ExpSpace and it is PSpace-hard. Filling the gap is
part of future work. Hence, we provide a symbolic representation for sets of
temporal equilibrium models raising from temporal formulae.

3. Consequently, given two theories, we provide a decision procedure to check
whether they have the same temporal equilibrium models (that is, regular
equivalence, as opposed to strong equivalence).

4. Our proof technique can indeed be adapted to any extension of LTL provided
that formulae can be translated into Büchi automata (as happens with LTL
with past or LTL with fixed-points operators).

2 Temporal Equilibrium Logic

Let AT = {p, q, . . .} be a countably infinite set of atoms. A temporal formula is
defined with the formal grammar below:

ϕ ::= p | ⊥ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ϕ1 → ϕ2 | Xϕ | ϕ1Uϕ2 | ϕ1Rϕ2

where p ∈ AT. We will use the standard abbreviations:

¬ϕ
def

= ϕ→⊥

⊤
def

= ¬⊥

ϕ↔ ϕ′ def

= (ϕ→ ϕ′) ∧ (ϕ′ → ϕ)

Gϕ
def
= ⊥ Rϕ

Fϕ
def
= ⊤ Uϕ

The temporal connectives X, G, F, U and R have their standard meaning
from LTL. A theory Γ is defined as a finite set of temporal formulae.

In the non-temporal case, Equilibrium Logic is defined by introducing a cri-
terion for selecting models based on a non-classical monotonic formalism called
the logic of Here-and-There (HT) [11], an intermediate logic between intuition-
istic and classical propositional calculus. Similarly, TEL will be defined by first
introducing a monotonic, intermediate version of LTL, we call the logic of Tem-
poral Here-and-There (THT), and then defining a criterion for selecting models
in order to obtain nonmonotonicity.

In this way, we will deal with two classes of models. An LTL model H is
a map H : N → P(AT), viewed as an ω-sequence of propositional valuations.
By contrast, the semantics of THT is defined in terms of sequences of pairs of
propositional valuations, which can be also viewed as a pair of LTL models. A
THT model is a pair M = (H,T) where H and T are LTL models and for



i ≥ 0, we impose that H(i) ⊆ T(i). H(i) and T(i) are sets of atoms standing for
here and there respectively. A THT model M = (H,T) is said to be total when
H = T. The satisfaction relation |= is interpreted as follows on THT models (M
is a THT model and k ∈ N):

1. M, k |= p
def

⇔ p ∈ H(k).

2. M, k |= ϕ ∧ ϕ′ def

⇔ M, k |= ϕ and M, k |= ϕ′.

3. M, k |= ϕ ∨ ϕ′ def

⇔ M, k |= ϕ or M, k |= ϕ′.

4. M, k |= ϕ→ ϕ′ def

⇔ for all H′ ∈ {H,T}, (H′,T), k 6|= ϕ or (H′,T), k |= ϕ′.

5. M, k |= Xϕ
def

⇔ M, k + 1 |= ϕ.

6. M, k |= ϕUϕ′ def

⇔ there is j ≥ k such that M, j |= ϕ′ and for all j′ ∈ [k, j−1],
M, j′ |= ϕ.

7. M, k |= ϕRϕ′ def

⇔ for all j ≥ k such that M, j 6|= ϕ′, there exists j′ ∈ [k, j−1],
M, j′ |= ϕ.

8. never M, k |=⊥.

A model for a theory Γ is a THT model M such that for every formula

ϕ ∈ Γ , we have M, 0 |= ϕ. A formula ϕ is THT valid
def

⇔ M, 0 |= ϕ for every

THT model M. Similarly, a formula ϕ is THT satisfiable
def

⇔ there is a THT
model M such that M, 0 |= ϕ.

As we can see, the main difference with respect to LTL is the interpretation
of implication (item 4), that must be checked in both components, H and T, of
M. In fact, it is easy to see that when we take total models M = (T,T), THT
satisfaction (T,T), k |= ϕ collapses to standard LTL satisfaction T, k |= ϕ. We
write T, k |= ϕ instead of (T,T), k |= ϕ whenever convenient. For instance, item
4 in the above definition can be rewritten as:

4′. M, k |= ϕ → ϕ′ def

⇔ (M, k |= ϕ implies M, k |= ϕ′) and T, k |= ϕ → ϕ′

(LTL satisfaction)

Note that M, k |= ¬p iff M, k |= p →⊥ iff (M, k |= p implies M, k |=⊥ and
T, k |= p implies T, k |=⊥) iff (p 6∈ H(k) and p 6∈ T(k)).

Similarly, a formula ϕ is LTL valid
def

⇔ M, 0 |= ϕ for every total THT model

M whereas a formula ϕ is LTL satisfiable
def

⇔ there is a total THT model M
such that M, 0 |= ϕ. We write Mod(ϕ) to denote the set of LTL models for ϕ
(restricted to the set of atoms occurring ϕ denoted by AT(ϕ)).

