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Abstract. This work deals with the expressive power of logics on finite graphs with

access to an additional “arbitrary” linear order. The queries that can be expressed this

way are the order-invariant queries for the logic. For the standard logics used in computer

science, such as first-order logic, it is known that access to an arbitrary linear order in-

creases the expressiveness of the logic. However, when we look at the separating examples,

we find that they have satisfying models whose Gaifman Graph is complex – unbounded

in valence and in treewidth. We thus explore the expressiveness of order-invariant queries

over well-behaved graphs. We prove that first-order order-invariant queries over strings

and trees have no additional expressiveness over first-order logic in the original signature.

We also prove new upper bounds on order-invariant queries over bounded treewidth and

bounded valence graphs. Our results make use of a new technique of independent interest:

the application of algebraic characterizations of definability to show collapse results.

§1. Introduction. In classical finite model theory [15, 9], a logic L(σ) for
models over the relational signature σ, associates words of a grammar (the syn-
tax) to relations of the model (the semantics). One generally requires that the
logic is closed under isomorphisms: that is if A and B are finite models over σ
and h is an isomorphism between A and B then for all q ∈ L(σ), q ◦ h and h ◦ q
give the same answer. This is the case for all standard logics: first-order logic,
monadic second-order logic, fixed point logic etc.

In practice, for instance in the database context where logics correspond to
query languages, one can refer in the syntax to a predicate which is not neces-
sarily in the signature σ of the input: a linear order which corresponds to the
order in which the elements of the universe are stored on disk. Sentences of
the query language can then make use of this predicate to perform operations
over all elements of the universe separately. We reflect this by denoting σ< the
extension of σ with an additional binary relation symbol < which is assumed to
be interpreted by a linear order over the domain, then one actually has L(σ<)
available instead of L(σ).

Of course it is preferable to restrict the use that a query language can make
of the extra predicate <. One would not wish to allow queries that use < in
order to return the smallest, according to <, element of the universe; the answer
would depend on how the universe is stored on disk, which in turn may vary with
time (depending, for instance, on the presence of indexes). To be meaningful a
formula in L(σ<) should be closed under isomorphism. A sentence φ ∈ L(σ<) is
closed under isomorphisms iff it is order-invariant : For every finite σ-structure
A, for every two expansions A1 and A2 of A to an σ<-structure in which < is
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interpreted by a linear order, A1 |= φ ↔ A2 |= φ. We denote by Inv-L(σ<)
(Inv-L(<) if σ is understood) the fragment of L(σ<) (L(<) if σ is understood)
containing all order-invariant sentences.

There are two questions that immediately arise. The first one is whether there
exists an effective syntax for Inv-L(<). That is whether there exists a logic L′

with an effective syntax and the same expressive power as Inv-L(<). The second
one is finding the expressive power of Inv-L(<), in particular whether it is strictly
more that L or not (the converse inclusion being obvious). The questions are
connected, since if Inv-L(<) is no more expressive than L then Inv-L(<) has
effective syntax.

These questions were first considered in the case of fixed-point logics. Indeed a
rephrasing of the Immerman-Vardi Theorem (see e.g. [15]) says that Inv-IFP(<)
is ptime and that Inv-FP(<) is pspace. Here IFP stands for the inflationary
fixed-point semantics while FP is the non-inflationary semantics. Note that
this immediately implies that Inv-IFP(<) (resp. Inv-FP(<)) is strictly more
expressive than IFP (FP) as IFP (FP) fails to express all of ptime (pspace).
The question of the existence of a logic with effective syntax for Inv-IFP(<) is
open: From the result above this is identical to the question whether there is a
logic for ptime, a longstanding open question in finite model theory [1].

Another example is Monadic Second Order Logic (MSO). It is easy to see that
Inv-MSO(<) allows one to express every query in the extension of MSO with
counting quantifiers (CMSO), which is strictly more expressive than MSO.

The example above shows that access to an arbitrary ordering increases ex-
pressiveness when one deals with powerful logics that can express recursive op-
erators. What about weaker logics, such as first-order logic (FO)? A famous
example due to Gurevich (see exercise 17.27 in [2]) shows that Inv-FO(<) is
more expressive than FO for any σ including at least one binary predicate. Ex-
tensions of this result due to Otto [18] give examples of Inv-FO(<) sentences that
are quite complex: in particular, Otto shows that there are Inv-FO(<) sentences
not expressible in infinitary logic formed over first-order logic with a bounded
number of variables and quantifiers of the form ∃!ix φ(x, ~y). However, the ex-
ample queries of Gurevich and Otto each have satisfying models that include a
binary predicate which becomes graph-theoretically very complex as the models
vary. Thus it is natural to conjecture that if one restricts the structures to be
well-behaved, Inv-FO(<) cannot express complex queries.

In this paper we investigate the expressiveness of Inv-FO(<) sentences over
well-behaved graphs, specifically graphs of bounded treewidth and graphs of
bounded valence. We will show that Inv-FO(<) collapses to FO on trees. We
then show that Inv-FO(<) collapses to MSO on graphs of bounded valence and
on graphs of bounded treewidth.

We use algebraic tools in order to analyze order-invariant queries. Suppose
one wants to show bound of the form Inv-L(<) ⊆ L′ for some logic L′. The
most common method (e.g. [12]) is to show that two sufficiently L′-equivalent
structures can be ordered so that they agree on L sentences of a given quantifier
rank. But ordering two such arbitrary equivalent structures is difficult. In ad-
dition, since ordering structures is a priori stronger than what is required, this
technique may not be sufficient to show tight bounds. We show that algebraic
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characterizations of first-order definability, such as those in [3, 4], can be utilized
to give new results on collapse of order-invariant queries over logics on restricted
graphs. These characterization theorems show that if a query is not definable
in the logic without the order, then there are witness graphs that are similar
and of a very restricted form which cannot be distinguished by the query. Only
these special witness graphs need to be ordered, and the restricted form of these
graphs makes the ordering arguments much more tractable.

Related Work. Following the initial example of Gurevich, order-invariant
queries over first-order logic were investigated in [18, 12, 19]. It is clear that
Inv-FO(<) queries are expressible in both existential second order (ESO) and
universal second order (USO) logic, and also that they are computable in NLOGSPACE.
To our knowledge, there is no result giving containment of Inv-FO(<) queries in a
sublogic of ESO ∩ USO. While Otto [18] shows that there are Inv-FO(<) queries
that are not in infinitary logic with counting quantifiers, Grohe and Schwentick
[12] show that all Inv-FO(<) open formulas are local (cannot distinguish points
with similar local neighborhoods). Rossman [19] shows there are Inv-FO(<)
queries that are not first-order which only make use of the successor relation in
the order. All of the published examples of Inv-FO(<) sentences are expressible
in CMSO.

Courcelle [8] studies order-invariant MSO queries, showing that over trees, Inv-
MSO(<) has exactly the same expressiveness as CMSO. The results of Lapoire
[14] combined with those of Courcelle [6, 7] show that the same equality holds
for graphs of bounded treewidth. It was proved recently that the inclusion of
Inv-MSO(<) in CMSO is strict over arbitrary graphs [11].

