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Abstract:  MDWNsolver is  a  framework  for  system  modeling and  optimization  of 
performability  measures  based  on  Markov  Decision  Petri  Net  (MDPN)  and  Markov 
Decision Well-formed Net (MDWN) formalisms, two Petri Net extensions for  high level 
specification of Markov Decision Processes (MDP). It is integrated  in the GreatSPN suite 
which provides  a GUI to design MDPN/MDWN models.  From the analysis  point   of 
view,  MDWNsolver uses efficient algorithms that take advantage of system symmetries, 
thus  reducing   the  analysis  complexity.  In  this  paper  the  MDWNsolver framework 
features and architecture are presented, and some application examples are discussed.

Keywords: Markov decision process, dependability optimization tool, Markov decision  
well-formed nets.

1. Introduction

      The  Markov Decision Process (MDP) formalism [12] can be used for  modeling 
systems which exhibit both non deterministic and probabilistic behavior (e.g., distributed 
systems, resource management systems,  etc,). Being a low level formalism, it  is rather 
hard to directly use MDPs to model complex systems. Some high level MDP specification 
formalisms have been proposed in the literature to overcome this problem (e.g., Stochastic 
Transition Systems [9], Dynamic Decision Network [10], Reactive Modules [1], etc,); in 
this context, the originality of Markov Decision Petri Net (MDPN) and Markov Decision 
Well-formed Net (MDWN) [5] high level formalisms is that they allow to describe the 
system in terms of its components and their interactions. As a consequence, the models 
are more compact and manageable; in particular, it is possible to define a complex non 
deterministic or probabilistic behavior as a composition of simpler non deterministic or 
probabilistic  steps (that  take zero time).  From the analysis point of view, the MDWN 
formalism  inherits  the  efficient  algorithms  originally  devised  for  WNs,  allowing  to 
automatically  taking  advantage  of  the  model  symmetries  to  reduce  the  analysis 
complexity.
     This  paper  presents  a  framework,  integrated  in  the GreatSPN suite  [14]: 
MDPN/MDWN models can be designed using the GreatSPN GUI, and solved by means 
of  specific  new  modules  integrated  in  the  distribution.  These  modules  transform  an 
MDPN/MDWN model expressed as a pair of non-deterministic and probabilistic subnets 
plus  a  reward  function  specification  into  an  MDP model  and  then  solve  such  MDP 
deriving an optimal strategy.
     The paper is organized as follows:  Section 2 briefly recalls the MDP, MDPN and 
MDWN formalisms. In Section 3, the main features of the framework are explained, and
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its architecture is outlined. In Section 4 and 5, some examples of MDPN and MDWN 
models are presented, together with some analysis results obtained with the MDWNsolver 
and some considerations on the efficiency of the MDWN solution. Section 6 concludes 
the paper.

2. Background 

     In this section we recall briefly the MDP, MDPN and MDWN formalisms which will 
be used in this paper; the reader can find more details in [5].

2.1 Markov Decision Process

     MDP [12] is  a  well-know formalism providing  a simple mathematical  model  to 
express  optimization  problems in  random environments.  In  particular,  a  discrete  time 
finite  MDP1 is  an  extension  of  a  Markov  Chain  which  allows  non  deterministic 
choices/actions,  and  rewards  function  expressing  a  target  function  to  be 
minimized/maximized.  For  every  non deterministic  action  allowed  in  a  given  state  a 
reward/cost and a transition probability distribution are defined. Hence, the evolution of 
an MDP can be described as an alternation of non deterministic transitions (actions) and 
probabilistic transitions.
     Solving an MDP consists in finding an optimal strategy (optimal action to be chosen in 
each state) w.r.t. a given reward function.

