
AVIS’04 Preliminary Version

Verifying Nondeterministic Channel Systems
With Probabilistic Message Losses 3

N. Bertrand 1 and Ph. Schnoebelen 2

Lab. Spécification & Vérification, ENS de Cachan & CNRS UMR 8643, 61, av.
Pdt. Wilson, 94235 Cachan Cedex France

Abstract

Lossy channel systems (LCS’s) are systems of finite state automata that commu-
nicate via unreliable unbounded fifo channels. In order to circumvent the unde-
cidability of model checking for nondeterministic LCS’s, probabilistic models have
been introduced, where it can be decided whether a linear-time property holds al-
most surely. However, such fully probabilistic systems are not a faithful model of
nondeterministic protocols.

We study a hybrid model for LCS’s where losses of messages are seen as faults
occurring with some given probability, and where the internal behavior of the system
remains nondeterministic. Thus the semantics is in terms of infinite-state reactive
Markov chains (equivalently, Markovian decision processes). A similar model was
introduced in the second part of (Bertrand & Schnoebelen, FOSSACS’2003, LNCS
2620, pp. 120–135): we continue this work and give a complete picture of the
decidability of qualitative model checking for MSO-definable properties and some
relevant subcases.

Key words: Lossy channel systems, model checking, probabilistic
systems, verification of asynchronous communication protocols.

1 Introduction

Verification of Channel Systems. Channel systems [8] are systems of
finite state components that communicate via asynchronous unbounded fifo
channels. See Fig. 1 for an example. They are a natural model for asyn-
chronous communication protocols, used as the semantical basis of protocol
specification languages such as SDL and Estelle.

1 Email: bertrand@lsv.ens-cachan.fr
2 Email: phs@lsv.ens-cachan.fr
3 This research was supported by Persée, a project funded by the ACI Sécurité Informa-
tique of the French Ministry for Scientific Research.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Bertrand and Schnoebelen

•

c2?msg

c2?req

c1!ack •

c2!msg

c2!stop

c1?ack

c1?hup

channel c1

ack ack hup

channel c2

msg stop

Fig. 1. A channel system

Lossy channel systems [10,4] are a special class of channel systems where
messages can be lost while they are in transit, without any notification. Con-
sidering lossy systems is natural when modeling fault-tolerant protocols where
the communication channels are not supposed to be reliable.

Surprisingly, while channel systems are Turing-powerful [8], several ver-
ification problems become decidable when one assumes channels are lossy:
reachability, safety properties over traces, inevitability properties over states,
and fair termination are decidable for lossy channel systems [10,9,4,11].

Unfortunately, several important verification problems are undecidable:
recurrent reachability, liveness properties, boundedness, and all behavioral
equivalences are undecidable for these systems [3,12,16]. Furthermore, none
of the decidable problems listed in the previous paragraph can be solved in
primitive recursive time [17]!

Verifying Liveness Properties. In practice, lossy channel systems are a
convenient model for verifying safety properties of asynchronous protocols [1].
However, they are not so adequate for liveness properties. One first difficulty
here is the undecidability of liveness properties. A second difficulty is that the
model itself is too pessimistic when liveness is considered.

Protocols that have to deal with unreliable channels usually have some cop-
ing mechanism combining resends and acknowledgments. But, without any
assumption limiting message losses, no mechanism can ensure that some com-
munication will eventually be initiated. The classical solution to this problem
is to impose some fairness assumptions on the behavior of the lossy channel,
e.g. “if infinitely many messages are sent to the channels, infinitely many will
not be lost”. However, fairness assumptions also make decidability more elu-
sive [3,11].

Probabilistic Losses. When modeling real-life protocols, it is natural to
see message losses as some kind of faults having a probabilistic behavior.
Following this idea, Purushothaman Iyer introduced the first Markov chain
model for lossy channel systems [14]. In this model, not only the message
losses are probabilistic, but the choice between different available transitions is
also made probabilistically. Qualitative verification is decidable when message
losses have a high probability [6] and undecidable when they are less likely [2].

2

Bertrand and Schnoebelen

An improved model was introduced in [5] and [7] where the probability of losses
is modeled more faithfully. Additionally it makes qualitative verification [5,7]
and approximate quantitative verification [15] decidable independently of the
likelihood of message losses. See the survey [18] for more details.

These models are rather successful in bringing back decidability. However,
they assume that the system is fully probabilistic, i.e. the choice between dif-
ferent actions is made probabilistically. But when verifying channel systems,
nondeterminism is an essential feature: one uses it to include (part of) an
unknown environment in the model, to delay implementation choices at early
stages of the design, and to abstract away from complex control structures at
later stages.

Our Contribution. We consider a new model where channel systems behave
nondeterministically while messages are lost probabilistically. This gives rise
to infinite-state Markovian decision processes, for which we study the decid-
ability of qualitative properties. This study was initiated in the second part
of [7] and we now provide complete results with full proofs.

As was already apparent in [7], qualitative verification is in general not
decidable for the Markovian decision process model of LCS’s. It appears that
this is because schedulers are very powerful (e.g. they need not be recursive).
In order to recover decidability without sacrificing too much of the model, we
advocate restricting oneself to finite-memory schedulers, as explained in [7].

Outline of the Paper. Sections 2 and 3 provide the necessary definitions
on, respectively, Markovian decision processes and lossy channel systems. Our
results are given in Sections 4 and 5.

