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Abstract. We examine a bidirectional Propositional Dynamic Logic
(PDL) for message sequence charts (MSCs) extending LTL and TLC−.
Every formula is translated into an equivalent communicating finite-state
machine (CFM) of exponential size. This synthesis problem is solved in
full generality, i.e., also for MSCs with unbounded channels. The model
checking problems for CFMs and for HMSCs against PDL formulas are
shown to be in PSPACE for existentially bounded MSCs. It is shown that
CFMs are to weak to capture the semantics of PDL with intersection.

1 Introduction

Messages sequence charts (MSCs) are an important formalism describing the
executions of message-passing systems. They are a common notation in telecom-
munication and defined by an ITU standard [14]. A significant task is to verify
system requirements. The model checking problem asks for an algorithm that
decides whether, given a formula ϕ of a suitable logic and a finite machine A,
every behavior of A satisfies ϕ. There exist a few such suitable temporal logics.
Meenakshi and Ramanujam proposed temporal logics over Lamport diagrams
(which are similar to MSCs) [17, 18]. Peled [19] considered TLC− introduced
in [1] for Mazurkiewicz traces. Like these logics, our logic PDL is interpreted di-
rectly over MSCs, not over linearizations; it combines elements from [18] (global
next operator, past operators) and [19] (global next operator, existential in-
terpretation of the until-operator). The ability to express properties of paths
as regular expressions is also present in Henriksen and Thiagarajan’s dynamic
LTL [12, 13], an extension of LTL for traces. Differently from their approach, our
path expressions are not bound to speak about the events of a single process,
but they can move from one process to another. Moreover, we provide past op-
erators to judge about events that have already been executed. We call our logic
PDL as it is essentially the original propositional dynamic logic as first defined
by Fischer and Ladner [8] but here in the framework of MSCs.

Already for very restrictive temporal logics, the model checking problem
becomes undecidable [18]. In [19, 15, 11, 10], however, it was tackled successfully



for several logics by restricting to existentially B-bounded MSCs, which can be
scheduled such that the channel capacity respects a given size B. As a first step,
[19, 15, 10] translate formulas into machine models such that the semantics of the
formula and the machine coincide for existentially B-bounded MSCs (or their
linearizations). In the early stages of system design it seems more natural not
to fix a channel size B but to implement the entire semantics of ϕ. We therefore
construct, from a PDL formula ϕ, a communicating finite-state machine (CFM,
[5]) Aϕ such that L(ϕ) = L(Aϕ) wrt. the class of all (finite and infinite) MSCs.

In the literature, one finds several techniques to construct an automaton
from a temporal formula: One can use a tableau construction (cf. [7]), an incre-
mental tableau (cf. [6]), or alternating automata [20]. Here, we use an inductive
method [9]: The events of an MSC are colored by additional bits, one for each
subformula of ϕ. Then we construct, for each such subformula γ, a CFM Aγ

whose task it is to check that the bit corresponding to γ is set at precisely
those nodes where γ holds. For this, the CFM Aγ reads the bits correspond-
ing to the top-level subformulas of γ. The overall CFM is obtained by running
synchronously all the CFMs arising from the subformulas.

A typical subformula in PDL is γ = 〈π〉 tt expressing that there is a finite
path starting in the current vertex that obeys the regular expression π. The
construction of a CFM for such a subformula turns out to be the most difficult
part. The basic idea is to start, in the current node v, a finite automaton C
that accepts the language of π and to ensure that C will eventually reach an
accepting state in some event v′. To ensure that this obligation is not propagated
forever, we adopt and extend the solution for sequential systems [13]: The MSC
is colored nondeterministically by two colors. Then a CFM checks that, along
each and every path, the color changes infinitely often (this is possible although
acceptance in a CFM refers to those paths that stay in one single process, only).
Then the path from v to v′ is allowed to change color at most once.

Altogether, we construct, for every PDL formula ϕ, an equivalent CFM Aϕ

that is exponential in the size of ϕ and the number of processes. Given another
CFM B, we then build a CFM A from Aϕ and B with L(A) = L(ϕ) ∩ L(B).
Note that up to now, no restriction on the channel capacity is imposed. Finally,
we decide whether A accepts some existentially B-bounded MSC. Only in this
decision step, the bound B is used. We also show how to model check high-level
MSCs (HMSCs) against PDL formulas. Both these model checking algorithms
run in space polynomial in the size of the formula and of the CFM, and in the
bound B. Since the logic TLC− of Peled is a fragment of PDL, we generalize
the model checking result from [19] and provide a different algorithm.

