
Smyle: A Tool for Synthesizing Distributed

Models from Scenarios by Learning⋆

Benedikt Bollig1, Joost-Pieter Katoen2, Carsten Kern2, and Martin Leucker3

1 LSV,ENS Cachan, CNRS, 2 RWTH Aachen University, 3 TU München

1 Overview

This paper presents Smyle, a tool for synthesizing asynchronous and distributed
implementation models from sets of scenarios that are given as message sequence
charts (MSCs). The latter specify desired or unwanted behavior of the system to
be. Provided with such positive and negative example scenarios, Smyle employs
dedicated learning techniques and propositional dynamic logic (PDL) over MSCs
to generate a system model that conforms with the given examples.

Synthesizing distributed systems from user-specified scenarios is becoming
increasingly en vogue [7]. There exists a wide range of approaches for synthesiz-
ing implementation models from a priori given scenarios [6, 11, 8, 5, 14, 15]. The
approaches mainly differ in their specification language, the inference procedure,
and the final implementation model. Several of them employ MSCs as specifica-
tion language because they are standardized by the ITU Z.120 [9] and adopted by
the UML as sequence diagrams. Other approaches try to utilize more expressive
notations like triggered MSCs [14], high-level MSCs [6], or live sequence charts
[8]. On the one hand, more expressive power results in richer specifications. On
the other hand, however, it is just this great expressiveness that disqualifies them
for non-professional or a fortiori unexperienced users, which are overstrained
by these formalisms. As requirements specifications over and over demonstrate,
human beings strongly prefer to express scenarios in terms of simple pictures
including the acting entities and their interaction. Due to this reason, we will
restrict to so-called basic MSCs, only, which consist of processes (i.e., vertical
axes denoting evolution of time) and messages (i.e., horizontal or slanted arrows
between processes signifying asynchronous information exchange).

Many approaches to synthesizing distributed systems typically model syn-
chronous communication, infer labeled transition systems, and use standard
automata-theoretic solutions to project the global system onto its local com-
ponents. As can be shown easily, this results in missing or implied behavior that
was not stipulated by the user. In contrast, we regard asynchronous communi-
cation behavior and derive a distributed model in terms of a message passing

automaton (MPA), which models the asynchronous communication in a natural
manner deploying FIFO channels. It consist of one local automaton for every
process involved in the system. Harel in his recent article [7] states that it is an
intrinsically difficult task to “[...] distribute the intuitive played-in behavior [...]”

⋆ This work is partially supported by the DAAD (Procope 2008).

(a) Learning overview (b) Package overview

Fig. 1. Smyle’s architecture

and it is still a dream to employ scenario-based programming. Nevertheless we
try to converge to this vision using the tool Smyle presented in this paper.

2 Smyle from a user perspective

Smyle is an acronym for Synthesizing Models bY Learning from Examples. Its
major objective is to ease the development of concurrent systems. More specifi-
cally, the overall goal is to derive communication models of concurrent systems.
The synthesis process starts by providing the tool with a set of sample MSCs
where each MSC is either positive or negative. Positive MSCs describe system
behavior that is possible and negative MSCs characterize unwanted or forbid-

den behavior. Smyle focuses on basic-MSC features like asynchronous message
exchange and forbids to deploy the complete MSC standard—which allows for
alternation, loops etc.—on purpose: the more expressive a specification language
gets the less intuitive and manageable it becomes. Simple pictures however are
easy to understand and easy to supply. As mentioned in the previous section,
human beings prefer to describe system runs by means of simple examples and
pictures. Basic MSCs constitute such a device. More information about the for-
mal basis Smyle builds on can be found in [3].