2 Markovian Decision Processes

We assume familiarity with Markov chains and Markovian decision processes,
as they are used in the verification of probabilistic systems (introductory texts
are [13] for the semantical issues, and [19] for the verification issues).

Let Dist(Ω) be the set of all discrete probability distributions on Ω.

Definition 2.1 A Markovian decision process (a MDP) is a pair M = 〈S, δ〉
s.t. S = {s, s′, . . .} is a countable set of states, and δ : S → 2Dist(S) maps each
state s ∈ S to a finite nonempty subset of Dist(S).

The behavior of an MDP combines nondeterminism and probabilities. This
is formalized through the concept of a scheduler (also called opponent, or
adversary). Formally, a scheduler for M = 〈S, δ〉 is a mapping u from S+

(the set of sequences of states) to Dist(S) such that u(s0 . . . sn) ∈ δ(sn). The
intuition is that, based on the history s0 . . . sn of the computation (i.e. the
sequence of states that have already been visited), the scheduler picks one

3

Bertrand and Schnoebelen

distribution f among those that are allowed in the current state sn. Then the
next state sn+1 is chosen probabilistically, according to f .

Thus, once a scheduler u is provided, the MDP M gives rise to a Markov
chain (denoted Mu) and there is a canonical probability measure for its sets
of paths. It is thus meaningful to speak of the probability that M u satisfies
some linear-time probability ϕ. The statements we want to decide have the
form “for all schedulers u, Mu satisfies ϕ with probability 1” (what one calls
“qualitative verification”).

Remark 2.2 Formally, the states of Mu are sequences of states of M . How-
ever, these sequences denote a current state with its history. It is thus conve-
nient (and customary) to informally speak of Mu as if it had the same state
space as M and leave the history implicit. 2

Remark 2.3 Our definition considers deterministic schedulers. One some-
times considers more general schedulers (called stochastic schedulers) that pick
a distribution in Dist(δ(sn)). It can be argued that, for the qualitative ver-
ification problems we consider, stochastic schedulers do not bring additional
power. 2

3 Lossy Channel Systems

Lossy channel systems are finite-state processes operating on a finite set of
channels, and where each channel behaves as an unbounded FIFO buffer which
is unreliable in the sense that it can lose messages [10,4].

Formally, a lossy channel system (a LCS) is a tuple L = 〈Q, C, M, ∆〉 where
Q is a finite set of local states, C is a finite set of channels, M is a finite message

alphabet, and ∆ is a set of transition rules each of the form 〈r, op, s〉, where
r, s ∈ Q, and op is an operation of one of the forms c!m (sending message m to
channel c), or c?m (receiving message m from channel c). A configuration (also,
a global state) σ of L is of the form 〈r, w〉 where r ∈ Q and w is a mapping from
C to M∗ that gives the current contents of each channel. We abuse notation
and write ε for denoting both the empty word in M∗ and the “empty” map
that associates ε with each c ∈ C.

Remark 3.1 Channel systems usually have several cooperating finite-state
components (see Fig. 1 for example), but there is no loss of generality in
combining all of these components into a single one. 2

3.1 Operational Semantics

A LCS L induces a transition system TL
def
= 〈S,→〉, where S

def
= Q× (C → M∗)

is the set of configurations, and →⊆ S × S is the transition relation.

The transition relation contains both normal steps (also called perfect

steps, where no losses occur) and lossy steps. Assume σ1 = 〈r1, w1〉 and
σ2 = 〈r2, w2〉 are two configurations. There is a normal step σ1 → σ2 if either

4

Bertrand and Schnoebelen

writing step: there exists a rule in ∆ of the form 〈r1, c!m, r2〉, and w2 is
obtained from w1 by appending m to the end of w1(c), or

reading step: there exists a rule in ∆ of the form 〈r1, c?m, r2〉 and w2 is
obtained from w1 by removing m from the front of w1(c) (and therefore such
a step is only possible if w1(c) starts with m), or

idling step: σ2 = σ1.

We now take into account the possibility of losing messages. Say σ = 〈r, w〉
is a subconfiguration of σ′ = 〈r′, w′〉, written σ v σ′, if r = r′ and w can
be obtained from w′ by removing (arbitrarily many) messages at arbitrary
positions (hence every w(c) is a subword of w′(c)).

In addition to normal steps, there is a step σ1 → σ3 in TL if

lossy step: there is a normal step σ1 → σ2 and σ3 v σ2.

Hence normal steps can always be followed by arbitrary message losses.

Remark 3.2 Compared to other ways of defining lossy channel systems, the
only important novelty here is that we always allow idling steps. This feature
comes from [7]. It is convenient in that it ensures our transition systems
have no deadlock states. But it is also a very useful tool when programming
schedulers as we see in the next sections. It can be argued that it makes the
schedulers too powerful: some of our decidability results rely in an essential
way on the possibility of idling (see Section 4). 2

Observe that the transition system TL sees message losses as occurring
nondeterministically after normal steps 4 .

3.2 Reachability and Control State Reachability

We write σ
∗
−→ σ′ when there is a sequence of steps in TL that reach σ′ from

σ. For A ⊆ Q, we write σ
∗
−→ A when some configuration 〈s, w〉 with s ∈ A is

reachable from σ.