By [4, 2], existential MSO logic is expressively equivalent to CFMs, and the
set of CFM-languages is not closed under complementation. Since, on the other
hand, PDL does not impose any restriction on the use of negation, we obtain
that PDL is a proper fragment of existential MSO although this is not obvious.

The final technical section considers an enriched logic iPDL (PDL with in-
tersection) where a node might be described by the intersection of two different
paths. This extension strengthens the expressive power of the formulas. But



adapting a proof technique from colored grids [16], we show that there is an
iPDL-formula ϕ such that no CFM accepts precisely the semantics of ϕ.

A full version of this paper is available [3].

2 Definitions

The communication framework used in our paper is based on sequential pro-
cesses that exchange asynchronously messages over point-to-point, error-free
FIFO channels. Let P be a finite set of process identities which we fix through-
out this paper. Furthermore, let Ch = {(p, q) ∈ P2 | p 6= q} denote the set of
channels. Processes act by either sending a message from p to q (denoted p!q), or
by receiving a message at p from q (denoted by p?q). For any process p ∈ P, we
define a local alphabet Σp = {p!q, p?q | q ∈ P \ {p}}, and we set Σ =

⋃
p∈P Σp.

2.1 Message sequence charts

Message sequence charts are special labeled partial orders. To define them, we
need the following definitions: A Σ-labeled partial order is a triple M = (V,≤, λ)
where (V,≤) is a partially ordered set and λ : V → Σ is a mapping. For v ∈ V

with λ(v) = pθq where θ ∈ {!, ?}, let P (v) = p denote the process that v is
located at. We define two binary relations proc and msg on V setting

– (v, v′) ∈ proc iff P (v) = P (v′), v < v′, and, for any u ∈ V with P (v) = P (u)
and v ≤ u < v′, we have v = u,

– (v, v′) ∈ msg iff there is a channel (p, q) with λ(v) = p!q, λ(v′) = q?p, and
|{u | λ(u) = p!q, u ≤ v}| = |{u | λ(u) = q?p, u ≤ v′}|.

Definition 2.1. A message sequence chart or MSC for short is a Σ-labeled
partial order (V,≤, λ) such that

– ≤ = (proc ∪ msg)∗,
– {u ∈ V | u ≤ v} is finite for any v ∈ V ,
– P−1(p) ⊆ V is linearly ordered for any p ∈ P, and
– |λ−1(p!q)| = |λ−1(q?p)| for any (p, q) ∈ Ch.

We refer to the elements of V as events or nodes.

If (V,≤, λ) is an MSC, then proc and msg are even partial and injective
functions, so v′ = proc(v) as well as v = proc−1(v′) are equivalent notions for
(v, v′) ∈ proc; msg(v) and msg−1(v) are to be understood similarly.

2.2 Propositional dynamic logic (PDL)

Path expressions π and local formulas α are defined by simultaneous induction.
This induction is described by the following rules

π ::= proc | msg | {α} | π; π | π + π | π∗

α ::= tt | σ | α ∨ α | ¬α | 〈π〉α | 〈π〉−1
α



where σ ranges over the alphabet Σ.
Local formulas express properties of single nodes in MSCs. To define the

semantics of local formulas, let therefore M = (V,≤, λ) be an MSC and v a node
from M . Then we define, for σ ∈ Σ, M, v |= σ iff λ(v) = σ; M, v |= α1 ∨ α2 and
M, v |= ¬α are defined in the obvious manner. The semantics of forward -path
expressions 〈π〉α is given by

M, v |= 〈proc〉α ⇐⇒ there exists v′ ∈ V with (v, v′) ∈ proc and M, v′ |= α

M, v |= 〈msg〉α ⇐⇒ there exists v′ ∈ V with (v, v′) ∈ msg and M, v′ |= α

M, v |= 〈{α}〉β ⇐⇒ M, v |= α and M, v |= β

M, v |= 〈π1; π2〉α ⇐⇒ M, v |= 〈π1〉 〈π2〉α

M, v |= 〈π1 + π2〉α ⇐⇒ M, v |= 〈π1〉α or M, v |= 〈π2〉α

M, v |= 〈π∗〉α ⇐⇒ there exists n ≥ 0 with M, v |= (〈π〉)nα

The base cases for the semantics of backward -path expressions 〈π〉−1
α are de-

fined similarly by

M, v |= 〈proc〉−1
α ⇐⇒ there exists v′ ∈ V with (v′, v) ∈ proc and M, v′ |= α

M, v |= 〈msg〉−1
α ⇐⇒ there exists v′ ∈ V with (v′, v) ∈ msg and M, v′ |= α.