The algebraic tools we use here derives from our previous work [4]. However,
the bounds we give on Inv-FO(<) queries on trees have been announced inde-
pendently by Niemistö [17]. The result of [17] relies on the locality of Inv-FO(<)
proved in [12], while the technique given here relies only on a Ramsey-like lemma,
also proved in [12], and may be applicable to logics that are not local.

Note that the classical Craig Interpolation Theorem [5] implies that a first-
order query that is invariant over all structures must be in FO. The interpo-
lation theorem is known not to hold over finite structures (even for trees) [9].
Our results can be seen as showing that one can reclaim some consequences of
interpolation by restricting to well-behaved classes of structures.

Organization: Section 2 gives the basic definitions of the paper and re-
views results about regular languages that will be used here. Section 3 gives
characterizations of invariant FO queries on strings. Section 4 extends these
characterizations to trees. Section 5 gives bounds for graphs of bounded valence
and bounded treewidth. Section 6 gives conclusions.

§2. Background. By a query, we refer to any boolean function on finite
relational structures in some vocabulary σ. We will generally have σ consist of
at least a binary relation S, and Σ a finite set of unary predicates. We will
refer to structures for such a σ as colored graphs. Given some class C of colored
graphs (strings, trees, etc.) a query φ over the signature σ< = σ ∪ {<} is order-
invariant over C if for every finite σ-structure G ∈ C, for every two expansions
G1 and G2 of G to a σ< structure, G1 |= φ↔ G2 |= φ. Such queries can clearly
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also be considered as queries over σ. The queries we consider here will always
be defined by logics (FO, Inv-FO(<), etc.). Two logics are said to have the
same expressiveness (over class C) if the set of queries they define (resp. set of
restrictions of queries to domain C) are the same.

Our definition of first-order logic (FO) and Monadic Second Order Logic
(MSO) over a vocabulary σ is standard. We will sometimes abuse notation and
refer to an “Inv-FO(<) query over C”, to mean an FO(σ<) query that is order-
invariant over C, and similarly for other logics. The logic CMSO is the extension
of MSO with a predicate counting the cardinality of sets modulo some integer.
For L any one of MSO, FO we write G ≡L

r G′ if G and G′ agree on L sentences
of quantifier rank at most r. We assume familiarity with Ehrenfeucht-Fräıssé
games (see e.g. [15]), which characterize ≡FO

r .
The most restricted set of structures we consider are strings. Let σS consist of

exactly Σ∪{S}. We will use the terms string and word interchangeably to mean
any σS-structure in which the domain with S is isomorphic to an initial segment
of the integers with the successor relation. We will also assume (as part of the
definition of string and word) that every element in the structure satisfies exactly
one of the predicates in Σ: this assumption is only to simplify the presentation.
The set of strings over a fixed Σ as above will be denoted Σ∗.

By a tree we mean a connected directed graph S that is acyclic, where every
element has at most one predecessor and has a single root. We will also sometimes
use “tree” to mean an expansion of a tree in the above sense by a set of unary
predicates in Σ. Let σS,S′

be the signature extending σS with a new binary
predicate S′. A sibling ordering on a tree is any binary relation that compares
only elements with a common parent, and which is a linear order on the set of
children of any node. By a “siblinged tree” we mean a σS,S′

-structure, where S
is a tree and S′ is the successor relation corresponding to some sibling ordering.
We distinguish between the set of unordered ranked trees RTn for n ∈ N , (where
n is the bound on the number of children of any node), siblinged ranked trees
SRTn (which we consider as siblinged trees where there is a bound on the number
of children) , unranked trees UT, and siblinged unranked trees SUT. For any of
these domains D, a collection C ⊆ D is regular if it is MSO definable over the
appropriate vocabulary.

A language is a set of strings or a set of trees. Any query over strings or trees
defines a language, the set of string or trees satisfying the formula. If Q is a
query, we denote by L(Q) the corresponding language.

Note that in this work, when we consider queries over strings or unordered
trees, we deal with sentences that contain only the successor-relation or par-
ent/child relation, unary predicates for the labels, and the additional order-
invariant binary predicate. We do not consider queries that include also a symbol
for the transitive-closure of the successor or parent/child relation. The problems
that we consider become very simple when the transitive closure is available,
since then a linear order is already definable in the structure. It is easy to see
that for any class of structures that already contains a definable linear-ordering,
the ability to use an additional order-invariant ordering symbol in a first-order
sentence adds no expressive power; one can simply replace the additional pred-
icate by the definition of the linear order. In the case of siblinged unranked
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trees, we likewise do not allow the sibling relation itself, only the local successor
relation. For order-invariant first-order queries over trees in the vocabulary that
includes a sibling relation, the only bound we know of is MSO.

§3. Order-Invariant Queries on Strings. We first deal with the decidabil-
ity of membership in Inv-FO(<). If one could decide membership in Inv-FO(<),
one would immediately have an effective syntax for Inv-FO(<) queries. However,
it is well-known [2] that one cannot decide whether or not an FO(<) query is
order-invariant: this follows easily from the undecidability of the satisfiability
problem for first-order logic. Over strings, satisfiability is decidable, hence it is a
priori feasible that membership in Inv-FO(<) over strings is decidable. We show
that this is not the case:

Proposition 3.1. The problem of deciding, given a sentence φ ∈ FO(<),
whether or not it is order-invariant over Σ∗, is undecidable.

Proof. Let φ0 be the formula of FO(<), ∀x[(∀y y ≤ x) → (∃y S(x, y))], which
expresses the fact that the last element relative to ≤ has a successor relative to S.
This formula is obviously not order-invariant, even when we restrict to structures
with a fixed domain.

Consider now the function that takes a φ ∈ FO(<) and returns the conjunction
of φ with φ0. This function reduces membership in the complement of the
order-invariant queries to satisfiability of an FO(<) sentence over expansions
of structures in Σ∗ by a linear order, and hence it suffices to show that this
satisfiability problem is undecidable.

This is done by using the two available successors, the one given by the string
structure and the one induced by the linear order, for coding a grid. This grid
is then used to code a run of a Turing Machine in a classical way.

More precisely, from an input-free Turing machine M we construct a FO(<)
formula ϕM such that M halts iff ϕM has a model in Σ∗. Assume WLOG that
all Turing machines work over the binary alphabet {0, 1}. Let Σ consist of the
unary predicates P0, P1, P♯, P�. We consider strings from this alphabet.

A configuration c of a Turing machine using memory of size k can be described
using a string of length k, where unused cells are colored with �. Therefore a
string of the form ♯c1♯c2 · · · ♯cn can code a set of configurations of a Turing
Machine. We want to use S and < in order to show that such a word codes a
run of a particular Turing Machine.

To do this we restrict the linear orders considered as follows. Let succ< be the
successor relation corresponding to < (note that succ< is definable in FO from
<).

