Concurrent Games on VASS with Inhibition*

B. Bérard¹, S. Haddad², M. Sassolas³, and N. Sznajder¹

 ¹ Université Pierre & Marie Curie, LIP6/MoVe, CNRS UMR 7606, Paris, France {Beatrice.Berard,Nathalie.Sznajder}@lip6.fr
² ENS Cachan, LSV, CNRS UMR 8643 & INRIA, Cachan, France

Serge.Haddad@lsv.ens-cachan.fr

³ Département d'Informatique, Université Libre de Bruxelles, Bruxelles, Belgium mathieu.sassolas@ulb.ac.be

Abstract. We propose to study concurrent games on a new extension of Vector Addition Systems with States, where inhibition conditions are added for modeling purposes. Games are a well-suited framework to solve control problems, and concurrent semantics reflect realistic situations where the environment can always produce a move before the controller, although it is never required to do so. This is in contrast with previous works, which focused mainly on turn-based semantics. Moreover, we consider asymmetric games, where environment and controller do not have the same capabilities, although they both have restricted power. In this setting, we investigate reachability and safety objectives, which are not dual to each other anymore, and we prove that (i) reachability games are undecidable for finite targets, (ii) they are 2-EXPTIME-complete for upward-closed targets and (iii) safety games are co-NP-complete for finite, upward-closed and semi-linear targets. Moreover, for the decidable cases, we build a finite representation of the corresponding controllers.

1 Introduction

Context. Games on infinite structures, and their relation to control theory, have been largely studied in the last ten years [1], [16], [17], [11], [12], [19], [18], [5], [7]. Given a plant in an environment and a specification, controllability asks if there exists a controller such that the controlled plant satisfies the specification. When the answer is positive, the synthesis problem requires to build a controller. This problem can be expressed as a game with two players, environment and controller, and the question becomes the existence (and construction) of a controller strategy to win the game.

^{*} Work partially supported by projects CoChaT (DIGITEO-2009-27HD), ImpRo (ANR-2010-BLAN-0317), ERC Starting Grant inVEST (279499) and the European Union Seventh Framework Programme [FP7/2007-2013] under grant agreement 257462 HYCON2 NOE.

In this context, various parameters come into play. The underlying models can be continuous or discrete transition systems, the latter being those considered here. The game semantics can be turn-based or concurrent, with identical or asymmetrical rules for the two players, with or without the ability to waive a move, and so on. Finally, different winning objectives can be considered: from basic reachability or avoidance objectives (w.r.t. some target set S of system configurations) to general LTL specifications [19,18,3]. In addition, the target set S can be specified in several ways: a finite set, an upward-closed set (with respect to some ordering), a set of (bounded) linear constraints, a semi-linear set, etc.

Related Work. In [12,11], the underlying models are Symbolic Transition Systems or Assignment Program Models with turn-based semantics and avoidance objectives, for which controllability is undecidable. Abstract interpretation techniques are proposed to compute over-approximations of the subset of unsafe states [12] and decidability results are obtained for particular cases, among them Petri nets with upward-closed targets [11]. In [1,16,17], the authors introduce monotonic game structures, which also include Petri nets. The games are turn-based and symmetrical, with safety, reachability and parity objectives for finite and upward-closed target sets. While the problems are still undecidable, the authors investigate subclasses like B-game structures [16,17] or B-downward closed games [1] (where A and B are the two players), thus breaking the symmetry, and they establish decidability results for these games.

Vector Addition Systems with States (VASS) were also used as a model for control and two-player games. A possibly infinitely branching extension of VASS is studied in [5], again with a turn-based symmetrical game, reachability objectives, and a target set containing configurations where one of the counters is null. Decidability is obtained in this case, with an EXPSPACE upper bound, while adding the selection of control states again brings undecidability. Among other results, the complexity bound mentioned above is improved in [7] in the more general framework of Energy and Mean-Payoff games, which is another way of dealing with VASS with specific targets corresponding to minimal or mean values for the counters.

Contribution. In this work, we consider another extension of VASS, called VASSI, obtained by adding inhibition conditions, which correspond to inhibitor arcs in Petri nets (as is done in [3] with boundedness constraints). This feature is useful for modeling purposes: for instance, consider the cooling system of a plant, where temperature can increase when

the water level is below some threshold. This can be described by an environment's transition with inhibition conditions (see Fig. 1 in Section 2).

Concerning semantics, we consider concurrent and asymmetric games: we argue that such games are more realistic than turn-based symmetric games in the context of controllability problems, since usually the environment can always produce a move, whatever the controller is willing to do. Along the same line, no player is forced to play. Moreover, environment and controller do not have the same capabilities. They both have restricted power but in an asymmetrical way. Our model is described in Section 2.

Note that in this setting, safety and reachability are not dual objectives with respect to the two players. Also, contrary to [1,16,17], the games are not monotonic anymore. We prove in Section 3 that reachability games are undecidable for finite target sets (hence also for semi-linear sets) and 2EXPTIME-complete for upward-closed targets. On the other hand, we establish in Section 4 that safety games are co-NP-complete for semi-linear targets, as well as finite and upward-closed sets (see summary in Table 1). For decidable games, we also provide finite representations of controllers, the one for safety games implementing a most permissive strategy. Detailed proofs can be found in [2].

