
A

Pebble Weighted Automata and Weighted Logics

BENEDIKT BOLLIG, PAUL GASTIN, BENJAMIN MONMEGE, LSV, ENS Cachan, CNRS, Inria

MARC ZEITOUN, Université de Bordeaux, LaBRI, CNRS, Inria

We introduce new classes of weighted automata on words. Equipped with pebbles, they go beyond the class of

recognizable formal power series: they capture weighted first-order logic enriched with a quantitative version

of transitive closure. In contrast to previous work, this calculus allows for unrestricted use of existential and
universal quantifications over positions of the input word. We actually consider both two-way and one-way

pebble weighted automata. The latter class constrains the head of the automaton to walk left-to-right,
resetting it each time a pebble is dropped. Such automata have already been considered in the Boolean

setting, in the context of data words. Our main result states that two-way pebble weighted automata, one-

way pebble weighted automata, and our weighted logic are expressively equivalent. We also give new logical
characterizations of standard recognizable series.

Categories and Subject Descriptors: F.3.1 [Logics and Meanings of Programs]: Specifying and Verifying

and Reasoning about Programs; F.4.3 [Mathematical Logic and Formal Languages]: Formal Languages

General Terms: Algorithms, Languages, Theory, Verification

Additional Key Words and Phrases: Formal power series, Pebble automata, Quantitative properties,

Weighted automata, Weighted logics

1. INTRODUCTION

Connections between logical and state-based formalisms have always been a fascinating re-
search area in theoretical computer science, which produced some fundamental theorems.
The line of classical results started with the equivalence of MSO logic and finite automata
[Büchi 1959; Elgot 1961; Trakhtenbrot 1961] and gave rise to natural generalizations to
trees in terms of logics for tree automata [Thatcher and Wright 1968; Rabin 1969; Comon-
Lundh et al. 2008], tree-walking automata, and pebble tree automata [Bojańczyk et al.
2006; Samuelides and Segoufin 2007; Bojańczyk 2008]. Such automata models recently at-
tracted significant interest, for instance in the context of manipulating XML documents
and evaluating XPath queries [ten Cate and Segoufin 2010].

Other extensions of finite automata are of quantitative nature and include timed au-
tomata, probabilistic systems, and transducers, which all come with more or less natural,
specialized logical characterizations. A generic concept of adding weights to qualitative sys-
tems is provided by the theory of weighted automata [Droste et al. 2009], first introduced by
Schützenberger [Schützenberger 1961]. The output of a weighted automaton running on a

This is an extended and enhanced version of results published in [Bollig et al. 2010]. This paper was written
when the last author was visiting LSV as a full time Inria researcher.

This work was partly supported by ANR 2010 BLAN 0202 01 FREC, ARCUS Île-de-France–Inde, and LIA
InForMel.
Authors’ addresses: B. Bollig, P. Gastin, and B. Monmege: LSV, ENS Cachan, CNRS & Inria, 61, Av.
du Président Wilson, 94235 Cachan Cedex, France. Email: {bollig,gastin,monmege}@lsv.ens-cachan.fr; M.
Zeitoun: LaBRI, Université de Bordeaux, CNRS & Inria, 351 cours de la Libération, 33405 Talence Cedex,
France. Email: mz@labri.fr.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 1529-3785/YYYY/01-ARTA $15.00
DOI:http://dx.doi.org/10.1145/0000000.0000000

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 Bollig, Gastin, Monmege, Zeitoun

word is no longer a Boolean value discriminating between accepted and rejected behaviors.
A word is rather mapped to a weight from a semiring, summing over the weights of all pos-
sible runs, each calculated as the product of its transition outcomes. Indeed, probabilistic
automata and word transducers appear as instances of that framework, which found its way
into numerous application areas such as natural language processing and speech recognition
or digital image compression (see [Droste et al. 2009, Part IV]).

A logical characterization of weighted automata, however, was established only re-
cently [Droste and Gastin 2009], in terms of a (restricted) weighted MSO logic capturing
the recognizable formal power series (i.e., the behaviors of finite weighted automata). The
key idea is to interpret existential and universal quantifications as the operations sum and
product from a semiring. The original work on a logical characterization of the recognizable
series on words has been extended to more general structures such as ranked and unranked
trees [Droste and Vogler 2006; Droste and Vogler 2009], nested words [Mathissen 2010],
pictures [Fichtner 2011], and Mazurkiewicz traces [Meinecke 2006], to mention only a few.
In all these cases, however, one has to restrict the universal first-order quantification to stay
within the class of recognizable series.

In the present paper, we follow a different approach. Instead of restricting the logic, we
define an extended automaton model that naturally reflects it. We will indeed show that uni-
versal quantification as interpreted in [Droste and Gastin 2009] is essentially captured by a
pebble (two-way) mechanism in the automata-theoretic counterpart. Inspired by the theory
of two-way and pebble automata on words and trees [Rabin and Scott 1959; Engelfriet and
Hoogeboom 1999; Bojańczyk et al. 2006; Samuelides and Segoufin 2007; Bojańczyk 2008], we
actually define weighted generalizations that preserve their natural connections with logic.
More precisely, we introduce pebble weighted automata on words and establish expressive
equivalence to weighted first-order logic with a quantitative extension of the Boolean tran-
sitive closure, extending the classical Boolean case for words [Engelfriet and Hoogeboom
2007]. Our equivalence proof makes a detour via one-way pebble weighted automata, which
were already considered in the Boolean context for infinite alphabets [Neven et al. 2004]
and restrict pebble weighted automata to left-to-right runs. Note that fragments of our logic
also yield alternative characterizations of the (classical) recognizable formal power series.

Related work. There has been a wide range of quantitative extensions of first-order and
temporal logic that are quite different from the logics studied in this paper. Most of them
are specialized and cannot be instantiated by arbitrary semirings.

The formalisms from [Immerman and Lander 1990; Etessami 1997; Libkin 2000; Hella
et al. 2001] consider counting and aggregate quantifiers for first-order logic to talk about
two-sorted structures. Roughly speaking, they allow us to specify how often a Boolean
formula shall be satisfied, or to sum up over all elements satisfying a property. However, a
sentence still defines a language (of two-sorted structures) rather than a formal power series.
Moreover, the focus in these works has been on (non-)definability and locality properties
in the sense of Hanf and Gaifman. Connections with automata (not to mention weighted
automata) were not studied, and there seems to be no immediate correspondence.

When weighted monadic second-order logic is provided with a threshold operator, it
embeds probabilistic CTL [Hansson and Jonsson 1994], as observed in [Bollig and Gastin
2009]. In principle, this also applies to counting versions of the temporal logics CTL and
LTL [Laroussinie et al. 2012; Laroussinie et al. 2010], which can reason about how often
a formula is satisfied along a path. Again, a formula from these logics defines a language
of words or trees rather than a series, which leads to classical (Boolean) satisfiability and
model checking questions. Contrary to this, we are aiming in this paper at a Büchi-like
correspondence of logic and automata for formal power series, which associate a quantity
with every word.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:3

A quantitative semantics of structures is given in [Fischer et al. 2010] for an extension of
the µ-calculus, though not in terms of a formal power series over a semiring. Disjunction
and conjunction correspond to maximum and minimum, respectively, and temporal as well
as fixed-point operators are defined using supremum, infimum, and discount factors. As
opposed to our setting, the structures themselves are branching and quantitative (like in
probabilistic CTL).

Outline. In Section 2, we recall the classical concept of recognizable formal power series
and recall basics about logics. Weighted logics are introduced in Section 3. In Section 4,
the class of recognizable series is revisited in the light of these weighted logics, which yields
new logical characterizations. In Section 5, we go beyond recognizable series by introducing
pebble weighted automata (two-way and one-way), and we show that both formalisms are
expressively equivalent to weighted first-order logic augmented with transitive closure. Fi-
nally, Section 6 studies some algorithmic questions such as evaluation (the weighted version
of the membership problem), and satisfiability. We conclude in Section 7.

2. NOTATION AND BACKGROUND

In this section we set up the notation and we recall some basic results on weighted automata
and logics. We refer the reader to [Droste and Gastin 2009; Droste et al. 2009] for details.

Throughout the paper, A denotes a finite alphabet and A∗ (respectively, A+) is the
free monoid (respectively, semigroup) over A, i.e., the set of words (respectively, nonempty
words). The length of u ∈ A∗ is denoted by |u|. If |u| = n > 1, we usually write u = u1 · · ·un
with ui ∈ A and we let pos(u) = {1, . . . , n}. For 1 6 i 6 j 6 n, we denote by u[i..j] the
factor uiui+1 · · ·uj of u. Finally, we let A6k =

⋃
06i6k A

i.

2.1. Formal power series

A semiring is a structure (S,+,×, 0, 1) where (S,+, 0) is a commutative monoid, (S,×, 1)
is a monoid, × distributes over +, and 0 is an absorbing element for ×. We say that S is
commutative if so is (S,×, 1).

Example 2.1. We shall refer in the examples to the usual Boolean semiring
({0, 1},∨,∧, 0, 1), denoted by B, the semiring (N,+,×, 0, 1) of natural numbers, the semiring
(Z,+,×, 0, 1) of integers, the tropical semiring (N ∪ {∞},min,+,∞, 0), denoted by T, the
arctic semiring (N ∪ {−∞},max,+,−∞, 0), denoted by A, and the probabilistic semiring
(R+,+,×, 0, 1), denoted by P.

A formal power series (or series, for short) is a mapping f : A+ → S. The set of formal
power series is denoted by S〈〈A+〉〉. We denote again by + and × the pointwise addition
and multiplication (called the Hadamard product) on S〈〈A+〉〉, and by 0 and 1 the constant
series with values 0 and 1, respectively.

2.2. Weighted automata

All automata we consider are finite. A (one-way) weighted automaton (1WA) over
(S,+,×, 0, 1) is a tuple A = (Q,A, I, F,∆,weight), where Q is the set of states, A is a finite
alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, ∆ ⊆ Q×A×Q
is the set of transitions, and weight : ∆→ S assigns a weight to every transition. A run on

a word u = u1 · · ·un is a sequence of transitions ρ = q0
u1−→ q1

u2−→ · · · un−−→ qn. The weight
of the run ρ is

weight(ρ)
def
=

n∏
i=1

weight(qi−1, ui, qi) .

Such a run ρ is said to be accepting if q0 ∈ I and qn ∈ F . The weight JAK(u) of u is the
sum of the weights of all accepting runs on u.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 Bollig, Gastin, Monmege, Zeitoun

1 2 3

a, 1
b, 1
c, 1

a, 1

b,−1

a, 1
b, 1
c, 1

d, 1

a, 1
b, 1
c, 1
d, 1

Fig. 1. Automaton for Example 2.3

One may also describe a weighted automaton by matrices: for all a ∈ A, the transition
matrix µ(a) ∈ SQ×Q is defined by µ(a)q,q′ = weight(q, a, q′) for all q, q′ ∈ Q if (q, a, q′) ∈ ∆,
and 0 otherwise. Moreover, one defines matrices λ ∈ S1×Q and γ ∈ SQ×1 as characteristic
matrices of the sets I and F respectively, i.e., for every state q ∈ Q, λq = 1 if q ∈ I, 0
otherwise, and γq = 1 if q ∈ F , 0 otherwise. The mapping µ : A→ SQ×Q extends uniquely
to a morphism µ : A+ → SQ×Q (where SQ×Q is endowed with the usual multiplication of
matrices). One can then verify that JAK(u) = λ×µ(u)×γ (see, e.g., [Berstel and Reutenauer
2010, Prop. 6.1] for more details).

We call JAK ∈ S〈〈A+〉〉 the behavior, or semantics of A. A formal power series f ∈ S〈〈A+〉〉
is called recognizable if it is the behavior of some weighted automaton. We let Srec〈〈A+〉〉 be
the collection of all recognizable formal power series.

Example 2.2. In the semiring N, let A be the automaton with a single state q, both
initial and final, and transitions (q, a, q) of weight 2 for all a ∈ A. Then, JAK(u) = 2|u| for
all u ∈ A+.

Example 2.3. Let A = {a, b, c, d}. Suppose we want to compute, for a word u ∈ A+, the
difference between the number of a’s and the number of b’s before the first occurrence of
d. Over the semiring Z, the automaton A represented in Figure 1 computes this difference
relying on the non-deterministic move from state 1 to state 2.

It is well-known [Berstel and Reutenauer 2010] that Srec〈〈A+〉〉 is stable under addition
and, if S is commutative, also under Hadamard product.

2.3. Monadic second-order logic

Let us fix infinite supplies of first-order variables Var = {x, y, z, t, x1, x2, . . .}, and of second-
order variables VAR = {X,Y,X1, X2, . . .}. The set MSO(A) (or simply MSO) of monadic
second-order formulae over A is given by the grammar:

ϕ ::= Pa(x) | x 6 y | x ∈ X | ¬ϕ | ϕ ∨ ϕ | ∃xϕ | ∃X ϕ

where a ∈ A, x, y ∈ Var and X ∈ VAR. As usual, the set FO(A) (or simply FO) of first-order
formulae over A is the fragment of MSO(A) without second-order quantifications ∃X.

For ϕ ∈ MSO(A), let Free(ϕ) denote the set of free variables of ϕ. If Free(ϕ) = ∅, then ϕ
is called a sentence. For a finite set V ⊆ Var∪VAR and a word u ∈ A+, a (V, u)-assignment
is a function σ that maps first-order variables in V to elements of pos(u) and second-order
variables in V to subsets of pos(u). For x ∈ Var and i ∈ pos(u), σ[x 7→ i] denotes the
(V ∪ {x}, u)-assignment that maps x to i and, otherwise, coincides with σ. For X ∈ VAR
and I ⊆ pos(u), the (V ∪ {X}, u)-assignment σ[X 7→ I] is defined similarly.

A pair (u, σ), where σ is a (V, u)-assignment, can be encoded as a word over the extended
alphabet AV

def
= A × {0, 1}V . We write a word (u1, σ1) · · · (un, σn) ∈ A+

V as (u, σ) where
u = u1 · · ·un and σ = σ1 · · ·σn. We call (u, σ) valid if, for each first-order variable x ∈ V,
the x-row of σ contains exactly one 1. If (u, σ) is valid, then σ encodes the (V, u)-assignment

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:5

that maps a first-order variable x ∈ V to the unique position carrying 1 in the x-row, and
a second-order variable X ∈ V to the set of positions carrying 1 in the X-row.

We fix a finite set V of variables such that Free(ϕ) ⊆ V. For every u ∈ A+ and every
(V, u)-assignment σ, we define u, σ |= ϕ by induction over the formula ϕ, as shown in
Table I. Note in particular that the semantics of ϕ only depends on the restriction of σ to
free variables of ϕ in V.