The learning chain: In order to initiate the synthesis process, a so-called learning

setup is specified where the channel capacities of the final system are fixed a
priori by a bound B ∈ IN. The user can choose from two variants: she may
either want to learn a universally-B-bounded system, which means that the
outcome will be realizable using finite channel capacity B, thus resulting in
a finite-state system, or to infer a possibly infinite-state system by requiring
existential bounds on the system’s channels. An existentially-B-bounded learning
setup allows the system developer to include system behavior that may exceed
the system’s channel bound B but at the same time guarantees that there is
at least one execution (i.e., a total ordering of events or a linearization) that
adheres to this limit for each scenario recognized by the final system. Hence, an
appropriate scheduler will always be able to execute the good linearizations (i.e.,
runs not exceeding B) and disregard the ones going beyond the bound. Having
chosen a learning setup, a set of MSCs has to be provided as initial input to
the tool. Smyle will ask the user to classify these MSCs and start the learning
procedure (cf. Figure 1(a)). Successively, new MSCs as depicted in Figure 2(a)

2

(a) MSC (b) Integrated MSC editor (c) Simulation (d) MSC
with MSC to classify component rejected by ϕ

Fig. 2. Smyle GUI

are presented to the user (acting as Teacher) who in turn has to classify these
scenarios as either wanted (positive) or illegal (negative). Whenever Smyle has
a complete and consistent view of the current internal system, it presents a
window (cf. Figure 2(c)) for testing and simulating the derived system. Within
this component, the user (now acting as Oracle) may execute actions to see how
the system behaves. These actions are monitored and the related scenario is
depicted as MSC on the right hand side of the frame (cf. Figure 2(c)). If, after
an intensive simulation, there is no evidence for wrong or missing behavior, the
user will terminate the simulation session and the concurrent system is deduced.
If, however, some illegal or missing behavior is detected, then the user can use the
corresponding MSC as counterexample, or, respectively, edit the missing scenario
to a (positive) counterexample. This singleton set of counterexamples may of
course be enriched by additional MSCs, and the learning procedure continues
as explained until reaching the next consistent model. An exemplifying video of
this learning process can be downloaded from the tool’s webpage [1].

The MSC editor: When new MSCs have to be specified in order to start or
continue the learning phase, Smyle can either load MSC documents containing
basic MSCs from the file system or offer to use the integrated MSC editor (cf.
Figure 2(b)) for easy specification of basic MSCs. The MSCs can directly be
classified and fed back to Smyle in order to derive a new MPA. The editor also
provides functionality for storing MSCs in many different formats (e.g., LATEX,
fig, etc.). An extended, stand-alone version of the editor covering the ITU Z.120
standard to a large extend will soon be available [1].

Easing the learning process: In order to simplify the user’s task of classifying
scenarios, Smyle contains means for specifying formulas from PDL over MSCs,
a simple logic that comes with an efficiently solvable membership problem [4].
Like MSCs, PDL formulas are used to express desired or illegal behavior, but in
a broader sense. They are to be seen as general rules which apply for all runs of

3

the system (and not only all executions of one scenario). Hence, if a user detects
generally wanted or unwanted properties of the presented MSCs she may specify
formulas which express these generics. Smyle is supplied with these formulas and
can, from that moment on, accept or reject all MSCs that fulfill or, respectively,
violate one of these formulas. This technique reduces the number of user queries
substantially. An example formula is ϕ = A

(

[p?c(a); proc; p?c(a)] false
)

which
states that there must not be two subsequent occurrences of the same action (i.e.,
p?c(a)) on the same process p. Hence, if formula ϕ is fed to Smyle as negative
generic, all MSCs featuring this behavior, e.g., the one in Figure 2 (d), would be
regarded as negative samples without questioning the user.

3 Smyle’s implementation details

Smyle is a platform-independent application written in Java 1.5. For visualiza-
tion purposes, e.g., displaying MSCs and the implementation model, it uses the
graph-visualization libraries Grappa1and JGraph2, and employs the MSC2000
parser [12] for parsing the input MSC documents. As depicted in Figure 1(b),
Smyle consists of six main packages: the graphical user interface (GUI), one
package for MSC components, one for learning components, one comprising the
MSC editor functionality, one for graph components, and an interface to the
learning library LearnLib [13]. The functionality of these components is briefly
described in the following.

MSC components: This package contains the MSC2000 [12] parser for handling
MSC documents according to the ITU Z.120 standard [9]. It provides the classes
for representing the internal MSC objects.