Table 1. Summary of results.

Objective/Target	Finite	Semi-linear	Upward-closed
Reachability	Undecidable =	\Rightarrow Undecidable	2-EXPTIME-complete
Safety	co-NP-complete	co-NP-complete	co-NP-complete

2 Games on VASS with Inhibition Conditions

We denote by A^* (resp. A^{ω}) the set of finite (resp. infinite) sequences of elements of a set A, with ε the empty sequence, and |w| the length of $w \in A^*$. A finite sequence u is a *prefix* of w, if there is a sequence v such that uv = w. We write $A^+ = A^* \setminus \{\varepsilon\}$ and $A^{\infty} = A^* \cup A^{\omega}$. The set of all subsets of A is denoted by $\mathcal{P}(A)$ and \uplus denotes the disjoint union of subsets.

We write \mathbb{Z} (resp. \mathbb{N}) for the set of integers (resp. nonnegative integers). For $n \in \mathbb{N}$, let [n] denote the set $\{1, \ldots, n\}$. For a vector $v = (v_j)_{j \in [n]} \in \mathbb{Z}^n$ and for $i \in [n]$, let $v(i) = v_i$ be the *i*th component of v and $v[i] = (v_j)_{j \in [i]}$ be the projection of v onto its first i components. The vector with all components equal to 0 is denoted by **0**. Given $v_1, v_2 \in \mathbb{N}^n$,

operations are defined componentwise: $v_1 \ge v_2$ if $v_1(i) \ge v_2(i)$ for all $i \in [n]$, and $v_1 + v_2$ is defined by $(v_1 + v_2)(i) = v_1(i) + v_2(i)$ for all $i \in [n]$.

We extend the definition of Vector Addition System with States to include inhibition conditions.

Definition 1 (Vector Addition Systems with States and Inhibition conditions). A Vector Addition System with States and Inhibition conditions (VASSI) is a tuple $\mathcal{V} = (Q, n, T, \alpha, \beta, \delta, Inh)$ where

- -Q is a finite set of states,
- $-n \in \mathbb{N}$ is the number of counters (called the dimension),
- T is the set of transitions, $\alpha, \beta : T \to Q$ associate respectively with each $t \in T$, its source and target states,
- $-\delta: T \to \mathbb{Z}^n$ is the displacement function,
- and $Inh: T \to (\mathbb{N} \setminus \{0\} \cup \{\infty\})^n$ is the inhibition function.

A configuration of a VASSI $\mathcal{V} = (Q, n, T, \alpha, \beta, \delta, Inh)$ is a pair $c = (q, m) \in \mathcal{C} = Q \times \mathbb{N}^n$. The semantics of \mathcal{V} is given by the transition system $\mathcal{T}_{\mathcal{V}} = (\mathcal{C}, \rightarrow)$, where $\rightarrow \subseteq \mathcal{C} \times \mathcal{C}$ is the transition relation defined by $(q, m) \rightarrow (q', m')$ if and only if there is a transition $t \in T$ such that $\alpha(t) = q, \beta(t) = q', m < Inh(t)$ and $m' = m + \delta(t)$; note that since $m' \in \mathbb{N}^n, m + \delta(t) \geq 0$. In such a case, we say that t is fireable in (q, m) and we may also write the transition as $(q, m) \xrightarrow{t} (q', m')$.

A run of $\mathcal{T}_{\mathcal{V}}$ (or, equivalently, of \mathcal{V}) is a sequence of configurations $\rho = c_0 c_1 \cdots \in \mathcal{C}^{\infty}$ such that $c_i \to c_{i+1}$ for all $0 \le i < |\rho|$.

Given $c, c' \in \mathcal{C}$ two configurations, we say that c' is *reachable* from c if there is a finite run $c_0c_1 \ldots c_k$ of \mathcal{V} with $c = c_0$ and $c' = c_k$. Like above, we may also write $c \xrightarrow{\tau} c'$, indicating the corresponding sequence of transitions $\tau = t_1 t_2 \ldots t_k$, which forms what we call a *fireable path* in the underlying graph (Q, T).

Our games are played by two players (environment and controller) on a subclass of VASSI, where the set of transitions is partitioned into controllable and uncontrollable transitions, with the additional constraint that uncontrollable transitions can only increase the values of the counters (as in [16,17]) and controllable transitions cannot be inhibited:

Definition 2 (Asymmetric VASSI). An Asymmetric VASSI (shortly AVASSI) is a VASSI where the set of transitions is partitioned into two subsets: $T = T_c \uplus T_u$, and such that $\delta(T_u) \subseteq \mathbb{N}^n$ and $Inh(T_c) = \{(\infty)^n\}$.

If we consider that environment sends events to the system through a unidirectional channel, the counters can represent the number of environment events the system is *aware of* that have not been handled yet

Fig. 1. Cooling system as an AVASSI. Solid edges belong to the controller while dotted edges belong to the environment.