Obviously, any THT valid formula is also LTL valid, but not the other way
around. For instance, the following are THT valid equivalences:

¬(ϕ ∧ ψ)↔ ¬ϕ ∨ ¬ψ
¬(ϕ ∨ ψ)↔ ¬ϕ ∧ ¬ψ

X(ϕ ⊕ ψ)↔ Xϕ⊕ Xψ

X⊗ ϕ↔ ⊗Xϕ

for any binary connective ⊕ and any unary connective ⊗. This means that De
Morgan laws are valid, and that we can always shift the X operator to all the
operands of any connective. On the contrary, the LTL valid formula ϕ ∨ ¬ϕ
(known as excluded middle axiom) is not THT valid. This is inherited from the



intermediate/intuitionistic nature of THT: in fact, the addition of this axiom
makes THT collapse into LTL. By adding a copy of this axiom for any atom at
any position of the models, we can force that THT models of any formula are
total, as stated next.

Proposition 1. Given a temporal formula ϕ built over the propositional atoms
in AT(ϕ), for every THT model (H,T), the propositions below are equivalent:

(I) (H,T), 0 |= ϕ ∧
∧

p∈AT(ϕ) G(p ∨ ¬p),

(II) T, 0 |= ϕ in LTL, and for i ≥ 0 and p ∈ AT(ϕ), we have p ∈ H(i) iff
p ∈ T(i).

As a consequence, we can easily encode LTL in THT, since LTL models of ϕ
coincide with its total THT models. Let us state another property whose proof
can be obtained by structural induction.

Proposition 2 (Persistence). For any formula ϕ, any THT model M =
(H,T) and any i ≥ 0, if M, i |= ϕ, then T, i |= ϕ.

Corollary 1. (H,T), i |= ¬ϕ iff T, i 6|= ϕ in LTL.

We proceed now to define an ordering relation among THT models, so that only
the minimal ones will be selected for a temporal theory. Given two LTL models

H and H′, we say that H is less than or equal to H′ (in symbols H ≤ H′)
def

⇔
for k ≥ 0, we have H(k) ⊆ H′(k). We write H < H′ if H ≤ H′ and H 6= H′.
The relations ≤ and < can be lifted at the level of THT models. Given two THT
models M = (H,T) and M′ = (H′,T′), M ≤ M′ def

⇔ H ≤ H′ and T = T′.
Similarly, we write M < M′ if M ≤M′ and M 6= M′.

Definition 1 (Temporal Equilibrium Model). A THT model M is a tem-
poral equilibrium model (or TEL model, for short) of a theory Γ if M is a total
model of Γ and there is no M′ < M such that M′, 0 |= Γ .

Temporal Equilibrium Logic (TEL) is the logic induced by temporal equilib-
rium models and it is worth noting that any temporal equilibrium model of Γ is
a total THT model of the form (T,T) (by definition). The corresponding LTL
model T of Γ is said to be a temporal stable model of Γ .

When we restrict the syntax to non-modal theories and semantics to HT
interpretations 〈H(0),T(0)〉 we talk about (non-temporal) equilibrium models,
which coincide with stable models in their most general definition [8].

The TEL satisfiability problem consists in determining whether a temporal
formula has a TEL model. As an example, consider the formula

G(¬p→ Xp) (1)

Its intuitive meaning corresponds to the logic program consisting of rules of the
form: p(s(X)) ← not p(X) where time has been reified as an extra parameter
X = 0, s(0), s(s(0)), . . . . Notice that the interpretation of ¬ is that of default



negation not in logic programming. In this way, (1) is saying that, at any situa-
tion i ≥ 0, if there is no evidence on p, then p will become true in the next state
i+ 1. In the initial state, we have no evidence on p, so this will imply Xp. As a
result XXp will have no applicable rule and thus will be false by default, and so
on. It is easy to see that the unique temporal stable model of (1) is defined by
the formula ¬p ∧ G(¬p↔ Xp).

It is worth noting that an LTL satisfiable formula may have no temporal
stable model. As a simple example (well-known from non-temporal ASP) the
logic program rule ¬p → p, whose only (classical) model is {p}, has no stable
models. This is because if we take a model M = (H,T) where p holds in T,
then (Corollary 1) M 6|= ¬p and so M |= ¬p → p true regardless H, so we can
take a strictly smaller H < T whose only difference with respect to T is that p
does not hold. On the other hand, if we take any T in which p does not hold,
then M |= ¬p and so ¬p → p would make p true both in H and T reaching
a contradiction. When dealing with logic programs, it is well-known that non-
existence of stable models is always due to a kind of cyclic dependence on default
negation like this.

In the temporal case, however, non-existence of temporal stable models may
also be due to a lack of a finite justification for satisfying the criterion of minimal
knowledge. As an example, take the formula GFp, typically used in LTL to assert
that property p occurs infinitely often. This formula has no temporal stable
models: all models must contain infinite occurrences of p and there is no way to
establish a minimal H among them. Thus, formula GFp is LTL satisfiable but
it has no temporal stable model. By contrast, forthcoming Proposition 4 states
that for a large class of temporal formulae, LTL satisfiability is equivalent to
THT satisfiability and TEL satisfiability.