• All nodes labeled by ♯ come first in the ordering <:
∀x, y P♯(x) ∧ ¬P♯(y) −→ x < y

• The successor of the last (according to <) node labeled by ♯ is the successor
(according to S) of the first (according to <) node labeled by ♯:
∀x, y, z, u

[

(P♯(x)∧P♯(u) −→ u < x)∧succ<(x, y)∧S(z, y)
]

−→ (∀u P♯(z)∧
P♯(u) −→ z < u)

• The remaining nodes are ordered so that the following property holds:
∀x, y, u, v ¬P♯(x) ∧ S(y, x) ∧ succ<(y, u) ∧ S(u, v) −→ succ<(x, v).
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3 6 9 12 1 4 7 10 2 5 8 11
♯ a b c ♯ d e f ♯ g h i

Figure 1. A model (bottom line) with a possible order < (top line).

In words, this says that once the order on the symbols ♯ is fixed, then < is
completely defined by induction on strings of the form ♯c1♯c2 · · · ♯cn. The order
on ♯ symbols induces an order ≺ on the (ci)1≤i≤n. From this ordering we derive
<, which orders the remaining symbols lexicographically based first on their
position in one of the ci, using ≺ to break ties. Note that the property given
above is definable in FO(<) by a formula that we denote by ψ<. One can verify
that all strings that are models of ψ< are of the form ♯c1♯c2 · · · ♯cn where the size
of each ci is the same. An example of such a model is given in Figure 1. Given
a model of ψ<, let α< be the bijection of {1, · · · , n} such that α<(i) = j where
cj is the string following the ith symbol ♯ according to <. Each model of ψ< can
thus be seen as a sequence of configurations cα(1) · · · cα(n).

We now fix M and construct a formula ψM which, assuming ψ<, checks that
the sequence cα(1) · · · cα(n) is an accepting run of M . For this notice that succ<

associates cells located at the same place on the tape of M and at two successive
steps of M . Using this relation it is a classical technique (see e.g. Chap. 9 in
[15]) to code in first-order logic the fact that two successive configurations are
valid according to M .

From the discussion above it is now easy to see that the formula ϕM = ψM∧ψ<

has the desired property. ⊣

The proof technique can easily be modified to show undecidability for the other
classes considered in this paper.

We now turn to the expressiveness of Inv-FO(<) over strings. We show that
this is as low as it can possibly be (recall that every FO query is in Inv-FO(<)).
This result will follow from our results on trees in Section 4. We prove this
directly here for two reasons. First, it exhibits the main technique of the paper
within a simple framework. Second, it uses a simple argument while the proof
of the tree cases uses a technical lemma of [12].

Theorem 3.2. Inv-FO(<) = FO over strings.

The proof of Theorem 3.2 is based on an algebraic characterization of FO
within the set of regular languages. Before stating this result we first review some
of the known connections between definability and algebraic properties of string
languages. All the results below can be found in [20]. The MSO(σS) sentences
define exactly regular languages. With any language L, one can associate the
equivalence relation ≡L on Σ∗: x ≡L y ↔ (∀u ∈ Σ∗ ∀v ∈ Σ∗ uxv ∈ L ↔ uyv ∈
L). Regularity of L is equivalent to the fact that the set of equivalence classes
is finite. The set of classes of ≡L equipped with the concatenation operation
forms a monoid, called the syntactic monoid of L, denoted ηL. An element e
of the syntactic monoid is an idempotent if e2 = e. We can consider a word
to be idempotent if its class is; translating the above, we have that a word e

is idempotent iff uev ∈ L ↔ ue2v ∈ L. The theorems of MacNaughton and
Papert and of Schützenberger characterize when a regular language is definable
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in first-order logic over σS augmented with an additional binary predicate ≺,
where ≺ is interpreted as the transitive closure of S: this occurs exactly when
the syntactic monoid of L is aperiodic ( e.g. see [20] Theorem VI.1.1): there is
l ∈ N such that the monoid satisfies ∀m ∈ ηL ml = ml+1. Translated back to
words, this means that ∀u, v, w ∈ Σ∗ uvlw ∈ L↔ uvl+1w ∈ L.

The logic FO only has the successor relation and is transitive closure is not
definable in FO. Hence we will use the following theorem of Beauquier and Pin
that characterizes when a regular language L is FO definable (see also [20], Thm
VI.3.1):

Theorem 3.3 ([3]). A regular language L is FO definable iff its syntactic
monoid is aperiodic, and additionally for any e, f, u, v, w ∈ ηL with e, f idempo-
tent, eufvewf = ewfveuf .

Proof of Theorem 3.2. Let φ ∈ Inv-FO(<). Let M be a string model of
φ. Then M is of the form (ωM , <M ) where ωM is a string and <M a linear order
on the universe of ωM . Let L(φ) = {ωM | M |= φ}. A model M is obvious
if <M is exactly the transitive closure of the successor relation in ωM . Let
L′(φ) = {ωM | M |= φ and M is obvious}. Because L′(φ) is definable in FO(<),
it is regular and its syntactic monoid is aperiodic (see Section 2). By order-
invariance L(φ) = L′(φ) thus L(φ) is aperiodic. To show that L(φ) is definable
in FO, by Theorem 3.3, it suffices to show that for any e, f, u, v, w ∈ ηL(φ) with
e, f idempotent, eufvewf = ewfveuf .

Recall that elements of ηL(φ) are equivalence classes of words. Replacing each
of e, f, u, v, w with a word which is a representative of the corresponding equiv-
alence class, and recalling what it means for the word eufvewf to be equivalent
to ewfveuf , we have the following equivalent condition: For all words e, f which
represent idempotents in ηL(φ), for all words u, v, w and all words a, b:

aeufvewfb ∈ L(φ) ↔ aewfveufb ∈ L(φ)

Note that if e and f are idempotent, then en = e and fn = f for any integer
n. Therefore for any word c, d and any n we have ced ∈ L(φ) iff cend ∈ L(φ).
Hence we can conclude L(φ) is FO-definable if for some n we can show that for
all words a, e, u, f, w, v, b we have the following:

aenufnvenwfnb ∈ L(φ) iff aenwfnvenufnb ∈ L(φ)

Let r be the quantifier rank of φ. We produce an integer n and two orders
<1 and <2 such that 〈aenufnvenwfnb,<1〉 ≡r 〈aenwfnvenufnb,<2〉. This will
conclude the proof of the theorem, because φ is order-invariant.

The two orders are obtained using the technique of FO interpretation (see,
e.g. [13]). An interpretation of a σ-structure over a σ′-structure is a collection µ
of FO(σ′) formulas φd, (φR)R∈σ such that if d is the number of free variables of
φd then φR has d · x free variables where x is the arity of R. On a σ′-structure
I, an interpretation µ defines a σ-structure µ(I) = 〈φd(u), (φR(u))R∈σ〉 where
φ(u) stands for {x̄ | u |= φ(x̄)}.

The properties of interpretations that we use are that: a) interpretations can
be composed and b) elementary equivalence of σ′-structures can be lifted to their
interpretations. More formally, let q be the maximum quantifier of formulas
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occurring in µ, then for any two σ′-structures I and I ′ and any number s, we
have I ≡s+q I

′ implies that µ(I) ≡s µ(I ′).
Our starting point is given by the following lemma, based of Ramsey’s theorem,

proved in [12]. An ordered string is a string structure expended with a linear
order corresponding to the transitive closure of the successor relation.