The reachability problem is the set of all (L, σ, σ′) s.t. σ
∗
−→ σ′ in TL.

Similarly, the control state reachability problem is the set of all (L, σ, A) s.t.

σ
∗
−→ A. It is known (from [4]) that reachability and control state reachability

are decidable for LCS’s.

3.3 Channel Systems With Probabilistic Losses

We now define a model for LCS’s where message losses are probabilistic instead
of nondeterministic. We adopt the local-fault model for probabilistic losses:
this was introduced in [7,5] where it is argued that it is more faithful than
earlier probabilistic models for lossy channels.

Formally, let τ ∈ (0, 1) be a fixed fault rate: it is assumed that after every
normal step of the LCS, each message present in the channels is lost with

4 Nondeterminism also occurs in the choice between several normal steps.

5

Bertrand and Schnoebelen

probability τ (and kept with probability 1 − τ). Every message is lost or
kept independently of what happens to the other messages. Therefore, the
probability that, during a step, the contents of the channels move from w to
w′ via message losses is exactly

Pl(w, w
′)

def
= τ |w|−|w′| × (1 − τ)|w

′| ×

(

w

w′

)

(1)

where |w| is the size of w (the total number of messages present in the channels),
and

(

w

w′

)

is the number of different ways one can obtain w′ by erasing letters
from w (e.g., in the case of a single channel,

(

abbab

ab

)

= 4 and
(

ab

bab

)

= 0).

We extend this to a probability between configurations via

Pl(〈r, w〉, 〈s, w
′〉)

def
=

{

Pl(w, w
′) if r = s,

0 otherwise.
(2)

Now, for a configuration σ, we denote by δσ
l the distribution on S defined by

δσ
l (σ′)

def
= Pl(σ, σ′).

Definition 3.3 The MDP ML associated with a LCS L is 〈S, δ〉 where S is the

set of configurations of L and where δ(σ)
def
= {δσ′

l | σ → σ′ is a normal step}.

Thus the behavior of ML is given by a succession of nondeterministic
choices (what normal step next?) interleaved with probabilistic message losses.

Remark 3.4 The specific values appearing in δσ
l are not so relevant for qual-

itative verification. What is important is that all steps allowed in TL can
happen in ML. Additionally, an important feature of the local-fault model we
adopted is that it ensures that, with probability 1, the channels will be (si-
multaneously) empty infinitely often [7]. This does not depend on the choices
made by the scheduler, and does not depend on the exact value of the fault-
rate τ . 2

A construction in section 5 relies on the following:

Fact 3.5 For any τ ∈ (0, 1)

0 <

∞
∏

n=1

1 − τn. (3)

4 Qualitative Verification of Streett Properties

For a LCS L = 〈Q, C, M, ∆〉 we consider Streett properties α of the form
∧k

i=1 23Ai ⇒ 23Bi where the Ai’s and Bi’s are subsets of Q. Here the
modalities “2” and “3” have their usual temporal meaning: a run 〈s0, w0〉 −→

6

Bertrand and Schnoebelen

〈s1, w1〉 −→ . . . 〈sn, wn〉 −→ . . . satisfies 3A (resp. 2A, 32A, 23A) if si ∈ A

for some i (resp. all i’s, all i’s after some point, infinitely many i’s).

Remark 4.1 It is well known that more complex properties defined e.g. in
temporal logic, or in the second-order monadic logic of order, can be reduced
to Streett properties by building the product of the system under study with
a deterministic finite-state automaton [19].

However, our choice of allowing idling steps in LCS’s has the unfortunate
consequence that we cannot synchronize a LCS with a finite-state automaton
(since idling is in general not allowed in these automata). Hence our results
summarized in Fig. 5 do not provide all the answers we are interested in (they
do not really consider all LTL formulae). 2

We are interested in qualitative verification, i.e. checking whether for all
schedulers u, and starting from some initial configuration 〈s, ε〉, M u

L satisfies
α with probability equal to 1, written “∀u P(M u

L, 〈s, ε〉 |= α) = 1”. We often
leave the LCS and/or its initial configuration implicit, writing e.g. “∀u P(u |=
α) = 1”. We also consider the problems of checking whether, for all schedulers,
the probability P(u |= α) is strictly less than 1, or equal to 0, or strictly more
than 0.

Since our problems are undecidable in general (see section 5), we shall
consider restricted classes of Streett properties, such as reachability (of the
form 3A), safety (of the form 2A), generalized Büchi properties (of the form
∧

i 23Ai), and their duals (of the form
∨

i 32Ai). Our results are summa-
rized in Fig. 5 (page 16), where “D” and “U” stand for “Decidable” and
“Undecidable” respectively.

4.1 Some Easy Cases For Reachability

Let A ⊆ Q be a set of control states. The following implications hold:

s ∈ A ⇒ ∃u P(Mu, 〈s, ε〉 |= 2A) = 1 (4)

⇒ ∃u P(Mu, 〈s, ε〉 |= 2A) > 0 (5)

⇒ s ∈ A (6)

Implication (4) is proved by picking a scheduler that always idles, and the
other implications are obvious.

Corollary 4.2 It is decidable whether, for given L and A,

• ∀u P(u |= 2A) = 0,

• ∀u P(u |= 2A) < 1.