3 Automata-Based Approach for LTL in a Nutshell

Before presenting our decision procedures, let us briefly recall what are the main
ingredients of the automata-based approach. It consists in reducing logical prob-
lems into automata-based decision problems in order to take advantage of known
results from automata theory. The most standard target problems on automata
used in this approach are the nonemptiness problem (checking whether an au-
tomaton admits at least one accepting computation) and the inclusion problem
(checking whether the language accepted by the automaton A is included in
the language accepted by the automaton B). In a pioneering work [4] Büchi in-
troduced a class of automata showing that they are equivalent to formulae in
monadic second-order logic (MSO) over (N, <).

In full generality, here are a few desirable properties of the approach. The
reduction should be conceptually simple, see the translation from LTL formu-
lae into alternating automata [27]. Formula structure is reflected directly in
the transition formulae of alternating automata. The computational complexity
of the automata-based target problem should be well-characterized – see, for
instance, the translation from PDL formulae into nondeterministic Büchi tree



automata [28]. It is also highly desirable that not only the reduction is conceptu-
ally simple but also that it is semantically faithful so that the automata involve
in the target instance are closely related to the instance of the original logical
problem. Last but not least, preferrably, the reduction might allow to obtain the
optimal complexity for the source logical problem.

3.1 Basics on Büchi automata

We recall that a Büchi automaton A is a tuple A = (Σ,Q,Q0, δ, F ) such that Σ
is a finite alphabet, Q is a finite set of states, Q0 ⊆ Q is the set of initial states,
the transition relation δ is a subset of Q × Σ × Q and F ⊆ Q is a set of final
states. Given q ∈ Q and a ∈ Σ, we also write δ(q, a) to denote the set of states
q′ such that (q, a, q′) ∈ δ.

A run ρ of A is a sequence q0
a0−→ q1

a1−→ q2 . . . such that for every i ≥ 0,
(qi, ai, qi+1) ∈ δ (also written qi

ai−→ qi+1). The run ρ is accepting if q0 ∈ Q0

is initial and some state of F is repeated infinitely often in ρ: inf(ρ) ∩ F 6= ∅
where we let inf(ρ) = {q ∈ Q : ∀ i, ∃ j > i, q = qj}. The label of ρ is the word
σ = a0a1 · · · ∈ Σω. The automaton A accepts the language L(A) of ω-words
σ ∈ Σω such that there exists an accepting run of A on the word σ, i.e., with
label σ.

Now, we introduce a standard generalization of the Büchi acceptance con-
dition by considering conjunctions of classical Büchi conditions. A generalized
Büchi automaton (GBA) is a structure A = (Σ,Q,Q0, δ, {F1, . . . , Fk}) such that
F1, . . . , Fk ⊆ Q and Σ, Q, Q0 and δ are defined as for Büchi automata. A run is
defined as for Büchi automata and a run ρ of A is accepting iff the first state is
initial and for i ∈ [1, n], we have inf(ρ) ∩ Fi 6= ∅. It is known that every GBA A
can be easily translated in logarithmic space into a Büchi automaton, preserving
the language of accepted ω-words (see e.g. [21]). Moreover, the nonemptiness
problem for GBA or BA is known to be NLogSpace-complete.

3.2 From LTL formulae to Büchi automata

We recall below how to define a Büchi automaton that accepts the linear models
of an LTL formula. Given an LTL formula ϕ, we define its closure cl(ϕ) to denote
a finite set of formulae that are relevant to check the satisfiability of ϕ. For each
LTL formula ϕ, we define its main components (if any) according to the table
below:

formula ϕ main components

p or ¬p none

¬¬ψ or Xψ ψ

¬Xψ ¬ψ
ψ1Uψ2 or ψ1 ∧ ψ2 or ψ1Rψ2 ψ1, ψ2

¬(ψ1Uψ2) or ¬(ψ1 ∧ ψ2) or ¬(ψ1Rψ2) ¬ψ1, ¬ψ2

We write cl(ϕ) to denote the least set of formulae such that ϕ ∈ cl(ϕ) and
cl(ϕ) is closed under main components. It is routine to check that card(cl(ϕ)) ≤



|ϕ| (the size of ϕ). Moreover, one can observe that if ψ ∈ cl(ϕ), then for each
immediate subformula (if any), either it belongs to cl(ϕ) or its negation belongs
to cl(ϕ). A subset Γ ⊆ cl(ϕ) is consistent and fully expanded whenever

– ψ1 ∧ ψ2 ∈ Γ implies ψ1, ψ2 ∈ Γ ,
– ¬(ψ1 ∧ ψ2) ∈ Γ implies ¬ψ1 ∈ Γ or ¬ψ2 ∈ Γ ,
– ¬¬ψ ∈ Γ implies ψ ∈ Γ ,
– Γ does not contain a contradictory pair ψ and ¬ψ.