Replacing 〈.〉 with 〈.〉−1
in the remaining clauses completes the definition of the

semantics of local formulas.
Semantically, a local formula of the form 〈({α}; (proc+msg))∗〉β corresponds

to the until construct αUβ in Peled’s TLC−. In TLC−, however, one cannot
express properties such as “there is an even number of messages from p to q”,
which is certainly expressible in PDL.

Global formulas of PDL are positive Boolean combinations of formulas Eα

and Aα where α is a local formula. Here, Eα expresses the existence of some node
satisfying α while Aα says that α holds at all nodes. Because of this existential
and universal quantification, the expressible global properties are closed under
negation.

A local formula β is a subformula of a local formula α if it is a subformula
of α (seen as Boolean combination of forward- and backward-path formulas), or

if β is a subformula of some formula γ such that 〈π〉 γ or 〈π〉−1
γ is a subformula

of α or such that {γ} appears in some path expression in α. We denote the set
of subformulas of α by sub(α).

2.3 Communicating finite-state machines

This section defines CFMs [5], i.e., our model of a distributed system, together
with its behavior.

Definition 2.2. A communicating finite-state machine (CFM) is a tuple A =
(C, n, (Ap)p∈P , F ) with n ≥ 0 where



– C is a finite set of message contents or control messages,
– Ap = (Sp,→p, ιp) is a finite labeled transition system over the alphabet Σp ×

{0, 1}n × C for any p ∈ P with initial state ιp ∈ Sp,
– F ⊆

∏
p∈P Sp is a set of global final states.

A run of A on (M, c) (with M = (V,≤, λ) an MSC and c : V → {0, 1}n,
which can be seen as an n-tuple of mappings V → {0, 1}) is a pair of mappings
ρ : V →

⋃
p∈P Sp and µ : V → C such that, for any v ∈ V ,

1. µ(v) = µ(msg(v)) if msg(v) is defined,
2. (ρ(proc−1(v)), λ(v), c(v), µ(v), ρ(v)) ∈ →P (v) if proc−1(v) is defined, and

(ιp, λ(v), c(v), µ(v), ρ(v)) ∈ →P (v) otherwise.

Since, even in an infinite MSC, some of the processes may execute only finitely
many events, acceptance of a run will depend on the set of states appearing
cofinally [2]: let cofinρ(p) = {ιp} if Vp = ∅, and cofinρ(p) = {s ∈ Sp | ∀v ∈
Vp ∃v′ ∈ Vp : v ≤ v′ ∧ ρ(v′) = s} if Vp 6= ∅, where Vp = P−1(p). Then the
run (ρ, µ) is accepting if there is some (sp)p∈P ∈ F such that sp ∈ cofinρ(p) for
all p ∈ P. The language of A is the set L(A) of all pairs (M, c) that admit an
accepting run.

3 Translation of formulas

Let α be a local formula of PDL. We will construct a “small” CFM that accepts
(M, (cβ)β∈sub(α)) iff, for all positions v ∈ V and all subformulas β of α, we have
M, v |= β iff cβ(v) = 1. This CFM will consist of several CFMs running in
conjunction, one for each subformula. For instance, if σ ∈ Σ and δ = β ∨ γ are
subformulas of α, then we will have sub-CFMs that check for every position v

whether cσ(v) = 1 iff λ(v) = σ and cδ(v) = cβ(v)∨cγ(v), resp. Similarly, for each
subformula ¬β, a sub-CFM checks c¬β(v) 6= cβ(v) for each position v. While the
construction of these sub-CFMs is rather straightforward, more work has to be
invested for subformulas of the form 〈π〉α and 〈π〉−1

α. Since these formulas are

equivalent to 〈π; {α}〉 tt and 〈π; {α}〉−1
tt, respectively, we will only deal with the

latter ones.

