hal-00769668, version 1 - 2 Jan 2013

Author manuscript, published in "Compilers Construction, Rome : Italy (2013)"

On LR Parsing with Selective Delays

Eberhard Bertsch! Mark-Jan Nederhof?
Sylvain Schmitz®

! Ruhr University, Faculty of Mathematics, Bochum, Germany
2 School of Computer Science, University of St Andrews, UK
3 LSV, ENS Cachan & CNRS, Cachan, France

Abstract

The paper investigates an extension of LR parsing that allows the
delay of parsing decisions until a sufficient amount of context has been
processed. We provide two characterizations for the resulting class of
grammars, one based on grammar transformations, the other on the direct
construction of a parser. We also report on experiments with a grammar
collection.

1 Introduction

From a grammar engineer’s standpoint, LR parsing techniques, like the LALR(1)
parsers generated by yacc or GNU /bison, suffer from the troublesome existence
of conflicts, which appear sooner or later in any grammar development. Trac-
ing the source of such conflicts and refactoring the grammar to solve them is
a difficult task, for which we refer the reader to the accounts of Malloy et al.
(2002) on the development of a C# grammar, and of Gosling et al. (1996) on
that of the official Java grammar.

In the literature, different ways have been considered to solve conflicts au-
tomatically while maintaining a deterministic parsing algorithm—which, be-
sides efficiency considerations, also has the considerable virtue of ruling out
ambiguities—, such as unbounded regular lookaheads (Culik and Cohen, 1973),
noncanonical parsers (Szymanski and Williams, 1976), and delays before reduc-
tions (Leermakers, 1992). Bertsch and Nederhof (2007) have made a rather
counter-intuitive observation on the latter technique: increasing delays uni-
formly throughout the grammar can in some cases introduce new conflicts.

In this paper we propose a parsing technique that selects how long a reduc-
tion must be delayed depending on the context. More interestingly, and unlike
many techniques that extend LR parsing, we provide a characterization, using
grammar transformations, of the class of grammars that can be parsed in a LR
fashion with selective delays. More precisely,

e we motivate in Section 2 the interest of ML(k, m) parsing on an exerpt
of the C++ grammar, before stating the first main contribution of the
paper: we reformulate the technique of Bertsch and Nederhof (2007) as
a grammar transformation, and show how selective delays can capture
non-ML(k, m) grammars,

http://hal.archives-ouvertes.fr/hal-00769668
http://hal.archives-ouvertes.fr

hal-00769668, version 1 - 2 Jan 2013

e we define the class selML(k, m) accordingly through a nondeterminis-
tic grammar transformation, which allows us to investigate its properties
(Section 3),

e in Section 4 we propose an algorithm to generate parsers with selective
delays, and prove that it defines the same class of grammars.

e We implemented a Java proof of concept for this algorithm (see http://
Www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/), and report in Sec-
tion 5 on the empirical value of selective delays, by applying the parser
on a test suite of small unambiguous grammars (Basten, 2008; Schmitz,
2010).

e We conclude with a discussion of related work, in Section 6.

Due to space constraints, many technical details, including several proofs, had
to be added in the form of appendices.

Preliminaries. We assume the reader to be familiar with LR parsing, but
nonetheless recall some definitions and standard notation.

A context-free grammar (CFG) is a tuple G = (N, X, P, S) where N is a finite
set of nonterminal symbols, ¥ a finite set of terminal symbols with NNX = (—
together they define the vocabulary V = N W ¥X— P C N x V* is a finite set
of productions written as rewrite rules “A — «”, and S € N the start symbol.
The associated derivation relation = over V* is defined as = = {(§A~, dary) |
A — « € P}; a derivation is rightmost, denoted =, if 7y is restricted to be in
¥* in the above definition. The language of a CFG is L(G) = {w € £* | § =*
w}={weX*| S =%, w}

We employ the usual conventions for symbols: nonterminals in IV are denoted
by the first few upper-case Latin letters A, B, ..., terminals in X by the first
few lower-case Latin letters a, b, ..., symbols in V by the last few upper-case
Latin letters X, Y, Z, sequences of terminals in ¥* by the last few lower-case
Latin letters u, v, w, ..., and mixed sequences in V* by Greek letters «, 3, etc.
The empty string is denoted by e.

Given G = (N,%, P,S), its k-extension is the grammar (N W {ST} ¥ u
{#}, PU{ST — S#*},St) where # is a fresh symbol. A grammar is LR(m)
(Knuth, 1965; Sippu and Soisalon-Soininen, 1990) if it is reduced—i.e. every
nonterminal is both accessible and productive—and the following conflict situ-
ation does not arise in its m-extension:

St =t 6 AU =, Jau = yu 546 or A Bora#8
ST =2 6'Bo = 8B = yuwu m:u=m:wv

5

where “m : u” denotes the prefix of length m of w, or the whole of w if |u| < m.

2 Marcus-Leermakers Parsing

The starting point of this paper is the formalization proposed by Leermakers
(1992) of a parsing technique due to Marcus (1980), which tries to imitate the
way humans parse natural language sentences. Bertsch and Nederhof (2007)

http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/
http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/

hal-00769668, version 1 - 2 Jan 2013

have given another, equivalent, formulation, and dubbed it “ML” for Marcus-
Leermakers.

The idea of uniform ML parsing is that all the reductions are delayed to take
place after the recognition of a fixed number k of right context symbols, which
can contain nonterminal symbols. Bertsch and Nederhof (2007) expanded this
class by considering m further symbols of terminal lookahead, thereby defining
ML(k, m) grammars. (This construction is recalled in Appendix A.) In Sec-
tion 2.2, we provide yet another view on uniform ML(k, m) grammars, before
motivating the use of selective delays in Section 2.3. Let us start with a concrete
example taken from the C++ grammar from the 1998 standard (ISO, 1998).

2.1 C++ Qualified Identifiers

First designed as a preprocessor for C, the C++ language has evolved into a
complex standard. Its rather high level of syntactic ambiguity calls for non-
deterministic parsing methods, and therefore the published grammar makes no
attempt to fit in the LALR(1) class.

We are interested in one particular issue with the syntax of identifier expres-
sions, which describe a full name specifier and identifier, possibly instantiating
template variables; for instance, “A::B<C::D>::E” denotes an identifier “E” with
name specifier “A::B<C::D>” where the template argument of “B” is “D” with
specifier “C”.

The syntax of identifier expressions is given in the official C++ grammar by
the following (simplified) grammar rules:

I-U|Q, U—i|lT, Q—NU N—=U:=N|U:, T—i<l>

An identifier expression I can derive either an unqualified identifier through
nonterminal U, or a qualified identifier through @, which is qualified through
a nested name specifier derived from nonterminal N, i.e. through a sequence
of unqualified identifiers separated by double colons “::”, before the identifier
i itself. Moreover, each unqualified identifier can be a template identifier T,
where the template argument, between angle brackets “<” and “>”, can again
be any identifier expression.

Example 1. A shift/reduce conflict appears with this set of rules. A parser
fed with “A::”, and seeing an identifier “B” in its lookahead window, has a
nondeterministic choice between

e reducing “A::” to a single N, in the hope that “B” will be the identifier
qualified by “A::”, as in “A::B<C::D>”, and

e shifting the identifier, in the hope that “B” will be a specifier of the iden-
tifier actually qualified, for instance “E” in “A::B<C::D>::E”.

An informed decision requires an exploration of the specifier starting with “B”
in search of a double colon symbol. The need for unbounded lookahead occurs
if “B” is the start of an arbitrarily long template identifier: this grammar is not
LR(k) for any finite k.

Note that the double colon token might also appear inside a template ar-
gument. Considering that the conflict could also arise there, as after read-
ing “A<B::” in “A<B::C<D::E>::F>::G”, we see that it can be arduous to know

hal-00769668, version 1 - 2 Jan 2013

whether a “::” symbol is significant for the resolution of the conflict or not.
In fact, this is an example of a conflict that cannot be solved by using reg-
ular lookahead as proposed in (Boullier, 1984; Bermudez and Schimpf, 1990;
Farré and Fortes Gélvez, 2001), because keeping track of the nesting level of

well-balanced brackets is beyond the power of regular languages.!

2.2 Uniform ML

Observe that, in our extract of the C++ grammar, if we were to postpone the
choice between the two possible actions and attempt to parse an N in full,
then the issue would disappear. The mechanism Leermakers (1992) employs for
delaying parsing decisions is to extend a nonterminal with additional terminal
and nonterminal symbols from its right context, thus delaying reduction to that
nonterminal until the moment when these additional symbols have been parsed
in full. This also involves introducing a new end-of-file terminal “#”.