Table I. Semantics of MSO

u, σ |= Pa(x) if uσ(x) = a
u, σ |= x 6 y if σ(x) 6 σ(y)
u, σ |= x ∈ X if σ(x) ∈ σ(X)
u, σ |= ¬ϕ if u, σ 6|= ϕ
u, σ |= ϕ1 ∨ ϕ2 if u, σ |= ϕ1 or u, σ |= ϕ2

u, σ |= ∃xϕ if there exists i ∈ pos(u) such that u, σ[x 7→ i] |= ϕ
u, σ |= ∃X ϕ if there exists I ⊆ pos(u) such that u, σ[X 7→ I] |= ϕ

We use abbreviations for constants, modulo constraints and comparisons, like for example,
x 6 y + 2. We use first and last as abbreviations for the first and last positions of a word.
All of these shortcuts can be replaced by suitable FO-formulae, except modulo constraints
such as “x ≡` m” with 1 6 m 6 `, which are MSO-definable.

In the sequel, we let FO+mod be the fragment of MSO consisting of FO augmented
with modulo constraints x ≡` m for constants 1 6 m 6 ` (since the positions of words
start with 1, it is more convenient to compute modulo as a value between 1 and `). The
semantics is given by

Jx ≡` mK(u, σ) =

{
1 if σ(x) ≡ mmod `

0 otherwise

and it is MSO-definable by

x ≡` m
def
= ∀X

([
(x ∈ X) ∧

(
∀y(y ∈ X ∧ y > `) =⇒ y − ` ∈ X

)]
=⇒ m ∈ X

)
.

3. WEIGHTED LOGICS

Our aim is to define a denotational model to describe the behavior of weighted automata.
This has already been done by Droste and Gastin [Droste and Gastin 2009]: they have intro-
duced weighted logics with syntax close to monadic second-order logic, extending the seman-
tics by using addition and product of a semiring to evaluate disjunctions/existential quan-
tifications, and conjunctions/universal quantifications, respectively. At the price of strong
restrictions on the shape of the formulae, they succeeded to prove an expressiveness result
(in our formalism, this result is stated in Theorem 3.8).

The syntax of [Droste and Gastin 2009] is purely quantitative, though Boolean connectives
can be expressed indirectly. As it may be somewhat confusing to interpret purely logical
formulae in a weighted manner, we slightly modify the original syntax, by clearly separating
the logical and the quantitative parts: our weighted logic consists of a Boolean kernel, such
as MSO or FO, augmented with quantitative operators (addition, multiplication, sum and
product quantifications, and possibly weighted transitive closure). Thus, our language will
allow us to test explicitly for Boolean monadic second-order properties, and to perform
computations. We shall see that both formalisms are equivalent. However, in addition to
being more intuitive, the new syntax allows flexibility to study expressiveness. For instance,
one can investigate how the underlying Boolean logic influences the computational power
(see Lemma 3.3).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 Bollig, Gastin, Monmege, Zeitoun

3.1. General definitions

Definition 3.1 (Weighted logics). Given a class L of Boolean formulae, we denote by
wMSO(L) the class of weighted monadic second-order logic defined by

Φ ::= s | ϕ | Φ⊕ Φ | Φ⊗ Φ |
⊕

x Φ |
⊗

x Φ |
⊕

X Φ |
⊗

X Φ

where s ∈ S, ϕ ∈ L, x ∈ Var and X ∈ VAR. Disabling the sum and product indexed by set
variables, we define the class wFO(L) of weighted first-order logic by

Φ ::= s | ϕ | Φ⊕ Φ | Φ⊗ Φ |
⊕

x Φ |
⊗

x Φ

where s ∈ S, ϕ ∈ L and x ∈ Var.

We denote again by Free(Φ) the set of free variables of a formula Φ ∈ wMSO(L). Let
again V be a finite set of variables such that Free(Φ) ⊆ V. The semantics JΦKV ∈ S〈〈A+

V 〉〉 of
Φ wrt. V is defined as follows: if (u, σ) is not valid, we set JΦKV(u, σ) = 0. Otherwise JΦKV
is given in Table II. Hereby, if S is not commutative, the products follow the natural order
on pos(u) and the lexicographic order on the power set {0, 1}pos(u).

Table II. Semantics of wMSO(L)

JsK(u, σ) = s JϕK(u, σ) =

{
1 if u, σ |= ϕ
0 otherwise

JΦ1 ⊕ Φ2K(u, σ) = JΦ1K(u, σ) + JΦ2K(u, σ) JΦ1 ⊗ Φ2K(u, σ) = JΦ1K(u, σ)× JΦ2K(u, σ)

J
⊕

x ΦK(u, σ) =
∑

i∈pos(u)

JΦK(u, σ[x 7→ i]) J
⊗

x ΦK(u, σ) =
∏

i∈pos(u)

JΦK(u, σ[x 7→ i])

J
⊕

X ΦK(u, σ) =
∑

I⊆pos(u)

JΦK(u, σ[X 7→ I]) J
⊗

X ΦK(u, σ) =
∏

I⊆pos(u)

JΦK(u, σ[X 7→ I])

Example 3.2. In the Boolean semiring B, recognizable and wMSO(MSO)-definable series

coincide. In contrast, for the natural semiring N, the definition yields J
⊗

x

⊗
y 2K(u) = 2|u|

2

,

which is not recognizable [Droste and Gastin 2009]. Indeed, let A = (Q,A, I, F,∆,weight).
Then, JAK(u) = O((M |Q|)|u|+1) for M = max(weight(∆)), since there are O(|Q||u|+1) runs
on u, each of weight O(M |u|). Also observe that the behavior of the automaton of Exam-
ple 2.2 is J

⊗
y 2K. Therefore, recognizable series are not stable under first-order product

⊗
x.

We denote by AP the class of atomic propositions, i.e., that contains only formulae Pa(x),
x 6 y, x ∈ X and their negations. As explained at the beginning of the section, the logic
wMSO(S) (respectively, wFO(S)) introduced in [Droste and Gastin 2009] is exactly the
class of formulae wMSO(AP) (respectively, wFO(AP)). Transposed into our syntax, the
transformation described in their Definition 4.3 and proved in Lemma 4.4, permits to state:

Lemma 3.3. For all formulae ϕ ∈ MSO (respectively, ϕ ∈ FO), there exists a formula
Φ ∈ wMSO(AP) (respectively, Φ ∈ wFO(AP)), with the same set of free variables, such
that JϕK = JΦK.

Hence, we can always replace a Boolean FO or MSO formula by its wFO(AP) or
wMSO(AP) equivalent and we obtain:

Corollary 3.4. Let S be a (possibly non-commutative) semiring and f ∈ S〈〈A+〉〉.
Then,

— f is wMSO(MSO)-definable if and only if f is wMSO(AP)-definable.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:7

— f is wFO(FO)-definable if and only if f is wFO(AP)-definable.

For a Boolean formula ϕ ∈ L and a formula Φ ∈ wMSO(L), we define the macro

ϕ ©→ Φ
def
= ¬ϕ⊕ (ϕ⊗ Φ)

as a natural generalization of the Boolean implication (ϕ→ ϕ′ for ϕ,ϕ′ ∈ L): its semantics
is JΦK if ϕ holds, and 1 otherwise.

Example 3.5. The series recognized by the weighted automaton in Example 2.3 can also
be described by the following formula in wFO(FO):⊕

y

[(
¬∃x (x 6 y ∧ Pd(x))

)
⊗
(
Pa(y)⊕ (Pb(y)⊗ (−1))

)]
.

Example 3.6. Consider now a machine with one counter that can take non-negative
values, being either incremented, decremented or zero-tested on each step. We encode the
behavior of such a machine by recording the string of instructions applied on the counter,
letters Inc, Dec and ZTest stand for increment, decrement and zero-test respectively. We will
show in Theorem 6.2 that satisfiability of a formula in the logic wFO(FO) over the semiring
Z is undecidable, by reducing the problem of emptiness of a two-counter machine. In order
to prepare this theorem, we design formulae that map a word u ∈ {Inc,Dec,ZTest}+ to
weight 0 when u encodes a non-valid behavior of a non-negative counter.

First, we want to make sure that the counter always stays non-negative. For this, con-
sidering a word u ∈ {Inc,Dec,ZTest}+, and assuming that the counter starts with value 0,
the value1 ∏

i∈pos(u)|ui=Dec

(
|u[1..i− 1]|Inc − |u[1..i− 1]|Dec

)
is 0 if and only if the counter becomes negative along the sequence of instructions encoded
by u, since at the first position i where it becomes negative, we have |u[1..i − 1]|Inc =
|u[1..i− 1]|Dec . By using a simpler version of the formula described in Example 3.5, we can
compute this value with the following formula of wFO(AP):⊗

x

[
PDec(x) ©→

⊕
y

[
y < x⊗

(
PInc(y)⊕ (PDec(y)⊗ (−1))

)]]
.

Next, assuming that the counter always stays non-negative, we want to check that a zero-
test is used only when the counter is indeed 0. For a word u ∈ {Inc,Dec,ZTest}+, let us
consider the value ∏

i∈pos(u)|ui=ZTest

∏
16k<i

(
|u[1..i− 1]|Inc − |u[1..i− 1]|Dec − k

)
.

Note that, assuming that the counter is 0 initially and always stays non-negative, this value
is 0 if and only if some zero-test occurs when the counter is not zero. Note that this series
can be defined by the following formula in wFO(AP):⊗

x

[
PZTest(x)©→

⊗
z

[
z < x ©→

⊕
y

[
(y 6 z⊗(−1))⊕

(
y < x⊗

(
PInc(y)⊕(PDec(y)⊗(−1))

))]]]
3.2. Previous expressiveness result

For L ⊆ MSO closed under ∨, ∧ and ¬, an L-step formula is a formula obtained from the
grammar

Φ ::= s | ϕ | Φ⊕ Φ | Φ⊗ Φ, with s ∈ S and ϕ ∈ L. (1)

The following lemma shows in particular that an L-step formula assumes a finite number
of values, each of which corresponds to an L-definable language.

1Here, and in the following, |u|a stands for the number of occurrences of letter a in word u.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 Bollig, Gastin, Monmege, Zeitoun

Lemma 3.7. For every L-step formula Φ, one can construct an equivalent formula Ψ =⊕
i∈I(ψi ⊗ si) with I finite, ψi ∈ L and si ∈ S. More precisely, Free(Φ) = Free(Ψ) and for

every V containing Free(Φ), JΦKV(u, σ) = JΨKV(u, σ) for all (u, σ) ∈ A+
V .

Proof. Call ϕ1, . . . , ϕp the L-formulae occurring in the expression of Φ given by the
grammar (1). For I ⊆ {1, . . . , p}, let ΦI be the formula obtained by replacing in Φ each ϕi
by 1 if i ∈ I and by 0 otherwise, so that ΦI has no free variable and JΦIK is a constant
sI ∈ S. Let ψI =

∧
i∈I ϕi ∧

∧
i/∈I ¬ϕi, which is an L-formula, since L is closed under ∧

and ¬. Let Ψ =
⊕

I(ψI ⊗ sI). Clearly, Free(Φ) = Free(Ψ).

Let V ⊇ Free(Φ). Fix a word u and a (V, u)-assignment σ. Let J = {i | (u, σ) |= ϕi}, so
that (u, σ) |= ψJ and (u, σ) 6|= ψI for I 6= J . Therefore, JΨKV(u, σ) = sJ = JΦJKV(u, σ) =
JΦKV(u, σ), where the last equality comes from the definition of J .

From now on, we freely use Lemma 3.7, using the special form it provides for L-step formu-
lae. All MSO-step formulae are clearly recognizable. By [Droste and Gastin 2009],

⊗
x Φ is

recognizable for any MSO-step formula Φ. A restricted fragment sREMSO of wMSO(AP)
(called the syntactically restricted formulae), was defined in [Droste and Gastin 2009]. Es-
sentially, sREMSO consists of wMSO(MSO) formulae of the form

⊕
X1
· · ·
⊕

Xn
Φ where Φ

is a wFO(MSO) formula such that if it contains Ψ ⊗ Ψ′ as a subformula then the values
in S appearing in Ψ and Ψ′ commute element-wise, and such that the use of first-order
product

⊗
x is restricted to MSO-step formulae. Note that if the semiring is commutative,

the requirement over the product Ψ ⊗ Ψ′ is trivially verified. A consequence of their work
is the following statement.

Theorem 3.8 ([Droste and Gastin 2009]). A formal power series is recognizable if
and only if it is definable in sREMSO.

3.3. Weighted transitive closure

We now define other fragments of wMSO(MSO), which also carry enough expressiveness to
generate all recognizable series. Contrary to sREMSO that allows second-order quantitative
operators, and finally restricts them, we rather extend the fragment wFO(MSO), containing
only first-order quantitative operators, with a weighted equivalent of the Boolean transitive
closure.

We first define a very general weighted transitive closure operator before presenting some
restrictions over it that will be useful in the sequel.

Weighted transitive closure. For a formula Φ(x, y) with at least two free variables x and y,
we introduce a weighted transitive closure operator [TCx,yΦ](x′, y′) having as free variables
the fresh variables x′ and y′, and all the free variables of Φ except x and y. Its semantics is
defined by

J[TCx,yΦ](x′, y′)K(u, σ) =
∑

σ(x′)=i0,i1,...,im=σ(y′)

∏
06k6m−1

JΦK(u, σ[x 7→ ik, y 7→ ik+1]) (2)

where the sum runs over all m > 0 and all sequences (ik)06k6m of positions of the word u
with i0 = σ(x′) and im = σ(y′) such that either m = 1, or m > 1 and all positions of the
sequence are pairwise distinct. This sum is finite as the word has finitely many positions.
Notice that if σ(x′) = σ(y′) = i, then the semantics is JΦK(u, σ[x 7→ i, y 7→ i]).

To ease notation, we now write JΦ(x, y)K(u, i, j) instead of JΦ(x, y)K(u, [x 7→ i, y 7→ j]).

Example 3.9. Let Ψ = TCx,y1 over N. Then for a word u of length n, we have

JΨK(u, 1, n) =
∑n−2
m=0m!

(
n−2
m

)
, since the sum in (2) ranges over all sequences of pairwise

distinct positions in {1, . . . , n} starting in 1 and ending in n.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:9

Ordered weighted transitive closure. Since later we consider one-way weighted automata,
it is natural to restrict this operator to a left-to-right version. Hence, we introduce the
operator TC<x,yΦ whose semantics consists in restricting the sum of (2) to non-decreasing
sequences (ik)06k6m of positions in the word. Equivalently, we can define it by

TC<x,yΦ
def
= TCx,y(x 6 y ⊗ Φ) .

Intuitively, the TC<x,y operator generalizes the forward transitive closure operator of the
Boolean case: a formula ϕ(x, y) with two free variables defines a binary relation on positions
of a word u, namely {(i, j) | (i 6 j) ∧ u, i, j |= ϕ}. The relation defined by TC<x,yϕ is the
transitive closure of this relation.