Lemma 3.4 ([12]). ∀s ∃m,n such that for every ordered string w over the al-
phabet consisting of a single letter x, if |w| ≥ n, then there exists unary predicates
P and P ′ such that:

• |P | = m

• |P ′| = m− 1
• 〈w,P 〉 ≡s 〈w,P ′〉

Let a, e, u, v, w, f, b be arbitrary words.
Let s be big relative to r (the precise value of s will be apparent during the

proof). Let m and n be given as in Lemma 3.4 for this s. Let ω be an ordered
string of length n using only the letter x. Let ω1 be the structure 〈ω, P 〉 and ω2

be the structure 〈ω, P ′〉, where P , P ′ are the positions in ω given by Lemma 3.4.
Thus we have: ω1 ≡s ω2.

We show that there is an interpretation µ such that µ(ω1) is isomorphic to
〈aenufnvenwfnb,<1〉 while µ(ω2) is isomorphic to 〈aenwfnvenufnb,<2〉. This
implies that 〈aenufnvenwfnb,<1〉 ≡r 〈aenwfnvenufnb,<2〉 assuming s = r+q,
where q bounds the quantifier rank of all formulas in the interpretation.

The interpretation is obtained in two stages.
The first stage is simple. It it straightforward to define an interpretation

µ1 such that µ1(ω1) = 〈abv(efef)nuw,Q,A,B, V,E, F, U,W 〉 and µ1(ω2) =
〈abv(efef)nuw,Q′, A,B,E, F, U, V,W 〉 where abv(efef)nuw is viewed as an or-
dered string, A (resp. B, . . . ) is a unary relation corresponding to the first
position of each occurrence of a (resp. b . . . ), and Q is a unary relation which
is true for all positions of the ith occurrence of efef iff P (i) holds (similarly for
Q′). µ1 is constructed in the obvious way by interpreting each symbol x of ω as
the substring efef while adding the prefix abv and the suffix uw and transferring
the string structure and marked positions of ω to the interpreted model.

Next we define a second interpretation µ2 over strings as above, which, when
composed with µ1, yields the desired interpretation µ. The formula for the
domain and the unary symbols are trivial; they simply copy the information
from the input structure. A formula for the linear order is obtained by using the
available transitive closure of the string successor (recall that our strings were
ordered).

It remains to provide a formula specifying the successor relation. This is done
using the properties listed below, each of them being definable in FO(S,≺, P ).
Inside any subword of one of the forms a, b, e, f, u, v, w (where the beginning
of the subword is denoted by the corresponding unary predicate), the new suc-
cessor relation is taken consistent with S. Hence WLOG we can assume that
a, b, e, f, u, v, w are strings of length 1 and are treated as letters in the specifica-
tion below. Finally, in order to avoid ambiguity, the successor which is specified
is denoted by S′ while S and ≺ are the successor and its transitive closure in
the structure. Moreover, each time we use a navigational adjective (like left,
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successor, first . . . ) we add a prefix to it that clarifies which order is referred to
when using this notion. We refer to Figure 2 for an illustration of the successor
relation S′ as specified by the properties listed below.

• The S′-first element is a.
• The S′-second element is the ≺-first occurrence of e.
• The S′-successor of a position labeled e not in P is the ≺-second e to its
≺-right.

• The S′-successor of a position labeled e in P is the ≺-third e to its ≺-right
or the ≺-first e to its ≺-right depending on whether the initial e has a
S-predecessor in P or not.

• At the ≺-end of the string (efef)n, the S′-successor of the ≺-last e is w
while the S′-successor of the e ≺-before is u.

• The S′-successor of w is the ≺-last f while the S′-successor of u is the f
≺-before the ≺-last.

• The S′-successor of a f not in P is the ≺-second f to its ≺-left.
• The S′-successor of a f in P is the ≺-third f to its ≺-left or the ≺-first f

to its ≺-left depending on whether the initial f has a S-successor in P or
not.

• At the ≺-beginning of the string (efef)n, the S′-successor of the ≺-first f
is v while the S′-successor of the ≺-second f is b.

• The S′-successor of v is the ≺-second e of the string and b is the S′-last
element.

1 17 9 2 8 10 16 3 15 11 7 12 14 4 6 13 5
a b v e f e f e+P f+P e+P f+P e f e f u w

aeeewfffveeeufffb

1 17 9 2 8 10 16 3 7 11 15 4 6 12 14 5 13
a b v e f e f e f e f e f e f u w

aeeeufffveeewfffb

Figure 2. Two models and their corresponding successor as
specified by the interpretation formula. Below each model the
string according to the new successor relation is depicted. Notice
how the presence of P induces a switch in the order of w and u
between the top and the bottom case.

An inspection of the items above shows that this specification is FO(S,≺, P )
definable. Notice also that if |P | is even then the string resulting from the new
successor relation is aenufnvenwfnb while if |P | is odd the resulting string is
aenwfnvenufnb (see also Figure 2).

This concludes the proof of the theorem. ⊣
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§4. Order-invariant Queries over Trees. We now deal with extending the
above results to trees. We will give results for ranked trees, with or without a
sibling ordering, and for unranked trees with no sibling ordering. For siblinged
unranked trees, we have only an MSO upper bound on the expressiveness of
order-invariant queries. To generalize the results for strings to trees, we use
analogous algebraic machinery to characterize first-order definability over trees.
We will then show that any query that fails this characterization must not be
order-invariant.

As with strings, MSO definable sets of (siblinged or unordered) trees are ex-
actly the regular sets of trees. Every such set is thus the acceptance set of
a bottom-up tree automaton, which can be taken to be deterministic, see the
monograph [10] for a survey on tree automata and their link with MSO in the
ranked and unranked tree case. Note that in this section, we will use the follow-
ing convention: an “unordered tree” will mean a tree without a sibling relation,
a “siblinged tree” will mean a tree supplemented with a sibling relation, and a
“tree” will mean either an unordered tree or a siblinged tree. When we refer to
multiple trees (e.g. “let t, t′ be trees . . . ”) we will naturally mean that all trees
are of the same type (e.g. both t, t′ unordered, or both siblinged).

Given a tree t and a node x of t the subtree of t rooted at x, consisting of all
the nodes of t which are descendants of x, is denoted by t|x.

A context is a tree with a distinguished leaf node, called its port. For any
tree automata A, a context C induces a function CA from the states of A to the
states of A such that CA(q) is the state q′ reached by A at the root of C when
the port of C is assigned the state q and all other leaves of C are assigned the
initial state of A. Given contexts C and C ′, their concatenation C · C ′ is the
context formed by identifying the root of C ′ with the port of C. Concatenation
of context C and tree T is defined similarly. Given a tree t and two nodes x, y
of t such that x ≤ y, the context Ct[x, y) is defined from t1 = t|x by replacing
t1|y by a port.