In Appendix A, we recall the ML(k, m) parser construction of (Leermak-
ers, 1992; Bertsch and Nederhof, 2007). The automaton obtained by applying
this construction on the C++ grammar is too large to be rendered on a single
page. Appendix A therefore provides a simpler example. In what follows we
present an alternative characterization of ML parsing on the basis of a grammar
transformation.

Uniform ML as a Transformation. Although Leermakers does not present
his technique in these terms, the intuition of extending nonterminals with right
context can be realized by a grammar transformation that introduces nonter-
minals of the form [Ad] in N’ = N - V=F_which combine a nonterminal A with
its immediate right context 4.

This results for K = 1 and our C++ example into an LALR(1) grammar
with rules:

[I#] = [U#] [[Q#], [I>] = [U>]][@>],
[U#] = i# | [T#], [U>]—i>|[T>], [U:=z]—ix|[T::], [Ul—i][T],
[Q#] = [NU]#, [@>] = [NU]>,
[NU] = [U:][NU] | [U::]U],
[T#] = i<[I>]#, [T>] —i<[I[>]> [T:uz]—i<[I[>]:x, [T]—i<[I>].
The new grammar demonstrates that our initial grammar for C++ identifier

expressions is ML(1, 1): it requires contexts of length k£ = 1, and lookahead of
length m = 1.

Combing Function. Formally, the nonterminals in N’ are used in the course
of the application of the uniform k-combing function comby from V* to (N’ @

1We can amend the rules of N to use left-recursion and solve the conflict: N —
NU :: | U:: . This correction was made by the Standards Committee in 2003 (see http:
//www.open-std.org/jtcl/sc22/wg21/docs/cwg_defects.html#125). The correction was not
motivated by this conflict but by an ambiguity issue, and the fact that the change eliminated
the conflict seems to have been a fortunate coincidence. The C++ grammar of the Elsa
parser (McPeak and Necula, 2004) employs right recursion.

http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#125
http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_defects.html#125

hal-00769668, version 1 - 2 Jan 2013

St er U =N —id:eN ! !

'""U N —izeN !

T#H#4 — 0 Q## . N —>eU:uN i ! U I

i i — i e 1

T Q44 > 0 NU #4 N e U: — .
. . ! N — e U 1

NU# — e U::NUH# U:N—ei N 1 |

1 U:—ejg |

U:N —ei::N U:—ei:x | -l

Figure 1: Parts of the uniform ML(2, 0) parser for C++ identifier expressions.

3)*, defined recursively as:

[Ad] - comby () if a« = Ada’/,; A € N, and either |0] = k,
comby(a) or || <kand o =¢

a-combg(a/) ifa=ad’andae X

€ otherwise, which isif a =€ .

For instance, comb; (ABcDeF) = [AB]c[Del[F].

The right parts of the rules of [Ad] are then of the form comby(ad) if A — «
was a rule of the original grammar, effectively delaying the reduction of o to A
until after § has been parsed.

Definition 1 (Uniform combing). Let G = (N, X, P, S) be a CFG. Its uniform
k-combing is the CFG (N - V=F %3 {[A5] — combi(ad) | § € V=F and A — a €
P}, 1S]).

Equivalence of the Two Views. Of course we should prove that the two
views on ML parsing are equivalent:

Theorem 1. A grammar is ML(k, m) if and only if the uniform k-combing of
its k-extension is LR(m).

Proof Idea. One can verify that the LR(m) construction on the k-combing of
the k-extension of G and the ML(k, m) construction of Bertsch and Nederhof
(2007) (recalled in Appendix A) for the same G are identical. O

2.3 Selective ML

An issue spotted by Bertsch and Nederhof (2007) is that the classes of ML(k,
m) grammars and ML(k + 1, m) grammars are not comparable: adding further
delays can introduce new LR(m) conflicts in the ML(k + 1, m)-transformed
grammar.

For instance, the uniform 2-combing of our grammar for C++ identifier
expressions is not LR(m) for any m: Figure 1 shows the path to a conflict
similar to that of the original grammar, which is therefore not uniform ML(2, m).
Selective ML aims to find the appropriate delay, i.e. the appropriate amount of
right context, for each item in the parser, in order to avoid such situations.

Oscillating Behaviour. Bertsch and Nederhof also show that an oscillating
behaviour can occur, for instance with the grammar

S — SdA|c, A—alab (Goaa)

hal-00769668, version 1 - 2 Jan 2013

being ML(k, 0) only for odd values of k, and the grammar
S — SAd|c, A—a|ab (Geven)

being ML(k, 0) only for even values of k > 0, from which we can build a union
grammar

S — SdA| SAd | ¢, A—a|ab (G2)

which is not ML(k, 0) for any k.

Observe however that, if we use different context lengths for the different
rules of S in Gs, i.e. if we select the different delays, we can still obtain an
LR(0) grammar G} with rules

[ST] — [S#]#,
[S#] — [Sd][A#] | [SAd]# | c#,
[Sd] — [Sd][Ad] | [SAd]d | cd,
[SAd] — [Sd][AAd] | [SAd][Ad] | c[Ad], (G3)
[A#] — a# | ab#,
[Ad] — ad | abd,
[AAd] — a[Ad] | ab[Ad]

As we will see, this means that Gy is selective ML with a delay of at most
2, denoted selML(2, 0). This example shows that selective ML(k, m) is not
just about finding a minimal global & < k such that the grammar is uniform
ML(K’, m). Because the amount of delay is optimized depending on the context,
selective ML captures a larger class of grammars.

3 Selective Delays Through Grammar Transfor-
mation

We define selML(k, m) through a grammar transformation akin to that of
Definition 1, but which employs a combing relation instead of the uniform k-
combing function. We first introduce these relations (Section 3.1) before defining
the selML(k, m) grammar class and establishing its relationships with various
classes of grammars in Section 3.2 (more comparisons with related work can be
found in Section 6).

3.1 Combing Relations

In the following definitions, we let G = (N, X, P, S) be a context-free grammar.
Combing relations are defined through the application of a particular inverse
homomorphism throughout the rules of the grammar.

Definition 2 (Selective Combing). Grammar G’ = (N', X, P',S’) is a selective
combing of G, denoted G comb G’, if there exists a homomorphism g from V'*
to V* such that

L ou(s) = S,
2. Ya € X, pu(a) = a,

hal-00769668, version 1 - 2 Jan 2013

3. u(N')C N-V* and

4. {A - w) | A - o € P} = {4 - ad | A € N,y =
Aéd, and A — a € P}.

It is a selective k-combing if furthermore u(N') C N - V=k.

We denote the elements of N’ by [Ad];, such that u([Ad];) = A, with an ¢
subscript in N to differentiate nonterminals that share the same image by pu.

Note that, if Gcomb G’, then there exists some k such that G’ is a selective k-
combing of G, because u(N') is a finite subset of N - V*. Another observation is
that comb is transitive, and thus we can bypass any intermediate transformation
by using the composition of the p’s. In fact, comb is also reflexive (using the
identity on N for u), and is thus a quasi order.

Grammar Cover. It is easy to see that a grammar and all its pu-combings
are language equivalent. In fact, we can be more specific, and show that any
p-combing G = (N’ X, P’/ [S]p) of G = (N, %, P,S) defines a right-to-x cover
of G (see Nijholt (1980)), i.e. there exists a homomorphism h from P™* to P*
such that

1. for all w in L(G") and right parses «’ of w in G’, h(n') is a parse of w in
g, and

2. for all w in L(G) there is a parse m of w in G, such that there exists a right
parse 7’ of w in G’ with h(n’) = =.

Indeed, defining h by
h([Ad]; = o) = A — pla)- 671 (1)

fits the requirements of a right-to-z cover.

Tree Mapping. Nevertheless, the right-to-x cover characterization is still
somewhat unsatisfying, precisely because the exact derivation order x remains
unknown. We solve this issue by providing a tree transformation that maps
any derivation tree of G’ to a derivation tree of G. Besides allowing us to prove
the language equivalence of G and G’ (see Corollary 1), this transformation also
allows us to map any parse tree of G'—the grammar we use for parsing—to its
corresponding parse tree of G—the grammar we were interested in in the first
place.

We express this transformation as a rewrite system over the set of unranked
forests F(NUN'UY) over the set of symbols NUN'UY, defined by the abstract
syntax

t = X(f) (trees)
fu=e|f-t (forests)
where “X” ranges over N U N’ UX and “” denotes concatenation. Using un-

ranked forests, our tree transformation has a very simple definition, using a
rewrite system — g with one rule per nonterminal [AX; - - X,]; in N':

[AXy - Xoli(wo - Xa(w1) -+ Xo(2r)) =R Alwo) - Xa(21) -+ Xo(2r) - (2)

hal-00769668, version 1 - 2 Jan 2013

with variables xg, 21, . .., z, ranging over F(NUN’'UY). Clearly, — g is noethe-
rian and confluent, and we can consider the mapping that associates to a deriva-
tion tree t in G’ its normal form ¢} g (see Appendix B.1 for details):

Proposition 1. Let G be a CFG and G’ a combing of G.
1. If t' is a derivation tree of G', then t' | g is a derivation tree of G.