With duality, we obtain

Corollary 4.3 It is decidable whether, for given L and A,

• ∀u P(u |= 3A) = 1,

7

Bertrand and Schnoebelen

• ∀u P(u |= 3A) > 0.

Other subcases reduce to reachability in the underlying TL:

∃u P(Mu
L, σ |= 3A) > 0 ⇔ σ

∗
−→ A (7)

The “(⇒)” direction is obvious, and the converse implication is proved by

considering a scheduler that just tries to mimic the path σ
∗
−→ A: there is a

non-zero probability that the message losses will just match what is required
by that path.

Since reachability is decidable for LCS’s, using duality we deduce

Corollary 4.4 It is decidable whether, for given L and A:

• ∀u P(u |= 3A) = 0,

• ∀u P(u |= 2A) = 1.

4.2 Harder Cases For Reachability

Theorem 4.5 It is decidable whether, for given L and A:

• ∀u P(u |= 3A) < 1.

For the proof of Theorem 4.5 we introduce a new notion:

Definition 4.6 A set of control states X ⊆ Q is safe for A if for all x in X,
〈x, ε〉

∗
−→X A.

Here the X subscript in “
∗
−→X” denotes constrained reachability. More

precisely, σ
∗
−→X A iff there is a path from σ to A along which only control

states from X are visited (including at the extremities of the path). Obviously
constrained reachability is decidable for a LCS L because it corresponds to
reachability in the LCS L|X , also denoted L − (Q \ X), obtained from L by
only keeping the control states from X.

Lemma 4.7 There exists a scheduler u s.t. P(Mu
L, 〈s, ε〉 |= 3A) = 1 iff there

is a X ⊆ Q that contains s and is safe for A.

Proof. (⇐) Assuming s belongs to some set X safe for A, we describe a
scheduler ensuring P(u |= 3A) = 1. It has two modes. Starting from a 〈x, ε〉
with x ∈ X, u is in normal mode and tries to reach A by mimicking the path
witnessing 〈x, ε〉

∗
−→X A. u goes on with this strategy as long as the message

losses occur according to what the path requires. Whenever the message losses
are not as expected, u is in some unwanted 〈y, w〉. Here it switches to recovery

mode and stays idling, remaining in control state y and only losing messages.
When the configuration 〈y, ε〉 is reached (which will eventually happen almost
surely), u switches back to normal mode (observe that y ∈ X) and aims again
for A. With this strategy, u will eventually reach A almost surely.

(⇒) Assume that P(Mu
L, 〈s, ε〉 |= 3A) = 1 for some u. We say a configuration

σ is required if P(Mu
L, 〈s, ε〉 |= (¬A)Untilσ) > 0, i.e. it is possible that u visits

8

Bertrand and Schnoebelen

σ before reaching A. Any subconfiguration σ′ of a required σ is required too
since the path that brings u to σ could, with more losses, have reached σ ′

instead. Furthermore, A is reachable from any required σ, otherwise u could
not ensure 3A almost surely. Let now X be the set of control states that
appear in the required configurations: X is safe for A and contains s. 2

Thus, and because control state reachability is decidable in LCS’s, we can
decide whether P(u |= 3A) = 1 for some u, proving Theorem 4.5.

By duality, Theorem 4.5 entails:

Corollary 4.8 It is decidable whether, for given L and A:

• ∀u P(u |= 2A) > 0.

4.3 Generalized Büchi properties

Theorem 4.9 It is decidable whether, for given L and Ai’s:

• ∀u P(u |=
∧n

i=1 23Ai) < 1.

For the proof of Theorem 4.9, write α for
∧n

i=1 23Ai and say a control

state x ∈ Q is allowed if 〈x, ε〉
∗
−→ Ai for all i = 1, . . . , n (otherwise, x is

forbidden). Clearly, it is decidable whether a control state is allowed.

Lemma 4.10 Suppose all states in Q are allowed. Then, there exists a sched-

uler u s.t. P(u |= α) = 1.

Proof. [Idea] The scheduler is built like in the proof of Lemma 4.7, only now
it aims at the Ai’s in turn, moves to the next target Ai+1 when Ai is eventually
reached, and loops back to A1 when An is reached. Since all states are allowed,
the scheduler is never blocked. 2

Assume now that x is forbidden and consider L− x, the LCS obtained by
removing x from L.

Lemma 4.11 The following statements are equivalent:

(i) There exists a scheduler u s.t. P(Mu
L, 〈s, ε〉 |= α) = 1.

(ii) s 6= x and there exists a scheduler u′ s.t. P(Mu′

L−x, 〈s, ε〉 |= α) = 1.

Proof. (⇐) u′ works for L too.

(⇒) Assume P(Mu
L, 〈s, ε〉 |= α) = 1. Then each Ai is reachable from 〈s, ε〉.

Hence s 6= x since x is forbidden. Observe that u never picks a rule moving
to x; otherwise there is a non-zero probability to end up in 〈x, ε〉 and fail to
fulfill α. Thus u can be defined on L − x and makes for a valid u′. 2

These two lemmas suffice to prove Theorem 4.9. One removes forbidden
states until s itself is forbidden, or all states are allowed.

Using duality, we also obtain:

Corollary 4.12 It is decidable whether, for given L and Ai’s:

9

Bertrand and Schnoebelen

• ∀u P(u |=
∨n

i=1 32Ai) > 0.