(actual content of events is abstracted away). The system does not necessarily observe all the events in the channel (due to delay of transmission from a sensor for instance), hence it cannot test the value 0 of the counter (which corresponds to the fact that the transition cannot be inhibited).

To illustrate this definition, we give another example where our model is appropriate: the case of a (simple) cooling system is depicted by the AVASSI in Fig. 1, where the three counters represent respectively the amount of water in a tank, the temperature, and the cost associated with pumping water into the tank. A transition of the controller is represented by a solid line and labeled by a column vector corresponding to the displacement function δ . A transition of the environment is represented by a dotted line and labeled by two column vectors corresponding to the displacement function δ and the inhibition function Inh. When the pump is on, the controller can add water into the tank. The environment can increase the global cost. When the pump is off, the controller can choose to empty the tank. In both cases, when the water gets below some threshold x, cooling is prevented, which is described by an environment's transition with inhibition condition that increases the temperature counter. Of course, this toy example could be made more realistic.

Strategies. Given an AVASSI \mathcal{V} , a *strategy* for the controller is a mapping $f: \mathcal{C}^+ \to 2^{T_c}$ that gives the subset of fireable transitions of T_c permitted after a sequence of configurations. A strategy f is *memoryless* if $f(\rho_1 \cdot c) = f(\rho_2 \cdot c)$, for all $\rho_1, \rho_2 \in \mathcal{C}^*$, $c \in \mathcal{C}$. In this case, we may simply define it as a mapping $f: \mathcal{C} \to 2^{T_c}$.

Outcome of a Strategy. Given an AVASSI \mathcal{V} and a strategy $f : \mathcal{C}^+ \to 2^{T_c}$, a run $\rho = c_0 c_1 \cdots \in \mathcal{C}^{\infty}$ is *f*-consistent (and also called an *f*-run) if,

at each step, either a transition permitted by the strategy has been fired, or the environment has played instead, *i.e.* for all $0 < i < |\rho|$, there exists a transition $t \in f(c_0 \dots c_{i-1}) \cup T_u$ such that $c_{i-1} \stackrel{t}{\to} c_i$.

An f-run ρ is f-maximal if it is infinite or such that $f(\rho) = \emptyset$. Given a configuration $c \in C$, we define $Outcome(f, \mathcal{V}, c)$ as the set of f-maximal f-runs of \mathcal{V} that start in c.

Winning Condition and Winning Strategies. Given a AVASSI \mathcal{V} , a winning condition is a set of sequences $W \subseteq \mathcal{C}^{\infty}$. A run is winning if it belongs to W and a strategy f is winning from configuration $c \in \mathcal{C}$ for W if $Outcome(f, \mathcal{V}, c) \subseteq W$.

Control Problem. The control problem for AVASSI can be expressed as follows: given an AVASSI \mathcal{V} , an initial configuration $c_0 \in \mathcal{C}$, and a winning condition W, does there exist a winning strategy for the controller for W from c_0 ? We consider in this work two variants of winning conditions: given a AVASSI, and a set of configurations $S \subseteq \mathcal{C}$ (the *target*),

- a reachability objective is defined by $W = \mathcal{C}^* \cdot S \cdot \mathcal{C}^\infty$,

- a safety objective is defined by $W = (\mathcal{C} \setminus S)^{\infty}$.

In the rest of the paper, we call these problems respectively *reacha-bility game* and *safety game* and we consider three types of targets: finite sets, upward-closed sets, and semi-linear sets of configurations.

Upward-closed Sets. Let (A, \preceq) be an ordered set. A subset $S \subseteq A$ is *upward-closed* if for all $a_1 \in S$ and $a_2 \in A$, if $a_1 \preceq a_2$, then $a_2 \in S$. Such a set can be represented by a finite set of minimal elements.

In this work, we consider upward-closed sets of configurations with respect to the covering order on configurations of an AVASSI: (q_1, m_1) covers (q_2, m_2) , written $(q_1, m_1) \succeq (q_2, m_2)$, if $q_1 = q_2$ and $m_1 \ge m_2$.

Semi-linear Sets. A linear set is a subset of \mathbb{N}^n (for n > 0) of the form $\{v + k_1u_1 + \cdots + k_pu_p \mid k_1, \cdots, k_p \in \mathbb{N}\}$ where $v, u_1, \cdots, u_p \in \mathbb{N}^n$. A semi-linear set is a finite union of linear-sets. Semi-linear sets are closed by intersection, complementation, and application of a linear mapping. Moreover, emptiness of a semi-linear set is decidable. Remark that finite sets and upward-closed sets are particular cases of semi-linear sets.

In the sequel, we consider semi-linear sets over the set of configurations seen as $\mathbb{N}^{Q \uplus [n]}$: a configuration (q, m) is represented by the vector $(\mathbf{1}_q, m)$, with $\mathbf{1}_q$ the vector defined by $\mathbf{1}_q(q) = 1$ and $\mathbf{1}_q(q') = 0$ for $q' \neq q$.

3 Reachability Games

Finite Targets. In the simplest case where the target is a finite set of configurations, reachability games are undecidable.

Theorem 3. Reachability games are undecidable on AVASSI for finite targets.