2. If t is a derivation tree of G, then there exists a derivation tree t' of G’
such that t =t | p.

Since — i preserves tree yields, we obtain the language equivalence of G and
G’ as a direct corollary of Proposition 1:

Corollary 1 (Combings Preserve Languages). Let G be a k-extended CFG and
G’ a combing of G. Then L(G) = L(G").

3.2 Selective ML Grammars

We define selML(k, m) grammars by analogy with the characterization proved
in Theorem 1:

Definition 3 (Selective ML). A grammar is selML(k, m) if there exists a
selective k-combing of its k-extension that is LR(m).

Basic Properties. We now investigate the class of selML(k, m) grammars.
As a first comparison, we observe that the uniform k-combing of a grammar is
by definition a selective k-combing (by setting p as the identity on N - V<F),
hence the following lemma:

Lemma 1. If a grammar is ML(k, m) for some k and m, then it is selML(k,
m).

As shown by G, this grammar class inclusion is strict.

A second, more interesting comparison holds between selML(0, m) and
LR(m). That a LR(m) grammar is selML(0, m) is immediate since comb is
reflexive; the converse is not obvious at all, because a 0-combing can involve
“duplicated” nonterminals, but holds nevertheless (see Appendix B.2 for de-
tails).

Lemma 2. A reduced grammar is selML(0, m) if and only if it is LR(m).

Recall that a context-free language can be generated by some LR(1) gram-
mar if and only if it is deterministic (Knuth, 1965), thus selML languages also
characterize deterministic languages:

Corollary 2 (Selective ML Languages). A context-free language has a selML
grammar if and only if it is deterministic.

Proof. Given a selML(k, m) grammar G, we obtain an LR(m) grammar G with
a deterministic language, and equivalent to G by Corollary 1. Conversely, given
a deterministic language, there exists an LR(1) grammar for it, which is also
selML(0,1) by Lemma 2. O

hal-00769668, version 1 - 2 Jan 2013

Monotonicity. We should also mention that, unlike uniform ML, increasing
k allows strictly more grammars to be captured by selML(k, m). Indeed, if a
grammar is a selective k-combing of some grammar G, then it is also a k + 1-
combing using the same p (with an extra # endmarker), and remains LR (m).

Proposition 2. If a grammar is selML(k, m) for some k and m, then it is
selML(K', m’) for all k' > k and m’ > m.

Strictness can be witnessed thanks to the grammar family (G¥)x>o defined by
S — A*A' | B*B', A = cA|d, B — c¢B|d, A = cA | a, B = cB'| b (GY)

where each G¥ is selML(k + 1, 0), but not selML(k, m) for any m.

Ambiguity. As a further consequence of Proposition 1, we see that no am-
biguous grammar can be selML(k, m) for any k and m.

Proposition 3. If a grammar is selML(k, m) for some k and m, then it is
unambiguous.

Proof. Assume the opposite: an ambiguous grammar G has a selective k-combing
G’ that is LR(m). Being ambiguous, G has two different derivation trees t; and
to with the same yield w. As t; and ¢y are in normal form for — g, the sets of
derivation trees of G’ that rewrite into ¢; and ¢, are disjoint, and using Propo-
sition 1 we can pick two different derivation trees ¢] and t} with t; = ¢} g and
to = thlr. As — g preserves tree yields, both ¢} and ¢, share the same yield w,
which shows that G’ is also ambiguous, in contradiction with G’ being LR(m)
and thus unambiguous. O

Again, this grammar class inclusion is strict, because the following unambiguous
grammar for even palindromes is not selML(k, m) for any k or m, since its
language is not deterministic:

S —aSa|bSb|e (G4)

Undecidability. Let us first refine the connection between selML and LR in
the case of linear grammars: recall that a CFG is linear if the right-hand side
of each one of its productions contains at most one nonterminal symbol. A
consequence is that right contexts in linear CFGs are exclusively composed of
terminal symbols. In such a case, the selML(k, m) and LR(k + m) conditions
coincide (see Appendix B.2 for details):

Lemma 3. Let G be a reduced linear grammar, and k and m two natural inte-
gers. Then G is selML(k, m) if and only if it is LR(k +m).

Note that in the non-linear case, the classes of selML(k, m) and LR (k+m) gram-
mars are incomparable. Nevertheless, we obtain as a consequence of Lemma 3:

Theorem 2. It is undecidable whether an arbitrary (linear) context-free gram-
mar is selML(k, m) for some k and m, even if we fix either k or m.

Proof. Knuth (1965) has proven that it is undecidable whether an arbitrary
linear context-free grammar is LR(n) for some n. O

hal-00769668, version 1 - 2 Jan 2013

4 Parser Construction

This section discusses how to directly construct an LR-type parser for a given
grammar and fixed k& and m values. The algorithm is incremental, in that it
attempts to use as little right context as possible: this is interesting for efficiency
reasons (much as incremental lookaheads in (Ancona et al., 1991; Parr and
Quong, 1996)), and actually needed since more context does not necessarily
lead to determinism (recall Section 2.3). The class of grammars for which the
algorithm terminates successfully (i.e. results in a deterministic parser, without
ever reaching a failure state) coincides with the class of selML(k, m) grammars
(see propositions 4 and 5). An extended example of the construction will be
given in Section 4.2.

4.1 Algorithm

Algorithm 1 presents the construction of an automaton from the k-extension of
a grammar. We will call this the selML(k, m) automaton. In the final stages
of the construction, the automaton will resemble an LR(m) automaton for a
selective k-combing. Before that, states are initially constructed without right
context. Right contexts are extended only where required to solve conflicts.

Items and States. The items manipulated by the algorithm are of form
([A8] = a e/, L), where L C ¥=™ is a set of terminal lookahead strings, and
where a and o’ might contain nonterminals of the form [B/], where B € N and
B € V=F_ Such nonterminals may later become nonterminals in the selective k-
combing of the input grammar. To avoid notational clutter, we assume in what
follows that B and [B] are represented in the same way, or equivalently, that
an occurrence of B in a right-hand side is implicitly converted to [B] wherever
necessary.

States are represented as sets of items. Each such set ¢ is associated with
three more sets of items. The first is its closure close(q). The second is
conflict(g), which is the set of closure items that lead to a shift/reduce or re-
duce/reduce conflict with another item, either immediately in ¢ or in a state
reachable from ¢ by a sequence of transitions. A conflict item signals that the
closure step that predicted the corresponding rule, in the form of a non-kernel
item, must be reapplied, but now from a nonterminal [Bf] with longer right
context 3. Lastly, the set deprecate(q) contains items that are to be ignored for
the purpose of computing the Goto function.

Item Closure. The sets close(q), conflict(¢) and deprecate(q) are initially com-
puted from the kernel ¢ alone. However, subsequent visits to states reachable
from g may lead to new items being added to conflict(q) and then to close(q)
and deprecate(q). How items in these three sets are derived from one another
for given ¢ is presented as the deduction system in Figure 2.

The closure step is performed as in conventional LR parsing, except that
right context is copied to the right-hand side of a predicted rule. The conflict
detection step introduces a conflict item, after a shift/reduce or reduce/reduce
conflict appears among the derived items in the closure. Conflict items solicit
additional right context, which

10

hal-00769668, version 1 - 2 Jan 2013

Algorithm 1: Construction of the selML(k, m) automaton for the k-extension
of G = (N, %, P, S), followed by construction of a selective k-combing.