4.4 Decidable Cases for Streett Properties

Consider a formula of the form
∨n

i=1(32Ai ∧ 23Bi). We have the following
equivalences:

∃u P

(

u |=
n
∨

i=1

(32Ai ∧ 23Bi)
)

= 1 (8)

⇔ ∃u P

(

u |=
n
∨

i=1

(

23(Ai ∩ Bi)
)

)

= 1 (9)

⇔ ∃u P

(

u |= 3
(

n
⋃

i=1

(Ai ∩ Bi)
)

)

= 1. (10)

Idling is used to prove that (10) implies (8): with an arbitrary scheduler u,
we associate a new scheduler u′ that behaves like u as long as

⋃n

i=1(Ai ∩ Bi)
is not reached, and idles when

⋃n

i=1(Ai ∩ Bi) is reached. Obviously,

P

(

u′ |=
n
∨

i=1

(32Ai ∧ 23Bi)
)

= P

(

u |= 3
(

n
⋃

i=1

(Ai ∩ Bi)
)

)

. (11)

Hence (10) implies (8). The rest is easy: (8) implies (9) since 32A ∧ 23B

entails 23(A ∩ B), and (9) implies (10) since 23A entails 3A.

Since it can be decided whether ∃u P(u |= 3A) = 1 (Theorem 4.5), the
equivalence between (8) and (10) gives

Corollary 4.13 It is decidable whether, for given L and Ai, Bi’s:

• ∀u P
(

u |=
∨n

i=1(32Ai ∧ 23Bi)
)

< 1,

• ∀u P
(

u |=
∧n

i=1(23Ai ⇒ 23Bi)
)

> 0.

For a formula
∧n

i=1(32Ai∨23Bi), and a LCS L with initial configuration
σ0, we have the following equivalences:

∃u P

(

u |=
n
∧

i=1

(32Ai ∨ 23Bi)
)

< 1 (12)

⇔ ∃u P

(

u |=
n
∧

i=1

2(Ai ∪ Bi)
)

< 1 (13)

⇔ σ0
∗
−→ Q \

n
⋂

i=1

(Ai ∪ Bi). (14)

That (14) implies (12) is easy to see: write C for Q \
⋂n

i=1(Ai ∪ Bi). Since C

is reachable from σ0, there exists a scheduler u that reaches C with strictly

10

Bertrand and Schnoebelen

positive probability. If furthermore u idles once C is reached, u ensures that
32C, and hence ¬

∧n

i=1(32Ai∨23Bi) will be satisfied with strictly positive
probability. The rest is easy: (12) implies (13) since 2(A∪B) entails 32A∨
23B, and (13) implies (14) since if we assume C is not reachable we conclude
that P(u |= 2¬C) = 1 whatever u may be.

Since it can be decided whether C is reachable, the equivalence between
(12) and (14) gives

Corollary 4.14 It is decidable whether, for given L and Ai, Bi’s:

• ∀u P
(

u |=
∧n

i=1(23Ai ⇒ 23Bi)
)

= 1,

• ∀u P
(

u |=
∨n

i=1(32Ai ∧ 23Bi)
)

= 0.

5 Undecidable Qualitative Verification

We now prove the undecidability results that complete the table in Fig. 5.
The proofs are by reduction from the boundedness problem (whether the set
of configurations reachable from a given σ is finite or not) which is undecidable
for LCS’s. These reductions rely on a special gadget that we describe first.

5.1 The Cleaning Gadget

in 1 out

23

!$?$

?#1

?#2

!#1!#2

?x

?x

?x

Fig. 2. Cleaning gadget, assuming $, #1, #2 6∈ M

For a given message alphabet M, the system described in Fig. 2 uses one
channel (left implicit) and three new symbols: $, #1 and #2. Its purpose is
to force the channel to be emptied when moving from in to out, and do this
without introducing deadlocks.

Starting from some configuration 〈in, w〉 with w ∈ M∗, the nominal behavior
of the system is to move to 〈1, w$〉, to consume all letters from w with the loop
on state 1 and to end in 〈out, ε〉 with channel empty. The role of the special
symbol “$” is to ensure the channel is empty when we reach out.

However $ can be lost. In order to avoid deadlocks in these situations,
additional “recovery” states let one go back to in and retry.

Lemma 5.1 (Absence of deadlock) There exists a scheduler u such that

P(u, 〈in, w〉 |= 3out) = 1 for any w.

11

Bertrand and Schnoebelen

Proof. [Idea] u tries to implement the nominal behavior. If $ is lost, u moves
from 1 to 2, clears the channel and eventually moves from 2 to 3. This step
requires reading a #1 marker but u can insert #1’s if required. Then a similar
clearing is made using #2’s. Finally u goes back to in and tries again. 2

The purpose of the several clearing stages is to prevent the possibility of
using the recovery states to introduce extra $’s and reach out with nonempty
channel. The first clearing ensures that no $ is left when we reach 3. However
spurious #1’s could remain and they have to be cleared before starting again,
hence the second stage. When reaching in spurious #2’s can remain but, unlike
spurious #1’s, these cause no problem.

Formally, let S be the set of configurations described by the following
regular expression

S
def
= 〈in, (M + #2)

∗〉 + 〈1, (M + #2)
∗($ + ε)〉

+ 〈2, (M + #2)
∗($ + ε)#∗1〉 + 〈3, #∗1#

∗
2〉 + 〈out, ε〉.