Proof (Sketch). The proof works by reduction of the halting problem for a two-counter machine. The goal of this game is then to reach a state *end* with the two counters equal to 0. As usual, the instruction not readily implementable on VASS (hence on AVASSI) is the conditional instruction that compares the value of a counter with 0. In our encoding, this choice is made by the environment: first, a widget allows the controller to reach the winning configuration when the environment tries to block the game. Moreover, when the counter is greater than 0, the environment is prevented from firing the transition mimicking the fact that the counter is empty, due to inhibition condition. Then, the only case where the environment can deviate from the actual simulation of the machine is when the counter is empty. If (and only if) it cheats, another widget allows the controller to reach the winning configuration.

A direct consequence of this result is that the control problem for reachability objective with semi-linear targets is also undecidable.

Upward-closed Targets. We now consider the case of upward-closed targets:

Theorem 4. Reachability games on AVASSI with upward-closed targets are 2-EXPTIME-complete.

Before giving the proof of Theorem 4, we establish in Proposition 5 (reminiscent of [15]) an upper bound on the "size" of the optimal winning strategy, when it exists. By "size", we mean the depth of the tree of possible configurations encountered while playing according to this strategy, where branches stop growing as soon as they reach a winning configuration.

In this section, we say that a run is a min-winning f-run if it is winning while none of its prefixes is. It is sufficient to consider only those runs, since any suffix starting from a configuration covering the target is irrelevant to the winning condition.

Let an input consist of an AVASSI $\mathcal{V} = (Q, n, T, \alpha, \beta, \delta, Inh)$, with an initial configuration $c_0 \in \mathcal{C}$, and an upward-closed set as target, given by the finite set of its minimal elements $B = \{b_1, \ldots, b_m\}$. We denote by \mathcal{K} the size of this input, i.e., the space needed to describe \mathcal{V} , c_0 and B. We define $\delta_{\max} = 1 + \max_{t \in T; i \in [n]} (|\delta(t)(i)|)$ and $Inh_{\max} = 1 + \max_{t \in T; i \in [n]} \{Inh(t)(i) \mid Inh(t)(i) < \infty\}$. **Proposition 5.** For an AVASSI \mathcal{V} and an upward-closed target described by $B = \{b_1, \ldots, b_m\}$, there is a winning strategy for the reachability game if and only if there is a winning strategy f such that all the min-winning f-runs have length less than or equal to $2^{\mathcal{K}^{\mathcal{K}+1}}$.

Proof. We proceed inductively on the AVASSI obtained by projecting onto the p first counters and removing transitions of the environment that contained inhibition conditions on the omitted counters. Formally for $p \leq n$, let $\mathcal{V}_p = (Q, p, T_p, \alpha_p, \beta_p, \delta_p, Inh_p)$, where $T_p = T_c \uplus \{t \in T_u \mid Inh(t)(i) = \infty$, for all $p < i \leq n\}$, α_p and β_p are the functions α and β restricted on T_p , and δ_p and Inh_p are respectively the functions δ and Inh restricted to T_p and projected onto the first p dimensions. We set $\mathcal{C}_p = Q \times \mathbb{N}^p$. We say that a run (resp. strategy) is p-winning if it is winning in \mathcal{V}_p for the projection of B (minimal elements of the target) on the first p components. In particular, n-winning means winning.

A run $\rho_p = c_1 \dots c_k \in \mathcal{C}_p^+$ of \mathcal{V}_p is *p*-covering if it is a minimal *p*winning run: c_k covers b[p] for some $b \in B$ and for all i < k, for all $b \in B$, c_i does not cover b[p]. Note that any *p*-winning run starts with a *p*-covering run.

Given $c \in \mathcal{C}_p$ and $f : \mathcal{C}_p^+ \to 2^{T_c}$ a strategy, we define size $(f, p, c) = \max\{|\sigma| \mid \sigma \text{ is a prefix of } \rho, \rho \in Outcome(f, \mathcal{V}_p, c) \text{ and } \sigma \text{ is } p\text{-covering}\}$ if f is p-winning from c, and size $(f, p, c) = \infty$ otherwise. From a configuration c, a strategy f reaches the target (in \mathcal{V}_p) in at most size(f, p, c) steps (which can be infinite if the strategy f is not p-winning).

A strategy f is (p, c)-optimal if size $(f, p, c) \leq \text{size}(f', p, c)$ for any strategy $f': \mathcal{C}_p^+ \to 2^{T_c}$. We denote by $f_{p,c}$ a (p, c)-optimal strategy. Note that since the objective here is reachability, $f_{p,c}$ can be assumed memoryless. If it is not, it is possible to define another (p, c)-optimal strategy that is memoryless in the following way: if $f_{p,c}$ is winning, for all $d \in \mathcal{C}$, we let $f'_{p,c}(d) = f_{p,c}(\sigma d)$ where σd is one of the longest $f_{p,c}$ -run having not covered the target yet. If $f_{p,c}$ is not winning, we let $f'_{p,c}(d) = f_{p,c}(\sigma d)$ for some $f_{p,c}$ -run σ .