1: States <+ ()
2: Transitions < ()
3: Agenda < ()
4: ginie = {(ST — o S#* {e})}
5: NEWSTATE(ginit)
6: while Agenda # () do
7 q < pop(Agenda)
8: remove (g, X,q’) from Transitions for any X and ¢
9: apply Figure 2 to add new elements to the three sets associated with ¢
10: for all ([Ad] — aX e (8, L) € conflict(q) do
11: for all ¢’ such that (¢’, X, q) € Transitions do
12: ADDCONFLICT(([A8] — @ Xu(B),L),q')
13: end for
14: end for
15: if there are no ([Ad] — aX e 3, L) € conflict(¢) then
16: gmaz < close(q) \ deprecate(q)
17: for all X such that there is ([A0] = « @ X3, L) € gmazx do
18: q + Goto(gmaz, X)
19: if ¢’ ¢ States then
20: NEWSTATE(q)
21: else
22: for all ([A'6'] — o’ X e 8, L) € conflict(q’) do
23: ADDCONFLICT(([A'8'] — o’ © Xpu(B'), L), q)
24: end for
25: end if
26: Transitions < Transitions U{(q, X, ¢')}
27: end for

28: end if

29: end while

30: construct a selective k-combing as explained in the running text
31:

32: function NEWSTATE(q)

33: close(q) < ¢

34: conflict(q) < 0

35: deprecate(q) < 0

36: States + States U{q}

37: Agenda « Agenda U{q}

38: end function

39:

40: function ADDCONFLICT(([Ad] — a @ X3, L),q)

41: if ([Ad] — a e X3, L) ¢ conflict(q) then

42: conflict(g) < conflict(q) U {([Ad] - av® X3, L)}
43: Agenda « Agenda U{q}

44: end if

45: end function

11

hal-00769668, version 1 - 2 Jan 2013

([A8] — o @ [Bf31]P2, L) € close(q) { B—+~y€eP
([BB1] — @By, L") € close(q) L" = First, (82L)

([A161] = a1 ® 1, L1) € close(q)
([A205] = s 8, L) € close(q) { (A161, a1, Br) # (A202, a2, €),

(closure)

([A262] — Qs .7L2) c Conﬂict(q) FlrStm(,uf(/Bl)Ll) N L2 # @ (COnﬂICt detectlon)

([Ad] — a @ [Bf], L) € close(q)
([BS] — e, L) € conflict(q)
([Ad] — a o [BB], L) € conflict(q)

([Ad] — a o [BB1]X B2, L) € close(q)

(conflict propagation)

([BB1] — e v, L") € conflict(q) |B1] < K, (extension)
([A0] — a ® [BA1X|B2, L) € close(q) | L' = First,,(X35L), crrension
([BB] — o %j:_) € conflict(q) (18] =k (failure)

([A8] — « e [B31X]B2, L) € close(q) (deprecation)

([A6] — « o [BB1]X B2, L) € deprecate(q)

([40] = v @ [BB1X]fBs, L) Eclose(q) [B =~ € P,u(y)=p,
([BB1] — ', L") € deprecate(q) L’ = First,, (X 32 L),

(deprecate closure)

Figure 2: Closure of set ¢ with local resolution of conflicts.

e may be available locally in the current state, as in step extension, where
nonterminal [B/] is extended to incorporate the following symbol X —we
assume p here is a generic “uncombing” homomorphism, turning a single
nonterminal [B3;] into a string Bf; € N - V<F— or

e if no more right context is available at the closure item from which a
conflict item was derived, then the closure item itself becomes a conflict
item, by step conflict propagation—propagation of conflicts across states
is realized by Algorithm 1 and will be discussed further below—, or

e if there is ever a need for right context exceeding length k, then the gram-
mar cannot be selML(k, m) and the algorithm terminates reporting failure
by step failure.

Step deprecation expresses that an item with shorter right context is to be
ignored for the purpose of computing the Goto function. The Goto function will
be discussed further below. Similarly, step deprecate closure expresses that all
items predicted from the item with shorter right context are to be ignored.

Main Algorithm. Initially, the agenda contains only the initial state, which
is added in line 5. Line 7 of the algorithm removes an arbitrary element from
the agenda and assigns it to variable g. At that point, either close(q) = ¢
and conflict(q) = deprecate(q) = 0 if ¢ was not considered by line 7 before, or
elements may have been added to conflict(¢q) since the last such consideration,
which also requires updating of close(q) and deprecate(q), by Figure 2. By a
change of the latter two sets, also the outgoing transitions may change. To

12

hal-00769668, version 1 - 2 Jan 2013

keep the presentation simple, we assume that all outgoing transitions are first
removed (on line 8) and then recomputed. From line 10, conflicting items are
propagated to states immediately preceding the current state, by one transition.
Such a preceding state is then put on the agenda so that it will be revisited later.

Outgoing transitions are (re-)computed from line 15 onward. This is only
done if no conflicting items had to be propagated to preceding states. Such
conflict items would imply that ¢ itself will not be reachable from the initial
state in the final automaton, and in that case there would be no benefit in
constructing outgoing transitions from g.

For the purpose of applying the Goto function, we are only interested in the
closure items that have maximal right context, as all items with shorter context
were found to lead to conflicts. This is the reason why we take the set difference
gmaz = close(q) \ deprecate(q). The Goto function is defined much as usual:

Goto(gmaz, X) = {([40] = aX e §,L) | ([A0] = o X, L) € gmaz} - (3)

The loop from line 22 is very similar to that from line 10. In both cases,
conflicting items are propagated from a state gs to a state ¢; along a transition
(¢1,X,q2). The difference lies in whether ¢; or g2 is the currently popped
element ¢ in line 7. The propagation must be allowed to happen in both ways,
as it cannot be guaranteed that no new transitions are found leading to states
at which conflicts have previously been processed.

Combing Construction. After the agenda in Algorithm 1 becomes empty,
only those states reachable from the initial state ¢y,;; via transitions in Transitions
are relevant, and the remaining ones can be removed from States. From the
reachable states, we can then construct a selective k-combing, with start sym-
bol ST, as follows.

For each ¢, € States and ([Ad] — X, --- X, o, L) € close(qy,) \ deprecate(qy,),
some n > 0, find each choice of:

® 4o,---59n—1,
e Bo,...,Bn, with 8, =¢,
such that for 0 < j < n,
e (gj,X;+1,¢j41) € Transitions,
o ([A0] > X1 --- X, @ X;110841,L) € close(g;) \ deprecate(g;), and
o B = mX;41)B541-

It can be easily seen that Sy must be of the form «d, for some rule A — a. For
each choice of the above, now create a rule Yy — Y7 ---Y},, where Y| stands for
the triple (go, A0, L), and for 1 < j < n:

e if X; is a terminal then Y; = X, and

e if X, is of the form [B;~;] then Y; stands for the triple (¢;—1, B;v;,L;),
where L; = First,,,(8;L).

We assume here that (Yp) = Ad and p(Y;) = Bjy; for 1 < j <n.

13

hal-00769668, version 1 - 2 Jan 2013

4.2 Example

Example 2. Let us apply Algorithm 1 to the construction of a selML(2, 0)
parser for Goqq. The initial state is g, = {ST — @S##} (there is no lookahead
set since we set m = 0) and produces through the rules of Figure 2

close(ginit) = {ST — eS##,S — eSdA, S — ec} . (4)

Fast-forwarding a little, the construction eventually reaches state gsq = {S —
Sd e A} with

close(gsq) = {S — Sde A, A — ea, A — eab} , (5)
which in turn reaches state gsq, = {4 — ae, A — a e b} with

close(qsda) = ¢sda (6)
conflict(¢saq) = {4 — ae} . (7)
As this item is marked as a conflict item, line 10 of Algorithm 1 sets

conflict(gsq) = {A — ea} (8)

and puts gsq back in the agenda. Then, the conflict propagation rule is fired to
set

conflict(ggq) = {A — ®a,S — Sde A} | (9)
and by successive backward propagation steps we get

conflict(ginit) = {S — oSdA} . (10)
The extension rule then yields

close(ginit) = {ST — eS##,S — 0SdA, S — ec, ST — o[S#|#,S — o[Sd|A} ,
(11)

which is closed to obtain

close(ginit) = {ST — oS##,5 — 0SdA, S — ec, ST — o[S#]#,S — o[Sd]A,

[S#] — eSdA#, [S#] — ec#, [Sd] — eSdAd, [Sd] — ecd}
(12)

and we can apply again the extension rule with the conflicting item S — eSdA:

close(ginit) = {ST — oS##,5 — 0SdA, S — ec, ST — o[S#]#,S — o[Sd]A,
[S#]| — o SdA#,[S#] — ec#,[Sd] — eSdAd,[Sd] — ecd,
[S#] — [Sd]A#, [Sd] — e[Sd]Ad} . (13)

The deprecate and deprecate closure rules then yield

deprecate(q) = {ST — eS##,S — 0SdA, S — ec,[S#] — eSdA#,
[Sd] — eSdAd, ...} . (14)

We leave the following steps to the reader; the resulting parser is displayed in
Figure 3 (showing only items in close(q) \ deprecate(q) in states).

14

hal-00769668, version 1 - 2 Jan 2013

St — e [S#]#
[S#] — o [Sd]A# (5]
> [S#] s ec# —>| — [S#] e # |—>| ST [S#|# e
[Sd) — e [Sd]Ad

[Sd] —ecd w\
c (S #] — [Sd] » [A#]

[Sd] — [Sd] e [Ad]

[S#] = co # [A#] > e a#

[Ad] |
[Sd] — [Sd][Ad] e

[Sd] —ced [A#] — e ab#

/ \ [Ad] > ead w‘
[Ad] - eabd

lis 4] - [sajja#

[S#] = cH# o [Sd] = cde a
[A#] = a e #
[A#] — ab o # b [A#] > aeb# # | (4 4]) |
> = ad e
[Ad] — ab e d [Ad] = aed i
[Ad] > aebd
X
| [Ad] > ade |
[A#] = ab# e [Ad] - abd e

Figure 3: The selML(2, 0) parser for Goqq.