2.2 Markov Decision Petri Net and Markov Decision Well-formed Net 
Formalisms

     MDPN was first introduced in [5] as a high level formalism to specify MDPs. The 
main  features  of  MDPNs  are  the  possibility  to  specify  the  general  behavior  as  a 
composition of the behavior of several concurrent components (some of which are subject 
to local non deterministic choice, and are thus called controllable, while the others are 
called non controllable); moreover any non deterministic or probabilistic transition of an 
MDP can be composed by a set  of non deterministic  or probabilistic  steps,  each one 
involving a subset of components.
     An MDPN model is composed of two parts, both specified using the PN formalism 
with priorities associated with transitions: the PNnd subnet and the PNpr subnet (describing 
the non deterministic (ND) and probabilistic (PR) behavior respectively). The two subnets 
share the set of places, while having disjoint transition sets. In both subnets the transitions 
are partitioned into  run and  stop subsets,  and each transition has an associated set  of 
components  involved  in  its  firing  (in  the  PNnd only  controllable  components  can  be 
involved). Transitions in PNpr  have a “weight” attribute, used to compute the probability 
of  each  firing  sequence.   Firing  of  run transitions  represent  intermediate  steps  in  an 
ND/PR transition at the MDP level, while  stop transitions represent the final step in an 
ND/PR MDP transition, for all  components involved in it.  An MDPN model behavior 
alternates between ND transition sequences and PR transition sequences, initially starting 
from an ND state. The PR sequences are determined according to the PNpr structure, start 
with a PR state reached by an ND state, and include exactly one stop transition for each 
component; the ND sequences are determined by the  PNnd structure,  start  from an ND 
state reached by a PR state, and include exactly one stop transition for each controllable 
component plus possibly a global stop transition. Moreover, in the MDPN formalism we 
can specify a reward/cost function, called rs() associated  with every system state and one, 
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In the rest of this paper we will use  MDP to indicate a discrete time finite MDP.
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called rt(), associated  with every non deterministic transition; the global reward function 
is obtained by summing up a state reward function and an action reward function.
     The generation of the MDP corresponding to a given MDPN has been described in [5]: 
it  consists of (1) a composition step, merging the two subnets in a single net,  (2) the 
generation of the RG of the composed net, (3) two reduction steps transforming each PR 
and ND sequence in the RG into a single MDP transition.
     MDWN [5] extends the MDPN formalism with color: the PNpr and PNnd subnets are 
specified using Well-formed Nets (WN) [7] and a subset of the color classes is used to 
represent the system components. The transitions are still  partitioned into  run and  stop 
subsets  (with  the  same  semantics  defined  in  the  MDPN),  and  each  transition  firing 
involves a set of components identified by the transition color instance. MDWNs 
enable the modeler  to specify in a concise way similar components, obtaining a more 
compact  and  readable  model;  it  is  always  possible  to  derive  an  equivalent  MDPN 
applying an unfolding algorithm. From an analysis point of view, the generation of the 
MDP corresponding  to  an MDWN follows  the  same two  steps  already  explained  for 
MDPN, but in this case the Symbolic Reachability Graph (SRG) [7] approach developed 
for the WN formalism can be adapted to produce a smaller MDP w.r.t. the original one.

3. MDWNsolver  Features and Architecture 

     MDWNsolver consists of a module that  builds the MDP corresponding to a given 
MDWN or MDPN model, and produces an output suitable for the MDP analysis by means 
of an MDP solver built upon the graphMDP library [13]; it may be adapted to interact (at 
the MDP analysis level) with other tools like e.g., ZMDP, allowing to derive both optimal 
and suboptimal strategies, or PRISM, featuring the computation of properties expressed in 
PCTL through efficient model checking algorithms. 
     The architecture of MDWNsolver is depicted in Figure 1. The user must specify two 
subnets  (Prob_net and  ND_net)  by  means  of  the  GreatSPN GUI,  representing  the 
probabilistic and non deterministic behavior of the model. A special annotation is used to 
associate sets of  components  with transitions, and to distinguish between run and stop 
transitions. In case MDWN models are used, the components are represented by means of 
a  color  class:  this  is  useful  when the  system under  study comprises several  similarly 
behaving components, and should be used when the system structure and behavior exhibit 
a  certain  degree  of  symmetry  that  can  be  exploited  to  achieve  a  more  compact 
representation, and - what is most important - to reduce the model transformation cost as 
well  as the MDP solution cost. Different  priorities can be assigned to transitions: this 
allows  to  avoid  useless  interleavings  when  deriving  the  MDP model,  and  to  force  a 
correct ordering of probabilistic or non deterministic intermediate (immediate) steps.  In 
addition the  RewardSpec file  must  be prepared:  it  is  a textual  file  where  the  reward 
function to be optimized is specified according to a given grammar.
      The transformation process consists of four steps:  (1)  the non deterministic and 
probabilistic subnets  are modified by the MDWN2WN module that adds some places and 
two (timed) transitions; (2) the resulting new subnets (Prob_netM and  ND_netM) are 
composed through the algebra module of  GreatSPN; (3) from the obtained PN/WN the 
(S)RG  is  generated  using  the   module  MDWN(S)RG,  that  produces  also  two  files 
containing the list of the  non deterministic transition sequences (the MDP actions) and 
markings  description  (the  MDP states),  needed  to  compute  the  value  of  the  reward 
function associated with the MDP states and actions; (4) module RG2MDP, generates the 
final  MDP: the  states  of  the  MDP correspond to  the  tangible states  produced  by the 
previous  module,  the  MDP  actions  and  the  subsequent  probabilistic  transitions, 
correspond to the maximal immediate non deterministic/probabilistic paths  respectively, 
departing  from  the  non  deterministic/probabilistic  tangible  markings  and  reaching 
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probabilistic/non deterministic  tangible  markings.  In order  to  make the  MDP solution 
more efficient, the reduction algorithm selects among the actions that connect the same 
tangible states, that with minimal (or maximal, depending on the optimization problem) 
reward value. The MDP file is produced in an efficient format which is accepted in input 
by the MDP solver module (based on the graphMDP library), that produces the optimal 
strategy and corresponding optimal reward value.