Throughout this paper, we will mostly use ordered transitive closure. For this reason, we
define recursively the m-th power of a formula Φ, with this ordered restriction

Φ1(x, y)
def
= (x 6 y)⊗ Φ(x, y),

Φm+1(x, y)
def
=
⊕

z

[
(x < z < y)⊗ Φ(x, z)⊗ Φm(z, y)

]
, for m > 1.

The left-to-right restriction of the transitive closure permits finally to give a third equivalent
definition, a priori simpler to use:

JTC<x,yΦK =
∑
m>1

JΦm(x, y)K .

This infinite sum is well-defined: JΦm(x, y)K(u, σ) = 0 if m > |u|, i.e., on each pair (u, σ),
only finitely many terms assume a nonzero value.

Bounded weighted transitive closure. We also introduce a bounded weighted transitive
closure operation TCNx,y for each integer N > 0. Its semantics consists in restricting the
sequences of (2) so that |ik+1 − ik| 6 N for every k ∈ {0, . . . ,m− 1}. Equivalently,

TCNx,yΦ
def
= TCx,y(|y − x| 6 N ⊗ Φ) .

Bounded ordered weighted transitive closure. Finally, we can combine both restrictions
and introduce a bounded ordered weighted transitive closure operation. For each integer
N > 0, the TCN,<x,y operator is given by

TCN,<x,y Φ = TCx,y
(
(x 6 y 6 x+N)⊗ Φ

)
. (3)

Definition 3.10. Given a class L of Boolean formulae, we denote by wFOTC(L) the class
of weighted formulae defined by

Φ ::= s | ϕ | Φ⊕ Φ | Φ⊗ Φ |
⊕

x Φ |
⊗

x Φ | TCx,yΦ

with s ∈ S, ϕ ∈ L, x, y ∈ Var. A series f ∈ S〈〈A+〉〉 is said to be wFOTC(L)-definable
if there is a formula Φ ∈ wFOTC(L) such that JΦK = f . We define similar notions for
the restricted operators TC<, TCN and TCN,<, denoting them wFOTC<(L), wFOTCb(L)
and wFOTCb,<(L), respectively: in particular, for the bounded restrictions, we allow all
constants N in the transitive closure operators.

Notice that if Φ(x) is a formula from wFOTC(L) with a free variable x, then, for a fixed
integer k, the formula

⊕
y [(y = x + k) ⊗ Φ(y)] is again a formula of the same fragment,

that we will denote Φ(x+ k) in the following.

Example 3.11. Let Φ(x, y)
def
=
⊗

z 2 over N. Let u = u1 · · ·un with n > 2. We have

JTC1,<
x,y ΦK(u, 1, n) =

∏n−1
i=1 JΦK(u, i, i+1) due to the bounded and ordered weighted transitive

closure. Now, JΦK(u, i, i+ 1) = 2|u| if i > 1, so JTC1,<
x,y ΦK(u, 1, n) = 2|u|(|u|−1). Noticing that

the series u 7→ 2|u| is recognizable by a weighted automaton, but not the series u 7→ 2|u|(|u|−1)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 Bollig, Gastin, Monmege, Zeitoun

(similarly to Example 3.2), this example shows in particular that the class of recognizable
series is not closed under application of bounded ordered weighted transitive closures.

Example 3.12. Consider the formula Φ = TC2,<
x,y (2⊗ y = x+ 2) over A and N. Then

JΦK(u, 1, |u|) =

{
2n if |u| = 2n+ 1 with n > 1

0 otherwise.

Notice that the support of JΦK (i.e., the language of all words mapped to nonzero values) is
not FO-definable. Therefore, JΦK is not wFO(FO)-definable, since otherwise, we would have
JΦK = JΨK for a wFO(FO)-formula Ψ, and the FO formula obtained from Ψ by changing all
nonzero constants of N to 1 and replacing ⊕, ⊗,

⊕
x and

⊗
x by ∨, ∧, ∃x and ∀x respectively

would define the support of JΦK (this holds because N is a positive semiring).

Example 3.13. The modulo predicate can easily be expressed in wFOTCb,<(FO). For
1 6 m 6 `, the predicate is expressed by

x ≡` m
def
= (x = m)⊕

[
TC`,<x′,y′(y

′ = x′ + `)
]

(m,x)

while the binary relation can be expressed with

x ≡` y
def
= (y = x)⊕

[
TC`,<x′,y′(y

′ = x′ + `)
]

(x, y)⊕
[
TC`,<x′,y′(y

′ = x′ + `)
]

(y, x) .

4. EXPRESSIVENESS OF WEIGHTED LOGICS

We now consider syntactical restrictions of wFOTC<(FO) and wFOTCb,<(FO), inspired by
normal form formulae of [Neven and Schwentick 2003] where only one “external” weighted
transitive closure operator is allowed.

In the following, sentences like “f is definable by a formula TCx,yΨ” means that for every
word u ∈ A+, we have

f(u) = JTCx,yΨK(u, 1, |u|)
The following result characterizes the expressive power of weighted automata.

Theorem 4.1. Let S be a (possibly non-commutative) semiring and f ∈ S〈〈A+〉〉. The
following assertions are equivalent over S and A.

(1) f is recognizable.
(2) f is definable by a formula TCN,<x,y Φ with Φ (FO+mod)-step.

(3) f is definable by a formula TCN,<x,y Φ with Φ MSO-step.
(4) f is definable by a formula TC<x,yΦ with Φ (FO+mod)-step.
(5) f is definable by a formula TC<x,yΦ with Φ MSO-step.
(6) f is definable by a formula

⊕
X

⊗
x Φ(x,X) with Φ FO-step.

(7) f is definable by a formula
⊕

X

⊗
x Φ(x,X) with Φ MSO-step.

Proof. The implications 2⇒ 3, 4⇒ 5 and 6⇒ 7 are clear since FO+mod ⊆ MSO, and
7⇒ 1 follows from Theorem 3.8 because formulae described in 7 are included in sREMSO:
indeed, because of Lemma 3.7, every product Ψ ⊗ Ψ′ in Φ is such that Ψ ∈ MSO and
Ψ′ = s ∈ S, henceforth the property on elementwise commutation is trivially verified. The
implications 2⇒ 4 and 3⇒ 5 are also obvious since TCN,< can be defined with TC<. We
prove 1⇒ 2, 1⇒ 6, and 5⇒ 7.

For the first two implications, let us fix a weighted automaton A = (Q,A, I, F,∆,weight)
with Q = {1, . . . ,m}. Recall that µ denotes the morphism from A+ to SQ×Q as defined in
Section 2.2. The general idea behind the constructions we will present is that the semantics
JAK(u) can be computed by splitting the word u in small slices u1, . . . , uk by JAK(u) =

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:11

λ × µ(u1) × · · · × µ(uk) × γ. As it is a priori not possible to compute a matrix of weight
in the logic without changing the semiring, we must moreover partition the accepting runs
considering the sequence of states they encounter at every positions between slice ui and
ui+1. Each state must then be encoded into the word so that a formula can find it to check
the validity of the run and its weight: to do so, we consider portions u1, . . . , uk to be of size
m roughly, and position q ∈ Q of ui encodes that state q were encountered before reading
ui in the current run. It is then necessary to compute the weight of runs over a slice. For
v ∈ A+ and p, q ∈ Q, we use an FO-step formula Ξvp,q(x) to compute the weight of a factor
starting at position x− p+ 1, labeled by the word v, when A goes from p to q:

Ξvp,q(x)
def
= µ(v)p,q ⊗

∧
16k6|v|

Pvk(x− p+ k) .

We easily see that for every word u, and every positions i, j ∈ pos(u) with i 6 j and
i+ p− 1 6 |u|,

JΞu[i..j]p,q (x)K(u, i+ p− 1) = µ(u[i..j])p,q . (4)

Let us show 1 ⇒ 2. We construct an (FO+mod)-step formula Φlong(x, y), such that
JAK(u) = JTC2m,<

x,y ΦlongK(u, 1, |u|) for every word u sufficiently long (recall that m is the
number of states of A). As already mentioned, the idea, inspired by [Thomas 1982], consists
in making the transitive closure operator pick positions z` = `m+ q`, with 1 6 q` 6 m, for
successive values of `, to encode runs of A going through state q` just before reading the
letter at position `m+ 1. Consider slices [`m+ 1, (`+ 1)m] of positions in the word where
we evaluate the formula (the last slice might be incomplete). Each position x is located in
exactly one such slice, and the state p encoded by such a position is given by the FO+mod
formula x ≡m p. Moreover, the first position of the slice in which a position x is located can
be computed by x−p+1, if x ≡m p. Since the transitive closure starts from the first position
of the word, to make this still work for ` = 0, let us assume without loss of generality that
I = {1}.

Our TCN,<-formula picks positions x and y marked • in Figure 2, and computes the
weight of the factor of length m between positions x − p + 1 and x − p + m (included),
assuming states x ≡m p and y ≡m q just before and after these positions respectively.

`m+ 1 (`+ 1)m (`+ 1)m+ 1 (`+ 2)m
•
x

•
y

p q

Ξ
u[`m+1..(`+1)m]
p,q (x)

Fig. 2. Positions picked by the TCN,<-formula

The formula Φlong distinguishes the cases where x is located far or near from the last
position. More precisely, in the following expression of Φlong, the first sum corresponds to
the case where an entire slice is still available after the slice of x (as in Figure 2), while the
second sum captures the case where x is located in the last complete slice.

Φlong(x, y) =
⊕

p,q∈Q, v∈Am

(
x− p+ 2m < last ∧ x ≡m p ∧ y − q = x− p+m

)
⊗ Ξvp,q(x)

⊕
⊕

p∈Q,qf∈F
m<d62m, v∈Ad

(
x− p+ d = last ∧ x ≡m p ∧ y = last

)
⊗ Ξvp,qf (x) .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 Bollig, Gastin, Monmege, Zeitoun

Using (4), this definition implies that, for every word u and all positions `m+ p, `′m+ q in
u, with p, q ∈ Q:

JΦlongK(u, `m+p, `′m+q) =


µ(u[`m+ 1..`′m])p,q if `′ = `+ 1 ∧ (`+ 2)m < |u|,∑
qf∈F

µ(u[`m+ 1..|u|])p,qf if `′ = `+ 1 ∧ `′m+ q = |u|,

0 otherwise.

(5)

Notice that in the second case, we have (`+ 2)m = `′m+m > `′m+ q = |u|. This ensures
that the first two cases are disjoint. Now, by definition of the TC2m,<

x,y operator,

JTC2m,<
x,y Φlong(x, y)K(u, 1, |u|) =

∑
k>1

JΦklong(x, y)K(u, 1, |u|) .

Observe that Φlong syntactically ensures the bounded and ordered condition of the transitive
closure operator.

Suppose now that |u| > m+ 1. We show that there is at most one nonzero value in this

sum: JΦklong(x, y)K(u, 1, |u|) with k =
⌊ |u|−1

m

⌋
. So let k be the largest integer ` such that

`m < |u|.
Let 1 = i0 < . . . < ih = |u| be a sequence of positions chosen in (2) such that

JΦlong(x, y)K(u, i`, i`+1) 6= 0 for all ` ∈ {0, . . . , h − 1}. For ` 6 h − 1, we denote by q` ∈ Q
the state such that i` ≡m q`. The first case of (5) must apply for 0 6 ` 6 h−2, and it yields
by induction i` = `m + q` if 0 6 ` 6 h − 1. The second case of (5) applied with ` = h − 1

yields |u| 6 (h+ 1)m, whence h = k =
⌊ |u|−1

m

⌋
.

In particular, if |u| 6 m, then JTC2m,<
x,y Φlong(x, y)K(u, 1, |u|) = 0. If |u| > m, we de-

duce that JTC2m,<
x,y Φlong(x, y)K(u, 1, |u|) = JΦklong(x, y)K(u, 1, |u|) for k =

⌊ |u|−1
m

⌋
> 1.

The assignment 1 = i0 < i1 < · · · < ik = |u| is uniquely defined by the sequence
q = (q1, . . . , qk−1) ∈ Qk−1 (note that if k = 1, then q is empty). The possible choices
of this tuple induce the sum in the following evaluation of JΦklong(x, y)K(u, 1, |u|), where we

omit the variable names (x, y) in the right hand side. Recall that q0 = 1 is the unique initial
state giving a nonzero value.

JTC2m,<
x,y Φlong(x, y)K(u, 1, |u|) = JΦklongK(u, 1, |u|)

=
∑

q∈Qk−1

([k−1∏
`=1

JΦlongK
(
u, (`− 1)m+ q`−1, `m+ q`

)]
× JΦlongK(u, (k − 1)m+ qk−1, |u|)

)

=
∑

q∈Qk−1

([k−1∏
`=1

µ
(
u[(`− 1)m+ 1..`m]

)
q`−1,q`

]
×
∑
qf∈F

µ(u[(k − 1)m+ 1..|u|])qk−1,qf

)
=
∑
qf∈F

µ(u)q0,qf = JAK(u) .

Finally, if |u| 6 m, we can design an FO-step formula Φsmall dealing with small words:

Φsmall
def
= (x = first ∧ y = last)⊗

⊕
16d6m

v∈Ad,qf∈F

(last = d)⊗ Ξvq0,qf (first) .

Only the term for v = u yields a nonzero value. Hence, TC2m,<
x,y (Φsmall ⊕ Φlong) computes

JAK, as required.

Let us now outline the proof of 1 ⇒ 6, which relies on a similar technique. We use the
monadic second-order variable X to partition the runs along the portions u = u1 · · ·uk

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:13

considering the states in-between each portion. The set X will contain for all i: xi, the first
position of ui and ti, the position in ui used to encode the state of Q reached before reading
ui. To distinguish xi’s and ti’s, we consider portions of size 2m+ 1, so that between xi and
ti the distance is no more than m, whereas the distance between ti and xi+1 is at least m.

More formally, we encode runs of A by a formula
⊕

X

⊗
x Φ(x,X) with Φ an FO-step

formula, enforcing X to represent positions x0 < t0 < x1 < t1 < . . . with x` = (2m+1)`+1,
where the distance t`−x` encodes the state ofA reached just before position x`. For instance,
since we assume as above that the only initial state yielding a nonzero value is q0 = 1, we
enforce x0 = 1 and t0 = 2, so that t0−x0 = 1 encodes that state. We enforce 1 6 t`−x` 6 m
(so that t` − x` ∈ Q) but we make a gap between t` and x`+1, namely x`+1 − t` > m.