(15)

Lemma 5.2 S is an invariant: from a configuration in S, one only reach

configurations in S.

Proof. S is downward-closed (w.r.t. subconfigurations), so the invariant prop-
erty is respected by message losses 5 . We also have to check that each tran-
sition rule respects it. We consider a few important cases and let the reader
check the other rules.

1
?$
−→ out: in state 1, S-configurations have the form 〈1, (M+ #2)

∗($+ ε)〉. Out
of these, the only one offering to read a $ is 〈1, $〉. This leads to 〈out, ε〉
that is in S.

2
?#1−→ 3: in state 2, S-configurations have the form 〈2, (M+ #2)

∗($+ ε)#∗1〉. Out
of these, the only ones offering to read a #1 have the form 〈2, #+

1 〉. They
lead to configurations of the form 〈3, #∗1〉 that are in S.

3
?#2−→ in: in state 3, S-configurations have the form 〈3, #∗1#

∗
2〉. Out of these,

the only ones offering to read a #2 have the form 〈3, #+
2 〉. They lead to

configurations of the form 〈in, #∗2〉 that are in S.

2

Since S is an invariant, the gadget is correct: from 〈in, w〉 with w ∈ M∗, one
can only reach out with empty channel.

5.2 Undecidability for ∀u P(. . .) = 0

Theorem 5.3 It is undecidable whether, for given L and A,B:

5 Observe that the three clearing loops in states 1, 2 and 3 are not required since message
losses subsume them. We only put them in for clarity.

12

Bertrand and Schnoebelen

• ∀u P(u |= 23A ∧ 23B) = 0.

Let L = 〈Q, {c}, M, ∆〉 be a LCS with a single channel and a designated
initial configuration 〈r0, ε〉. We modify L by adding the cleaning gadget and
two control states: retry and success. We also add rules allowing to jump
from every “original” state in Q to retry or success. When in success, one
can move to retry with a read or idle unconditionally. When in retry, one
can go back to 〈r0, ε〉 through the cleaning gadget.

L′ :

r0

r

L

inout

cleaning gadget

retry success
?x

Fig. 3. The LCS L′ associated with L

Write L′ for the resulting LCS. Since the cleaning gadget lets one go back
to the initial configuration of L, any behavior of L′ is a succession of behaviors
of L separated by visits to the additional states.

Proposition 5.4 Assume that L is bounded. Then, for all schedulers u,

P(L′ |= 23success ∧ 23retry) = 0.

Proof. Let u be any scheduler and consider the runs consistent with u that
visit success infinitely often. Let π be one such run: either π jumps from L
to success infinitely many times, or it ends up idling in success. In the last
case, π does not satisfy 23retry. In the first case, and since L is bounded, π

can only jump to success from finitely many different configurations. Hence,
for each such jump, the probability that it ends in 〈success, ε〉 is at least
τm, where m is the size of the largest reachable configuration in L. Therefore
〈success, ε〉 will be visited almost surely, or more formally,

P(u |= 23success ∧ 23L)

= P(u |= 23success ∧ 23L ∧ 3〈success, ε〉).
(16)

Now, since one cannot reach L from 〈success, ε〉, the probability in (16) is 0.
Finally, P(u |= 23success ∧ 23retry) = 0. 2

Proposition 5.5 Assume that L is unbounded. Then there exists a scheduler

u s.t. P(L′ |= 23success ∧ 23retry) > 0.

Proof. We describe the required scheduler. Because L is unbounded, we can
pick a sequence (〈rn, wn〉)n=1,2,... of reachable configurations s.t. |wn| ≥ n.

13

Bertrand and Schnoebelen

The scheduler works in phases numbered 1, 2, . . . When phase n starts, u

is in the initial configuration 〈r0, ε〉 and tries to reach 〈rn, wn〉. In principle,
this can be achieved (since 〈rn, wn〉 is reachable) but it requires that the right
messages are lost at the right times. These losses are probabilistic and u

cannot control them. Thus u aims for 〈rn, wn〉 and hopes for the best. It
goes on according to plan as long as losses occur as hoped. When a “wrong”
loss occurs, u resigns temporarily, jumps directly to retry, reaches 〈r0, ε〉 via
the cleaning gadget, and then tries again to reach 〈rn, wn〉. When 〈rn, wn〉 is
eventually reached (which will happen almost surely given enough retries), u

jumps to success, from there to retry, and initiates phase n+1. With these
successive phases, u tries to visit success (and retry) an infinite number of
times. We now show that it succeeds with nonzero probability.

When jumping from 〈rn, wn〉 to success, there is a probability Pl(wn, ε)
that all messages in the channel are lost, leaving us in 〈success, ε〉. When
this happens, u is not able to initiate phase n + 1 (moving from success to
retry requires a nonempty channel) and will not visit retry again. Finally,

P(u |= 23success ∧ 23retry) =
∞
∏

n=1

1 − Pl(wn, ε) ≥
∞
∏

n=1

1 − τn > 0 (17)

using Fact 3.5. 2

Corollary 5.6 L is unbounded if, and only if there exists a scheduler u s.t.

P(L′ |= 23success ∧ 23retry) > 0.