We now assume that there exists a winning strategy from the initial configuration. In the rest of this proof, we therefore consider only configurations for which there exists a winning strategy: $C_p^w = \{c \in C_p \mid \exists f, p\text{-winning from } c\}$. Let

$$\ell(p) = \max\{\text{size}(f_{p,c}, p, c) \mid c \in \mathcal{C}_p^{w}, f_{p,c} \text{ is a } p \text{-winning strategy from } c\}$$

be the maximal number of steps required to win in \mathcal{V}_p with an optimal winning strategy.

1 begin C := the set of configurations with counters bounded by $c_0 + \delta_{\max} \cdot L$; $\mathbf{2}$ $C_A, C_E := \text{copies of } C; \forall c \in C, c_A \text{ (resp. } c_E) \text{ is the copy of } c \text{ in } C_A \text{ (resp. } C_E);$ з $mark(c) := false for each c in C_A \uplus C_E;$ 4 If $c_A \in \mathcal{C}_A$, $succ(c_A) :=$ successors of c in \mathcal{C}_A by transitions of T_u and 5 $c_E \in \mathcal{C}_E;$ If $c_E \in \mathcal{C}_E$, $succ(c_E) :=$ successors of c in \mathcal{C}_A by transitions of T_c ; 6 forall the configurations c in $C_A \uplus C_E$ do 7 if $c \succcurlyeq b$ for some $b \in B$ then mark(c):= true; 8 while not end do 9 end:= true: 10 forall the $c \in C_A$ do 11 if all $c' \in succ(c)$ such that mark(c')=true then mark(c):=true; 12 end:=false; for all the $c \in C_E$ do 13 if there is $c' \in succ(c)$ such that mark(c')=true then 14 mark(c):=true; end:=false; return mark $(c_{0,A})$; 15

Algorithm 1: Guessing a winning strategy

In order to bound $\ell(n)$, we compute by induction on $p \leq n$ an upper bound for $\ell(p)$. To do so, we use the fact that $\ell(0) \leq |Q|$ and $\ell(p+1) \leq (2^{\mathcal{K}})^{p+2} \cdot (\ell(p)+1)^{p+1} + \ell(p)$ (this can be done by induction on p). This recurrence relation can now be used in order to bound $\ell(n)$. Let g be the function defined by $g(0) = 2^{\mathcal{K}}$ and $g(p+1) = g(p)^{2p+4}$. We show by recurrence that $\ell(p) \leq g(p)$ for all p. The case p = 0 is trivial. Now assume the inequality holds for p. By the previous recurrence relation, we have:

$$\ell(p+1) \le (2^{\mathcal{K}})^{p+2} \cdot (\ell(p)+1)^{p+1} + \ell(p) \le (2^{\mathcal{K}})^{p+2} \cdot (g(p)+1)^{p+1} + g(p)$$

$$\le (2^{\mathcal{K}})^{p+2} \cdot g(p)^{p+2} \quad (\text{since } g(p) \ge p+2)$$

$$\le g(p)^{p+2} \cdot g(p)^{p+2} \le g(p)^{2p+4}$$

Hence: $\ell(p+1) \leq g(p+1)$. On the other hand, one can show that $g(p) = 2^{\mathcal{K} \cdot 2^{p} \cdot (p+1)!}$. Therefore

$$L = \ell(n) \le g(n) \le 2^{\mathcal{K} \cdot 2^n \cdot (n+1)!} \le 2^{\mathcal{K} \cdot n^{n+1}} \le 2^{\mathcal{K} \cdot \mathcal{K}^{\mathcal{K}}} \le 2^{\mathcal{K}^{\mathcal{K}+1}}.$$

Proof (Theorem 4). Having a bound $L = 2^{\mathcal{K}^{\mathcal{K}+1}}$ on the size of the optimal strategy gives us the decision procedure described by Algorithm 1, which runs in doubly exponential time.

We now prove the lower bound. As in [8], we reduce the following problem: given an alternating counter machine of size N, does it have a

Fig. 2. Simulation of a state ℓ of the machine with available transitions $t_1: x++$ goto ℓ_1 and $t_2:$ if x = 0 then x - - goto ℓ_2 else goto ℓ'_2 . Two cases corresponding to whether ℓ is an existential state or a universal one.

halting computation in which the value of each counter is bounded by 2^{2^N} ? This problem is AEXPSPACE-hard, hence 2-EXPTIME-hard [6]. Given such an alternating counter machine, we build an AVASSI with an upward-closed target for which there is a winning strategy if and only if there is a 2^{2^N} -bounded halting computation in the counter machine. We know from Lipton [13] that a 2^{2^N} -bounded counter machine of size N can be simulated by a Petri net of size $O(N^2)$. This construction is easily adapted to our case.

The VASS hence built (in which the set of states contains the set of states of the counter machine) can be turned into an AVASSI in the following way: to each existential state of the counter machine corresponds a state of the AVASSI from which all the outgoing transitions are controllable (and simulate the instructions available from this state in the machine). To each universal state of the counter machine corresponds a state of the AVASSI from which all the outgoing transitions are uncontrollable and lead to intermediate states simulating the instructions. An additional controllable transition to a winning state forces the environment to play. From each intermediate state, there is a single transition, which is controllable, leaving no choice to the controller. This transition simulates the instruction⁴. The target is the set of configurations in an halting state. An example of this simulation in the case of existential and universal states are depicted Fig. 2.