(2m+ 1)`+ 1 (2m+ 1)(`+ 1) + 1

x` (x`+1 − 1) x`+1

• •
t`

• •
t`+1p q

Θ
u[x`..x`+1−1]
p,q (x`)

Fig. 3. Positions represented by X, marked •

We use shortcuts like {z, t} ⊆ X, or X ∩]z, t] = ∅, where]z, t] = {z′ | z < z′ 6 t}, which
are easily FO-definable. Let us define

Φ(x,X) = (last > m ∧ {1, 2} ⊆ X)⊗ (Φfar(x,X)⊕ Φnear(x,X))

⊕ (last 6 m ∧X = ∅)⊗
[
x = first ©→

⊕
16d6m

v∈Ad, qf∈F

(last = d⊗Θv
q0,qf

(x))
]
.

with Θv
p,q(x) a slightly modified version of Ξvp,q(x):

Θv
p,q(x)

def
= µ(v)p,q ⊗

∧
16k6|v|

Pvk(x+ k − 1)

verifying, for every word u, and every positions i, j ∈ pos(u) with i 6 j,

JΘu[i..j]
p,q (x)K(u, i) = µ(u[i..j])p,q . (6)

The outermost sum in Φ distinguishes the cases of long or short words, while the sum
Φfar(x,X) ⊕ Φnear(x,X) discriminates between positions x ∈ X located far/near from the
last position. For the case of short words, the product resulting from the quantification

⊗
x

has value JAK(u) thanks to the premise x = first of the implication ©→ . Moreover, the sum
resulting from

⊕
X has a single nonzero value thanks to X = ∅. Therefore, the overall

semantics is indeed JAK(u). We define Φfar as

Φfar(x,X) = (x+ 3m+ 1 6 last)⊗
(

(x ∈ X ∧X ∩]x, x+m] 6= ∅) ©→⊕
p,q∈Q

v=v1···v2m+1

X ∩]x, x+ 3m+ 1] = {x+ p, x+ 2m+ 1, x+ 2m+ 1 + q} ⊗Θv
p,q(x)

)
.

Note that p and q are uniquely defined by the set X. To produce a nonzero value, we must
also have x+3m+1 6 last, so that letting y = x+2m+1, we have y+m 6 last. Furthermore,

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 Bollig, Gastin, Monmege, Zeitoun

y ∈ X ∧X ∩]y, y +m] 6= ∅, hence the pattern repeats. We define Φnear as

Φnear(x,X) = (x+ 3m+ 1 > last)⊗
(

(x ∈ X ∧X ∩]x, x+m] 6= ∅) ©→⊕
p∈Q,qf∈F
m<d63m+1
v=v1···vd

(X ∩]x, last] = {x+ p} ∧ x+ d− 1 = last)⊗Θv
p,qf

(x)
)
.

As FO-step formulae are closed by sum and product, the formula Φ(x,X) is an FO-step
formula. Let us prove that J

⊕
X

⊗
x Φ(x,X)K(u) = JAK(u). This equality has already been

checked for words u of length at most m, so let us assume that |u| > m. In the following,
we denote by Pat(u) the set of all subsets {x0 < t0 < . . . < xr < tr} with t0 = 2,
x` = (2m+1)`+1 and 1 6 t`−x` 6 m for all ` ∈ {0, . . . , r}, and xr+m 6 |u| < xr+3m+1.
Let q` = t` − x`. We have already explained that if J

⊗
x Φ(x,X)K(u, I) 6= 0, then we must

have I ∈ Pat(u). Then, for a word u of length greater than m, we get:

J
⊕

X

⊗
x Φ(x,X)K(u)

=
∑

I∈Pat(u)

∏
16i6|u|

(
JΦfarK(u, i, I) + JΦnearK(u, i, I)

)
=

∑
I∈Pat(u)

(∏
16i6|u|−3m−1

JΦfarK(u, i, I)×
∏

max(1,|u|−3m)6i6|u|

JΦnearK(u, i, I)
)

=
∑

I∈Pat(u)

(∏
06`6r−1

JΘu[x`..x`+1−1]
q`,q`+1

(x)K(u, x`)×
∑
qf∈F

(
JΘu[xr..|u|]

qr,qf
(x)K(u, xr)

))
.

The last equality holds since JΦnearK(u, xr, I) =
∑
qf∈F

(
JΘu[xr..|u|]

qr,qf (x)K(u, xr)
)

and since

JΦnearK(u, i, I) = 1 if i ∈ {max(1, |u| − 3m), . . . , |u|} \ {xr}. Finally, by (6),

J
⊕

X

⊗
x Φ(x,X)K(u) =

∑
q0,...,qr∈Q
q0=1,qf∈F

(∏
06`6r−1

µ(u[x`..x`+1 − 1]])q`,q`+1
× µ(u[xr..|u|])qr,qf

)

=
∑
qf∈F

µ(u)q0,qf = JAK(u) .

As in [Thomas 1982], we could use a more compact formula by encoding states in binary.

We finally prove 5⇒ 7. Assume that Φ is of the form Φ(x, y) =
⊕

i∈I ϕi(x, y)⊗si. Again,
we use the monadic second-order variable X to encode the runs of the weighted transitive
closure operator. Let u ∈ A+ be a word, j ∈ pos(u) and J ⊆ pos(u). If j < max(J) then we
let next(j, J) = inf{` ∈ J | j < `}. We define the MSO-step formula

Φ′(x,X)
def
=
⊕

i∈I si ⊗ ∃y(x < y ∧X ∩]x, y] = {y} ∧ ϕi(x, y))

and we can easily check that

JΦ′K(u, j, J) =

{
JΦK(u, j, next(j, J)) if j < max(J)

0 otherwise.

The formula TC<x,yΦ(first, last) is then equivalent to
⊕

X

⊗
x(Ψsmall ⊕Ψ), with

Ψ
def
=
(
first 6= last ∧ {first, last} ⊆ X

)
⊗
(
(x ∈ X ∧ x < max(X)) ©→ Φ′(x,X)

)
Ψsmall

def
=
(
X = ∅ ∧ first = last

)
⊗
(
(x = first) ©→ Φ(x, x)

)
.

Note that MSO-step formulae are closed under sum and products so the formula above is
indeed in the required fragment. Let u ∈ A+. In case, |u| = 1, we have J

⊕
X

⊗
x(Ψsmall ⊕

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:15

Ψ)K(u) = JΦK(u, 1, 1) = JTC<x,yΦK(u, 1, |u|). Otherwise, with the conditions on X in the
formulae Ψsmall and Ψ we have

J
⊕

X

⊗
x(Ψsmall ⊕Ψ)K(u) =

∑
{1,|u|}⊆J⊆{1,...,|u|}

J
⊗

x ΨK(u, [X 7→ J]) .

For a choice of J = {j0, j1, . . . , jk} with 1 = j0 < j1 < · · · < jk = |u|, by definition of Ψ we
have J

⊗
x ΨK(u, [X 7→ J]) =

∏
06r<kJΦK(u, jr, jr+1). Finally, we obtain

J
⊕

X

⊗
x(Ψsmall ⊕Ψ)K(u) =

∑
k>0

∑
1=j0<j1<···<jk=|u|

∏
06r<k

JΦK(u, jr, jr+1)

= JTC<x,yΦK(u, 1, |u|)

where the last equality comes from the definition of the ordered weighted transitive closure
operator.

5. PEBBLE WEIGHTED AUTOMATA

Example 3.2 shows that weighted automata lack closure properties to capture the logic
wFOTCb,<(FO). We introduce a notion of two-way pebble weighted automata making up
for this gap. In the Boolean setting, two-way automata over strings have been first considered
in [Rabin and Scott 1959], whereas pebble automata have been introduced in [Blum and
Hewitt 1967].

5.1. General definitions

We now consider pebble 2-way weighted automata (P2WA). A P2WA has a read-only tape.
At each step, it can move its head one position to the left or to the right (within the
boundaries of the input tape), or drop a pebble at the current head position, or lift a
pebble and resume the tape to its position. Applicable transitions and weights depend on
the current letter and state, and on which pebbles are carried by the current position.
Pebbles are numbered p, . . . , 2, 1, and are handled using a stack policy: if pebbles p, . . . , `
have already been dropped, the automaton can either lift pebble ` (if ` 6 p), drop pebble
`− 1 (if ` > 1), or move.

As these automata can go in either direction, we add two fresh symbols B and C to mark

the beginning and the end of an input word. Let Ã = A] {B,C}. To compute the value of
u = u1 · · ·un ∈ A+, a P2WA works on a tape holding BuC. For convenience, we number
the letters of BuC from 0, setting u0 = B and un+1 = C. We denote by p̃os(u) the set
{0, 1, . . . , n, n+ 1}.

Definition 5.1. Let p > 0. A pebble two-way weighted automaton (P2WA) with p pebbles
over S is a tuple A = (Q,A, I, F,∆,weight) where Q is a finite set of states, A is a finite

alphabet, I ⊆ Q is the set of initial states, F ⊆ Q is the set of final states, ∆ ⊆ Q × Ã ×
2{1,...,p} ×D × Q is the set of transitions, with D = {→,←, drop, lift} and weight : ∆ → S
is the weight function.

A configuration of a P2WA A with p pebbles on a word u ∈ A+ of length n is a triple
(q, π, i) ∈ Q × pos(u)6p × p̃os(u). In such a configuration, q denotes the current state of
A, while i is the current head position, and π = πp · · ·π` with 1 6 ` 6 p + 1 encodes the
locations of the p+ 1− ` currently dropped pebbles. More precisely, πm ∈ {1, . . . , n} is the
position of pebble m, while pebbles `− 1, . . . , 1 are currently not on the tape. Given such a
word of pebbles π = πp · · ·π`, we denote by peb(π, i) the set of pebbles currently dropped
on position i ∈ p̃os(u), i.e., peb(π, i) = {j | p > j > ` ∧ πj = i}.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 Bollig, Gastin, Monmege, Zeitoun

There is a step of weight s from configuration (q, π, i) to configuration (q′, π′, i′) if there
exists d ∈ D such that δ

def
= (q, ui,peb(π, i), d, q′) ∈ ∆ with s = weight(δ), and

π′ = π and i′ = i+ 1 if d =→
π′ = π and i′ = i− 1 if d =←
π′ = π · i and i′ = 0 if d = drop and i ∈ pos(u)

π′ · i′ = π if d = lift .

(7)

Note that a drop simply records the current position in u, with a fresh pebble (such a pebble
should be available) and returns to the beginning of the tape, and that a lift returns on
the last dropped pebble and pops it. This model corresponds to a weighted extension of
the well-known weak pebble automata (as described, e.g., in [Bojańczyk et al. 2006]), as we
can easily design drop transitions that do not reset the tape, and force lift transitions to
occur only at the position of the topmost pebble. Notice that if it exists, the direction d is
determined by the two configurations.

A run ρ of A on u is a sequence of configurations related by steps. We denote by weight(ρ)
the product of the weights of the steps of the run ρ (from left to right, but we will mainly
work with commutative semirings in this section). A run is said to be accepting if it leads
from a configuration (q, ε, 0), with q ∈ I, to a configuration (q′, ε, n+1), with q′ ∈ F (at the
end, no pebble is left on the tape). The run ρ is simple if whenever two configurations α and
β appear in ρ, we have α 6= β. The series JAK ∈ S〈〈A+〉〉 is defined by JAK(u) =

∑
weight(ρ)

where the sum ranges over all simple accepting runs ρ on u. Note that a P2WA with 0
pebble is in fact a 2-way weighted automaton. It follows from Proposition 5.9 below that
this class of automata has the same expressive power as 1WA.

Example 5.2. Let us sketch a P2WA A with 1 pebble recognizing the series u 7→ 2|u|
2

over N. The idea is that A drops its pebble successively on every position of the input word.
Transitions for reallocating the pebble have weight 1. When a pebble is dropped, A scans
the whole word from left to right where every transition has weight 2. As this scan happens

|u| times, we obtain JAK(u) = 2|u|
2

.

5.2. Pebble one-way weighted automata

The notion of simplicity is semantic. Our goal in this section is to find a syntactic restriction
of P2WA enforcing simplicity. Mainly, it will consist in restricting to 1-way runs, disabling
left moves.

Definition 5.3. A pebble one-way weighted automaton (P1WA) over S is a P2WA A =
(Q,A, I, F,∆,weight) which satisfies the following conditions:

(1) There are no left transitions: (q, a, P, d, q′) ∈ ∆ implies d 6=←;
(2) Lift transitions may not be followed by drop transitions: (q, a, P, lift, q′) ∈ ∆ and

(q′, a′, P ′, d′, q′′) ∈ ∆ imply d′ 6= drop;

To justify (2), note that a lift transition followed by a drop transition would just result in
resetting the current position to the beginning of the word, without dropping a new pebble.

The P2WA described in Example 5.2 is in fact a P1WA by definition.

As a fragment of P2WA, the semantics of a P1WA is well defined. However, the semantic
restriction (considering only simple runs to define the weight of a word) is now useless, since
every run of a P1WA is ensured to be simple, as shown in the next lemma.

Lemma 5.4. All runs of a P1WA are simple.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:17

Proof. Consider a P1WA A = (Q,A, I, F,∆,weight). Given a word u, we define a total
order on the set of configurations of A over u, so that runs of A over u form an increasing
sequence of configurations.

To do so, we consider the measure of a configuration (q, π, i) to be the word over the
alphabet p̃os(u)] {⊥,>} defined by

meas(q, π, i) =

{
π · i · ⊥ if ∃ (q, a, P, drop, q′) ∈ ∆

π · i · > otherwise.

We order the set p̃os(u)]{⊥,>} by ⊥ ≺ 0 ≺ 1 ≺ · · · ≺ |u| ≺ |u|+ 1 ≺ >. Henceforth, finite
words over this set are ordered with the associated lexicographic (total) order, denoted ≺.

We now show that for every run ρ = (qm, πm, im)06m6h of A over u, the sequence of mea-
sures of the configurations is increasing, i.e., meas(qm, πm, im) ≺ meas(qm+1, πm+1, im+1)
for all 0 6 m < h. This ensures that the run is simple. Let 0 6 m < h. The step from con-
figuration γm = (qm, πm, im) to configuration γm+1 = (qm+1, πm+1, im+1) is enabled with
a transition of the form (qm, uim ,peb(πm, im), d, qm+1) with d defined as in (7) (specialized
to the one-way case):

— If d =→, then πm+1 = πm and im+1 = im + 1. Hence, for some α, β ∈ {⊥,>} we have

meas(γm) = πmimα ≺ πm(im + 1)β = meas(γm+1) .

— If d = drop, then πm+1 = πmim and im+1 = 0. Hence, for some α ∈ {⊥,>} we have

meas(γm) = πmim⊥ ≺ πmim0α = meas(γm+1) .

— if d = lift, then πm = πm+1im+1. Hence, for some α ∈ {⊥,>} we have

meas(γm) = πm+1im+1imα ≺ πm+1im+1> = meas(γm+1) .

Notice that the > in meas(γm+1) comes from the fact that lift transitions may not be
followed by drop transitions, by definition of P1WA.

In all cases, we have meas(γm) ≺ meas(γm+1), which concludes the proof.