The pair of consistent and fully expanded sets (Γ1, Γ2) is one-step consistent
def

⇔

1. Xψ ∈ Γ1 implies ψ ∈ Γ2 and ¬Xψ ∈ Γ1 implies ¬ψ ∈ Γ2.
2. ψ1Uψ2 ∈ Γ1 implies ψ2 ∈ Γ1 or (ψ1 ∈ Γ1 and ψ1Uψ2 ∈ Γ2),
3. ¬(ψ1Uψ2) ∈ Γ1 implies ¬ψ2 ∈ Γ1 and (¬ψ1 ∈ Γ1 or ¬(ψ1Uψ2) ∈ Γ2).
4. ψ1Rψ2 ∈ Γ1 implies ψ2 ∈ Γ1 and (ψ1 ∈ Γ1 or ψ1Rψ2 ∈ Γ2),
5. ¬(ψ1Rψ2) ∈ Γ1 implies ¬ψ2 ∈ Γ1 or (¬ψ1 ∈ Γ1 and ¬(ψ1Rψ2) ∈ Γ2).

Given an LTL formula ϕ, let us build the generalized Büchi automaton Aϕ =
(Σ,Q,Q0, δ, {F1, . . . , Fk}) where

– Σ = P(AT(ϕ)) and Q is the set of consistent and fully expanded sets.
– Q0 = {Γ ∈ Q : ϕ ∈ Γ}.

– Γ
a
−→ Γ ′ ∈ δ

def

⇔ (Γ, Γ ′) is one-step consistent, (Γ ∩ AT(ϕ)) ⊆ a and {p :
¬p ∈ Γ} ∩ a = ∅.

– If the temporal operator U does not occur in ϕ, then F1 = Q and k = 1.
Otherwise, suppose that {ψ1Uψ

′
1, . . . , ψkUψ

′
k} is the set of U -formulae from

cl(ϕ). Then, for every i ∈ [1, k], Fi = {Γ ∈ Q : ψiUψ
′
i 6∈ Γ or ψ′

i ∈ Γ}.

It is worth observing that card(Q) ≤ 2|ϕ| and Aϕ can be built in exponential
time in |ϕ|.

Proposition 3. [29] Mod(ϕ) = L(Aϕ), i.e. for every a0a1 · · · ∈ Σω, a0a1 · · · ∈
L(Aϕ) iff T, 0 |= ϕ where for all i ∈ N, T(i) = ai.

{p}

∅

{p}

Fig. 1. Büchi automaton for models of G(¬p→ Xp) (over the alphabet {∅, {p}})

Figure 1 presents a Büchi automaton recognizing the models for G(¬p→ Xp)
over the alphabet {∅, {p}}. The automaton obtained from the above systematic
construction would be a bit larger since cl(G(¬p → Xp)) has about 24 subsets.
However, the systematic construction has the advantage to be generic. Other



translations exist with other advantages, for instance to build small automata,
see e.g. [7]. However, herein, we need to use the following properties (apart from
the correctness of the reduction): (1) the size of each state of Aϕ is linear in the
size of ϕ, (2) it can be checked if a state is initial [resp. final] in linear space in
the size of ϕ and (3) given two subsets X , X ′ of cl(ϕ) and a ∈ Σ, one can check

in linear space in the size of ϕ whether X
a
−→ X ′ is a transition of Aϕ (each

transition of Aϕ can be checked in linear space in the size of ϕ).
These are key points towards the PSpace upper bound for LTL satisfiability

since the properties above are sufficient to check the nonemptiness of Aϕ in
nondeterministic polynomial space in the size of ϕ (guess on-the-fly a prefix and
a loop of length at most exponential) and then invoke Savitch Theorem [24] to
eliminate nondeterminism. We will use similar arguments to establish that TEL
satisfiability can be solved in ExpSpace.

4 Building TEL Models with Büchi Automata

In this section, we provide an automata-based approach to determine whether
a formula ϕ built over the atoms {p1, . . . , pn} has a TEL model. This is the
place where starts our main contribution. To do so, we build a Büchi automaton
B over the alphabet Σ = P({p1, . . . , pn}) such that L(B) is equal to the set of
TEL models for ϕ. Moreover, nonemptiness can be checked in ExpSpace, which
allows to answer the open problem about the complexity of determining whether
a temporal formula has a TEL model.

Each model M = 〈H,T〉 restricted to the atoms in {p1, . . . , pn} can be en-
coded into an LTL model H′ over the alphabet Σ′ = P({p1, . . . , pn, p

′
1, . . . , p

′
n})

such that for i ≥ 0, H′(i) = (T(i) ∩ {p1, . . . , pn}) ∪ {p′j : pj ∈ H(i), j ∈ [1, n]}.
In that case, we write H′ ≈M.

Lemma 1.

(I) For every THT model M = 〈H,T〉 restricted to atoms in {p1, . . . , pn}, there
is a unique LTL model H′ such that H′ ≈M.

(II) For every LTL model H′ : N → Σ′ such that H′, 0 |=
∧

i∈[1,n] G(p′i → pi),

there is a unique THT model M = 〈H,T〉 restricted to atoms s.t. H′ ≈M.