Let t be a tree, and x, x′ be two nodes of t such that x and x′ are not related
by the descendant relationship. The horizontal swap of t at nodes x and x′ is
the tree t′ constructed from t by replacing t|x with t|x′ and vice-versa.

Let t be a tree of root r, and x, y, x′, y′ be four nodes of t such that x ≤ y ≤
x′ < y′. The vertical swap of t between [x, y) and [x′, y′) is the tree t′ constructed
from t as depicted in Figure 3. More formally let C = Ct[r, x), ∆1 = Ct[x, y),
∆2 = Ct[x

′, y′), ∆ = Ct[y, x
′), T = t|y′ . Then notice that t = C ·∆1 ·∆ ·∆2 · T .

The tree t′ is defined as t′ = C · ∆2 · ∆ · ∆1 · T .
Let t be a tree and x be a node of t, the k-spill of x is the restriction of t|x

to the set of nodes of t at distance at most k from x.
Two nodes x, y are said to be depth-k similar if their k-spill are isomorphic.

The k-type of a node x is its equivalence class under the relation depth-k similar.
Two trees t and t′ are depth-k similar if their roots are depth-k similar.

A horizontal swap is said to be k-guarded if x and x′ are depth-k similar. A
vertical swap is said to be k-guarded if x and x′ are depth-k similar and y and
y′ are depth-k similar.

We say that L is closed under k-guarded horizontal swaps if for all tree t ∈ L

and all tree t′ constructed from t by a horizontal k-guarded swap then t′ is in L.
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Figure 3. Illustration of the vertical swap

Closure under k-guarded vertical swaps is defined similarly. It should be clear
that being closed under k-guarded swaps implies being closed under k′-guarded
swaps for k′ ≥ k.

A regular tree language L is said to be aperiodic if there exists l ∈ N, the
aperiodicity number of L, such that for all contexts C,D, and all tree t, D ·Cl · t
is in L iff D · Cl+1 · t is in L. If the set of contexts is seen as a monoid, this is
the classical notion of aperiodicity in a monoid.

Let L be a regular tree language. We say that L satisfies (†) if the following
holds for some k:

1. L is closed under k-guarded vertical swaps
2. L is closed under k-guarded horizontal swaps
3. L is aperiodic

In [4], the following algebraic characterization is proved:

Theorem 4.1 ([4]). Let L be a regular tree language over SRT, RT or UT.
Then L is definable in FO iff L satisfies (†).

Using this, we prove the following:

Theorem 4.2. Inv-FO(<) = FO over RT, SRT, and UT.

The first step of the proof is to show that:

Theorem 4.3. Inv-FO(<) ⊆ MSO over RT, SRT, UT, and SUT.

Proof. This is rather immediate for ranked and/or ordered trees (SRT, SUT
and RT), as a linear order can be defined in MSO. In the case of ordered trees
the “lexicographical order” can be defined in MSO. In this order x < y if x is an
ancestor of y or x has an ancestor z which is a sibling of an ancestor z′ of y and
z ≺ z′ using the sibling order. In the ranked (unordered) case, say the rank is
r, an order can be obtained by first guessing r sets S1, S2, · · · , Sr, then making
sure that each node has exactly one child in each of the sets. These sets induces
an order among the siblings and a lexicographical order is defined as above. In
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the case of UT, it is no longer possible to define a linear order in MSO. In this
case, we use Ehrenfeucht-Fräıssé techniques. Let φ be an Inv-FO(<) sentence,
and <s be a sibling ordering. Then there is a canonical linear order on t which
is constructed by a lexicographical process from <s. Linear orders obtained this
way are called natural in the rest of the proof. Let L′(φ) = {t | there exists
a natural linear order < such that 〈t, <〉 |= φ}. Because φ is order-invariant
we have L′(φ) = L(φ). Therefore the next lemma, which shows that sibling-
ordering-invariant-FO(<) collapses to MSO, concludes the proof of the theorem.

Lemma 4.4. L′(φ) is definable in MSO.

Proof. Recall that σS is our signature for unordered trees and σS,S′

is the
extension of σS with an extra binary predicate S′ which is interpreted as a
successor among siblings. From the SUT case we know that L′(φ) is definable

in MSO(σS,S′

). We want to show that it is definable in MSO(σS).

Because L′(φ) is definable in MSO(σS,S′

), there is a deterministic unranked
bottom-up tree automaton A = 〈Σ, Q, δ, q0, F 〉 that computes L′(φ) [10]. Using
classical minimization and completion techniques we can further assume that A
satisfies the following properties:

• For every q ∈ Q there is a tree tq such that when A runs on tq it reaches
state q at the root.

• For every q 6= q′ ∈ Q there exists a context ∆q,q′

such that the set

{∆q,q′

A (q),∆q,q′

A (q′)} contains one accepting and one non-accepting state.

Recall from [10] that δ(q, a), for each q ∈ Q and each a ∈ Σ, is a regular
expression over Q, with the meaning that a node label a gets state q if the
sequence (according to S′) of states already computed at its children forms a
word in δ(q, a). Let Q∗ be the signature with a unary predicate for every state
q ∈ Q. A string in Q∗ is considered as a structure for Q∗ in the obvious way.
We first show that the regular expression is actually expressible in FO(Q∗), in
particular it does not refer to S′.

Claim 4.5. For each q ∈ Q and each a ∈ Σ, δ(q, a) is definable by a formula
of FO(Q∗); that is, a formula using only unary predicates from Q.

Proof of the claim. Take an arbitrary q ∈ Q and a ∈ Σ, and let L =
δ(q, a). Let r be the quantifier rank of φ and fix s such that for all n,m ≥ s

the linearly ordered sequence 1n ≡FO(<)
r 1m [15]. Take two words w and w′ in

Q∗ such that w ≡FO(Q∗)
s w′. We show that w ∈ L iff w′ ∈ L. This immediately

implies that L is in FO(Q∗).
Fix an arbitrary order<Q onQ. Reorder w so that whenever p <Q p′, elements

in w labeled with p come before elements labeled with p′, and similarly for w′.
This yields two new strings w̄ = q1 · · · qu and w̄′ = q′1 · · · q

′
v.

We first claim that w ∈ L iff w̄ ∈ L. Write w = p1 · · · pu and assume,
for a contradiction, that w ∈ L but w̄ 6∈ L. Let t1 and t2 be the two trees
t1 = a[tp1 · · · tpu ] and t2 = a[tq1 · · · tqu ]. Let p and p′ be the states reached by
A on t1 and t2. By determinism of A and because w ∈ L and w̄ 6∈ L we have
p′ 6= p. Let t = ∆p,p′

· t1 and t′ = ∆p,p′

· t2. By construction t is accepted by
A but t′ is not. This contradicts sibling-invariance of φ. By symmetry we also
have w′ ∈ L iff w̄′ ∈ L. Therefore it suffices to show that w̄ ∈ L iff w̄′ ∈ L.
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Assume by way of contradiction that w̄ ∈ L but w̄′ 6∈ L. Consider now the
trees t1 = a[tq1 · · · tqu ] and t2 = a[tq

′

1 · · · tq
′

v ]. We can see that q is the state
reached by A on t1 while the state reached by A on t2 is some q′ 6= q. Let
t = ∆q,q′

· t1 and t′ = ∆q,q′

· t2. By construction one is accepted by A and
the other is rejected. By symmetry we assume that t is accepted by A but t′

is not. Let < (resp. <′) be the natural sibling order on t (resp. t′). We now
claim that 〈t, <〉 ≡r 〈t′, <′〉, which implies that t and t′ agree on φ, the desired
contradiction.