Example 5.5 (Example 3.6 continued). The value computed to check that the counter
always stays non-negative can also be calculated with the P1WA with 1 pebble of Figure 4:
this automaton drops a pebble on each letter Dec and then computes the difference be-
tween the number of Inc’s and the number of Dec’s before the pebble. This is done as in
Example 2.3. In the transitions of Figure 4 (the highlighted zone will be explained below),
∗ stands for any letter. We fix a word u, and denote by i1 < i2 < · · · < im the positions
of u labelled by Dec. Notice that each accepting run of the automaton drops the pebble on
each position ik (for every 1 6 k 6 m), and, after each such drop, must choose a position
jk to follow the transition from state 2 to state 3: moreover, we have 1 6 jk < ik and
ujk ∈ {Inc,Dec}. Denoting Jk the set of such positions jk for every k, the set of accepting
runs is therefore in bijection with the set J = J1 × · · · × Jm. The weight of the run defined
by the tuple (jk)16k6m is then given by

m∏
k=1

f(jk)

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 Bollig, Gastin, Monmege, Zeitoun

Anon-neg

1

2 3

4

⊲, ∅,→, 1
Inc, ∅,→, 1

ZTest , ∅,→, 1

∗, ∅,→, 1 ∗, ∅,→, 1

Dec, ∅, drop, 1

Inc, ∅,→, 1

Dec, ∅,→,−1

Dec, {1}, lift, 1

Dec, ∅,→, 1

Fig. 4. Automaton checking that the counter is non-negative

where f(j) = 1 if uj = Inc, −1 if uj = Dec, and 0 otherwise. Hence, the semantics of the
automaton over the word u is given by∑

(jk)16k6m∈J

m∏
k=1

f(jk) =
∑
j1∈J1

∑
j2∈J2

· · ·
∑

jm∈Jm

m∏
k=1

f(jk)

=

m∏
k=1

∑
jk∈Jk

f(jk) (by distributivity of × over +)2

=

m∏
k=1

(
|u[1..ik − 1]|Inc − |u[1..ik − 1]|Dec

)
Next, assuming that the counter always stays non-negative, the value checking that a

zero-test is used only when the counter is indeed 0 can be computed with the P1WA with
2 pebbles of Figure 5 (highlighted zone to be explained below). Intuitively, it drops pebble
2 sequentially on every position performing action ZTest to compute the external product.
When this pebble is dropped (over a position j), on every position k before the one holding
the pebble (i.e., k 6 j − 1), it drops pebble 1 choosing non-deterministically either to
compute

|u[1..j − 1]|Inc − |u[1..j − 1]|Dec

with the upper part, or −k with the lower part. The proof of correctness is done similarly
to the argument for the previous automaton, and strongly relies again on the distributivity
of the multiplication over the addition.

5.3. One-way versus two-way

We proceed with the most difficult result of this paper: the equivalence between P2WA and
P1WA when the semiring is commutative.

2Notice the transformation from the term on the left of the equality (a sum of products of weights) to
this term (a product of sums of weights). The same transformation is actually behind the two alternative
definitions of the semantics of a weighted automaton (see Section 2.2): whereas the definition based on runs
is a sum of products, the one based on the morphism µ is a product of matrices. The idea yielding the
second one from the first is to gather together runs with respect to common configurations: the weight of a
word split into two factors uv is the product of the weights over u and v, each produced by summing the
weights of all sub-runs over u and v, respectively. In the setting of pebble automata, we cannot simply split
the word since the automaton may navigate and drop pebbles. However, if every accepting run goes through
a given configuration exactly once, we may consider the sub-runs that start and end in this configuration,
and group the weights similarly. In the present computation, we consider m such configurations, namely
those where the pebble has just been dropped.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:19

Azero-test

⊲, ∅,→, 1
Inc, ∅,→, 1
Dec, ∅,→, 1

ZTest , ∅, drop, 1

⊲, ∅,→, 1

ZTest , {2}, lift, 1

ZTest , ∅,→, 1

∗, ∅, drop, 1

⊲, ∅,→, 1

∗, ∗,→, 1

Inc, ∗,→, 1

Dec, ∗,→,−1

∗, ∗,→, 1

ZTest , {2},→, 1
∗, ∗, lift, 1

∗, ∅,→, 1

⊲, ∅,→, 1

∗, ∅,→, 1

∗, ∅,→,−1

∗, ∅,→, 1

∗, {1},→, 1

∗, {1},→,−1

Fig. 5. Automaton checking the zero-tests

Theorem 5.6. Let S be a commutative semiring and f ∈ S〈〈A+〉〉. Then, f is recogniz-
able by a P2WA if and only if f is recognizable by a P1WA.

One direction directly follows from the definitions of pebble weighted automata. The
proof of the converse is by induction on the number of pebbles. We start with the base case
of automata without pebbles. We simply write 2WA instead of “P2WA with 0 pebble”.

The next proposition is a generalization of the result, originally proved in [Rabin and
Scott 1959], stating that two-way feature does not add expressive power to non-deterministic
finite automata over finite strings. There are mainly two proof techniques for this result. The
proof in [Shepherdson 1959] starts with a two-way automaton and constructs an equivalent
one-way automaton by enriching the state with a relation table recording for every pair of
states (q, q′), whether it is possible to reach q′ from q with a loop on the current prefix. The
key argument is that there is a finite number of such tables and that it can be computed
simultaneously to the main run.

Observe that this method is not applicable in our weighted setting. Indeed, the relation
table should now be enriched with the precomputed weights of the subruns, which cannot
be recorded within a finite memory (as the weights may grow with the length of the prefix
read so far). Instead, we will use the crossing-sequence method which is closer to the proof
technique in [Rabin and Scott 1959], and fully explained in [Hopcroft and Ullman 1979].
For the sake of clarity, we provide a complete proof below in our weighted setting.

Proposition 5.7. Let S be a commutative semiring, f ∈ S〈〈A+〉〉. If f is recognizable
by a 2WA, then f is recognizable by a 1WA.

Proof. Let A = (R,A, I, F,∆,weight) be a 2WA. We omit the (empty) set of pebbles

in the transitions of the P2WA A, i.e., ∆ ⊆ R× Ã×D×R. We also assume that weight is

fully defined on R× Ã×D ×R by setting weight(δ) = 0 if δ /∈ ∆.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 Bollig, Gastin, Monmege, Zeitoun

⊲ · · · a a′ · · · ⊳

r0
→ r1
→

r2
←r3

←

r4
←
r5
→ r6
→

Fig. 6. Run of a 2WA and some crossing-sequences

We construct an equivalent 1WA (actually a P1WA without pebble3) B =
(Q′, A, I ′, F ′,∆′,weight′) such that JBK = JAK. Again, we omit the (empty) set of pebbles

and the (→) direction in the transitions of the P1WA B, i.e., ∆′ ⊆ Q′ × Ã×Q′.
Intuitively, the idea is to record in a state of B the crossing-sequence of states of A which

is observed in some accepting run ρ while scanning the current position of the input word,
see Figure 6. Since the semantics of a 2WA is computed as the sum over simple accepting
runs, a crossing-sequence consists of pairwise distinct states and is therefore bounded by
the number of states of A. Finally, the commutativity of the semiring allows us to compute
the weight of an accepting run ρ along a corresponding run of B.

In order to ease the matching of consecutive crossing-sequences of A, we also record in a

state of B the current input letter from Ã = A ∪ {B,C} and the sequence of moves from
{←,→} performed by the 2WA. Therefore, we will define Q′ = Q′B ∪ Q′A ∪ Q′C as a finite

subset of T = Ã(R{←,→})∗(R ∪R→). We say that a word in T is R-simple if it does not
contain two occurrences of some state in R.

While scanning B only right moves are possible hence we let Q′B be the (finite) set of
R-simple words in B(R→)+. Similarly, while scanning C, only left moves are possible until
A finally halts on this position. Hence we let Q′C be the (finite) set of R-simple words in
C(R←)∗R. Finally, we let Q′A be the (finite) set of R-simple words in A(R{←,→})∗R→. For
instance, Figure 6 exhibits two crossing-sequences in Q′A which are q = ar0→r3←r4←r5→
and q′ = a′r1→r2←r6→.

We describe now the set ∆′ ⊆ Q′ × Ã×Q′ of transitions of B. Two states aτ and a′τ ′ in
Q′ can be matched in a transition (aτ, a, a′τ ′) ∈ ∆′ of B if a 6= C, a′ 6= B and τ has one
more right moves than the number of left moves in τ ′: |τ |→ = 1 + |τ ′|←.

The weight of a transition (q, a, q′) ∈ ∆′ is the product of the weights of the transitions
of A contained in the pair (q, q′), i.e., right transitions from q to q′ and left transitions from
q′ to q. On Figure 6, these transitions are on a gray background.

Formally, a right transition (r, a,→, r′) of A is contained in (q, q′) if r is the state just
before the kth occurrence of → in q and r′ the state just after the (k− 1)th occurrence4 of
← in q′, for some 1 6 k 6 |q|→. Similarly, a left transition (r′, a′,←, r) of A is contained
in (q, q′) if r′ the state just before the kth occurrence of ← in q′ and r is the state just
after the kth occurrence of → in q, for some 1 6 k 6 |q′|←. For instance in Figure 6, the

3Note that, formally, a P1WA without pebble is not a 1WA as defined in Section 2.2. This is mainly due to
the B marker. But it should be clear that the two models are equivalent.
4In case k = 1, the state just after the 0th occurrence of ← in q′ is simply the first state of q′.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:21

two right transitions from A contained in the depicted pair of states are (r0, a,→, r1) and
(r5, a,→, r6), whereas the only left transition is (r2, a

′,←, r3).
We let Trans(q, q′) be the set of (left or right) transitions of A contained in (q, q′). We

then define the weight of→ moves of B induced by the matching states (q, q′) as the product
of the weights of the (left or right) transitions of A contained in (q, q′):

weight′(q, a, q′) =
∏

δ∈Trans(q,q′)

weight(δ) .

For instance, transition from q = ar0→r3←r4←r5→ to q′ = a′r1→r2←r6→ on Figure 6
has weight

weight′(q, a, q′) = weight(r0, a,→, r1)× weight(r2, a
′,←, r3)× weight(r5, a,→, r6) .

Finally, the set I ′ of initial states of B is the set of R-simple words in BI→(R→)∗ and
the set F ′ of final states of B is the set of R-simple words in C(R←)∗F .

Lemma 5.8 below proves that there is a weight preserving bijection between the simple
accepting runs of A and the accepting runs of B. We conclude that JBK = JAK since for all
u ∈ A+, JAK(u) is the sum of the weights of the simple accepting runs of A over u, whereas
JBK(u) is the sum of the weights of the accepting runs of B over u.

Lemma 5.8. For every word u ∈ A+, there is a weight preserving bijection between the
simple accepting runs of A over u and the accepting runs of B over u.

Proof. Fix a word u = u1 · · ·un ∈ A+ of length n > 1. We first show how to map a
simple accepting run ρ = ρ0ρ1 · · · ρm of A over u (where each ρj is a configuration) to an
accepting run of B over u.

For i ∈ {0, . . . , n+ 1}, we construct the crossing-sequence qi = uiτi ∈ Q′ of B associated
with position i in BuC, as illustrated in Figure 6. Recall that u0 = B and un+1 = C.
Formally, we define τi as the “projection” of the configurations visiting position i, where
configuration (r, i) is “projected” to r→ (respectively, r← or r) if it is followed by some
(r′, i + 1) (respectively, (r′, i − 1) or is the last configuration). Note that the word τi is
R-simple. In particular, we have q0 ∈ I ′, qn+1 ∈ F ′, and qi ∈ Q′A for every 1 6 i 6 n.

Observe also that |τi|→ = 1 + |τi+1|← for every 0 6 i 6 n. Indeed, ρ must reach position
i+ 1 for a first time, and then, each time the run ρ goes to the left of position i+ 1, it will
in the future come back to i+ 1 from i. Therefore, (qi, ui, qi+1) ∈ ∆′ for all 0 6 i 6 n. We
deduce that f(ρ) = (q0, 0)(q1, 1) · · · (qn+1, n+ 1) is an accepting run of B.

We now show that f preserves the weights, i.e., weight(ρ) = weight′(f(ρ)) for all simple
accepting run ρ of A over u. Indeed, weight(ρ) is the product of the weights of (left or right)
transitions appearing in ρ. With f(ρ) = (q0, 0)(q1, 1) · · · (qn+1, n+ 1), every right transition
of ρ starting from position i (0 6 i 6 n) is contained in the pair (qi, qi+1), so that its weight
is computed in the transition from i to i + 1 in f(ρ), whereas every left transition of ρ
starting from position i (1 6 i 6 n+ 1) is contained in the pair (qi−1, qi), so that its weight
is computed in the transition from i− 1 to i in f(ρ). From the definition of weight′ and by
commutativity of S, we obtain weight(ρ) = weight′(f(ρ)).

We finally prove that f is a bijection by constructing its inverse function. Let
(q0, 0)(q1, 1) · · · (qn+1, n+1) be an accepting run of B over u. Write qi = uiτi for 0 6 i 6 n+1.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 Bollig, Gastin, Monmege, Zeitoun

We recover a simple accepting run ρ of A over u as the output of Run(0, τ0, τ1, . . . , τn+1)
where the recursive function Run is defined by:

Function Run(i, τ0, τ1, . . . , τn+1)

match τi with
r→ τ ′i :

output (r, i);
Run (i+ 1, τ0, . . . , τ

′
i , . . . , τn+1);

r← τ ′i :
output (r, i);
Run (i− 1, τ0, . . . , τ

′
i , . . . , τn+1);

r : (* necessarily i = n+ 1 *)
output (r, n+ 1);

We can show by induction that f(Run(0, τ0, τ1, . . . , τn+1)) = (q0, 0)(q1, 1) · · · (qn+1, n+1),
and that for every simple accepting run ρ of A with f(ρ) = (u0τ0, 0) · · · (un+1τn+1, n+ 1),
we have Run(0, τ0, . . . , τn+1) = ρ. Therefore, f is a bijection.

The proof of Proposition 5.7 may be easily adapted to various extensions of 2WA. For
instance, instead of restricting to simple runs when computing the semantics of a 2WA A,
we may allow k-simple runs (for some fixed k) in which no configuration is visited more
than k times. Even when k = 2, we do not know an easy way to construct a 2WA A′ whose
semantics over 1-simple runs coincide with the semantics of A over 2-simple runs. But the
proof of Proposition 5.7 allows to cope with this extension simply by allowing k-simple
words when defining the set Q′ of states of B. Hence, we can construct a 1WA B whose
semantics coincides with the semantics of A over k-simple runs, showing that this extension
does not add expressive power.

Instead of allowing more runs, one may also wish to restrict the semantics of A to fewer
runs, e.g., those visiting the initial position B no more than 3 times. To do so, the natural
approach is to add some information to the states of A, e.g., a counter recording how many
times (limited to 3) the initial position has been visited. But simple runs of the result-
ing 2WA A′ do not necessarily correspond to simple runs of A. Indeed the configurations
((p, 1), 8) and ((p, 2), 8) of A′ are distinct but if we project away the counter we get the
same configuration (p, 8) of A. To obtained the desired semantics, one may introduce an
equivalence relation ∼ on the states of A′ (having the same state from A) and restrict the
semantics of A′ to ∼-simple runs, i.e., runs which do not visit two ∼-equivalent configura-
tions. Again, the proof of Proposition 5.7 allows to cope with the ∼-simple semantics of a
2WA, by restricting the set Q′ of states of B to ∼-simple words.