Observe that an alternate proof for deciding reachability games with upward-closed targets can be performed using the classical construction of *controllable predecessors*. In this case, it can be shown that if a set of configurations is upward-closed, then so is the set of its controllable predecessors. Since the covering order is a well-quasi-ordering, this con-

 $^{^{4}}$ The environment cannot decrement vectors: it cannot perform the instruction itself.

struction terminates, but this does not provide a complexity upper bound. However, using this alternate construction gives a finite representation of a controller. We do not detail it here as it is standard.

4 Safety Games

In this section, we prove the co-NP-completeness of safety games with semi-linear, finite and upward-closed targets, and we give the construction of the most permissive strategy. We first establish:

Theorem 6. Safety games on AVASSI with semi-linear targets are in co-NP.

Proof. To solve a safety game with target S, we consider the AVASSI restricted to uncontrollable transitions. Indeed, if only uncontrollable transitions are allowed, and the target cannot be reached, then an obvious winning strategy for the controller is to forbid every controllable transition. Conversely, if the set of configurations S to avoid can be reached by using only uncontrollable transition, there can be no winning strategy for the controller: any run obtained by firing only uncontrollable transitions is an f-run, for any strategy f. Let $Target = \bigcup_{i \in I} \{m_i^* + \sum_{u \in U_i} y_u \cdot u \mid y_u \in \mathbb{N}\}$ be the semi-linear target and let \mathcal{V} be an AVASSI restricted to uncontrollable transitions.

We first introduce some additional notations. Transition t is said enabled in configuration c = (q, m) if it is not inhibited by m, i.e. m < Inh(t). The set of transitions enabled in (q, m) is denoted by En(q, m); we also use the notation En(m) since q is not relevant here. A path $\tau = t_1 \cdots t_k$ in (Q, T) is fireable from configuration c = (q, m) iff for all $j \in [k]$, $t_j \in En(m + \sum_{i=1}^{j-1} \delta(t_i))$. We define the flow vector $Flow(t) \in \{-1, 0, 1\}^Q$ ranging over Q as follows: (i) for $q \in Q \setminus \{\alpha(t), \beta(t)\}, Flow(t)(q) = 0$; (ii) if $\alpha(t) = \beta(t)$, then $Flow(t)(\alpha(t)) = 0$; (iii) if $\alpha(t) \neq \beta(t)$, then $Flow(t)(\alpha(t)) = -1$ and $Flow(t)(\beta(t)) = 1$.

The decision procedure described by Algorithm 2 proceeds as follows.

- It (non deterministically) builds a linear system S with two sets of variables: X, the number of occurrences of some transitions in a sequence τ , and Y, the coefficients of a linear set U of *Target*.
- It guesses a small potential solution of this system (in case of non emptiness) as in $[14, \text{ Chap. } 13]^5$ and returns true if it is an actual solution.

⁵ If the integer system AX = B, with A an (m, n) matrix, has a feasible solution, then it has a feasible solution with coefficients bounded by $n \times (ma)^{2m+4}$, where a is greater than the maximal absolute value of all coefficients of A and B.

1 begin Choose $k \leq |T|$; Choose $q \in Q$; $\mathbf{2}$ $\beta(t_0) := q_0 \ (t_0 \ is \ a \ fictitious \ transition);$ 3 $\alpha(t_{k+1}) := q \ (t_{k+1} \ is \ a \ fictitious \ transition);$ 4 $X = \emptyset; i := 1;$ 5 while $i \le k+1$ do 6 if $i \leq k$ then choose $t_i \in T$; 7 Choose (Q_i, T_i) a connected subgraph containing $\beta(t_{i-1})$ and $\alpha(t_i)$; 8 9 $X := X \cup \{x_{i,t} \mid t \in T_i\};$ if $i \leq k$ then $T'_i := T_i \cup \{t_i\}$ else $T'_i := T_i;$ 10 11 i := i + 1;Choose a linear set $U = (m^* + \sum_{u \in U} y_u \cdot u) \in Target;$ 12 Define the linear system \mathcal{S} ; 13 14 $\forall x \in X, x \geq 1 \ \land$ $\mathcal{S} := \begin{cases} \forall i \in X, i \geq 1 \land \\ \forall 1 \leq i \leq k+1, \mathbf{1}_{\beta(t_{i-1})} + \sum_{t \in T_i} x_{i,t} Flow(t) = \mathbf{1}_{\alpha(t_i)} & (*) \\ \forall 1 \leq i \leq k+1, \forall t \in T'_i, \\ m_0 + \sum_{j \leq i} \sum_{t \in T_j} x_{j,t} \delta(t) + \sum_{j < i} \delta(t_i) < Inh(t) & (**) \\ m_0 + \sum_{i=1}^{k+1} \sum_{t \in T_i} x_{i,t} \cdot \delta(t) + \sum_{i=1}^k \delta(t_i) = m^* + \sum_{u \in U} y_u \cdot u & (***) \end{cases}$ 15 Choose small values for $(x_{i,t})_{i < k+1, t \in T}$ and $(y_u)_{u \in U}$; 16 **return** whether $(x_{i,t})_{i \leq k+1, t \in T}, (y_u)_{u \in U}$ is a solution for S

Algorithm 2: Guessing a Parikh vector for a firing sequence to an offending configuration.