3.1 The backward-path automaton

Let π be a path expression, i.e., a regular expression over some alphabet Γ =
{proc, msg, {α1}, . . . , {αn}}. A word W ∈ Γ ∗ together with a node v from an
MSC M describe a path starting in that node that walks backwards. The let-
ters proc and msg denote the direction of the path, the letters {αi} denote
requirements about the node currently visited, i.e., that αi shall hold or, equiv-
alently, that ci(v) = 1 (where we write ci instead of cαi

). The existence of such
a backward-path is denoted (M, c1, . . . , cn), v |=−1 W.

Now let C = (Q, ι, δ, G) be a finite automaton over Γ accepting the language
of the regular expression π. Then we can naturally build a first CFM A1 with
sets of local states 2Q such that the following are equivalent for all MSCs M =
(V,≤, λ), all mappings ci : V → {0, 1}, and all mappings ρ : V → 2Q:



– ρ is the state mapping of some run of A1 on (M, c1, . . . , cn)
– for all v ∈ V and q ∈ Q, we have q ∈ ρ(v) iff there exists W ∈ Γ ∗ with

q
W
−→C G and (M, c1, . . . , cn), v |=−1 W .

From A1, we obtain a CFM A〈π〉−1tt accepting (M, c1, . . . , cn, c) iff A1 has a run
on (M, c1, . . . , cn) such that, for all v ∈ V , we have c(v) = 1 iff ι ∈ ρ(v) (i.e., iff
there exists W ∈ L(C) with (M, c1, . . . , cn), v |=−1 W ). This construction proves

Theorem 3.1. Let 〈π〉−1
tt be a local formula such that π is a regular expression

over the alphabet {proc, msg, {α1}, . . . , {αn}}. Then there exists a CFM A〈π〉−1tt

with the following property: Let M be an MSC and let ci : V → {0, 1} be the
characteristic function of the set of positions satisfying αi (for all 1 ≤ i ≤ n).
Then (M, c1, . . . , cn, c) is accepted by A〈π〉−1tt iff c is the characteristic function

of the set of positions satisfying 〈π〉−1
tt.

3.2 The forward-path automaton

We now turn to a similar CFM corresponding to subformulas of the form 〈π〉 tt.
We will prove the following analog to Theorem 3.1. This proof will, however, be
substantially more difficult.

Theorem 3.2. Let 〈π〉 tt be a local formula such that π is a regular expression
over the alphabet Γ = {proc, msg, {α1}, . . . , {αn}}. Then there exists a CFM
A〈π〉tt with the following property: Let M be an MSC and let ci : V → {0, 1} be
the characteristic function of the set of positions satisfying αi (for all 1 ≤ i ≤ n).
Then (M, c1, . . . , cn, c) is accepted by A〈π〉tt iff c is the characteristic function of
the set of positions satisfying 〈π〉 tt.

The rest of this section is devoted to the proof of this theorem. Let C =
(Q, ι, T, G) be a finite automaton over Γ that accepts the language of the regular
expression π.

Let W ∈ Γ ∗, M = (V,≤, λ) an MSC, and v ∈ V . These data describe a
forward -path starting in v where the letters proc and msg denote the direction
and the letters {αi} requirements on the current node (i.e., that αi shall hold).
We denote the existence of such a forward path with (M, c1, . . . , cn), v |= W .

In order to prove Theorem 3.2, it therefore suffices to construct a CFM that
accepts (M, c1, . . . , cn, c) iff

∀v ∈ V : c(v) = 0 =⇒ ∀W ∈ L(C) : (M, c1, . . . , cn), v 6|= W (1)

∧ ∀v ∈ V : c(v) = 1 =⇒ ∃W ∈ L(C) : (M, c1, . . . , cn), v |= W. (2)

Since the class of languages accepted by CFMs is closed under intersection, we
can handle the two implications separately (cf. Prop. 3.3 and 3.6 below).

Proposition 3.3. There exists a CFM A0 that accepts (M, c1, . . . , cn, c) iff (1)
holds.