4.3 Correctness

First observe that Algorithm 1 always terminates: the number of possible sets
g, along with the growing sets close(q), conflict(q) and deprecate(q), is bounded.

Termination by the failure step of Figure 2 occurs only when we know that
the resulting parser cannot be deterministic; conversely, successful termination
means that a deterministic parser has been constructed. One could easily modify
the construction to keep running in case of failure and output a nondeterministic
parser instead, for instance to use a generalized LR parsing algorithm on the
obtained parser.

The correctness of the construction follows from propositions 4 and 5 (see
Appendix C for details).

Proposition 4. If Algorithm 1 terminates successfully, then the constructed
grammar is a selective k-combing. Furthermore, this combing is LR(m).

Proof Idea. The structure of the selML(k, m) automaton and the item sets
ensure that the constructed grammar satisfies all the requirements of a selective
k-combing. Had this been non-LR(m), then there would have been further steps
or failure. O

Proposition 5. If the grammar is selML(k, m), then the algorithm terminates
successfully.

Proof Idea. The selML(k, m) automaton under construction reflects minimum
right context for nonterminal occurrences in any selective k-combing with the
LR(m) property. Furthermore, failure would imply that right context of length
exceeding k is needed. O

15

hal-00769668, version 1 - 2 Jan 2013

As a consequence, we can refine the statement of Theorem 2 with

Corollary 3. It is decidable whether an arbitrary context-free grammar is selML(k, m),

for given k and m.

5 Experimental Results

We have implemented a proof of concept of Algorithm 1, which can be down-
loaded from http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/. Its
purpose is not to build actual parsers for programming languages, but merely
to check the feasibility of the approach and compare selML with uniform ML
and more classical parsers. with our test suite and the

Grammar Collection. We investigated a set of small grammars that exhibit
well-identified syntactic difficulties, to see whether they are treated correctly
by a given parsing technique, or lie beyond its grasp. This set of grammars
was compiled by Basten (2008) and extended in (Schmitz, 2010), containing
mostly grammars for programming languages from the parsing literature and
the comp.compilers archive, but also a few RNA grammars used by the bioin-
formatics community (Reeder et al., 2005).

Conflicts. As expected, we identified a few grammars that were not LALR(1)
but were selML(k, m) for small values of k& and m—one may bear in mind
that any progress in this respect seems worthwhile for a grammar developer
struggling with conflicts.

Example 3 (Tiger). One such example is an excerpt from the Tiger syntax
found at http://compilers.iecc.com/comparch/article/98-05-030. The
grammar describes assignment expressions E, which are typically of the form
“L:= E” for L an lvalue.

E—L|L:=E|i[E]of E L—i|L[E]| L.

The grammar is not LR(m) for any m, but is ML(3, 1) and ML(2, 2): a conflict
arises between inputs of the form “/[E] of E” and “[E] := E”, where the initial
i should be kept as such and the parser should shift in the first case, and reduce
to L in the second case. An ML(3, 1) or ML(2, 2) parser scans up to the “of”
or “:=" token that resolves this conflict, across the infinite language generated
by E.

Example 4 (Typed Pascal Declarations). Another example is a version of
Pascal identifier declarations with type checking performed at the syntax level,
which was proposed by Tai (1979). The grammar is LR(2) and ML(1,0):

D — var ILIT ;| var RLRT ;

IL— i, IL |4 IT — : integer

RL— i, RL |4 RT — : real
On an input like “vari, i, ¢ : real;”, a conflict arises between the reductions
of the last identifier ¢ to either an integer list IL or a real list RL with “” as

terminal lookahead. By delaying these reductions, one can identify either an
integer type IT or a real type RT.

16

http://www.cs.st-andrews.ac.uk/~mjn/code/mlparsing/
http://compilers.iecc.com
http://compilers.iecc.com/comparch/article/98-05-030

hal-00769668, version 1 - 2 Jan 2013

Non-Monotonicity. We found that non-monotonic behaviour with uniform
ML parsers occurs more often than expected. Here is one example in addition
to the C+4 example given in Section 2.1; more could be found in particular
with the RNA grammars of Reeder et al. (2005).

Example 5 (Pascal Compound Statements). The following is an excerpt from
ISO Pascal and defines compound statements C' in terms of “;”-separated lists
of statements S:

C — begin L end L—>L;S|S S—e|C

This is an LALR(1) and ML(1, 0) grammar, but it is not ML(2, 0): the nonter-
minal [L; S] has a rule [L; S] — [L; S]; [S], giving rise to a nonterminal [S] with
rules [S] — € | [C] and a shift/reduce conflict—in fact, this argument shows
more generally that the grammar is not ML(k, 0) for even k.

Parser Size. Because selML parsers introduce new context symbols only when
required, they can be smaller than the corresponding LR or uniform ML parsers,
which carry full lookahead lengths in their items—this issue has been investi-
gated for instance by Ancona et al. (1991) and Parr and Quong (1996) for LR
and LL parsers. Our results are inconclusive as to the difference of parser size
(in terms of numbers of states) between selML and LR. However, selML parsers
tend to be considerably smaller than uniform ML parsers. For instance, the
ML(1, 1) parser for the C++ grammar fragment of Section 2.1 has 50 states,
while its selML(1, 1) parser only features 28 states.

In fact, we can make the argument more formal: consider the family of
grammars (G%);>0, each with rules:

S—A|D, A—al|Ab|Ac, D— EF7'F|EFI—1F, @)
F —a|bF, F' — f|bF', E—e E >e. 4
The uniform ML(j, 0) parser for Gi has exponentially many states in j, caused
by the rules [Aw] — aw for all w in {b, c}’, while the selective ML(j, 0) parser
has only a linear number of states, as there is no need for delays in that part of
the grammar.

6 Related Work

Grammar Transformations and Coverings. The idea of using grammar
transformations to obtain LR(1) or even simpler grammars has been thoroughly
investigated in the framework of grammar covers (Nijholt, 1980). Among the
most notable applications, Mickunas et al. (1976) provide transformations from
LR(k) grammars into much simpler classes such as simple LR(1) or (1,1)-
bounded right context; Soisalon-Soininen and Ukkonen (1979) transform predic-
tive LR (k) grammars into LL(k) ones by generalizing the notion of left-corner
parsing. Such techniques were often limited however to right-to-right or left-
to-right covers, whereas our transformation is not confined to such a strict
framework.

17

hal-00769668, version 1 - 2 Jan 2013

Parsing with Delays. A different notion of delayed reductions was already
suggested by Knuth (1965) and later formalized by Szymanski and Williams
(1976) as LR(k, t) parsing, where one of the ¢ leftmost phrases in any rightmost
derivation can be reduced using a lookahead of k£ symbols. The difference be-
tween the two notions of delay can be witnessed with linear grammars, which
are LR(k, t) if and only if they are LR(k)—because there is always at most one
phrase in a derivation—but selML(k, m) if and only if they are LR(k + m)—as
shown in Lemma 3.

Like seML languages, and unlike more powerful noncanonical classes, the

class of LR(k, t) grammars characterizes deterministic context-free languages.
The associated parsing algorithm is quite different however from that of selML
parsing: it uses the two-stacks model of noncanonical parsing, where reduced
nonterminals are pushed back at the beginning of the input to serve as looka-
head in reductions deeper in the stack. Comparatively, selML parsing uses the
conventional LR parsing tables with a single stack.
Selectivity. Several parser construction methods attempt to use as little “in-
formation” as possible before committing to a parsing action: Ancona et al.
(1991) and Parr and Quong (1996) try to use as little lookahead as possible in
LR(k) or LL(k) parsing, Demers (1977) generalizes left-corner parsing to delay
decisions possibly as late as an LR parser, and Fortes Gdlvez et al. (2006) pro-
pose a noncanonical parsing algorithm that explores as little right context as
possible.

7 Concluding Remarks

Selective ML parsing offers an original balance between
e enlarging the class of admissible grammars, compared to LR parsing, while

e remaining a deterministic parsing technique, with linear-time parsing and
exclusion of ambiguities,

e having a simple description as a grammar transformation, and
e allowing the concrete construction of LR parse tables.