Finally, we introduce another extension which will be useful in the proof of Proposition 5.9
below. We generalize the acceptance condition of a 2WA A = (R,A, I, F,∆,weight) by let-
ting I, F be finite subsets of R+. A run is declared accepting if the sequence of states visiting
the initial position B is in I and similarly the sequence of states visiting the final position C
is in F . Notice that this is indeed a generalization as every 2WA A = (R,A, I, F,∆,weight)
can be encoded into this new formalism by replacing I (respectively, F) with the (finite)
set of all simple sequences of states starting with a state of I (respectively, ending with a
state of F). Again, the proof of Proposition 5.7 allows to cope with this extension easily by
changing I ′ to the sequences in Q′B whose projections on R are in I ⊆ R+, and similarly
for F ′.

We extend now the translation of Proposition 5.7 to weighted automata with pebbles.
The general idea is an induction on the number of pebbles, but it has to be done with great
care so that all and only the simple runs of the P2WA are taken into account.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:23

⊲ · · · a a′ · · · ⊳

r0
→ r1
→

r2
←r3

drop

lift
r4
←

r5
drop

lift
r6
→ r7
→

Fig. 7. Run of a 2WA and some crossing-sequences

Proposition 5.9. Let S be a commutative semiring, f ∈ S〈〈A+〉〉 and p > 0. If f is
recognizable by a P2WA with p pebbles, then f is recognizable by a P1WA with p pebbles.

Proof. We start with a P2WA A = (R,A, I, F,∆,weight) with p pebbles, and a gen-
eralized acceptance condition: I and F are finite subsets of R+. A run ρ of A is accepting
if the sequence of states visiting the initial position B while no pebbles are dropped is in I,
and the sequence of states visiting the final position C while no pebbles are dropped is in
F . This generalization will be useful in the inductive step of the construction. We assume
without loss of generality that lift transitions of A only occur at the end marker C.

If p = 0, Proposition 5.7 permits to conclude. We now explain the construction for p > 0.
A crossing-sequence may now also include drop moves, see Figure 7. The parts of a run
having at least one pebble dropped (dashed in Figure 7) will be deferred to the inductive
step. Hence, a crossing-sequence consists only of the states visiting some position when no
pebbles are dropped. If the run is simple, then this sequence of states is also simple.

As in the proof of Proposition 5.7, we also include the current letter and the sequence
of moves in a crossing-sequence. Hence, we let Q′B be the (finite) set of R-simple words in
B(R→)+, Q′C be the (finite) set of R-simple words in C(R←)∗R, and Q′A be the (finite) set
of R-simple words in A(R{←,→, drop})∗R→. For instance, Figure 7 exhibits the crossing-
sequence q = ar0→r3drop r4←r5drop r6→ ∈ Q′A in which the states r0, r3, r4, r5, r6 must be
pairwise distinct.

For each state q = aτ ∈ Q′A, we construct a P2WA Aq = (Rq,Γ, Iq, Fq,∆q,weightq) with
(p − 1) pebbles which computes the sum of the weights of the tuples of runs filling the
drop-lift gaps in the crossing-sequence q, i.e., the dashed lines in Figure 7.

The input alphabet of Aq is Γ = A × {0, 1} where the second component encodes the
position of the dropped pebble. Here, we are only interested in words with a unique position
carrying a 1 in this second component of A× {0, 1}: if i is this unique position, we denote

as (u, i) such a word. Recall that Γ̃ = Γ ∪ {B,C}.
From a crossing-sequence q = aτ ∈ Q′A, we first extract the sequence σ(τ) of

pairs of states surrounding drop moves. For instance, σ(r0→r3drop r4←r5drop r6→) =

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 Bollig, Gastin, Monmege, Zeitoun

Aq

s′0 s1
⊲, ∅,→

s′1

γ, ∅,←

s2
⊲, ∅,→ γ, ∅,←

s′2

γ, ∅,←

s3
⊲, ∅,→

s′3

γ, ∅,→

⊳, ∅,←

Fig. 8. The P2WA Aq filling the drop-lift gaps of the crossing-sequence q

(r3, r4)(r5, r6) and σ(r1drop r2drop r3→) = (r1, r2)(r2, r3). We assume below that σ(τ) =
(r1, r

′
1)(r2, r

′
2) · · · (rN , r′N) with N > 0. Note that N 6 |R| since r1, r2, . . . , rN must be

pairwise distinct.
We let Rq = R] {s′0, s1, s′1, . . . , sN , s′N} be the set of states of Aq. The automaton Aq

should fill the drop-lift gaps between (rj , r
′
j) for all 1 6 j 6 N . To do so, it simulates A

interpreting pebble p as the {0, 1} component of Γ (recall that pebble p is the first which is

dropped by A). Hence, for (r, γ, P, d, r′) ∈ ∆q with r, r′ ∈ R, γ ∈ Γ̃, P ⊆ {1, . . . , p− 1} and
d ∈ D we let

weightq(r, (c, 1), P, d, r′) = weight(r, c, P ∪ {p}, d, r′) if γ = (c, 1)

weightq(r, (c, 0), P, d, r′) = weight(r, c, P, d, r′) if γ = (c, 0)

weightq(r, γ, P, d, r
′) = weight(r, γ, P, d, r′) if γ ∈ {B,C} (and P = ∅) .

The additional states in {s′0, s1, s′1, . . . , sN , s′N} and transitions will make sure that all gaps
(rj , r

′
j) are filled, see Figure 8. States s′j−1 are used to reset the head to the initial position

B between two simulations, and we move from s′j−1 to sj at the beginning of the word:

weightq(s
′
j−1, γ, ∅,←, s′j−1) = 1 for 1 < j 6 N and γ ∈ Γ

weightq(s
′
j−1,B, ∅,→, sj) = 1 for 1 6 j 6 N .

A drop transition of A from state rj reading letter a (recall q = aτ) is simulated in Aq by
a ← transition from sj reading the first letter γ of the word (note that when Aq is in state
sj it must be on the first position of the word due to the → transition from s′j−1 to sj). A
lift transition of A reaching r′j is simulated in Aq by a ← transition to s′j :

weightq(sj , γ, ∅,←, r) = weight(rj , a, ∅, drop, r) for 1 6 j 6 N, r ∈ R and γ ∈ Γ

weightq(r
′,C, ∅,←, s′j) = weight(r′,C, ∅, lift, r′j) for 1 6 j 6 N and r′ ∈ R .

Finally, when Aq reaches s′N , it terminates with a → move:

weightq(s
′
N , γ, ∅,→, s′N) = 1 for γ ∈ Γ .

To define the acceptance condition of Aq, we let Iq be the (finite) set of simple sequences in
s′0R

∗s′1R
∗ · · · s′N−1R∗ and Fq be the (finite) set of simple sequences in R∗s′N . Considering

this acceptance condition, an accepting run ρ̂ of Aq — over a word of Γ+ with a unique
position carrying a 1 in its second component — can be split into a sequence of runs
ρ̂ = ρ′0ρ̂1ρ

′
1 · · · ρ̂Nρ′N where for each 1 6 j 6 N

— the run ρ̂j fills the drop-lift gap (rj , r
′
j). It goes from sj to s′j and simulates a run ρj

of A which starts with a drop transition (rj , a, ∅, drop, r) and ends with a lift transition

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:25

(r′,C, ∅, lift, r′j) without lifting pebble p in-between. Moreover, weightq(ρ̂j) = weight(ρj)
for all 1 6 j 6 N .

— the run ρ′0 consists of a single transition from s′0 to s1, the run ρ′j for 0 < j < N loops
on state s′j to reset the head to the initial position B and then moves to state sj , and
the run ρ′N consists of a single transition looping on s′N to reach the final position C.
Moreover, weightq(ρ

′
j) = 1 for all 0 6 j 6 N .

Note that, the run ρ̂ is simple if and only if the sequence of runs ρ1, . . . , ρN is globally
simple, i.e., a configuration may not occur twice in some ρj and it may not occur both in ρi
and ρj with i 6= j. This is important since the runs ρ1, . . . , ρN fill the drop-lift gaps of the
crossing-sequence aτ and are therefore part of a single run of A. This explains why we have
a single copy of A in Aq. If instead we used N copies of A inside Aq, one for each drop-lift
gap (rj , r

′
j) then the simplicity of ρ̂ would not imply the global simplicity5 of ρ1, . . . , ρN .

Clearly, all accepting runs of Aq start from state s′0 and end in state s′N . But this basic
initial and final condition is not sufficient to ensure that the drop-lift gaps are filled correctly.
For instance, Aq could go directly from s′0 to s′N without ever visiting s′1, . . . , s

′
N−1. It could

also visit all the new states but not in the intended order, which would not correspond to a
sequence of runs of A filling the gaps (r1, r

′
1) · · · (rN , r′N). This is why we use the generalized

acceptance condition for Iq.
Towards a uniform construction below, we also define an automatonAq when the crossing-

sequence q has no drop (N = 0). In this case, Aq has a single state s′0 with a loop moving
right with weight 1 in order to simply scan the word from begin to end.

By induction, for each q ∈ Q′A we can construct a P1WA Bq with (p−1) pebbles which is
equivalent to Aq, i.e., such that for each word u ∈ Γ+ there is a weight preserving bijection
between the simple accepting runs of Aq over u and the accepting runs of Bq over u. We let
Bq = (Q′q,Γ, I

′
q, F

′
q,∆

′
q,weight′q) and we assume without loss of generality that I ′q = {initq}

and F ′q = {finalq} are singletons. Note that, if the crossing-sequence q has no drop then we
may choose Bq = Aq.

We define now the P1WA B = (Q′, A, I ′, F ′,∆′,weight′) with p pebbles associated with
A. Its set of states is

Q′ = Q′B]Q′C]Q′A]Q′A]
⊎
q∈Q′A

Q′q .

The set I ′ of initial states of B is the set of crossing-sequences in Q′B whose projections on
R are in I ⊆ R+, and similarly, the set F ′ of final states of B is the set of crossing-sequences
in Q′C whose projections on R are in F ⊆ R+.

The automaton B contains a copy of each Bq in order to simulate the parts of a run when
the first pebble is dropped (dashed lines in Figure 7). In this copy, the second component
of the alphabet Γ = A× {0, 1} of Bq is re-interpreted as the encoding of the first pebble p:
for s, s′ ∈ Q′q, c ∈ A and P ⊆ {1, . . . , p− 1} we set

weight′(initq,B, ∅,→, s′) = weight′q(initq,B, ∅,→, s′)
weight′(s, c, P,→, s′) = weight′q(s, (c, 0), P,→, s′)

weight′(s, c, P ∪ {p},→, s′) = weight′q(s, (c, 1), P,→, s′) .

From each state q = aτ ∈ Q′A, we first call (the copy of) the automaton Bq dropping the
first pebble and when the computation of Bq is done we lift the pebble returning to the copy

5Alternatively, we could define an equivalence relation ∼ on states of Aq and use a ∼-simple semantics of
runs, as originally done in [Bollig et al. 2010].

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 Bollig, Gastin, Monmege, Zeitoun

Bqinitq finalq

q

a, ∅, drop

q̄

⊳, ∅, lift

q′
a, ∅,→

Fig. 9. Call to the P1WA Bq filling the drop-lift gaps of the crossing-sequence q

q̄ ∈ Q′A of q ∈ Q′A, see Figure 9. Then, we perform a → move to the next crossing-sequence
q′ ∈ Q′A ∪Q′C. The drop and lift moves are with weight 1:

weight′(q, a, ∅, drop, initq) = weight′(finalq,C, ∅, lift, q̄) = 1 .

As in the proof of Proposition 5.7, two crossing-sequences q = aτ ∈ Q′B ∪ Q′A and
q′ = a′τ ′ ∈ Q′A ∪Q′C match if |τ |→ = 1 + |τ ′|←. We assume Trans(q, q′) to be defined as in
Proposition 5.7, so that we may define the weight of→ moves of B induced by the matching
crossing-sequences (q, q′) as the product of the weights of the (left or right) transitions of
A contained in (q, q′):

weight′(q,B, ∅,→, q′) =
∏

δ∈Trans(q,q′)

weight(δ) if q ∈ Q′B

weight′(q̄, a, ∅,→, q′) =
∏

δ∈Trans(q,q′)

weight(δ) if q = aτ ∈ Q′A .

Lemma 5.10 below proves that there is a weight preserving bijection between the simple
accepting runs of A and the accepting runs of B. We conclude that JBK = JAK since for all
u ∈ A+, JAK(u) is the sum of the weights of the simple accepting runs of A over u, whereas
JBK(u) is the sum of the weights of the accepting runs of B over u.

Lemma 5.10. For every word u ∈ A+, there is a weight preserving bijection between the
simple accepting runs of A over u and the accepting runs of B over u.

Proof. Fix a word u = u1 · · ·un ∈ A+ of length n > 1. We will decompose our bijection
into several ones, all preserving the weights in an adequate manner.

To extend the proof of Lemma 5.8, we first associate with a simple accepting run ρ
of A over u a tuple f(ρ) = (q0, q1, g1, . . . , qi, gi, . . . , qn, gn, qn+1) where qi = uiτi is the
crossing-sequence at position 0 6 i 6 n + 1 and for each position 1 6 i 6 n, the tuple
gi = (ρi1, . . . , ρ

i
Ni

) consists of the sequence of subruns of ρ with pebble p dropped on position
i, together with the surrounding drop/lift transitions.

Formally, for 0 6 i 6 n + 1, to define the crossing sequence qi = uiτi, we let τi be the
“projection” of the configurations visiting position i with an empty stack of pebbles, where
configuration (r, ε, i) is “projected” to r→ (respectively, r←, r drop or r) if it is followed by
some (r′, ε, i+ 1) (respectively, (r′, ε, i− 1), (r′, i, 0) or is the last configuration).

Moreover, for 1 6 i 6 n with Ni = |qi|drop, we extract from ρ the tuple gi = (ρi1, . . . , ρ
i
Ni

)
of subruns of the form (rj , ε, i)(rj+1, πj+1, 0) · · · (rk−1, πk−1, n+ 1)(rk, ε, i) where π` = i ·π′`
for all j < ` < k, i.e., where the first pebble is dropped on position i.

We first show that f is a bijection from simple accepting runs of A over u to the set,
denoted Sequ, of sequences (q0, q1, g1, . . . , qi, gi, . . . , qn, gn, qn+1) verifying:

— q0 ∈ I ′, qn+1 ∈ F ′ and qi ∈ Q′A for all 1 6 i 6 n;
— for all 0 6 i 6 n, the pair (qi, qi+1) matches, i.e., |qi|→ = 1 + |qi+1|←;

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:27

— for all 1 6 i 6 n, denoting Ni = |qi|drop, gi is a tuple (ρi1, . . . , ρ
i
Ni

) of subruns of A,
globally simple, each starting with the drop of pebble p on position i, ending with the
first time this pebble is lifted, and that matches with σ(qi) (i.e., the jth pair in σ(qi)
contains exactly the pair of first and last states of the run ρij).