The sequence τ (which is not built) is of the form $\tau = \tau_1 t_1 \tau_2 \dots t_k \tau_{k+1}$ with $k \leq |T|$. The algorithm guesses the following items: $k, \{t_i\}_{1 \leq i \leq k}$, connected subgraphs $\{(Q_i, T_i)\}_{1 \leq i \leq k+1}$ of (Q, T) such that T_i is exactly the set of transitions fired in τ_i and finally a linear subset U of *Target*. The set of variables is $X = \{x_{i,t} \mid 1 \leq i \leq k+1 \wedge t \in T_i\}$ and $Y = \{y_u \mid u \in U\}$. The system S checks if there is a fireable sequence τ whose Parikh vector is $\sum_{i=1}^{k} \mathbf{1}_{t_i} + \sum_{i=1}^{k+1} \sum_{t \in T_i} x_{i,t} \mathbf{1}_t$ and whose final marking belongs to U.

Complexity. The construction of the set of transitions appearing in the solution is done in polynomial time, and the number of variables created is at most |T|(|T|+1). The coefficients of S are either coefficients of $\delta(t)$ or the integers occurring in U. Hence the size of the system is polynomial. Furthermore, the bound on the small solution provided in [14, Chap. 13] has a polynomial representation in the size of the system. Therefore in our case, this solution can be guessed and checked in polynomial time w.r.t. the input of the safety problem.

Soundness. Assume the algorithm returns true and consider the corresponding solution. For $1 \leq i \leq k+1$, since transitions in T_i form a connected subgraph (when the underlying graph is seen as an undirected

one), condition (*) of S is an Euler condition ensuring that one can derive a path τ_i from $\beta(t_{i-1})$ to $\alpha(t_i)$ in which every transition $t \in T_i$ appears exactly $x_{i,t}$ times. Let us denote m_i the marking reached after the sequence $\tau_1 t_1 \dots \tau_i$. Condition (**) ensures that transitions of T'_i are enabled in m_i , thus they are also enabled in any previous marking occurring along the sequence (since the marking does not decrease after a transition firing). Thus by recurrence, $\tau_1 t_1 \dots \tau_{k+1}$ is a firing sequence. At last condition (***) ensures that marking $m_{k+1} \in U \subseteq Target$.

Completeness. Let $c_0 \xrightarrow{t_1} \cdots c_{k-1} \xrightarrow{t_k} \cdots$ be a fireable sequence of transitions from c_0 , and let I_{Inh} be the subset of indices of those transition occurrences that actually disable other transitions: $j \in I_{Inh}$ if and only if $En(c_j) \subsetneq En(c_{j-1})$. In the worst case, each transition firing with index in I_{Inh} inhibits exactly one other transition. Then, there cannot be more elements in I_{Inh} than the total number of transitions: $|I_{Inh}| \leq |T|$.

Now, assume there is a reachable configuration $m_f = m^* + \sum_{u \in U} \beta_u \cdot u$ in some linear subset $U \subset Target$. Let $\tau_1 t_1 \cdots \tau_k t_k \tau_{k+1}$ be the sequence of transitions leading to this configuration, where the transitions t_i are exactly the ones inducing a modification in the set of enabled transitions. By the above observation, $k \leq |T|$. Let T_i be the transitions occurring in τ_i . Since the enabled transitions are unchanged during the firing of τ_i , transitions T_i for $i \leq k$ (resp. i = k + 1) are still enabled before the firing of t_i (resp. in m_f). So denoting by $\sum_{t \in T_i} \alpha_{i,t} \mathbf{1}_t$ the Parikh vector of τ_i , the $\alpha_{i,t}$'s and the β_u 's are a solution of the corresponding system S. Using the results of [14, Chap. 13], the algorithm will then find a *small* solution of S.

Summarizing the results, the problem of existence of a winning strategy to ensure a safety objective is in co-NP. $\hfill \Box$

In general, the set of reachable markings of a Petri Net (and therefore configurations of a VASS) is not semi-linear [10]. However, it was shown to be the case for some restricted models [9,4]. If one determinizes Algorithm 2 and one sets for *Target* all the possible markings, one obtains:

Theorem 7. Let $\mathcal{V} = (Q, n, T, \alpha, \beta, \delta, Inh)$ be a VASSI s.t. $\delta(T) \subseteq \mathbb{N}^n$. Then its set of reachable configurations is effectively semi-linear.

By a reduction from 3-SAT, we also obtain the following result.

Theorem 8. Safety games on AVASSI with finite targets or upwardclosed targets are co-NP-hard even with |Q| = 1.

Proof (Sketch). The idea behind the construction is to associate a counter with each literal (a variable or its negation). By deciding to increment a

literal or its negation, the environment choses a valuation of variables. Then it can mark clauses as satisfied (through a counter per clause) only when they agree with the chosen valuation. The goal (for the environment) is to reach (or cover) the configuration where all clauses are marked, hence when the whole formula is *true*. \Box

Corollary 9. Safety games on AVASSI with finite, upward-closed or semilinear targets are co-NP-complete.