This last point is also of interest to practitioners who have embraced general,
nondeterministic parsing techniques (Kats et al., 2010): unlike noncanonical
or regular-lookahead extensions, selML parsers can be used for nondeterminis-
tic parsing exactly like LR parsers. Having fewer conflicts than conventional
LR parsers, they will resort less often to nondeterminism, and might be more
efficient.

References
Ancona, M., Dodero, G., Gianuzzi, V., and Morgavi, M., 1991. Efficient construction

of LR(k) states and tables. ACM Transactions on Programming Languages and
Systems, 13(1):150-178. doi:10.1145/114005.102809.

18

http://dx.doi.org/10.1145/114005.102809

hal-00769668, version 1 - 2 Jan 2013

Basten, H.J.S., 2008. The usability of ambiguity detection methods for context-
free grammars. In Vinju, J. and Johnstone, A., editors, LDTA’08, 8th Work-
shop on Language Descriptions, Tools and Applications, volume 238(5) of Flec-
tronic Notes in Theoretical Computer Science, pages 35—46. Elsevier. doi:10.1016/
j-entcs.2009.09.039.

Bermudez, M.E. and Schimpf, K.M., 1990. Practical arbitrary lookahead LR pars-
ing. Journal of Computer and System Sciences, 41(2):230-250. doi:10.1016/
0022-0000(90)90037-L.

Bertsch, E. and Nederhof, M.J., 2007. Some observations on LR-like parsing with
delayed reduction. Information Processing Letters, 104(6):195-199. doi:10.1016/
j.ipl.2007.07.003.

Boullier, P., 1984. Contribution a la construction automatique d’analyseurs lexi-
cographiques et syntariques. These d’Etat, Université d’Orléans.

Culik, K. and Cohen, R., 1973. LR-Regular grammars—an extension of LR(k)
grammars. Journal of Computer and System Sciences, 7(1):66-96. doi:10.1016/
S0022-0000(73)80050-9.

Demers, A.J., 1977. Generalized left corner parsing. In POPL’77, 4th Annual
Symposium on Principles of Programming Languages, pages 170-182. ACM. doi:
10.1145/512950.512966.

Farré, J. and Fortes Gélvez, J., 2001. A bounded-connect construction for LR-
Regular parsers. In Wilhelm, R., editor, CC 2001, 10th International Confer-
ence on Compiler Construction, volume 2027 of LNCS, pages 244-258. Springer.
doi:10.1007/3-540-45306-7_17.

Fortes Gélvez, J., Schmitz, S., and Farré, J., 2006. Shift-resolve parsing: Simple, linear
time, unbounded lookahead. In Ibarra, O.H. and Yen, H.C., editors, CIAA’06, 11th
International Conference on Implementation and Application of Automata, volume
4094 of LNCS, pages 253-264. Springer. doi:10.1007/11812128_24.

Gosling, J., Joy, B., and Steele, G., 1996. The Java™ Language Specification. Addison-
Wesley, first edition. ISBN 0-201-63451-1.

ISO, 1998. ISO/IEC 14882:1998: Programming Languages — C++. International
Organization for Standardization, Geneva, Switzerland.

Kats, L.C., Visser, E., and Wachsmuth, G., 2010. Pure and declarative syntax defini-
tion: Paradise lost and regained. In OOPSLA 2010, ACM international conference
on Object oriented programming systems languages and applications, pages 918-932.
ACM. doi:10.1145/1869459.1869535.

Knuth, D.E., 1965. On the translation of languages from left to right. Inform. and
Cont., 8(6):607-639. doi:10.1016,/S0019-9958(65)90426-2.

Leermakers, R., 1992. Recursive ascent parsing: from Earley to Marcus. Theoretical
Computer Science, 104(2):299-312. doi:10.1016/0304-3975(92)90127-2.

Malloy, B.A., Power, J.F., and Waldron, J.T., 2002. Applying software engineering
techniques to parser design: the development of a C# parser. In SAICSIT 02, pages
75-82. SAICSIT.

Marcus, M.P., 1980. A Theory of Syntactic Recognition for Natural Language. Series
in Artificial Intelligence. MIT Press. ISBN 0-262-13149-8.

McPeak, S. and Necula, G.C., 2004. Elkhound: A fast, practical GLR parser generator.
In Duesterwald, E., editor, CC 2004, 13th International Conference on Compiler
Construction, volume 2985 of LNCS, pages 73-88. Springer. doi:10.1007/b95956.

Mickunas, M.D., Lancaster, R.L., and Schneider, V.B., 1976. Transforming LR(k)
grammars to LR(1), SLR(1), and (1,1) Bounded Right-Context grammars. Journal
of the ACM, 23(3):511-533. do0i:10.1145/321958.321972.

Nijholt, A., 1980. Context-free grammars: Covers, normal forms, and parsing, vol-

19

http://dx.doi.org/10.1016/j.entcs.2009.09.039
http://dx.doi.org/10.1016/j.entcs.2009.09.039
http://dx.doi.org/10.1016/0022-0000(90)90037-L
http://dx.doi.org/10.1016/0022-0000(90)90037-L
http://dx.doi.org/10.1016/j.ipl.2007.07.003
http://dx.doi.org/10.1016/j.ipl.2007.07.003
http://dx.doi.org/10.1016/S0022-0000(73)80050-9
http://dx.doi.org/10.1016/S0022-0000(73)80050-9
http://dx.doi.org/10.1145/512950.512966
http://dx.doi.org/10.1145/512950.512966
http://dx.doi.org/10.1007/3-540-45306-7_17
http://dx.doi.org/10.1007/11812128_24
http://dx.doi.org/10.1145/1869459.1869535
http://dx.doi.org/10.1016/S0019-9958(65)90426-2
http://dx.doi.org/10.1016/0304-3975(92)90127-2
http://dx.doi.org/10.1007/b95956
http://dx.doi.org/10.1145/321958.321972

hal-00769668, version 1 - 2 Jan 2013

ume 93 of LNCS. Springer. doi:10.1007/3-540-10245-0.

Parr, T.J. and Quong, R.W., 1996. LL and LR translators need k > 1 lookahead.
ACM Sigplan Not., 31(2):27-34. doi:10.1145/226060.226066.

Reeder, J., Steffen, P., and Giegerich, R., 2005. Effective ambiguity checking in biose-
quence analysis. BMC Bioinformatics, 6:153. doi:10.1186/1471-2105-6-153.

Schmitz, S., 2010. An experimental ambiguity detection tool. Science of Computer
Programming, 75(1-2):71-84. do0i:10.1016/j.scico.2009.07.002.

Sippu, S. and Soisalon-Soininen, E., 1990. Parsing Theory, Vol. II: LR(k) and
LL(k) Parsing, volume 20 of EATCS Monographs on Theoretical Computer Sci-
ence. Springer. ISBN 3-540-51732-4.

Soisalon-Soininen, E. and Ukkonen, E., 1979. A method for transforming grammars
into LL(k) form. Acta Informatica, 12(4):339-369. doi:10.1007/BF00268320.

Szymanski, T.G. and Williams, J.H., 1976. Noncanonical extensions of bottom-up
parsing techniques. SIAM Journal on Computing, 5(2):231-250. doi:10.1137/
0205019.

Tai, K.C., 1979. Noncanonical SLR(1) grammars. ACM Transactions on Programming
Languages and Systems, 1(2):295-320. doi:10.1145/357073.357083.

20

http://dx.doi.org/10.1007/3-540-10245-0
http://dx.doi.org/10.1145/226060.226066
http://dx.doi.org/10.1186/1471-2105-6-153
http://dx.doi.org/10.1016/j.scico.2009.07.002
http://dx.doi.org/10.1007/BF00268320
http://dx.doi.org/10.1137/0205019
http://dx.doi.org/10.1137/0205019
http://dx.doi.org/10.1145/357073.357083

hal-00769668, version 1 - 2 Jan 2013

The following appendices contain material that will not be part of the final
paper, if accepted.

A Uniform ML Parsers

We recall here the uniform ML(k, m) parser construction of Bertsch and Neder-
hof (2007). The states are defined as sets of (k, m)-items [A5 — [e 7, x], where
A — aisarulein P, |§] < k, ad = Bv, and x € ¥™. Define a set of items
close(q), where ¢ is a set of items, as the smallest solution of

close(q) = qU{[B(k:v) > e B(k:v),y]| [0 = o e By,z] € close(q),
B — p € P,y € Firsty, (v : k)x)}

where 7 : k is the suffix of v such that v = (k : v)(y : k) and First,,, (o) = {m :
w € L™ | o =* w} for any a in V*. The reductions allowed in state ¢ by the
parser are defined as

Reductions(q) = {[0 = a,z] | [§ = « e,] € q}
a transition by the following Goto function

Goto(q, B) = close({[0 = aa @ v,2] | [0 = a®ay,z] € ¢ and a € X}

U{[0 >aBBe~v,z]|[0d > aeBpy,x]cq,B=Fk:[yand BeE N})

and the initial state qo as

qo = close({[ST — o S#* #™]}) .