Proof. The basic idea is rather simple: whenever the CFM encounters a node v

with c(v) = 0, it will start the automaton C (that accepts the language of the
regular expression π) and check that it cannot reach an accepting state whatever
path we choose starting in v. Since the CFM has to verify more than one 0 and
since C is nondeterminsitic, the set of local states Sp equals 2Q\G with initial
state ιp = ∅ for any p ∈ P. ⊓⊔

It remains to construct a CFM that checks (2). Again, the basic idea is
simple: whenever the CFM encounters a node v with c(v) = 1 (i.e., a node that
is supposed to satisfy 〈π〉 tt), it will start the automaton C (that accepts the
language of the regular expression π) and check that it can reach an accepting
state along one of the possible paths. Before, we had to prevent C from reaching
an accepting state. This time, we have to ensure that any verification of a claim
c(v) = 1 will eventually result in an accepting state being reached.

To explain our construction, suppose M = (V,≤, λ) to be an MSC and
c1, . . . , cn, c : V → {0, 1} to be mappings. In order to verify (2), any node
v ∈ V with c(v) = 1 forms an obligation, namely the obligation to find a word
W ∈ L(C) such that (M, c1, . . . , cn), v |= W . This obligation is either satisfied
immediately or propagated to the successors of v, i.e., to the nodes proc(v)
or msg(v) (provided, they exist). Thus, every node from V obtains a set O of
obligations in the form of states of the finite automaton C. The crucial point now
is to ensure that none of these obligations is propagated forever. To this aim, the
set of obligations is divided into two sets O1 and O2. In general, the obligations
from O1 at node v are satisfied or propagated to the obligations from O1 at the
node msg(v) or proc(v). Similarly, obligations from O2 are propagated to O2; in
addition, newly arising obligations (in the form of nodes v with c(v) = 1) are
moved into O2. The only exception from this rule is the case O1 = ∅, i.e., all
“active” obligations are satisfied. In this case, all of O2 can be moved to O1.
Then, the run of the CFM is accepting iff, along each path in the MSC, the
exceptional rule is applied cofinally.

The problem arising here is that the success of a run of a CFM refers to
paths along a single process, only. Hence, infinite paths that change process
infinitely often cannot be captured directly. A solution is to guess an additional
0-1-coloring c0 such that no path can stay in one color forever, and to allow a
color change only if the exceptional rule is applied.

Thus, we are left with the task to construct a CFM accepting (M, c0) if no
infinite path in M stays monochromatic eventually (it is actually sufficient to
accept only such pairs, but not necessarily all, but sufficiently many). To achieve
this goal, we proceed as follows.

Let M be an MSC and c0 : V → {0, 1}. On V , we define an equivalence
relation ∼ whose equivalence classes are the maximal monochromatic intervals
on a process line.

Let Col be the set of all pairs (M, c0) with c0 : V → {0, 1} such that the
following hold

(1) if v is minimal on its process, then c0(v) = 1



(2) if (v, v′) ∈ msg and w′ ≤ v′ with P (w′) = P (v′), then there exists (u, u′) ∈
msg with λ(u′) = λ(v′), c0(u) = c0(u

′), and u′ ∼ w′

(3) any equivalence class of ∼ is finite.

In general, there can be messages (u, u′′) ∈ msg such that the colors of u and
u′′ are different, i.e., c0(u) 6= c0(u

′′). Condition (2) ensures that there are also
many messages (u, u′) with c0(u) = c0(u

′). More precisely, looking at the event
w′ on process q, process q will receive in the future a message from process p

(at the event v′). Then the requirement is that process q receives some message
from process p (a) in the ∼-equivalence class of w′ such that (b) sending and
receiving of this message have the same color.

Given the above conditions (1–3), it is almost immediate to check that Col
can be accepted by some CFM:

Lemma 3.4. There exists a CFM ACol that accepts the set Col.

The main consequence of (1–3) is the following whose proof is elementary
but not trivial:

Lemma 3.5. Let (M, c0) ∈ Col and let (v1, v2, . . . ) be some infinite path in M .
Then there exist infinitely many i ∈ N with c0(vi) 6= c0(vi+1).

Proof. The crucial point is the following: Let (v, v′) ∈ msg be some message such
that the numbers of mutually non-equivalent nodes on the process lines before
v and v′, resp., are different. Then one obtains c0(v) 6= c0(v

′). ⊓⊔

These two lemmas and the ideas explained above prove

Proposition 3.6. There exists a CFM A1 that accepts (M, c1, . . . , cn, c) iff (2)
holds.