In (II), a THT model M can be built thanks to the satisfaction of the for-
mula

∧

i∈[1,n] G(p′i → pi) by H′, which guarantees that for all i ∈ N, we have

H(i) ⊆ T(i). The proof is by an easy verification. This guarantees a clear isomor-
phism between two sets of models. In order to complete this model-theoretical
correspondence, let us define the translation f between temporal formulae:

– f is homomorphic for conjunction, disjunction and temporal operators,

– f(⊥)
def

=⊥, f(pi)
def

= p′i and f(ψ → ψ′)
def

= (ψ → ψ′) ∧ (f(ψ)→ f(ψ′)).

Lemma 2. Let ϕ be a temporal formula built over the atoms in {p1, . . . , pn} and
M restricted to {p1, . . . , pn} and H′ be models such that H′ ≈M. For l ≥ 0, we
have H′, l |= f(ψ) iff M, l |= ψ for every subformula ψ of ϕ.



The proof is by an easy structural induction. So, there is a polynomial-
time reduction from THT satisfiability into LTL satisfiability by considering the
mapping f(·) ∧

∧

i∈[1,n] G(p′i → pi).

Let A1 be the Büchi automaton such that L(A1) = Mod(ϕ), following any
construction similar to [29] (see Section 3.2). The set L(A1) can be viewed as the
set of total THT models of ϕ. Let ϕ′ be the formula f(ϕ) ∧

∧

i∈[1,n] G(p′i → pi).

Lemma 3. The set of LTL models for the formula ϕ′ corresponds to the set of
THT models for the temporal formula ϕ.

For instance, taking the formula ϕ = G(¬p→ Xp), we can compute its THT
models M by obtaining the corresponding LTL models (with atoms p and p′)
for the formula below:

ϕ′ = f( G(¬p→ Xp) ) ∧ G(p′ → p)

= G
(

(¬p→ Xp) ∧ (¬p ∧ ¬p′ → Xp′)
)

∧ G(p′ → p)

Figure 2 presents a Büchi automaton for the models of the formula f(G(¬p→
Xp)) ∧ G(p′ → p) over the alphabet {∅, {p}, {p′}, {p, p′}}. Hence, we provide
a symbolic representation for the THT models of G(¬p → Xp). For instance,
reading the letter {p} at position i corresponds to a pair (H(i),T(i)) with p 6∈
H(i) and p ∈ T(i). Similarly, reading the letter {p, p′} at position i corresponds
to a pair (H(i),T(i)) with p ∈ H(i) and p ∈ T(i). However, {p′} cannot be read
since H(i) ⊆ T(i). {p}, {p, p′}

∅

{p, p′}

Fig. 2. Büchi automaton for models of f(G(¬p→ Xp)) ∧ G(p′ → p)

Hence, ϕ is THT satisfiable iff ϕ′ is LTL satisfiable.
The map f shall be also useful to show Proposition 4 below, becoming a

key step to obtain PSpace-hardness results (see e.g. Theorem 2). Proposition 4
below states that for a large class of formulae, LTL satisfiability is equivalent to
TEL satisfiability.

Proposition 4. Let ϕ be temporal formula built over the connectives ∨, ∧, →,
X and U and such that → occurs only in subformulae of the form p →⊥ with
p ∈ AT. The propositions below are equivalent: (I) ϕ is LTL satisfiable; (II) ϕ is
THT satisfiable; (III) ϕ has a temporal stable model, i.e. ϕ is TEL satisfiable.

Proof. Let L+(∨,∧,X,U ) be the class of temporal formulae involved in the state-
ment. Every temporal formula ϕ in L+(∨,∧,X,U ) states a guarantee property
in the sense of [30] (see also [14]). In particular, this means that



(P1) if T, 0 |= ϕ in the LTL sense, then there is N ≥ 0 such that for any T′

that only agrees with T on the positions in [0, N ], we also have T′, 0 |= ϕ

(ϕ states a guarantee property).

In particular, we can impose that for l > N , we have T′(l) = ∅. Moreover, since
the set of sequences of length N + 1 indexed by subsets of atoms occurring in ϕ
is finite, if ϕ is LTL satisfiable, then there is an LTL model T such that T, 0 |= ϕ

and no T′ < T verifies T′, 0 |= ϕ (this property does not hold for every LTL
formulae, consider GFp). (II) implies (I) is by Proposition 2 and (III) implies (II)
is by definition of temporal stable model whereas (III) implies (I) is by definition
of LTL satisfiability. It remains to show that (I) implies (III).

Suppose that ϕ is LTL satisfiable. From the previous properties, we have
seen that there is a minimal LTL model T such that T, 0 |= ϕ. The argument is
by reductio ad absurdum. Suppose that there is H < T such that (H,T), 0 |= ϕ.
By minimality of T, we have H, 0 6|= ϕ. Since T is minimal and has an infinite
suffix of the form ∅ω, there is a finite amount of positions l1, . . . , lN such that
H(li) ⊂ T(li) (strict inclusion).