It is not difficult to check that f(ρ) ∈ Sequ whenever ρ is a simple accepting run of A over u.
Defining the weight of a sequence (q0, q1, g1, . . . , qn, gn, qn+1) ∈ Sequ as

weight′(q0,B, ∅,→, q1)×
n∏
i=1

(
weight(gi)× weight′(qi, ui, ∅,→, qi+1)

)
where weight(gi) =

∏Ni

j=1 weight(ρij) with gi = (ρi1, . . . , ρ
i
Ni

), we can easily show that f
preserves the weights.

We finally prove that f is a bijection by constructing its inverse function. Let
(q0, q1, g1, . . . , qn, gn, qn+1) ∈ Sequ. Write qi = uiτi for 0 6 i 6 n + 1. We recover a simple
accepting run ρ of A over u as the output of Run’(0, τ0, τ1, g1, . . . , τn, gn, τn+1) where the
recursive function Run’ is defined by:

Function Run’(i, τ0, τ1, g1, . . . , τn, gn, τn+1)

Data: A position i of u and a tuple (τ0, τ1, g1, . . . , τn, gn, τn+1)
Result: A run ρ of A
match τi with

r→ τ ′i :
output (r, ε, i);
Run’(i+ 1, τ0, . . . , τ

′
i , gi, . . . , τn+1);

r← τ ′i :
output (r, ε, i);
Run’(i− 1, τ0, . . . , τ

′
i , gi, . . . , τn+1);

rdrop τ ′i :
match gi with

(ρ′, g′i) :
output ρ′;
Run’(i, τ0, . . . , τ

′
i , g
′
i, . . . , τn+1);

r : (* necessarily i = n+ 1 *)
output (r, ε, n+ 1);

We then consider each tuple gi of runs of A with pebble p dropped. It has already been
explained in the previous proof how to construct a weight preserving bijection between a
tuple gi = (ρi1, . . . , ρ

i
N), which matches with a sequence of pairs σ(qi), and an accepting

run ρ̂i = ρ′0ρ̂
i
1ρ
′
1 · · · ρ̂iNρ′N of Aqi over (u, i) so that gi is globally simple if and only if ρ̂i

is simple: it consists of filling some gaps (with the runs ρ′j), and replacing alphabet A by

Γ = A× {0, 1} (going from runs ρij to ρ̂ij).
Using the induction hypothesis, we know that there is a weight preserving bijection be-

tween simple accepting runs ρ̂i of Aqi over (u, i) and accepting runs ρi of Bqi over (u, i).
It remains to change back the alphabet to A, to build a weight preserving bijection

between accepting runs ρi of Bqi over (u, i) to runs gi of B over u starting in state
initqi in position 0 and finishing in state finalqi in position n + 1. Finally, coming back
to the sequences of Sequ, these intermediary bijections permit to build a weight preserv-
ing bijection from sequences (q0, q1, g1, . . . , qi, gi, . . . , qn, gn, qn+1) ∈ Sequ to accepting runs

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 Bollig, Gastin, Monmege, Zeitoun

(q0, ε, 0)(q1, ε, 1)g1(q1, ε, 1) · · · (qn, ε, n)gn(qn, ε, n)(qn+1, ε, n + 1) of B over u, which con-
cludes the proof of correctness.

5.4. Pebble weighted automata and weighted logic

The following theorem summarizes the main results of this section.

Theorem 5.11. Let S be a commutative semiring and f ∈ S〈〈A+〉〉. The following as-
sertions are equivalent over S and A:

(1) f is wFOTCb(FO)-definable;
(2) f is wFOTCb,<(FO)-definable;
(3) f is recognizable by a P2WA;
(4) f is recognizable by a P1WA.

Inclusions 2 ⇒ 1 and 4 ⇒ 3 follow from the definitions of weighted logics and pebble
weighted automata. Proposition 5.13 will reveal that 1⇒ 3. Proposition 5.9 will prove that
3⇒ 4: notice that this is the only implication using the commutativity of the semiring. The
theorem follows from Proposition 5.12, which finally proves implication 4⇒ 2.

Proposition 5.12. Every series recognizable by a P1WA is wFOTCb,<(FO)-definable.

Proof. Starting from a P1WA A with p pebbles, we build a wFOTCb,<(FO)-formula
by induction on p. Without loss of generality, we may assume that lift transitions only take
place at the end marker C. The case p = 0 follows from Theorem 4.1 since a P1WA with 0
pebble can be translated easily into a weighted automaton by removing the first transitions
reading B, and modulo is definable in wFOTCb,<(FO) (see Example 3.13). Note that the
tape contains BuC and p̃os(u) = {0, . . . , |u| + 1} but we still have pos(u) = {1, . . . , |u|},
first = 1 and last = |u|.

The induction step is shown like in the proof of the implication 1 ⇒ 2 of Theorem 4.1.
Notice that we no longer suppose that there exists only one initial state q0 = 1. The main
difference is however in the definition of the formulae Ξvq,q′(x), which now uses the induction
hypothesis. When dropping the first pebble on some position z, the head is reset to the
initial position labeled B, then the automaton behaves as a P1WA with (p − 1) pebbles,
starting in some state q, reading the word with position z “marked”, until it reaches the
final position labeled C in some states q′, where it will have to lift the first pebble. By
induction, there is a wFOTCb,<(FO)-formula Θq,q′(z) computing the sum of the weights of
all these runs of A.

For ` > 1, v = v1 · · · v` ∈ A+ and q0, q` ∈ Q, we define

Ξvq0,q`(x)
def
=

⊕
q1,...,q`−1∈Q

⊗
16k6`

Pvk(x− q0 + k)⊗ νqk,vk+1,qk+1
(x− q0 + k)

with

νq,a,q′(z)
def
= weight(q, a, ∅,→, q′)⊕

⊕
r,r′,r′′∈Q(

weight(q, a, ∅, drop, r)⊗Θr,r′(z)⊗ weight(r′,C, ∅, lift, r′′)⊗ weight(r′′, a, ∅,→, q′)
)
.

We have to guess non-deterministically the states q1, . . . , q`−1 that the automaton will
visit between positions x and y while pebble p is not dropped, because each of them is
useful to compute the runs with pebble p dropped. We obtain for u ∈ A+ and positions
i, i+ `− 1 ∈ pos(u)

JΞu[i..i+`−1]q0,q`
K(u, i+ q0 − 1) =

∑
q1,...,q`−1∈Q

∏
06k6`−1

Jνqk−1,ui+k,qk(z)K(u, i+ k) .

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:29

Then, we use almost the same weighted formulae as in Theorem 4.1. For small words u ∈ A+

with |u| 6 2m, we use

Φsmall
def
= (x = first ∧ y = last)⊗

⊕
16d62m, v∈Ad

[
(last = d) ∧

∧
16k6d

Pvk(k)
]
⊗ JAK(v)

and we obtain JΦsmallK(u) = JAK(u). Finally, we define

Φ1(x, y) =
⊕

q0∈I, q,q′∈Q
v∈Am

(
first = x ∧ 2m < last ∧ y = m+ q′

)
⊗ weight(q0,B, ∅,→, q)⊗ Ξvq,q′(q)

Φ2(x, y) =
⊕

q,q′∈Q, v∈Am

(
first < x ∧ x− q + 2m < last ∧ x ≡m q ∧ y − q′ = x− q +m

)
⊗ Ξvq,q′(x)

Φ3(x, y) =
⊕

q∈Q, q′∈F
m<d62m, v∈Ad

(
first < x ∧ x− q + d = last ∧ x ≡m q ∧ y = last

)
⊗ Ξvq,q′(x)

and we can show, as in the proof of Theorem 4.1, that [TC2m,<
x,y (Φsmall ⊕ Φ1 ⊕ Φ2 ⊕

Φ3)](first, last) computes JAK, as required.
We remark that this construction yields a wFOTCb,<(FO)-expression using p+ 2 nested

TCN,<-operators: p + 1 nested TCN,<-operators come from the induction in the proof of
Theorem 4.1, and the last one comes from the definition of the modulo operation.

Proposition 5.13. Let S be a (non necessarily commutative) semiring and f ∈ S〈〈A+〉〉.
If f is wFOTCb(FO)-definable, then f is recognizable by a P2WA.

Proof. By Lemma 3.3, we know that every series which is wFOTCb(FO)-definable is
in fact wFOTCb(AP)-definable. Hence, for the unweighted part of wFOTCb(FO), we just
have to prove that atomic formulae Pa(x),¬Pa(x), x 6 y,¬(x 6 y) are recognized by some
P2WA with 0 pebble. For Pa(x) (respectively, ¬Pa(x)), the automaton simply scans the
input word, searching for letter (a, 1) (respectively, (b, 1) with b 6= a), as the free variable x
is encoded in the alphabet A × {0, 1}. For the atomic formula ¬(x 6 y), the automaton
scans the input word, looking for the encoding of y before that of x. One verifies the formula
x 6 y in the same way.

It remains to prove that the class P2WA is closed under the weighted constructs of
wFOTCb(FO). First, notice that the constant series s ∈ S is easily recognized with a P2WA
with 0 pebble. Note that if a series is recognizable by a P2WA with p pebbles, it is also
recognizable by a P2WA with p+ 1 pebbles. Therefore, given two P2WAs, one can assume
that they use the same number of pebbles. Let A1,A2 be two P2WAs with p pebbles over
A. Closure under ⊕ is obtained using the disjoint union of the automata A1 and A2.

The P2WA with p pebbles that recognizes the Hadamard product which maps every word
u ∈ A+ to JA1K(u)× JA2K(u) consists of three phases: first, it simulates the automaton A1

until it reaches the last position in a final state of A1; then, it comes back to the beginning
of the word with transitions of weight 1; finally, it simulates the automaton A2 and exit in
a final state of A2.

For first-order quantifiers, we use an extra pebble. For a P2WA A with p pebbles over
alphabet A × {0, 1} computing JΦ(x)K, we construct two P2WA with (p + 1) pebbles over
alphabet A computing respectively J

⊕
x ΦK and J

⊗
x ΦK.

The automaton for
⊕

x Φ nondeterministically chooses with transitions of weight 1 a
position in the word, drops the extra pebble p+1, and simulates automaton A, interpreting
pebble p + 1 as the extra {0, 1} component encoding variable x. After this simulation, it
lifts the pebble and terminates the computation, going to the endmarker C with weights 1.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 Bollig, Gastin, Monmege, Zeitoun

For
⊗

x Φ, with transitions of weight 1, the new automaton drops successively the extra
pebble p + 1 on positions 1, . . . , |u| of the input word u ∈ A+. Whenever it drops pebble
p+ 1, it simulates A interpreting this pebble as the encoding of variable x until it reaches
the end marker C where it lifts pebble p+ 1.

Finally, assume that we have a P2WA A with p pebbles over the alphabet A × {0, 1}2
which evaluates some wFOTCb(FO) formula Φ(x, y). We construct a P2WA A′ with (p+2)
pebbles over A×{0, 1}2 in order to evaluate [TCNx,yΦ](x′, y′) (x′ and y′ are now the two free
variables). With transitions of weight 1, A′ moves to the position i′ to which maps variable
x′. If y′ also maps to i′, it simply simulates A interpreting x′ = y′ as x = y, resulting in the
evaluation of Φ(i′, i′). Otherwise, it drops its new pebble p+ 2. Whenever A′ drops pebble
p+ 2 on some position i, it enters some special state qdrop and with weights 1, it moves to
some guessed position j 6= i such that |j − i| 6 N and drops pebble p + 1. Whenever A′
drops pebble p+1, it then simulates A interpreting positions i and j on which pebbles p+2
and p+1 are dropped as x and y, resulting in the evaluation of Φ(i, j). When the simulation
of A is completed, A′ lifts pebble p+ 1 with weight 1 in order to return to position j. Still
with weights 1, A′ moves to position i where pebble p+ 2 was dropped remembering j − i
and lifts pebble p + 2. It then returns to position j. If y′ = j is the current position, the
transitive closure is completed. With weights 1, we move to the end marker C and accept.
Otherwise, A′ drops pebble p+ 2 again in order to continue the evaluation of the transitive
closure.

Note that, the simplicity requirement on runs implies that pebble p+2 cannot be dropped
twice on the same position. Indeed, after dropping pebble p+ 2, A′ always enters the same
state qdrop. Moreover, pebble p + 2 is never dropped on position y′. On a successful run ρ
of A′, either pebble p+ 2 is never dropped, and then we have x′ = i′ = y′ and we compute
Φ(i′, i′); otherwise, pebble p+2 is successively dropped on some positions x′ = i0, i1, . . . , i`−1
such that ` > 1 and x′ = i0, i1, . . . , i`−1, i` = y′ are pairwise distinct and |ij − ij−1| 6 N
for 0 6 j < `. The sum of the weights of the successful runs of A′ visiting such a pairwise
distinct sequence x′ = i0, . . . , i` = y′ is precisely JΦK(u, i0, i1) × · · · × JΦK(u, i`−1, i`) . We
deduce that A′ computes the N -bounded transitive closure [TCNx,yΦ](x′, y′).

6. ALGORITHMIC ISSUES

6.1. Evaluation

An important problem is the evaluation of an automaton wrt. a given word. More precisely,
given a word u = u1 · · ·un and a P1WA A = (Q,A, I, F,∆,weight), we are interested in
computing JAK(u). In the sequel, we assume as before that lift transitions in A only occur
at the end marker C.

We fix the word u = u1 · · ·un ∈ A+ and inductively compute (using dynamic pro-
gramming) a matrix M(π, i) ∈ SQ×Q for 0 6 i 6 n + 1, and π ∈ pos(u)6p: coefficient
M(π, i)q,q′ is the sum of weights of runs that go from position 0 in state q to position
i in state q′ with pebbles p, . . . , p − |π| + 1 permanently dropped on positions described
by π. Let µ(a, P, d) ∈ SQ×Q be the matrix defined by µ(a, P, d)q,q′ = weight(q, a, P, d, q′)
if (q, a, P, d, q′) ∈ ∆, and µ(a, P, d)q,q′ = 0 otherwise. We denote by Id ∈ {0, 1}Q×Q the
identity matrix and we initially set M(π, 0)q,q′ = Id. For 1 6 i 6 n+ 1, we set

M(π, i) =


M(π, i− 1)× µ(ui−1,peb(π, i− 1),→)×(
Id+ µ(ui,peb(π, i), drop)×M(πi, n+ 1)× µ(C, ∅, lift)

)
if i 6 n ∧ |π| < p

M(π, i− 1)× µ(ui−1,peb(π, i− 1),→) otherwise.