Figure 4 provides an example of the Marcus-Leermakers construction on
Goad- Note the conflict in the dashed state.

B Grammar Transformation

B.1 Combing Relations

Remark 1 (Ranked vs. Unranked Trees). We contemplated for a while expressing
the transformation performed by — g in a ranked setting, using multi bottom-
up tree transducers, but the apparatus felt quite heavy. In fact, one could also
define combings through macro tree transductions of a very restricted form, but
the list of restrictions (linear, non-erasing, order preserving, ¥-preserving, local,
etc.) would be daunting.

Lemma 4. The pair (G, h) is a right-to-x cover for G.

Proof. Immediate consequence of Proposition 1 and the fact that — g preserves
tree yields. O

Lemma 5. The rewrite relation — is noetherian and confluent.

hal-00769668, version 1 - 2 Jan 2013

% St 5 #ue

St — o S#4

H#H# dA ##
S## e SAAEHE | sin | suu > SdA e pp |_#

SdA — SdA e dA

S — e et S ## — SdA # e #

SdA — e SdA dA
SdA — e cdA

d

#

c
/ S ##4 — SdA #+4 e

SdA — SdA d e A
S H#H#H — c o H#HH# A>ea
SdA — cedA A —eab
N\ |
a
_____________ .
SH## i o # SdA —cde A : .
a_y, A—ae b >
A—ea , h
A —>eab L___é_i)g_._l)____l

A —abe

SHH# — c # o #

Figure 4: The uniform ML(2, 0) parser for Goqq.

Proof. The fact that — is noetherian is immediate, since the number of sym-
bols of N’ that appear as node labels decreases strictly at each application of
— g, and since the trees we consider are finite.

Let us prove that —g is locally confluent: for all z, y, and 2z in F(NUN'U
Y), z - y and * —pg z imply that there exists 2’ € F(N U N’ U X) such
that y —%5 2’ and z —% 2’. Indeed, either y = 2 and we can take 2’ = y,
or the two rewrites from x have targeted two nonterminals [AX; ...X,]; and
[CY:...Y;]; in N at two different nodes of z. Observe that, in the latter case,
the children of [CY; ...Y,]; labeled by Y3,...,Y, in N have not been modified
by the rewrite at [AX; ... X4];, and we can thus still rewrite at [C'Y;...Y;]; in
y, and symmetrically in z. Thus we can obtain a single tree =’ after a single
rewrite step from either y or z.

We conclude by Newman’s Lemma that — g is globally confluent. O

Proposition 6. Let G be a CFG and G' a combing of G.
1. If t' is a derivation tree of G', then t' [g is a derivation tree of G.

2. If t is a derivation tree of G, then there exists a derivation tree t' of G’
such that t =t' | r.

Proof of 1. First observe that, since — g is confluent, any strategy for ordering
rewrites will lead to the same normal form ¢ |g. Here we use a bottom-up
strategy, starting from the leaves (of form X (g)) of ¢’ up to its root S’(f).

We generalize the notion of derivation trees to allow any root label and not
just the axiom S of the grammar. Let us prove by induction over f that

Claim 4. If X (f) is a derivation tree of G’, then X (f)|r is a sequence Xo(fo)X1(f1) - - X (fr)

of derivation trees of G with u(X) = XoX; -+ X,

ii

hal-00769668, version 1 - 2 Jan 2013

Note that the claim implies the desired result, since a derivation tree t’ =
S’(f) of G’ is then associated to a derivation tree ¢’ [r= p(S")(fo) = S(fo) of G
(recall condition 1).

By condition 2, the case where X is a terminal symbol in ¥ is immediate,
and we consider the one where X = [AX;--- X,]; is in N'; we want to show
that [AX: -+ X,]:(f) g is a sequence A(fo)X1(f1) -+ X,-(f) of derivation trees
of G.

By definition of a derivation tree, the forest f matches the right hand side
of some production [AX;---X,]; — o of P, which by condition 4, verifies
w(a) = aX;--- X, for some A — « in P. Write « = Y7 ---Y,,; by induction
hypothesis on f and the fact that (f - f')lr= (flr) - (f'{r), we deduce that

FLr=Ya(f1) - Yol f3) - Xa(f2) -+ X () (15)

is a sequence of derivation trees of G. Then

[AXy - Xo () br= AN (D) -+ Yo (£3)) - Xa (1) -+ Xo(fr) - (16)

is indeed a sequence of derivation trees of G. O

Proof of 2. The idea is to revert the computation exhibited for the proof of
item 1 to build a tree t':

Claim 5. If f = Xo(fo)X1(f1) - X,-(fr) is a sequence of derivation trees of G
with u(X) = XoX; - - X, for some X in N’, then there exists a sequence [’ s.t.
X(f") is a derivation tree of G’ verifying X (f')lgr= f.

Item 2 then follows from condition 1, since a derivation tree ¢t of G is a
sequence S(f) with p(S’) = S, for which Claim 5 yields the existence of a
derivation tree t' = S(f’) with ¢’ | gp=t.

We prove the claim by induction on f. Again, the case where X, is a
terminal in ¥ is trivial, since then r = 0 and fy, = ¢, and setting X = X, fits
the statement of Claim 5 by condition 2.

Let us therefore consider the case where X is a nonterminal in N. Then
fo has to match the right hand side of some production Xy — « in P, and by
condition 4 there exists a corresponding production X — o in P’ s.t. u(a’) =
aXy -+ X,. If we write o/ =Y ---Y,,, then the sequence fo - X1(f1) - X,-(fr)
can be seen as a concatenation of factors Z; 1(f]) Zir, (fi,,) with u(Y;) =
Zi1+-+Z;r,. Applying the induction hypothesis on each factor yields the exis-
tence of derivation trees Y;(f;") of G’ verifying Y;(fi') lr= Zi 1(fi1) -+ Zir;(fi,.);
from which we deduce

[XoX1 - X, Ji(Vi(f) - Yo (f)) b= Xo(fo) X1 (f1) - - X (f2) (17)

as desired. |

B.2 Selective ML Grammars
Lemma 6. A reduced grammar is selML(0, m) if and only if it is LR(m).

Proof. First observe that, if a grammar is LR(m), then it is also selML(0, m)
if we take N’ = N and the identity for u.

iii

hal-00769668, version 1 - 2 Jan 2013

Conversely, let us prove that if G is not LR(m), then it is not selML(0, m).
Consider for this a 0-combing G’ of the 0-extension of G, and a conflict in the
m-extension of G:

ST:>:m51Au:>rm51au:'yu 01 #£dsor A Bora#0

st =1t 02BU =1 62wy = ywv m:u=1m:wv
Because G is reduced, there exists a derivation
vy =% (18)

for some w’. We obtain in the m-extension of G’

ST = 5 A'u = 0’y = Yju 8 #hbor A 4B ora #f
St =% 65B'v = 8580 = Ahwo miu=m:uwv
where

wA)Y=A wB)Y=B u)=0 w6y =70 un)=muHy)=".

Observe that this is an LR(m) conflict situation in G’ if 7] = ~4; assuming the
contrary, we can write v; = v'C1v{ and v4 = v'C)~4 where ~ is the longest
common prefix of v and 4, and u(Cy) = u(C%) = C. Pick the production

C — p used in (18); we get the existence of two derivations in G’

ST =1 VOl = 7 Clw"u S o' P’ u uph) = p
ST = 7 O wo =1, 7 Cow"wo S v phwwo (o) = p

where w” is the corresponding suffix of w’ from (18). Because m : w"u =m :
w”wv, this is an LR(m) conflict in G" if p}{ = p. Otherwise, we can again
pick the longest common prefix of p} and pj and keep unfolding the derivation
in (18); as the latter is finite, this process eventually terminates and allows to
exhibit a conflict. O

Lemma 7. Let G be a reduced linear grammar, and k and m two natural inte-
gers. Then G is selML(k, m) if and only if it is LR(k + m).