Let H′ be the LTL model such that H′ ≈ (H,T). We have seen that H′, 0 |=
f(ϕ) (Lemma 2). Let us define the map f ′, that we shall apply to ϕ, as a slight
variant of f :

– f ′ is homomorphic for conjunction, disjunction and temporal operators,
– f ′(pi)

def

= (p′i ∧ pi) and f ′(¬pi)
def

= (¬pi ∧ ¬p′i).

Since, H′, 0 |=
∧

i∈[1,n] G(p′i → pi), we also have H′, 0 |= f ′(ϕ). Let H′′ be the

variant of H′ such that for l 6∈ {l1, . . . , lN}, H′′(l)
def

= H′(l) and for i ∈ [1, N ]
and p ∈ AT, if p 6∈ H(li) and p ∈ T(li), then p, p′ 6∈ H′′(li), otherwise (p, p′ ∈

H′′(li)
def

⇔ p ∈ T(li)). Observe that in H′′ the valuations on {p1, . . . , pn} and
{p′1, . . . , p

′
n} agree and the ‘atomic’ formulae in f ′(ϕ) are the form either (p′i∧pi)

or (¬p′i ∧ ¬pi). Consequently, H′′, 0 |= f ′(ϕ) and by Lemma 2, T′, 0 |= ϕ where
T′(l) = H′′(l) ∩ {p1, . . . , pn} for l ≥ 0. By construction of T′, we have T′ < T,
which leads to a contradiction. Hence, (T,T) is a temporal stable model for
ϕ. ⊓⊔

Corollary 2. THT satisfiability problem is PSpace-complete.

Proof. The translation f requires only polynomial-time and since LTL satisfia-
bility is PSpace-complete [25], we get that THT satisfiability is in PSpace. It
remains to show the PSpace lower bound.

To do so, we can just observe that, as proved by Proposition 1, LTL sat-
isfiability (which is PSpace-complete) can be encoded into THT satisfiability
using the translation from Proposition 1, which can be performed in linear time.
Indeed, it just adds a formula G(p ∨ ¬p) per each atom p ∈ AT. ⊓⊔

We can strengthen the mapping ϕ′ to obtain not only THT models of ϕ but
also to constrain them to be strictly non-total (that is H < T) as follows

ϕ′′ def

= ϕ′ ∧
∨

i∈[1,n]

F((p′i →⊥) ∧ pi)



ϕ′′ characterizes the non-total THT models of the formula ϕ. The generalized
disjunction ensures that at some position j, H(j) ⊂ T(j) (strict inclusion).

Lemma 4. The set of LTL models for the formula ϕ′′ corresponds to the set of
non-total THT models for the temporal formula ϕ.

The proof is again by structural induction. Let A2 be the Büchi automaton
such that L(A2) = Mod(ϕ′′), following again any construction similar to [29]
(see Section 3.2). L(A2) contains exactly the non-total THT models of ϕ.

Let h : Σ′ → Σ be a map (renaming) between the two finite alphabets such
that h(a) = a ∩ {p1, . . . , pn}. h consists in erasing the atoms from {p′1, . . . , p

′
n}

h can be naturally extended as an homomorphism between finite words, infinite
words and as a map between languages. Similary, given a Büchi automaton A2 =
(Σ′, Q,Q0, δ, F ), we write h(A2) to denote the Büchi automaton (Σ,Q,Q0, δ

′, F )

such that q
a
−→ q′ ∈ δ′

def

⇔ there is b ∈ Σ′ such that q
b
−→ q′ ∈ δ and h(b) = a.

Obviously, L(h(A2)) = h(L(A2)). Indeed, the following propositions imply each
other:

1. a0a1 · · · ∈ L(A2),
2. h(a0)h(a1) · · · ∈ h(L(A2)) (by definition of h on languages),
3. h(a0)h(a1) · · · ∈ L(h(A2)) (by definition of h on A2).

The inclusion L(h(A2)) ⊆ h(L(A2)) can be shown in a similar way. So, L(h(A2))
can be viewed as the set of total THT models for ϕ having a strictly smaller
THT model.

Proposition 5. ϕ has a TEL model iff L(A1) ∩ (Σω \ L(h(A2))) 6= ∅.

Proof. A TEL model M = (H,T) for ϕ satisfies the following properties:

1. M, 0 |= ϕ and H = T.
2. For no H′ < H, we have (H′,T), 0 |= ϕ.

We have seen that L(A1) contains exactly the LTL models of ϕ, i.e. the total
THT models satisfying ϕ. For taking care of condition (2.), by construction, A2

accepts the non-total THT models for ϕ whereas L(h(A2)) contains the total
THT models for ϕ having a strictly smaller THT model satisfying ϕ, the negation
of (2.). Hence, (T,T) is a TEL model for ϕ iff T ∈ L(A1) and T 6∈ L(h(A2)). ⊓⊔

Hence, the set of TEL models for a given ϕ forms an ω-regular language.

Proposition 6. For each temporal formula ϕ, one can effectively build a Büchi
automaton that accepts exactly the TEL models for ϕ.