We show this by giving a winning strategy for the corresponding Ehrenfeucht-
Fräıssé game. On ∆q,q′

and the roots of t1 and t2, Duplicator plays using the
identity map. On a move where Spoiler plays a node x in tree tqi for i ≥ 1,
Duplicator always responds by an identical y in a tree tqj such that qi = qj .
There might be several possible choices of qj . Let n be the number of occurrences
of state qi in w̄ and m be the number of occurrences of the same state in w̄′.

Because w ≡FO(Q∗)
s w′ we have n = m or n,m ≥ s. In both cases Duplicator

picks one appropriate pj using its strategy in the ≡FO(<)
r game between 1n and

1m. It is easy to verify that this strategy works. ⊣

Now by the claim, each transition is given by a FO(Q∗) formula. Hence, we
know that A is given by an automaton that uses unordered first-order transitions.
It is now immediate to see that such an automaton can be simulated in MSO.
This completes the proof of Lemma 4.4, and hence the proof of Theorem 4.3. ⊣

⊣

Proof of Theorem 4.2: Let φ ∈ Inv-FO(<), we wish to show that φ ∈ FO. From
Theorem 4.1 and Theorem 4.3 it suffices now to show that L(φ) satisfies (†).

Part 3) of (†) (aperiodicity) is simple: if aperiodicity fails, then we know that
for arbitrarily large l we can find s, u, t such that L can distinguish s · ul · t and
s · ul+1 · t. Choosing l large with respect to the quantifier-rank r of φ, we fix an
arbitrary sibling order on s, u, t and expand both s · ul · t and s · ul+1 · t by the
corresponding lexicographic ordering. If l is big enough, it is straightforward to
show that the expanded structures are indistinguishable by formulas of rank r,
hence we have again contradicted order-invariance.

For part 1) and 2) of (†) we will make use of the following lemma which is
implicit in the proof of the main theorem of [12] (locality of Inv-FO(<)).

Lemma 4.6. [12] Let x be a number. For all r there exists k such that for each
structure M and all x-tuples ā and b̄ of M such that the k-neighborhood of ā is
isomorphic to the k-neighborhood of b̄, it is possible to construct linear orders <1

and <2 on M whose initial 2x elements are respectively āb̄ and b̄ā and such that
〈M, āb̄, <1〉 ≡r 〈M, b̄ā, <2〉.

Intuitively the orders of Lemma 4.6 are obtained by first comparing nodes
according to their distance from āb̄ and breaking the ties by alternating between
nodes “on the side of ā” and those “on the side of b̄”. In the end there are too
many alternations, and hence their parity cannot be detected. This construction,
and hence the lemma, is easy to perform on trees, which is our setting here.
Over arbitrary structures (as needed in the setting of [12]), this is much more
complicated.
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Let r be the quantifier-rank of φ.
Consider now part 2) of (†). Let k be given by Lemma 4.6 for x = 1 and r as

above. Let t be a tree with two incomparable nodes x and y that are depth-k
similar. Let t1 = t|x and t2 = t|y. Let D be the tree constructed from t by
removing all descendants of x and of y. Let D[t2, t1] be the result of horizontally
swapping t2 by t1 in t. Let D[t1, t2] denote t itself. We wish to show that if
D[t1, t2] is in L then D[t2, t1] is also in L. For this we construct two linear orders
≺1 and ≺2 such that 〈D[t1, t2],≺1〉 ≡r 〈D[t2, t1],≺2〉. This would prove part 2)
of (†) as φ has quantifier-rank r and is order-invariant.

Let M be the structure formed by the disjoint union of t1 and t2. Because
x and y are depth-k similar, the k-neighborhood of x is isomorphic to the k-
neighborhood of y. By Lemma 4.6 there exists orders <1 and <2 of M such
that: with respect to <1 x is minimal and y is its successor, with respect to <2

y is minimal and x is its successor, and 〈M,<1〉 ≡r 〈M,<2).
Fix a linear order < on D. Define ≺1 on D[t1, t2] by concatenating < and <1

and define ≺2 on D[t2, t1] by concatenating < and <2.
It is now easy to verify that 〈D[t1, t2],≺1〉 ≡r 〈D[t2, t1],≺2〉 by combining the

identity strategy on D and the strategy given by Lemma 4.6 on t1 + t2.
Consider now part 3) of (†). Let k be given by Lemma 4.6 for x = 2 and r.

Let t be a tree and x, y, x′, y′ be four nodes of t such that x ≤ y ≤ x′ ≤ y′, x
and x′ are depth-k similar, and y and y′ are depth-k similar. Let ∆1 = Ct[x, y)
and ∆2 = Ct[x

′, y′). We proceed exactly as in the case of part 2) of †, using
Lemma 4.6 to obtain orders <1 and <2 on ∆1 + ∆2, and combining these two
orders with a fixed one on the remaining part of the tree. We then argue as in
part 2) of (†). ⊣

§5. Order Invariance on Tree-like and Bounded Valence Structures.

We now consider how to extend the bounds given in the previous sections to
graphs that may have cycles, but which are still well-behaved. We concentrate
on two well-behaved classes: the bounded treewidth structures [16], and the
bounded valence structures. We show that over such structures Inv-FO(<) ⊆
MSO. Note that this inclusion is not true in general as Gurevich’s example,
separating FO from Inv-FO(<), is not definable in MSO.

A tree decomposition of a graphG consists of a tree T and a function dmapping
nodes of T to sets of vertices of G, satisfying:

• For every edge (v1, v2) ∈ G, there is t ∈ T with v1, v2 ∈ d(t).
• For every vertex v of G, {n ∈ T : v ∈ d(n)} is a connected subset of T .

The width of a decomposition (T, d) is maxt∈T |d(t)|−1. The treewidth of a graph
G is the minimal width of a tree decomposition of G.

Theorem 5.1. For every b, Inv-FO(<) ⊆ MSO over graphs of treewidth b.

Proof. The idea of the proof is as follows. Courcelle shows that the set of
tree decompositions of a family of graphs definable in Inv-MSO(<) is definable
in CMSO. We show that CMSO can be replaced by MSO if we start with an
Inv-FO(<) definable set of graphs. This is done by analyzing the automaton
equivalent to the CMSO formula and showing that any counting can be avoided.
The later is shown by reordering the siblings in an appropriate way without
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violating the truthness of the initial Inv-FO(<) formula. Once definability in
MSO is achieved we conclude using a result of Lapoire, which shows that over
graphs of bounded treewidth a tree decomposition of a graph can be defined in
MSO. The combination of the two formula above yield the desired result.