Learning components: The tasks of the learning component are manifold. It con-
tains important functionality for efficient partial-order treatment, harbors the
simulator which can be applied to the learned model, and comprises the Learner ,
the Assistant , and the University , which acts as mediator between the compo-
nents of this package and the other packages as shown in Figure 1(a).

MSC editor components: The MSC editor components feature the implementa-
tion of an integrated MSC editor, which is able to load, store, and alter basic
MSCs. Moreover, the created MSCs can be exported to LATEX and the fig format
and thus can be converted, using available tools, to all other prevalent graphical
formats (e.g., eps, pdf, jpeg).

Graph components: The graph components package includes functionality for
checking MSC behavior (e.g., the FIFO property) and the consistency of the
implementation models.

Interface to LearnLib: This package includes an interface to a learning library
called LearnLib [13], which implements Angluin’s algorithm L∗ [2]. This inter-
face is by courtesy of the Fachbereich Informatik, Lehrstuhl 5 (University of
Dortmund).

1 Grappa: http://www.research.att.com/̃ john/Grappa/
2 JGraph: http://www.jgraph.com/

4

4 Future work

We have applied Smyle to a number of examples. We inferred, for example,
a model for the ABP, one for a part of the USB 1.1 protocol and one for a
leader election protocol for a unidirectional ring. Moreover, Smyle has also been
considered in [10] where scenarios represented as MSCs are derived from natural
language specifications.

For future work, we plan to extend the formula component and integrate
it into the MSC editor to be able to derive PDL formulas from visually anno-
tated MSCs. Moreover, we intend to apply Smyle to larger sized case studies to
evaluate its feasibility for real world problems.

The synthesis tool Smyle, the MSC editor as well as dedicated theoretic
background information and an exemplifying video presenting the learning chain
can be freely downloaded for educational and research purposes from:

http://www.smyle-tool.org/

References

1. Smyle webpage. http://www.smyle-tool.org/.
2. D. Angluin. Learning regular sets from queries and counterexamples. Inf. Comput.,

75(2):87–106, 1987.
3. B. Bollig, J.-P. Katoen, K. Carsten, and M. Leucker. Replaying play in and play

out: Synthesis of design models from scenarios by learning. In TACAS, volume
4424 of LNCS, pages 435–450. Springer, 2007.

4. B. Bollig, D. Kuske, and I. Meinecke. Propositional dynamic logic for message-
passing systems. In FSTTCS, volume 4855 of LNCS, pages 303–315. Springer,
2007.

5. C. Damas, B. Lambeau, and P. Dupont. Generating annotated behavior models
from end-user scenarios. IEEE Trans. Softw. Eng., 31(12):1056–1073, 2005.

6. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level mscs:
model-checking and realizability. J. Comput. Syst. Sci., 72(4):617–647, 2006.

7. D. Harel. Can programming be liberated, period? Computer, 41(1):28–37, 2008.
8. D. Harel and R. Marelly. Come, Let’s Play: Scenario-Based Programming Using

LSCs and the Play-Engine. Springer, 2003.
9. ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99), 1999.

10. L. Kof. Scenarios: Identifying missing objects and actions by means of computa-
tional linguistics. In 15th IEEE RE, pages 121 – 130, 2007.

11. E. Mäkinen and T. Systä. MAS – An interactive synthesizer to support behavioral
modeling in UML. In ICSE, pages 15–24. IEEE Computer Society, 2001.

12. H. Neukirchen. MSC2000 Parser. neukirchen@informatik.uni-goettingen.de.
13. H. Raffelt and B. Steffen. LearnLib: A library for automata learning and experi-

mentation. In FASE, volume 3922 of LNCS, pages 377–380. Springer, 2006.
14. B. Sengupta and R. Cleaveland. Triggered message sequence charts. IEEE Trans.

Softw. Eng., 32(8):587–607, 2006.
15. S. Uchitel, G. Brunet, and M. Chechik. Behaviour model synthesis from properties

and scenarios. In ICSE, pages 34–43. IEEE Computer Society, 2007.

5