Proof. The class of languages recognized by Büchi automata (the class of ω-
regular languages) is effectively closed under union, intersection and comple-
mentation. Moreover, it is obviously closed under the renaming operation. Since
A1, A2, and h(A2) are Büchi automata, one can build a Büchi automaton A′

such that L(A′) = Σω \ L(h(A2)). Similarly, one can effectively build a Büchi
automaton Bϕ such that L(Bϕ) = L(A1) ∩ L(A′). Complementation can be
performed using the constructions in [26] or in [23] (if optimality is required).
Roughly speaking, complementation induces an exponential blow-up. ⊓⊔



Figure 3 presents a Büchi automaton accepting the (unique) temporal equi-
librium model for ϕ. The next step consists in showing that the nonemptiness
check can be done in exponential space.

∅

{p}

Fig. 3. Büchi automaton for stable models of G(¬p→ Xp)

Proposition 7. Checking whether a TEL formula has a TEL model can be done
in ExpSpace.

Proof. Let ϕ be a temporal formula and A1 and A2 be Büchi automata such that
L(A1) ∩ (Σω \ L(h(A2))) accepts exactly the TEL models for ϕ. We shall show
that nonemptiness of the language can be tested in exponential space. With the
construction of A1 using [29], we have seen that

1. the size of each state of A1 is linear in the size of ϕ (written |ϕ|),
2. it can be checked if a state is initial [resp. final] in linear space in |ϕ|,
3. each transition of A1 can be checked in linear space in |ϕ|,
4. A1 has a number of states exponential in |ϕ|.

Similarly, let us observe the following simple properties:
(a) ϕ′′ is of linear size in |ϕ|; (b) Automaton A2 can be built from the formula

ϕ′′ using the construction in [29]; (c) A2 and h(A2) have the same sets of states,
initial states and final states and checking whether a transition belongs to h(A2)
is not more complex than checking whether a transition belongs to A2. So,

1. the size of each state of h(A2) is linear in |ϕ|,
2. it can be checked if a state is initial [resp. final] in linear space in |ϕ|,
3. each transition of h(A2) can be checked in linear space in |ϕ|.
4. h(A2) has a number of states exponential in |ϕ|.

Using the complementation construction from [26] (the construction in [23] would
be also fine) to complement h(A2), one can obtain a Büchi automaton A′ such
that L(A′) = Σω \ L(h(A2)) and

1. the size of each state of A′ is exponential in |ϕ|,
2. it can be checked if a state is initial [resp. final] in exponential space in |ϕ|,
3. each transition of A′ can be checked in exponential space in |ϕ|.
4. A′ has a number of states doubly exponential in |ϕ|.

Indeed, h(A2) is already of exponential size in |ϕ|. So, using the above-mentioned
property, one can check on-the-fly whether L(A1)∩L(A′) is nonempty by guess-
ing a synchronized run of length at most double exponential (between the au-
tomata A1 and A′) and check that it satisfies the acceptance conditions of both
automata. At any stage of the algorithm, at most 2 product states need to be



stored and this requires exponential space. Similarly, counting until a double ex-
ponential value requires only an exponential amount of bits. Details are omitted
but the very algorithm is based on standard arguments for checking on-the-fly
graph accessibility and checking nonemptiness of the intersection of two lan-
guages accepted by Büchi automata (similar arguments are used in [26, Lemma
2.10]). By Savitch Theorem [24], nondeterminism can be eliminated, providing
the promised ExpSpace upper bound. ⊓⊔

Theorem 1. Checking whether a formula has a TEL model is PSpace-hard.

Proof. We can use again the linear encoding in Proposition 1 and observe that
any THT model (T,T) of ψ = ϕ∧

∧

p∈AT(ϕ) G(p∨¬p) will also be a TEL model

of ϕ, since there are no non-total models for ψ and thus (T,T) will always be
minimal. But then T |= ϕ in LTL iff (T,T) |= ψ in THT iff (T,T) is a TEL
model of ψ. Thus LTL satisfiability can be reduced to TEL satisfiability and so
the latter problem is PSpace-hard. ⊓⊔

Theorem 2. Checking whether two temporal formulae have the same TEL mod-
els is decidable in ExpSpace and it is PSpace-hard.

Proof. Let ϕ ∈ L+(∨,∧,X,U ) and ψ = GFp1. We recall that ψ has no temporal
equilibrium model. The propositions below are equivalent: (a) ϕ is LTL satis-
fiable, (b) ϕ has a temporal equilibrium model and (c) ϕ and ψ have distinct
sets of temporal equilibrium models. Since LTL satisfiability for the fragment
L+(∨,∧,X,U ) is PSpace-hard, coPSpace= PSpace and ((a) iff (c)), then the
equivalence problem with temporal equilibrium models is PSpace-hard.