Indeed, going from position 0 to position i can be decomposed as first going from position
0 to position i− 1, then performing a right move and finally optionally (we use the identity
matrix to simplify the matrix computation in this formula) dropping a pebble. Then, we

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:31

obtain

JAK(u) = λ×M(ε, n+ 1)× γ
where λ ∈ {0, 1}1×Q is the line vector coding the initial states (λq = 1 if and only if q ∈ I)
and γ ∈ {0, 1}Q×1 is the column vector coding the final states (γq = 1 if and only if q ∈ F).
Using dynamic programming, this can be computed in time O(|Q|3 · |u|p+1). Here, O(|Q|3)
is due to matrix multiplication, and O(|u|p+1) is the number of matrices M(π, i) that have
to be determined. We obtain:

Theorem 6.1. Evaluation of a P1WA with p pebbles and set of states Q wrt. a word
u ∈ A+ is O(|Q|3 · |u|p+1).

This evaluation procedure can be improved with some efforts as presented in [Gastin and
Monmege 2012]. In particular, lifted to our framework, this permits to evaluate a P1WA
with O(|Q|3 · |u|max(p,1)) scalar operations (sum and product of elements of the semiring).

6.2. Satisfiability/emptiness

In the context of formal power series, one may call a closed expression Φ ∈ wFOTCb,<(FO)
satisfiable if there is a word w ∈ A+ such that JΦK(w) 6= 0. Over commutative positive
semirings (i.e., zero-sum free and without divisors of zero), satisfiability is decidable due
to Theorem 5.11, which reduces the problem to non-emptiness of the support of a formal
power series recognized by a P2WA. The latter problem, in turn, can be reduced to the
decidable emptiness problem for classical pebble automata over the Boolean semiring, as
stated, e.g., in [Bojańczyk 2008].

However, this problem turns undecidable over general (not necessarily positive) semiring.
In fact, we prove undecidability of emptiness for P1WA with 2 pebbles.

Theorem 6.2. Emptiness is undecidable over the semiring Z for P1WA with 2 pebbles,
and formulae of wFO(AP).

Proof. A complete 2-counter machine M is a tuple (Loc,∆, init, F) with Loc a finite set
of locations, ∆ = Loc×Instr×Loc the set of transitions where Instr = {Incp,Decp,ZTestp |
p ∈ {1, 2}}, init ∈ Loc the initial location and F ⊆ Loc the set of final locations. If w =
(`0, D1, `1) · · · (`n−1, Dn, `n) ∈ ∆∗ andD ∈ Instr , we set |w|D = |{k ∈ [1, n] | Dk = D}|, and
wj = (`0, D1, `1) · · · (`j−1, Dj , `j) for 1 6 j 6 n. We define the value of counter p ∈ {1, 2}
after step j ∈ {1, . . . , n} as cpj (w) = |wj |Incp − |wj |Decp , and we also set cp0 = 0.

An accepting run of M is a word w = (`0, D1, `1) · · · (`n−1, Dn, `n) ∈ ∆+ such that:

(1) `0 = init and `n ∈ F ,
(2) cpj (w) > 0 for all j ∈ {1, . . . , n} and p ∈ {1, 2},
(3) if Dj = ZTestp, then cpj−1(w) = 0 for all j ∈ {1, . . . , n} and p ∈ {1, 2}.

The emptiness problem for 2-counter machines consists in deciding whether a given 2-
counter machine has an accepting run. It is well known to be undecidable [Minsky 1967].
This problem reduces to emptiness of 1-way pebble word automata with 2 pebbles over
(Z,+,×, 0, 1). From a 2-counter machine M, we build such an automaton A assigning a
nonzero weight to accepting runs of M, and weight 0 to all other words. Hence, A has a
nonzero semantics if and only if M has an accepting run.

A word w ∈ ∆+ is not an accepting run of M if and only if it does not consists in
consecutive transitions, or it violates either (1), (2) or (3). Let Dp = {j 6 |w| | Dj = Decp}
and Zp = {j 6 |w| | Dj = ZTestp}. Then w violates (2) if and only if for some p ∈ {1, 2},

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

A:32 Bollig, Gastin, Monmege, Zeitoun

there exists j ∈ Dp such that cpj−1(w) = 0, i.e.,∏
j∈Dp

cpj−1(w) = 0 . (8)

We can compute this product with a P1WA with 1 pebble over Z as explained in Exam-
ple 5.5. Next, if (2) holds, then w violates (3) if and only if for some p ∈ {1, 2}, there exists
j ∈ Zp such that cpj−1(w) > 0, that is, if and only if∏

j∈Zp

∏
16k<j

(cpj−1(w)− k) = 0 . (9)

We have seen in Example 5.5 how to compute this value with a 2-pebble P1WA over Z.
Henceforth, on every position j ∈ D1 ∪ D2 ∪ Z1 ∪ Z2, automaton A drops a pebble in

order to compute the products (8) or (9) as explained in Example 5.5. More precisely,

— on positions j ∈ D1 ∪ D2, a drop transition leads to a copy of Anon-neg, highlighted in
Figure 4.

— on positions j ∈ Z1 ∪ Z2, a drop transition leads to a copy of the automaton Azero-test

highlighted in Figure 5.
— a loop is used to do nothing on every position j /∈ D1 ∪ D2 ∪ Z1 ∪ Z2.
— finally, transitions with weight 0 are used either on the loop- or the drop-transitions to

check if (1) is violated or if two consecutive letters of ∆ are not consecutive transitions
in M.

Using Example 3.6, it is easy to construct a formula of wFO(AP) equivalent to automaton
A, showing that emptiness is also undecidable for wFO(AP).

The problem is still open for automata with a single pebble.

7. CONCLUSION

In this paper, we introduced weighted automata with pebbles. We showed that these devices
capture weighted first order logic extended with a transitive closure operator. Contrary
to previous work, we do not restrict the first order logic but allow for arbitrary nesting
of universal quantification. Moreover, we established several new characterizations of the
classical recognizable formal power series in terms of logics with transitive closure.

These results are not only of theoretical interest. They also lay the basis for quantitative
extensions of database query languages, such as XPath, and provide tracks to evaluate
quantitative aspects of XML documents. The framework of weighted automata is natural
for answering questions such as “How many nodes are selected by a request?”, or “How
difficult is it to answer a query?”. The navigational mechanism of pebble automata is also
well-suited in this context. So, our work is a first step before tackling similar questions
on trees.

A second, and maybe related, line of future research concerns quantitative model checking,
aiming at a general framework of quantitative specification languages that cover existing
ones like [Laroussinie et al. 2012; Laroussinie et al. 2010; Fischer et al. 2010]. Note that
this would also involve branching structures rather than words, as they naturally represent
unfoldings of Kripke structures.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous referees for their valuable comments that permitted to

simplify some proofs, and globally improve the quality of this paper.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

Pebble Weighted Automata and Weighted Logics A:33

REFERENCES

Jean Berstel and Christophe Reutenauer. 2010. Noncommutative Rational Series With Applications. Cam-
bridge University Press.

Manuel Blum and Carl Hewitt. 1967. Automata on a 2-Dimensional Tape. In Proceedings of the 8th Annual
Symposium on Switching and Automata Theory (SWAT’67).

Miko laj Bojańczyk. 2008. Tree-Walking Automata. In Language and Automata Theory and Applications
(LATA’08) (Lecture Notes in Computer Science), Vol. 5196. Springer.

Miko laj Bojańczyk, Mathias Samuelides, Thomas Schwentick, and Luc Segoufin. 2006. Expressive Power of
Pebble Automata. In Proceedings of the 33rd international conference on Automata, Languages and
Programming - Volume Part I (ICALP’06) (Lecture Notes in Computer Science), Vol. 4051. Springer,
157–168.

Benedikt Bollig and Paul Gastin. 2009. Weighted versus Probabilistic Logics. In Proceedings of the 13th
International Conference on Developments in Language Theory (DLT’09) (Lecture Notes in Computer
Science), Vol. 5583. Springer, 18–38.

Benedikt Bollig, Paul Gastin, Benjamin Monmege, and Marc Zeitoun. 2010. Pebble Weighted Automata
and Transitive Closure Logics. In Proceedings of the 37th International Colloquium on Automata,
Languages and Programming (ICALP’10) – Part II (Lecture Notes in Computer Science), Vol. 6199.
Springer, 587–598.

J. Richard Büchi. 1959. Weak Second-Order Arithmetic and Finite Automata. Technical Report. University
of Michigan.

Hubert Comon-Lundh, Max Dauchet, Rémi Gilleron, Florent Jacquemard, Denis Lugiez, Sophie Tison, and
Marc Tommasi. 2008. Tree Automata Techniques and Applications. http://tata.gforge.inria.fr/

Manfred Droste and Paul Gastin. 2009. Weighted Automata and Weighted Logics. In Handbook of Weighted
Automata, Werner Kuich, Heiko Vogler, and Manfred Droste (Eds.). Springer, Chapter 5, 175–211.

Manfred Droste, Werner Kuich, and Heiko Vogler. 2009. Handbook of Weighted Automata. Springer.

Manfred Droste and Heiko Vogler. 2006. Weighted Tree Automata and Weighted Logics. Theoretical Com-
puter Science 366, 3 (2006), 228–247.

Manfred Droste and Heiko Vogler. 2009. Weighted Logics for Unranked Tree Automata. Theory of Com-
puting Systems (2009).

Calvin C. Elgot. 1961. Decision Problems of Finite Automata Design and Related Arithmetics. Trans.
Amer. Math. Soc. 98 (1961), 21–52.

Joost Engelfriet and Hendrik Jan Hoogeboom. 1999. Tree-Walking Pebble Automata. Jewels are forever,
contributions to Theoretical (1999), 72–83.

Joost Engelfriet and Hendrik Jan Hoogeboom. 2007. Automata with Nested Pebbles Capture First-Order
Logic with Transitive Closure. Logical Methods in Computer Science 3 (2007), 1–27.

Kousha Etessami. 1997. Counting Quantifiers, Successor Relations, and Logarithmic Space. J. Comput.
System Sci. 53, 3 (1997), 400–411.

Ina Fichtner. 2011. Weighted Picture Automata and Weighted Logics. Theory of Computing Systems 48, 1
(2011), 48–78.

Diana Fischer, Erich Grädel, and Lukasz Kaiser. 2010. Model Checking Games for the Quantitative µ-
Calculus. Theory of Computing Systems 47, 3 (2010), 696–719.

Paul Gastin and Benjamin Monmege. 2012. Adding Pebbles to Weighted Automata. In Proceedings of the
17th International Conference on Implementation and Application of Automata (CIAA’12) (Lecture
Notes in Computer Science), Vol. 7381. Springer, 28–51.

Hans Hansson and Bengt Jonsson. 1994. A Logic for Reasoning about Time and Reliability. Formal Aspects
of Computing 6, 5 (1994), 512–535.

Lauri Hella, Leonid Libkin, Juha Nurmonen, and Wong Limsoon. 2001. Logics with Aggregate Operators.
J. ACM 48, 4 (2001), 880–907.

John E. Hopcroft and Jeffrey D. Ullman. 1979. An Introduction to Automata Theory, Languages, and
Computation. Addison-Wesley.

Neil Immerman and Eric Lander. 1990. Describing Graphs: a First-Order Approach to Graph Canonization.
In Complexity Theory Retrospective. Springer-Verlag, 59–81.

François Laroussinie, Antoine Meyer, and Eudes Petonnet. 2010. Counting LTL. In Proceedings of the 17th
International Symposium on Temporal Representation and Reasoning (TIME’10). IEEE Computer
Society Press, 51–58.

François Laroussinie, Antoine Meyer, and Eudes Petonnet. 2012. Counting CTL. Logical Methods in Com-
puter Science 9, 1 (2012).

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

http://tata.gforge.inria.fr/

A:34 Bollig, Gastin, Monmege, Zeitoun

Leonid Libkin. 2000. Logics with Counting and Local Properties. ACM Transactions on Computational
Logic 1 (2000), 33–59.

Christian Mathissen. 2010. Weighted Logics for Nested Words and Algebraic Formal Power Series. Logical
Methods in Computer Science 6, 1 (2010).

Ingmar Meinecke. 2006. Weighted Logics for Traces. In Proceedings of the First International Computer
Science Conference on Theory and Applications (CSR’06) (Lecture Notes in Computer Science), Vol.
3967. Springer-Verlag, 235–246.

Marvin L. Minsky. 1967. Computation: Finite and Infinite Machines. Prentice-Hall, Inc.

Frank Neven and Thomas Schwentick. 2003. On the Power of Tree-Walking Automata. Information and
Computation 183, 1 (2003), 86–103.

Frank Neven, Thomas Schwentick, and Victor Vianu. 2004. Finite State Machines for Strings over Infinite
Alphabets. ACM Transactions on Computational Logic 5 (2004), 403–435.

Michael O. Rabin. 1969. Decidability of Second-Order Theories and Automata on Infinite Trees. Trans.
Amer. Math. Soc. 141 (1969), 1–35.

Michael O. Rabin and Dana Scott. 1959. Finite Automata and Their Decision Problems. IBM Journal of
Research and Development 3, 2 (1959), 114–125.

Mathias Samuelides and Luc Segoufin. 2007. Complexity of Pebble Tree-Walking Automata. In Proceedings
of the 16th International Conference on Fundamentals of Computation Theory (FCT’07) (Lecture
Notes in Computer Science), Vol. 4639. Springer, 458–469.

Marcel-Paul Schützenberger. 1961. On the Definition of a Family of Automata. Information and Control 4
(1961), 245–270.

John C. Shepherdson. 1959. The Reduction of Two-Way Automata to One-Way Automata. IBM Journal
of Research and Development 3, 2 (1959), 198–200.

Balder ten Cate and Luc Segoufin. 2010. Transitive Closure Logic, and Nested Tree Walking Automata,
and Xpath. J. ACM 57, 3 (2010), 1–41.

James W. Thatcher and Jesse B. Wright. 1968. Generalized Finite Automata Theory with an Application
to a Decision Problem of Second-Order Logic. Mathematical Systems Theory 2, 1 (1968), 57–81.

Wolfgang Thomas. 1982. Classifying Regular Events in Symbolic Logic. J. Comput. System Sci. 25 (1982),
360–376.

Boris A. Trakhtenbrot. 1961. Finite Automata and Logic of Monadic Predicates. Doklady Akademii Nauk
SSSR 149 (1961), 326–329.

ACM Transactions on Computational Logic, Vol. V, No. N, Article A, Publication date: January YYYY.

	Introduction
	Notation and background
	Formal power series
	Weighted automata
	Monadic second-order logic

	Weighted logics
	General definitions
	Previous expressiveness result
	Weighted transitive closure

	Expressiveness of weighted logics
	Pebble weighted automata
	General definitions
	Pebble one-way weighted automata
	One-way versus two-way
	Pebble weighted automata and weighted logic

	Algorithmic issues
	Evaluation
	Satisfiability/emptiness

	Conclusion