3.3 The overall construction

Theorem 3.7. Let α be a local formula of PDL. Then one can construct a
CFM B such that (M, c) is accepted by B iff c : V → {0, 1} is the characteristic
function of the set of positions that satisfy α.

Proof. One first constructs a CFM A that accepts (M, (cβ)β∈sub(α)) iff

(1) cσ(v) = 1 iff λ(v) = σ for all v ∈ V and σ ∈ sub(α) ∩ Σ

(2) cγ∨δ(v) = max(cγ(v), cδ(v)) for all v ∈ V and γ ∨ δ ∈ sub(α)
(3) c¬γ(v) 6= cγ(v) for all v ∈ V and ¬γ ∈ sub(α)
(4) A〈π〉γ accepts (M, cα1

, . . . , cαn
, cγ , c〈π〉γ) for all formulas 〈π〉 γ ∈ sub(α)

where α1, . . . , αn are those local formulas for which {αi} appears in the
path expression π (cf. Theorem 3.2)

(5) A〈π〉−1γ accepts (M, cα1
, . . . , cαn

, cγ , c〈π〉−1γ) for all 〈π〉−1
γ ∈ sub(α) where

α1, . . . , αn are those local formulas for which {αi} appears in the path ex-
pression π (cf. Theorem 3.1).



This can be achieved since the intersection of CFM-languages can be accepted
by a CFM. The CFM B guesses the missing labelings cβ for β ∈ sub(α) \ {α}
and simulates A. ⊓⊔

Recall that a global formula is a positive Boolean combination of formulas of
the form Eα and Aα where α is a local formula. Note that the sets of pairs
(M, c) with c(v) = 1 for at least one event (for all events, resp.) v ∈ V can be
accepted by CFMs. This, together with a careful analysis of the size of the CFMs
constructed so far, leads to the following corollary:

Corollary 3.8. Let ϕ be a global formula of PDL. Then one can construct a
CFM A that accepts M iff M |= ϕ. The numbers of local states and of control

messages of A belong to 2O((|ϕ|+|P|)2).

4 Model checking

4.1 CFMs vs. PDL specifications

We aim at an algorithm that decides whether, given a global formula ϕ and a
CFM A, every MSC from L(A) satisfies ϕ. The undecidability of this problem
can be shown following, e.g., the proof in [18] (the ideas from that paper can
easily be transferred to our setting from Lamport diagrams and the fragment
LD0 of PDL). To gain decidability, we follow the successful approach of, e.g.,
[15, 11, 10], and restrict attention to existentially B-bounded MSCs from L(A).

Let M = (V,≤, λ) be an MSC. A linearization of M is a linear order � ⊇ ≤
on V of order type at most ω, which we identify with a finite or infinite word
from Σ∞.

A word w ∈ Σ∞ is B-bounded (where B ∈ N) if, for any (p, q) ∈ Ch and
any prefix u of w, 0 ≤ |u|p!q − |u|q?p ≤ B where |u|σ denotes the number of
occurrences of σ in u. An MSC M is existentially B-bounded if it admits a
B-bounded linearization.

The CFM A can be translated into a finite transition system that accepts pre-
cisely the B-bounded linearizations of MSCs accepted by A. Any configuration
of this transition system consists of

– the buffer contents (i.e., |Ch| many words over C of length at most B),
– a local state per process,
– one channel (i.e., a pair from Ch),
– a global state that is accepting in A, and
– a counter whose value is bounded by |Ch| + |P| in order to handle multiple

Büchi-conditions.

Hence a single configuration can be stored in space O(log(|P|+|Ch|)+|P| log n+
|Ch|B log |C|+ log |Ch|) where n is the number of local states per process. This
therefore also describes the space requirement for deciding whether the CFM A
accepts at least one existentially B-bounded MSC.

Since the number of local states per process as well as that of messages of
the CFM in Cor. 3.8 is exponential, we obtain the following result on the model
checking of a CFM vs. a PDL specification:



Theorem 4.1. The following is PSPACE-complete:
Input: B ∈ N (given in unary), CFM B, and a global formula ϕ ∈ PDL.
Question: Is there an existentially B-bounded MSC M ∈ L(B) with M |= ϕ?

Hardness follows from PSPACE-hardness of LTL-model checking.