Let ϕ and ψ be two temporal formulae built over the same set of atoms and
Aϕ1 , Aϕ2 , Aψ1 and Aψ2 be Büchi automata such that L(Aϕ1 ) ∩ (Σω \ L(h(Aϕ2 )))

recognizes the temporal equilibrium models for ϕ and L(Aψ1 )∩ (Σω \L(h(Aψ2 )))
recognizes the temporal equilibrium models for ψ. So, ϕ and ψ have distinct sets
of temporal equilibrium models iff one of the sets below is non-empty.

(I) L(Aϕ1 ) ∩ (Σω \ L(h(Aϕ2 ))) ∩ (Σω \ L(Aψ1 )),

(II) L(Aϕ1 ) ∩ (Σω \ L(h(Aϕ2 ))) ∩ L(h(Aψ2 )),

(III) L(Aψ1 ) ∩ (Σω \ L(h(Aψ2 ))) ∩ (Σω \ L(Aϕ1 )),

(IV) L(Aψ1 ) ∩ (Σω \ L(h(Aψ2 ))) ∩ L(h(Aϕ2 )).

A nondeterministic algorithm running in exponential space is designed as follows:

1. Guess which sets among (I)–(IV) is tested for nonemptiness.
2. Run a nondeterministic algorithm in exponential space by synchronizing

the transitions of the three automata (one or two of them are designed by
complementation) as done in the proof of Proposition 7.

Again, elimination of nondeterminism can be performed thanks to Savitch The-
orem [24]. So, non equivalence problem is in ExpSpace. Since coExpSpace=
ExpSpace (simply because ExpSpace refers to a deterministic class of Turing
machines), the equivalence problem is in ExpSpace. ⊓⊔



5 Concluding Remarks

We have introduced an automata-based method for computing the temporal
equilibrium models of an arbitrary temporal theory, under the syntax of Linear-
time Temporal Logic (LTL). This construction has allowed us solving several
open problems about Temporal Equilibrium Logic (TEL) and its monotonic
basis Temporal Here-and-There (THT). In particular, we were able to prove
that THT satisfiability can be solved in PSpace and is PSpace-hard whereas
TEL satisfiability is decidable (something not proven before) being solvable in
ExpSpace and at least PSpace-hard (filling the gap is part of future work).
Our method consists in constructing a Büchi automaton that captures all the
temporal equilibrium models of an arbitrary theory. This also implies that the
set of TEL models of any theory is ω-regular.

A recent approach [2,6] has developed a tool, called STeLP, that also captures
TEL models of a theory in terms of a Büchi automaton. Our current proposal,
however, has some important advantages. First, STeLP restricts the input syntax
to so-called splitable temporal logic programs, a strict subclass of a normal form
for TEL that further requires the introduction of auxiliary atoms for removing
U and R operators, using a structure preserving transformation. On the con-
trary, our current method has no syntactic restrictions and directly works on
the alphabet of the original theory, for which no transformation is required prior
to the automaton construction. Second, once the STeLP input is written in the
accepted syntax, it translates the input program into LTL by the addition of a
set of formulae (the so-called loop formulae) whose number is, in the worst case,
exponential on the size of the input. Future work includes the implementation
of our current method as well a comparison in terms of efficiency with respect
to the tool STeLP.

References
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4. R. Büchi. On a decision method in restricted second-order arithmetic. In Intl.
Congress on Logic, Method and Philosophical Science’60, pages 1–11, 1962.

5. P. Cabalar. A normal form for linear temporal equilibrium logic. In JELIA’10,
volume 6341 of LNCS, pages 64–76. Springer, 2010.

6. P. Cabalar and M. Diéguez. STELP - a tool for temporal answer set programming.
In LPNMR’11, volume 6645 of LNCS, pages 370–375, 2011.

7. S. Demri and P. Gastin. Specification and verification using temporal logics. In
Modern applications of automata theory, volume 2 of IIsc Research Monographs.
World Scientific, 2011. to appear.

8. P. Ferraris. Answer sets for propositional theories. In LPNMR’05, volume 3662 of
LNCS, pages 119–131, 2005.



9. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In ICLP’88, pages 1070–1080. MIT Press, Cambridge, MA, 1988.

10. G. Grasso, S. Iiritano, N. Leone, V. Lio, F. Ricca, and F. Scalise. An ASP-based
system for team-building in the Gioia-Tauro seaport. In Proc. of the 12th Intl.
Symposium on Practical Aspects of Declarative Languages (PADL 2010), volume
5937 of LNCS, pages 40–42. Springer, 2010.

11. A. Heyting. Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der
Preussischen Akademie der Wissenschaften, Physikalisch-mathematische Klasse,
pages 42–56, 1930.

12. H. Kautz. The logic of persistence. In AAAI’86, pages 401–405, 1986.
13. N. Leone, T. Eiter, W. Faber, M. Fink, G. Gottlob, and G. Greco. Boosting infor-

mation integration: The INFOMIX system. In Proc. of the 13th Italian Symposium
on Advanced Database Systems, SEBD 2005, pages 55–66, 2005.

14. Z. Manna and A. Pnueli. A hierarchy of temporal properties. In PODC’90, pages
377–408. ACM Press, 1990.
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