Proof of LR(k + m) implies selML(k, m). Assume G is not selML(k, m), and
consider the following particular k-combing G’ = (N’,%, P’,[ST]) of the k-
extension of G:

N’ = {[Au] | A € N and u € Follow(A)}

where Follow(A) = {k : w € ¥=F | § =% SAw} and p([Au]) = Au as usual,
and

P = {[Au] - w[Bv]v' | A - wBw' € P,vv’ =w'u, |v| =k}
U {[Au] > wu | A — w e P}.

iv

hal-00769668, version 1 - 2 Jan 2013

Then G’ is not LR(m), thus there is a conflict in its m-extension

ST =% w [Aui vy, = wid/vy = y'v; wy # wa or [Auq] # [Bug] or o # 3

ST =% wy[Busglvy = waf've = v'v'vy m:vy=m: v vy
where |uy| = |ug| = k. But then, we have in the (m + k)-extension of G
ST = wi Augv; = wiauvy = yuiv, wu(a') = auy
ST =% wyBusvs = waBugs = YoUsvs w(B') = Bus

u(y') =yur ="

such that v"v/ = vus. As k+m : uivy = k+m : vV"v've = k+m : vugvs,
the only problematic case in order to exhibit an LR(k + m) conflict is that of
w1 = we, @ = 3, and A = B, but u; # us. Observe however that o’ then needs
to be a prefix of 3/, as v'a’ = w1’ = wea’ and y'v' = wyf’. As we are working
with a k-extended grammar, |uj| = |us| = k, hence |u(a’)| = |u(B’)|, hence
|o/| = |B’| (as they need to both contain a nonterminal symbol or not contain a
nonterminal symbol, and |p(C)| = k+1 for all C # St). Finally, o/ = 8/, which
is incompatible with A = B and w1 # us. O

Proof of selML(k, m) implies LR(k + m). Assume G is not LR(k+m); then we
have a conflict in its (k + m)-extension:

ST =% uy Avy = uu) Xvjvg =y uy # ug or A # B or vy Xv| # ubYwovl
ST =% uy By = upuhY wohve = yvhvy k4+m vy =k +m : vhuy
Note that, if X € N or Y € N, then X =Y.

Consider now any k-combing G’ of the k-extension of G; the following situ-
ation occurs in the m-extension of G’:

ST =% i [Aw; |0} = urav) v = wivy p(a) = vy Xvjwy
ST =% uy[Buws]jvg = usBvy vy = wavy (B) = upY wvyws

If X or Y is in X, then both are, and ujav] = ywivf and us vy = yvhwavl
allow to exhibit an LR(m) conflict in G': since |wy| < k, we can rewrite yvjwavy
as ywhwl such that yw) = ~yws, and we have m : v = m : w§ and uy # us or
[Awl]z # [ng]j or « 7£ B

Otherwise, X =Y but the combing might associate two different nontermi-
nals X’ and Y’ of N’ to them (or if they are the same nonterminal we imme-
diately obtain an LR(m) conflict as in the terminal case). However, applying
the same reasoning as in the proof of Lemma 2, because G is reduced, we will
eventually reach a case where a conflict arises. O

C Parser Construction

Proposition 7. If Algorithm 1 terminates successfully (i.e. without the failure
step being triggered), then the constructed grammar is a selective k-combing.
Furthermore, this combing is LR(m).

Proof. In order to prove that the grammar is a selective combing it suffices to
show that:

hal-00769668, version 1 - 2 Jan 2013

e ST is a nonterminal in the grammar, and

e for every nonterminal [Ad]; in the grammar and each rule A - o € PU
{ST — S#F}, there is exactly one rule [A§]; — 8 with u(8) = ad.

A central observation is that if the set close(qg) \ deprecate(qg) of a reachable
state g contains an item ([Bd'] — 1 e [Ad]y2, L), and A — « € P, then there
is precisely one choice of:

® (1,...,qn,
o X1,..., X,
® Bo,...,Bn, with By = ad and 3, = ¢,
such that for 0 < j < n,
e (gj,X,+1,qj41) € Transitions,
o ([A0] > X1--- X, ® X;110841,L) € close(g;) \ deprecate(g;), and

o B = u(Xj+1)Bj+1,

and ([A0] — X7 --- X, o, L) € close(qy,) \ deprecate(q,,), where L = First,, (v2L’).
This follows from the rules in Figure 2 and the definition of the Goto function.
In particular, where a closure item with longer right context is added, the cor-
responding item with shorter right context is deprecated.

In terms of the selective combing, the above implies that for every nontermi-
nal [A§]; and rule A — o (excepting ST — S#F* for now) there must be exactly
one rule [A§]; — B with u(3) = ad. The special case of ST — S#* can be
treated similarly.

That the grammar is a selective k-combing follows from the fact that the
inference rules in Figure 2 do not allow right context longer than k.

In order to prove that the combing is LR(m), we first show that for each
state of the LR(m) automaton for the combing there is a corresponding state
q of the selML(k, m) automaton. Where the LR(m) state has an item (Y —
Yi---Y; @ Yji1---Y,,z), where j < n, the selML(k, m) state has an item
([A6) = X1 --- X, @ X;115541,L) € close(q) \ deprecate(q), where u(Yy) = Ad,
p(Y;) = p(X;) for 1 < i < j+1, p(Yjpo---Y,) = Bj41 and @ € L. Where
the LR(m) state has an item (Yy — Y7 ---Y, e,), the selML(k, m) state has
an item ([Ad] — X1 ---X,, o, L) € close(gy,) \ deprecate(q,,), where u(Yy) = A9,
w(¥;) = p(X;) for 1 < i < n and z € L. This can be proven by induction,
starting at the initial state.

Next, it can be shown that if there were a conflict in an LR(m) state, then
a similar conflict had arisen in a corresponding selML(k, m) state, and this
had triggered further restructuring of the automaton before termination of the
algorithm, leading to a contradiction. O

Proposition 8. If the grammar is selML(k, m), then the algorithm terminates
successfully.

Proof. We rely on the following invariant of Algorithm 1. For each state ¢
reachable through n transitions (g0, X1,q1), ---, (@n-1,Xn,qn) € Transitions
with g0 = ¢init and ¢, = ¢, and for each item ([40] — « e [BS1X]Bs, L) €

vi

hal-00769668, version 1 - 2 Jan 2013

close(q), any combing for the k-extension of the input grammar that is LR(m)
cannot allow:
[ST] =1 V[BB1]su (19)

where p(vy) = p(Xi1--- X,) and m : u € First,,, (X B2L). In other words, if the
selML(k, m) automaton has constructed a right context 8; X for nonterminal B
given left context p(X;5 - - - X,,) and lookahead in First,, (X 32L), then no combing
with corresponding left context and lookahead can use shorter right context (1
without causing a conflict in the LR(m) parser.

As long as no right context has been extended (step ‘extension’ in Figure 2),
the above invariant holds trivially. That the invariant is preserved by steps
extending right context follows from the observation that a conflict detected
in the selML(k, m) automaton implies a corresponding conflict in the LR(m)
automaton.

In more detail, the ‘conflict detection’ step from Figure 2 is triggered by the
presence of:

o ([A161] — a1 e B1, L) € close(q)
o ([A202] — g e, Lo) € close(q)

with (A101, a1, 81) # (A2da, a0,€) and First,, (u(B1)L1) N Ly # 0. Let g be
reachable through n transitions (g0, X1,q1), ---, (Gn-1,Xn,qn) € Transitions
with go = ginit and ¢, = ¢. In a combing with right contexts of similar length,
we would have:

[ST] =1 71[A161]i, 4 =em Y101 810 = Y3510
[ST] =% 12[A202]i,v = 1m Yoa2v = Y30

where 81 =7, w for some w with m : wu = m : v € First,, (u(B1)L1) N Loy
and p(vs) = pu(X1---Xp). (Recall that we use subscripts such as i1 and iy
to differentiate nonterminals of a combing that share the same image by pu,
as motivated in Section 3.) This implies a LR(m) conflict. Note that if one
constructs a combing with extended right context for the occurrence of A; only,

such that we have:

[ST] =1 V1 [A16185] 31 0/ = Y104 B1u’ = 25870/

[ST] =1 V3[A202]i70 =>em Vo0 = Y30

with (1) = p(y1), p(v%) = p(72), and m : u € First,, (d3u’), then the conflict is
still present. Therefore, any combing that is LR(m) must at least have extended
right context for Ao, given left context and lookahead as above. Extension of
right context do, by at least one more symbol X to become 65X, is achieved by
the interaction of the inference rules (in particular steps ‘extension’ and ‘conflict
propagation’) and the propagation of conflict items across states.

It follows that if an item ([BS] — e v, L) € conflict(¢) occurs with |5| = k,
then there is a LR(m) conflict that cannot be resolved with a k-combing, and
the grammar cannot be selML(k, m). O

vii

	Introduction
	Marcus-Leermakers Parsing
	C++ Qualified Identifiers
	Uniform ML
	Selective ML

	Selective Delays Through Grammar Transformation
	Combing Relations
	Selective ML Grammars

	Parser Construction
	Algorithm
	Example
	Correctness

	Experimental Results
	Related Work
	Concluding Remarks
	Uniform ML Parsers
	Grammar Transformation
	Combing Relations
	Selective ML Grammars

	Parser Construction