4.2 HMSCs vs. PDL specifications

In [19], Peled provides a PSPACE model checking algorithm for high-level mes-
sage sequence charts (HMSCs) against formulas of the logic TLC−, a fragment
of PDL. Now, we aim to model check an HMSC against a global formula of PDL,
and, thereby, to generalize Peled’s result.

Definition 4.2. An HMSC H = (S,→, s0, ℓ,M) is a finite, directed graph
(S,→) with initial node s0 ∈ S, M a finite set of finite MSCs, and a label-
ing function ℓ : S → M.

To define the semantics of an HMSC H, one replaces the MSCs ℓ(s) by an
arbitrary linearization and then concatenates the words along a maximal initial
path in H. Then an MSC M is accepted by H (i.e., belongs to L(H)) if one of
its linearizations belongs to this word language L ⊆ Σ∞. Note that there is nec-
essarily some B ∈ N such that all words in L are B-bounded. Furthermore, this
number B can be computed from H. Now construct, as above, from the CFM A
from Cor. 3.8 the finite transition system that accepts all B-bounded lineariza-
tions of MSCs satisfying the global formula ϕ. Considering the intersection of
the language of this transition system with L allows us to prove

Theorem 4.3. The following problem is PSPACE-complete:
Input: An HMSC H and a global formula ϕ ∈ PDL.
Question: Is there an MSC M ∈ L(H) with M |= ϕ?

5 PDL with intersection

PDL with intersection (or iPDL) allows, besides the local formulas of PDL, also
local formulas 〈π1 ∩ π2〉α where π1 and π2 are path expressions and α is a local
formula. The intended meaning is that there exist two paths described by π1

and π2, respectively, that both lead to the same node w where α holds. We show
that this extends the expressive power of PDL beyond that of CFMs.

To show this result more easily, we also allow atomic propositions of the form
(a, b) with a, b ∈ {0, 1}; they are evaluated over an MSC M = (V,≤, λ) together
with a mapping c : V → {0, 1}2. Then (M, c), v |= (a, b) iff c(v) = (a, b). Let
P = {0, 1} be the set of processes. For m ≥ 1, we first fix an MSC Mm =
(Vm,≤, λ) for the remaining arguments: On process 0, it executes the sequence
(0!1)m((0?1)(0!1))ω. The sequence of events on process 1 is (1?0) ((1?0) (1!0))ω

(cf. Fig. 1). The send-events on process 0 are named in {0, 1, . . . , m − 1} × ω as
indicated in Fig. 1. Let M denote the set of pairs (Vm, c) with c : Vm → {0, 1}2

such that c(i, j) = 0 iff i = 0.
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Fig. 1. MSC M4 and the mapping f .

Then one can construct a local formula α such that, for any (M, c) ∈ M,
we have (M, c) |= Aα iff c(i, j) = c(i, j + i) for all suitable pairs (i, j). Now
suppose A = (C, 2, (Ap)p∈P , F ) to be a CFM that accepts all labeled MSCs
(Mm, c) ∈ M satisfying c(i, j) = c(i, j + i) for all suitable (i, j). Then A also
accepts some labeled MSC (M, c) ∈ M that violates this condition. It follows

Theorem 5.1. There exists a local formula α of iPDL such that the set of MSCs
satisfying Aα cannot be accepted by a CFM.

6 Open questions

Since the semantics of every PDL formula ϕ is the behavior of a CFM, it is
equivalent with some formula from existential monadic second-order logic [4,
2]. Since PDL is closed under negation, it is a proper fragment of existential
monadic second order logic. Because of quantification over paths, it cannot be
captured by first-order logic. We do not know if first-order logic is captured by
PDL nor do we have any precise description of its expressive power.

Since the logic iPDL, i.e., PDL with intersection, can be translated effectively
into MSO, the model checking problem for CFMs and existentially B-bounded
MSCs is decidable for iPDL [10]. However, the complexity of MSO model check-
ing is non-elementary. Therefore, we would like to know if we can do any better
for iPDL.

In PDL, we can express properties of the past and of the future of an event
by taking either a backward- or a forward-path in the graph of the MSC. We
are not allowed to speak about a zig-zag-path where e.g. a mixed use of proc
and proc−1 would be possible. It is an open question whether formulas of such
a “mixed PDL” could be transformed to CFMs and what the complexity of the
model checking would be.
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