Construction of the Most Permissive Strategy. We show now how to build off-line the most permissive strategy.

Theorem 10. The most permissive strategy for safety games on AVASSI with semi-linear targets can be represented by a finite-state machine.

Proof. If we determinize again Algorithm 2 and take the (finite) union on all linear sets $U \in Target$ of all possible systems of equations obtained, we get the set of configurations from which the system cannot avoid the target and deduce that this set is semi-linear. These configurations happen to be exactly the ones the strategy should avoid.

One can then compute, for a given controllable transition t, the set of configurations from which this transition is allowed. Let $Pre_{Forbid}(t) =$ $\{(q,m) \in \mathcal{C} \mid \exists (q',m') \in Forbid, q = q' - Flow(t), m = m' - \delta(t)\}$. Since *Forbid* is semi-linear and the image of a semi-linear by an affine application is still semi-linear, we get that $Pre_{Forbid}(t)$ is semi-linear, for any controllable transition t. Then, the set of configurations from which t is allowed is given by $\mathcal{C} \setminus Pre_{Forbid}(t)$, which is still semi-linear. \Box

5 Conclusion

We solve reachability and safety games with concurrent semantics for an extension of VASS with inhibition conditions, for finite, upward-closed and semi-linear targets. When the reachability games are decidable, the procedures are elementary. For safety games, which are co-NP-complete, the procedure allows to construct the most permissive strategy. Future work includes studying more complex winning objectives, *e.g.*, parity games. Another direction could concern games on continuous models, like timed extensions of Petri nets.

References

 Abdulla, P.A., Bouajjani, A., d'Orso, J.: Monotonic and downward closed games. J. Log. Comput. 18(1) (2008) 153–169.

- Bérard, B., Haddad, S., Sassolas, M., Sznajder, N.: Concurrent games on VASS with inhibition. Technical Report LSV-12-10, LSV, ENS Cachan (2012).
- 3. Bollue, K., Slaats, M., Abraham, E., Thomas, W., Abel, D.: Synthesis of Behavioral Controllers for DES: Increasing Efficiency. In: WODES'10, IFAC (2010).
- Bouziane, Z., Finkel, A.: Cyclic petri net reachability sets are semi-linear effectively constructible. Electr. Notes Theor. Comput. Sci. 9 (1997) 15–24.
- Brázdil, T., Jančar, P., Kucera, A.: Reachability games on extended vector addition systems with states. In Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G., eds.: ICALP'10, part II. Volume 6199 of Lecture Notes in Computer Science, Springer (2010) 478–489.
- Chandra, A.K., Kozen, D., Stockmeyer, L.J.: Alternation. J. ACM 28(1) (1981) 114–133.
- Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.F.: Generalized mean-payoff and energy games. In Lodaya, K., Mahajan, M., eds.: FSTTCS'10. Volume 8 of LIPIcs, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2010) 505–516.
- Demri, S., Jurdziński, M., Lachish, O., Lazić, R.: The covering and boundedness problems for branching vector addition systems. In: Proc. of the 29th Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS'09). Volume 4 of Leibniz International Proceedings in Informatics, Leibniz-Zentrum für Informatik (December 2009) 181–192.
- Esparza, J.: Petri nets, commutative context-free grammars, and basic parallel processes. Fundam. Inform. **31**(1) (1997) 13–25.
- Hopcroft, J.E., Pansiot, J.J.: On the reachability problem for 5-dimensional vector addition systems. Theor. Comput. Sci. 8 (1979) 135–159.
- Kumar, R., Garg, V.: On computation of state avoidance control for infinite state systems in assignment program framework. IEEE Trans. Autom. Sci. Eng. 2(1) (2005) 87–91.
- Le Gall, T., Jeannet, B., Marchand, H.: Supervisory Control of Infinite Symbolic Systems using Abstract Interpretation. In: CDC'05, IEEE Press (2005) 31–35.
- Lipton, R.: The reachability problem requires exponential space. Technical Report 62, Dept. of Computer Science, Yale University (1976).
- 14. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: algorithms and complexity. Prentice-Hall (1982).
- Rackoff, C.: The covering and boundedness problems for vector addition systems. Theor. Comput. Sci. 6 (1978) 223–231.
- Raskin, J.F., Samuelides, M., Van Begin, L.: Petri games are monotonic but difficult to decide. Technical Report 508, Université Libre de Bruxelles (2003).
- 17. Raskin, J.F., Samuelides, M., Van Begin, L.: Games for counting abstractions. Electr. Notes Theor. Comput. Sci. **128**(6) (2005) 69–85.
- Serre, O.: Parity games played on transition graphs of one-counter processes. In Aceto, L., Ingólfsdóttir, A., eds.: FOSSACS'06. Volume 3921 of LNCS, Springer (2006) 337–351.
- Sreenivas, R.S.: Some observations on supervisory policies that enforce liveness in partially controlled free-choice petri nets. Math. Comp. Simul. **70**(5-6) (2006) 266-274.