Fix b and assume that all the graphs discussed in this proof have treewidth
bounded by b. Let φ ∈ Inv-FO(<) and assume that φ has quantifier rank r. Let
L(φ) = {G | there exists a linear order < such that 〈G,<〉 |= φ} be the set of
graphs defined by φ.

We introduce some terminology based on the work of Courcelle and Lapoire
(e.g. see [14], page 34). We describe how a tree decomposition D = (T, d) of
G can be considered as a colored tree TD. The underlying tree of TD is T and
predicates for the colors are defined as follows: Fix for each node x of T a graph
Gx with vertices in {1 . . . b + 1} that is isomorphic to the restriction of G to
d(x), and an isomorphism µx taking Gx onto this restriction. Let νx be the
partial function from {1 . . . b+ 1} to {1 . . . b+ 1} that maps i to j exactly when
µx(i) = µy(j), where y is the parent node of x. For each graph τ with vertices in
{1 . . . b+1}, we have a predicate Pτ that holds at a node x of TD iff Gx = τ , and
for each h from {1 . . . b+ 1} to {1 . . . b+ 1}, we have a a predicate Ph that holds
at x iff νx = h. That is, the predicates specify which graphs are associated with
a node, and how the graph at a node is linked to the graph of its parent. Let Tb

be the set of trees for this signature, and let f be the evaluation map taking a
colored tree in Tb to the corresponding graph.

The following result was proved by Courcelle for any Inv-MSO(<) formula.
We only use it for formulas φ ∈ Inv-FO(<). Let T (φ) be the set of tree decom-
positions of graphs defined by φ. More formally, T (φ) = f−1(L(φ)). Courcelle
showed:

Theorem 5.2. [6, 7] For all ϕ ∈ Inv −MSO(<), T (φ) is CMSO definable

We show that, when restricted to first-order formulas, the result of Theo-
rem 5.2 can be improved in order to obtain MSO definability.

Lemma 5.3. For all ϕ ∈ Inv-FO(<), T (φ) is MSO definable

Before proving Lemma 5.3, we first show how we conclude the proof of the
theorem. By a result of Lapoire [14], there exists a MSO transduction g, which,
given a graph G of treewidth b, computes a structureD ∈ Tb such that f(D) = G.
The exact definition of MSO transduction will not be needed here; the key fact
about such transductions is that the pre-image of an MSO definable set under
a transduction is again MSO definable [7]. The theorem now follows because
L(φ) = g−1(T (φ)), and by Lemma 5.3, T (φ) is definable in MSO. The closure
of MSO definability under inverse MSO transduction mentioned above implies
that L(φ) ∈ MSO and the theorem is proved.

We now turn to the proof of Lemma 5.3.
We will again make use of σS,S′

, the signature for unordered trees with an
extra binary predicate S′ which is interpreted as a successor among siblings.
Let T ′(φ) = {(t,≺s) | t ∈ T (φ),≺s a sibling ordering on T}. Since T (φ) is

CMSO definable by Theorem 5.2, T ′(φ) is definable in MSO(σS,S′

), since count-
ing quantifiers are definable in the presence of a linear order. We claim that
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T ′(φ) (hence T (φ)) is MSO(σS) definable. As discussed above we view T ′(φ)
as a set of unranked trees labeled with a finite alphabet Σ. Because T ′(φ) is

definable in MSO(σS,S′

), let A be an unranked tree automaton for T ′(φ) with
state set Q and transition function δ. Recall from the proof of Lemma 4.4 that
δ maps every pair (q, a) ∈ Q×Σ to a regular expression over Q. We also assume
that A is minimal (see the assumptions on the automaton A listed in the proof
of Lemma 4.4). As in Lemma 4.4 we show that each transition of the automaton
is actually given by a very simple regular expression.

Claim 5.4. For each q ∈ Q and each a ∈ Σ, δ(q, a) is definable by a formula
of FO(Q∗), that is a formula using only unary predicates from Q.

From this claim each transition of A is given by a FO(Q∗) formula. Hence, we
know that A is given by an automaton that uses unordered first-order transitions.
It is now immediate to see that such an automaton can be simulated in MSO(σS).
Therefore T ′(φ) (hence T (φ)) is MSO(σS) definable and the lemma is proved.

Proof of the claim. The proof follows along the lines of the proof of Claim 4.5.
In particular recall the definition of tq and ∆q,q′

given in the proof of Lemma 4.4
for any q, q′ ∈ Q.

For strings s, s′ in Q∗, say s ≃k s
′ if they have the same number of occurrences

of each q up to threshold k.
Take an arbitrary q ∈ Q and a ∈ Σ, and let L = δ(q, a). Let k = 3r (recall

that r is the quantifier rank of φ)
Take s, s′ ∈ Q∗ such that s ≃k s

′. We show that s ∈ L iff s′ ∈ L. This would
imply the claim. Fix an order on Q and let ω and ω′ be the strings computed
from s and s′ by making the letters appear in the order of Q. Notice now that
s ∈ L iff ω ∈ L. This is by definition of T ′(φ), which is invariant under sibling
reorderings. Therefore it suffices to show that ω ∈ L iff ω′ ∈ L.

Write ω = q1 · · · qu and ω′ = q′1 · · · q
′
v. Assume, for a contradiction, that ω ∈ L

but ω′ 6∈ L. Let t1 and t2 be the two trees t1 = a[tq1 · · · tqu ] and t2 = a[tq
′

1 · · · tq
′

v ].
By construction q is the state reached by A on t1 and let q′ be the state reached
by A on t2. By determinism of A and because ω ∈ L and ω′ 6∈ L we have q′ 6= q.
Let t = ∆q,q′

· t1 and t′ = ∆q,q′

· t2. By construction t is accepted by A but t′ is
not. Therefore f(t) |= φ but f(t′) |= ¬φ.

We now create orderings < on G = f(t) and <′ on G′ = f(t′) such that
〈G,<〉 ≡r 〈G′, <′〉, a contradiction. For any tree T , we let ν(T ) be the union of all

nodes of G that are in f(T ). We first choose fixed orderings on ν(∆q,q′

), on ν(tq)

for all q ∈ Q. In G we begin with the fixed ordering on ν(∆q,q′

), then proceed

with the fixed ordering for the nodes ν(tq1) − ν(∆q,q′

), · · · , ν(tqu) − ν(∆q,q′

).
Note that by definition of tree decompositions, the fact that tqi are all subtrees
below ∆q,q′

in the tree decomposition t implies that the sets ν(tqi) − ν(∆q,q′

)

are pairwise disjoint. In G′ we proceed similarly, using ν(tqi) − ν(∆q,q′

). Let <
and <′ be these orderings. We show how to play the r-Ehrenfeucht-Fräıssé game
between 〈G,<〉 and 〈G′, <′〉. Given a play of the game, let h be the function

taking each pebble x inG−ν(∆q,q′

) to the unique l such that x ∈ ν(tql)−ν(∆q,q′

),
and let h′ be the similar function on G′. We show that the Duplicator can play
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maintaining the following properties on the pebbles x1 · · ·xi and y1 · · · yi at any
step i:

(i) the play is the identity for moves in ν(∆q,q′

),

(ii) 〈ω, h(x1), · · · , h(xi)〉 ≡
FO(<)

r−i 〈ω′, h′(y1), · · · , h
′(yi)〉,

(iii) 〈th(xi), xi〉 is isomorphic to 〈th
′(yi), yi〉.