This proves Theorem 5.3 since it is undecidable whether a given LCS is
bounded.

With duality we obtain:

Corollary 5.7 It is undecidable whether, for given L and A,B:

• ∀u P(u |= 32A ∨ 32B) = 1.

5.3 Undecidability for ∀u P(. . .) < 1

Theorem 5.8 It is undecidable whether, for given L and A,B,C:

• ∀u P(u |= 23A ∧ 23B ∧ 32C) < 1.

For Theorem 5.8, we use a slightly modified reduction. The general princi-
ple is like in the previous reduction, except that the configuration 〈success, ε〉
is not a sink state anymore: one can escape through fail and go on with the
game.

Proposition 5.9 Assume that L is bounded. Then, for all schedulers u,

P(L′ |= 23success ∧ 23retry ∧ 32¬fail) < 1.

Proof. [Idea] Similar to the proof of Prop. 5.4. Visiting both success and
retry infinitely many times requires jumping infinitely many times from L to

14

Bertrand and Schnoebelen

L′ :

r0

r

L

inout

cleaning gadget

retry success

fail

?x

Fig. 4. The LCS L′ associated with L

success. Since L is bounded, the probability that each such jump ends in
〈success, ε〉 cannot be made arbitrarily low and one will almost surely visit
〈success, ε〉 infinitely many times. Then escape through fail will have to be
used infinitely many times. 2

Proposition 5.10 Assume that L is unbounded. Then there exists a sched-

uler u s.t. P(L′ |= 23success ∧ 23retry ∧ 32¬fail) = 1.

Proof. We consider a scheduler similar to the one we used in the proof of
Prop. 5.5. The difference is that, if u ends in 〈success, ε〉 after it jumps
from 〈rn, wn〉 to success at the end of phase n, it simply uses fail to avoid
deadlock and manage to initiate phase n + 1 anyway.

Because 〈success, ε〉 is not a deadlocked configuration, our scheduler en-
sures P(23success ∧ 23retry) = 1. The probability that fail is visited
finitely many times only is the probability that u ends in 〈success, ε〉 only
finitely often, that is, the probability that 〈success, ε〉 is not visited anymore
after some phase k. This is

lim
k→∞

(

∞
∏

n=k

1 − Pl(wn, ε)

)

≥ lim
k→∞

(

∞
∏

n=k

1 − τn

)

= 1 (18)

using Fact 3.5 again. Hence P(u |= 32¬fail) = 1. 2

Corollary 5.11 L is unbounded if, and only if, there exists a scheduler u s.t.

P(L′ |= 23success ∧ 23retry ∧ 32¬fail) = 1.

This proves Theorem 5.8.

With duality we obtain:

Corollary 5.12 It is undecidable whether, for given L and A,B,C:

• ∀u P(u |= 32A ∨ 32B ∨ 23C) > 0.

15

Bertrand and Schnoebelen

6 Conclusions and Perspectives

When verifying lossy channel systems, adopting a probabilistic view of losses
is a way of enforcing progress and ruling out some unrealistic behaviors (under
probabilistic reasoning, it is extremely unlikely that all messages will always
be lost). Progress could be enforced with fairness assumptions, but assuming
fair losses makes verification undecidable [3,11]. It seems this undecidability
is an artifact of the standard rigid view asking whether no incorrect behavior
exists, when we could be content with the weaker statement that incorrect
behaviors are extremely unlikely.

In [7] we proposed a model for channel systems where at each step each
message in transit can be lost with some fixed probability τ ∈ (0, 1), and
where the nondeterministic nature of the model is preserved. This model
is more realistic than earlier proposals since it uses the local-fault model for
probabilistic losses, and since it does not require to view the rules of the system
as probabilistic.

For this model, we showed that qualitative verification is undecidable in
general, but we exhibited many important subcases where decidability is re-
gained (see table of results in Fig. 5). Decidability is obtained by reduc-

P(. . .) = 1 P(. . .) = 0 P(. . .) < 1 P(. . .) > 0

3A D (Cor. 4.2) D (Cor. 4.4) D (Th. 4.5) D (Cor. 4.2)

2A D (Cor. 4.4) D (Cor. 4.3) D (Cor. 4.3) D (Cor. 4.8)
∧

i 23Ai D (Cor. 4.14) U (Th. 5.3) D (Th. 4.9) D (Cor. 4.13)
∨

i 32Ai U (Cor. 5.7) D (Cor. 4.14) D (Cor. 4.13) D (Cor. 4.12)
∧

i(23Ai ⇒ 23Bi) D (Cor. 4.14) U (Th. 5.3) U (Th. 5.8) D (Cor. 4.13)
∨

i(32Ai ∧ 23Bi) U (Cor. 5.7) D (Cor. 4.14) D (Cor. 4.13) U (Cor. 5.12)

Fig. 5. (Un)Decidability of qualitative verification

ing qualitative properties to reachability questions in the underlying non-
probabilistic transition system. Since in this model qualitative properties do
not depend on the exact value of the fault rate τ , the issue of what is a realistic
value for τ is avoided, and one can establish correctness results that apply to
all fault rates.

For qualitative properties that are undecidable, we advocate restricting the
verification to finite-memory schedulers (see [7]).

An important open question is the decidability of quantitative properties,
but [15] shows that already the fully deterministic case raises very difficult
problems.