This is easy to show by induction. For the initial case notice that by the choice
of k, it follows from s ≃k s′ that 〈ω,<〉 ≡r 〈ω′, <′〉, where < and <′ are the
obvious orders on ω and ω′ [15]. During the game, Duplicator mimics Spoiler’s

move when Spolier plays in ν(∆q,q′

). If Spoiler plays pebble xi+1 on G outside of

ν(∆q,q′

), then Duplicator computes j = h(xi+1), and uses her winning strategy

for 〈ω, h(x1), · · · , h(xi)〉 ≡
FO(<)

r−i 〈ω′, h′(y1), · · · , h
′(yi)〉 to derive the value j′ that

h′(yi+1) must take. Note that necessarily qj = q′j′ and hence tj and tj
′

are
isomorphic and yj+1 can be safely placed at the same position as xi+1 inside the
image by ν of the subtree pointed by j′.

This completes the proof of the claim and hence of Lemma 5.3 and Theorem
5.1. ⊣

⊣

We now turn to proving the analogous result for the set of colored graphs of
valence less than b.

Theorem 5.5. For every b, Inv-FO(<) ⊆ MSO over graphs of valence less
than b.

Proof. Fix b, and let φ ∈ Inv-FO(<), and let r be the quantifier rank of φ.
Our goal is to find s ∈ N such that for all graphs G and G′ of valence less

than b, G ≡MSO
s G′ implies the existence of linear orders <G and <G′ such that

〈G,<G〉 ≡
FO
r 〈G′, <G′〉. The theorem then follows by order-invariance of φ.

We first consider the case where both G and G′ are connected graphs of va-
lence at most b. Because they have bounded valence there exists MSO formulas
ψ(x, y, S1 . . . Sb+1) and γ(S1 . . . Sb+1) such that, given a connected graph G of va-
lence less than b, we have: (i) G has at least one expansion to S1 . . . Sb such that
γ(S1 . . . Sb) holds, (ii) for any S1 . . . Sb satisfying γ, ρ(x, y) = ψ(x, y, S1 . . . Sb)
defines a linear-ordering on G. The formula γ says that Si suffices to give a local
ordering of G (i.e. a linear order on the successors of any given node), and ψ

says that Sb+1 is a singleton {p}, and x comes before y in a depth-first traversal
of G starting from p using the local ordering definable from the Si (see [8] for
the detailed argument on the construction of γ and ψ). Let q be the maximum
quantifier rank of ψ and γ above. Then let s0 = rq + b + 1 and assume that
G ≡MSO

s0
G′. Pick any S1 . . . Sb+1 in G such that γ(S1 . . . Sb+1) holds and choose

S′
1 . . . S

′
b+1 in G′ according to the winning strategy of Duplicator in the MSO-s0-

game on G and G′. This strategy guarantees that the two expansions agree on
MSO-formulas of quantifier rank at most rq. Let ≺G (resp. ≺G′) be the linear
order on G (resp. G′) defined by S1 . . . Sb+1 (resp. S′

1 . . . S
′
b+1) according to γ

and ψ. Since γ and ψ are definable by formulas with quantifier rank at most
q, these further expansions agree on MSO formulas of rank at most r. Hence
there is a winning strategy for Duplicator in the r-move FO-game on 〈G,≺G〉
and 〈G′,≺G′〉. Hence we have achieved our goal in the case of connected graphs.
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For an integer k an MSO-k-type is an equivalence class of ≡MSO
k , or equivalently

a maximal consistent collection of MSO sentences of quantifier rank at most k.
Assume now that G and G′ are arbitrary graphs of valence at most b. Fix

l ∈ N such that for all n,m ≥ l the linearly ordered sequence 1n ≡FO(<)
r 1m. Let

s ∈ N be such that whenever G ≡MSO
s G′ then G and G′ have the same number

of connected components of any MSO-s0-type ( where s0 is defined above ), up
to threshold l, (since being a component is MSO definable, one can guarantee
this with a suitably large s). Now fix a linear order <τ on the MSO-s0-types of
connected graphs. Assume now that G ≡MSO

s G′. We define <G as follows. We
use <τ to order the connected components of G according to their MSO-s0-type,
breaking ties arbitrarily; within any connected component, we proceed as in the
connected case above and obtain a linear order ≺. Form the analogous ordering
<G′ on G′.

We can now verify that 〈G,<G〉 ≡
FO
r 〈G′, <G′〉. When a pebble is placed in

a connected component, Duplicator always responds in a connected component
having the same MSO-s0-type, and then the strategy inside a connected compo-
nent is as shown in the connected case. For dealing with the arbitrary number
of connected components, we note that both G and G′ agree on the number of
occurrences of each MSO-s0-type up to threshold l. Hence if n is the number of
occurrences of a given MSO-s0-type in G and m is this same number in G′, then
we know 1n ≡FO(<)

r 1m by the definition of l, and hence we can play according
to the strategy given by 1n ≡FO(<)

r 1m. ⊣

The main tool used in the proof above is the possibility of defining linear orders
in a graph using MSO formulas. These linear orders were definable because it
was sufficient to guess an order among the finitely many successors of any given
node, by guessing the corresponding number of unary predicates. This can be
generalized as follows. A graph is said to be locally-ordered if a local order (i.e.
on the successors of any given node) is definable. In this case Courcelle showed
that within a component, an ordering can always be defined in MSO2, Monadic
Second Order Logic where quantification is over edges rather than nodes, with
parameters (see [8]). It is then possible to show, as in the proof of Theorem 5.5,
that over locally-ordered graphs we have Inv-FO(<) ⊆ MSO2.

We do not know yet whether Inv-FO(<) is contained in CMSO over arbitrary
structures.

§6. Conclusions. Our aim is to show that over well-behaved classes of graphs,
order-invariant queries over first-order logic in any given signature σ collapse to
first-order logic over the signature without the order. Thus far we have shown
this for strings and trees. One method of extending this to first-order logic over
bounded treewidth graphs is to prove that if two graphs of treewidth b agree
on first-order sentences of sufficiently large quantifier-rank, one can find tree de-
compositions of each graph that agree on fixed quantifier-rank; this would allow
the characterizations of definability to be pushed from trees to graphs. We do
not yet know of interesting classes for which a transfer of first-order equivalence
from graphs to trees can be performed.
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Another intersting open question is whether the results presented here for
graphs would extend to structures such that the corresponding Gaifman graph
is well behaved.

In [4] we have obtained an algebraic characterization of the logic FOmod (the
extension of FO with modulo counting quantifiers) on trees, by removing the
aperiodicity condition. This extends the characterization of FOmod on strings of
Straubing (VII.3.1 of [20]). We think that this characterization could be used to
prove that Inv-FOmod(<) = FOmod on trees, but we were not yet able to play
the corresponding games.
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