16

Bertrand and Schnoebelen

References

[1] P. A. Abdulla, A. Annichini, and A. Bouajjani. Symbolic verification of lossy
channel systems: Application to the bounded retransmission protocol. In Proc.
5th Int. Conf. Tools and Algorithms for the Construction and Analysis of
Systems (TACAS’99), Amsterdam, The Netherlands, Mar. 1999, volume 1579
of Lecture Notes in Computer Science, pages 208–222. Springer, 1999.

[2] P. A. Abdulla, C. Baier, S. Purushothaman Iyer, and B. Jonsson. Reasoning
about probabilistic lossy channel systems. In Proc. 11th Int. Conf. Concurrency
Theory (CONCUR’2000), University Park, PA, USA, Aug. 2000, volume 1877
of Lecture Notes in Computer Science, pages 320–333. Springer, 2000.

[3] P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs
with unreliable channels. Information and Computation, 130(1):71–90, 1996.

[4] P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels.
Information and Computation, 127(2):91–101, 1996.

[5] P. A. Abdulla and A. Rabinovich. Verification of probabilistic systems with
faulty communication. In Proc. 6th Int. Conf. Foundations of Software Science
and Computation Structures (FOSSACS’2003), Warsaw, Poland, Apr. 2003,
volume 2620 of Lecture Notes in Computer Science, pages 39–53. Springer,
2003.

[6] C. Baier and B. Engelen. Establishing qualitative properties for probabilistic
lossy channel systems: An algorithmic approach. In Proc. 5th Int. AMAST
Workshop Formal Methods for Real-Time and Probabilistic Systems (ARTS’99),
Bamberg, Germany, May 1999, volume 1601 of Lecture Notes in Computer
Science, pages 34–52. Springer, 1999.

[7] N. Bertrand and Ph. Schnoebelen. Model checking lossy channels systems is
probably decidable. In Proc. 6th Int. Conf. Foundations of Software Science
and Computation Structures (FOSSACS’2003), Warsaw, Poland, Apr. 2003,
volume 2620 of Lecture Notes in Computer Science, pages 120–135. Springer,
2003.

[8] D. Brand and P. Zafiropulo. On communicating finite-state machines. Journal
of the ACM, 30(2):323–342, 1983.

[9] G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier
to verify than perfect channels. Information and Computation, 124(1):20–31,
1996.

[10] A. Finkel. Decidability of the termination problem for completely specificied
protocols. Distributed Computing, 7(3):129–135, 1994.

[11] B. Masson and Ph. Schnoebelen. On verifying fair lossy channel systems.
In Proc. 27th Int. Symp. Math. Found. Comp. Sci. (MFCS’2002), Warsaw,
Poland, Aug. 2002, volume 2420 of Lecture Notes in Computer Science, pages
543–555. Springer, 2002.

17

Bertrand and Schnoebelen

[12] R. Mayr. Undecidable problems in unreliable computations. Theoretical
Computer Science, 297(1–3):337–354, 2003.

[13] P. Panangaden. Measure and probability for concurrency theorists. Theoretical
Computer Science, 253(2):287–309, 2001.

[14] S. Purushothaman Iyer and M. Narasimha. Probabilistic lossy channel systems.
In Proc. 7th Int. Joint Conf. Theory and Practice of Software Development
(TAPSOFT’97), Lille, France, Apr. 1997, volume 1214 of Lecture Notes in
Computer Science, pages 667–681. Springer, 1997.

[15] A. Rabinovich. Quantitative analysis of probabilistic lossy channel systems. In
Proc. 30th Int. Coll. Automata, Languages, and Programming (ICALP’2003),
Eindhoven, NL, July 2003, volume 2719 of Lecture Notes in Computer Science,
pages 1008–1021. Springer, 2003.

[16] Ph. Schnoebelen. Bisimulation and other undecidable equivalences for lossy
channel systems. In Proc. 4th Int. Symp. Theoretical Aspects of Computer
Software (TACS’2001), Sendai, Japan, Oct. 2001, volume 2215 of Lecture Notes
in Computer Science, pages 385–399. Springer, 2001.

[17] Ph. Schnoebelen. Verifying lossy channel systems has nonprimitive recursive
complexity. Information Processing Letters, 83(5):251–261, 2002.

[18] Ph. Schnoebelen. The verification of probabilistic lossy channel systems. In
Validation of Stochastic Systems. Springer, 2004. To appear.

[19] M. Y. Vardi. Probabilistic linear-time model checking: An overview of
the automata-theoretic approach. In Proc. 5th Int. AMAST Workshop
Formal Methods for Real-Time and Probabilistic Systems (ARTS’99), Bamberg,
Germany, May 1999, volume 1601 of Lecture Notes in Computer Science, pages
265–276. Springer, 1999.

18

	Introduction
	Markovian Decision Processes
	Lossy Channel Systems
	Operational Semantics
	Reachability and Control State Reachability
	Channel Systems With Probabilistic Losses

	Qualitative Verification of Streett Properties
	Some Easy Cases For Reachability
	Harder Cases For Reachability
	Generalized Büchi properties
	Decidable Cases for Streett Properties

	Undecidable Qualitative Verification
	The Cleaning Gadget
	Undecidability for u P(…)=0
	Undecidability for u P(…)<1

	Conclusions and Perspectives
	References