Figure 1: MDWNsolver Architecture

     The implementation of the MDWN(S)RG module derives from the WN(S)RG module 
of GreatSPN: the main difference is that it performs already the first step of probabilistic 
paths  reduction,  so  that  the  resulting  (S)RG  does  not  contain  the   intermediate 
probabilistic  markings:  large  part  of  the  code is  reused  from  WN(S)RG,  hence future 
improvements in  WN(S)RG will be inherited. In particular, the SRG approach is applied 
to MDWN to reduce the  number of generated  states  (and hence the  size of the  final 
MDP): it exploits the model symmetries, without introducing any approximation, thanks 
to the lumpability property of the MDP corresponding to the ordinary RG. 
     A detailed example of model specification and solution procedures are presented in 
Section  4  for  a  simple  example;  the  state  space reduction  due  to  the  exploitation  of 
symmetries is shown on more complex examples in Section 5. 

4. A Simple Example of MDPN and MDWN 

     In this section we show how the  MDWNsolver works on a simple example; more 
complex examples are discussed in the next section. Let us consider a system with two 
identical  components,  that  can be  in  service  (UP)  or  out  of  service  (DOWN),  and  a 
centralized recovery system (decision maker), that can apply different repair policies. The 
recovery system must decide whether a given down component must be assigned a repair 
resource (to restore it to the UP state) or not. We consider the case where there is only one 
repair resource, so that the components cannot be repaired in parallel. The goal of the 
study is to find the optimal strategy that reduces the costs incurred by the system when 
the  components  break  down:  a  penalty  (Cpenalty)  is  paid  at  each  time  unit  if  both 
components are down, moreover each time a repair activity starts, a repair cost (Crepair) is 
charged.
     Figs. 2 and 3 show an MDPN model for this system. In particular the former shows the 
probabilistic  behavior  of  the  two  identical  components;  while  the  latter  shows  the 
possible actions of the centralized recovery system (assigning or not the repair resources 
to DOWN components).
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Figure 2: Example of MDPN Probabilistic Net

Figure 3: Example of MDPN non-Deterministic Net

     The component lists are specified through the GreatSPN GUI by defining appropriate 
parameters with reserved names: a two letters prefix  distinguishes among controllable 
(CC), non controllable (NC) and global (GL) components (in the example CC1 and CC2 
are defined). By properly annotating the model, stop and run transitions can be identified, 
and the components involved in each firing are specified: these annotations are integrated 
in  the  “tag”  attribute  of  transitions,  concatenated  to  the  transition  name  after  the  | 
separator.  For  example  the  annotation  StartRep2|<Run,CC2,> means  that  transition 
StartRep2 is  a  run transition  involving  only  controllable  component  CC2,  while  the 
annotation  Fail1|<Stop,CC1,> means that transition  Fail1 is a  stop transition involving 
component  CC1.  Since  places  can  be  shared  between  the  non  deterministic  and 
probabilistic subnet, these must be identified through a common label (concatenated with 
the place name) in the two models: in the example this is the case for places AvailableRes, 
AssignResi, and  Downi,  i=1,2 identified as shared places by the suffixes  |AR,  |ARi,  |Di 

respectively. Places with these labels appear in both the subnets.
     A token in place  Upi,  i=1,2 means that  component  i is  in service.  The firing  of 
transition Faili with probability 1-Pwork corresponds to component i failure and moves the 
token in  Downi|Di. The repair  of component  i starts  firing the  run transition  StartRepi 

when the decision maker has assigned a repair resource to that component putting a token 
into  place  AssignResi|ARi.  In  each  time  unit  an  ongoing  repair  process  can  finish, 
represented by the firing of  stop transition  EndRepi, with probability  1-Prepair, or can go 
on, represented by the firing of stop transition ContRepi, with probability Prepair.
     In the non deterministic net  the  stop transitions  AssignedResi and  NoAssignedResi 

model the choice to activate or not the repair of a down component. 
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Figure 4: Example of MDWN Probabilistic Net (A) and Non-Deterministic Net (B)

     The reward function associated with this model, defining the optimization problem, is:
T AssignedRes1 -1
T AssignedRes2 -1
F -100 (Down2|D1 = 1 && Down2|D2 = 1)
where, the first two items represent the cost associated with each repair action, while the 
last item expresses the penalty paid for the whole system being inactive (all components 
down). The MDWNsolver expects to find the reward function in a separate file,  expressed 
according to a given grammar (see the manual in  [16]).
     When the system comprises sets of identical components, as is the case in the example, 
the MDWN formalism should be preferred since it allows a more compact and parametric 
definition of the model, since the behavior of each component type appears only once in 
the model. In Fig.  4,  the MDWN model for this system is depicted,  where the list  of 
controllable components contains only one element, CC1, that is associated with the color 
class C containing the identifiers of the two identical components. The annotations of the 
MDWN models are a bit more complex because it  is required to specify the (tuple of) 
transition color elements (variables) that are used to identify one component within a set 
of identical ones. In the example of Fig. 4, variable is x and the transition annotation must 
specify a component type followed by the variable(s) that are instantiated upon transition 
firing to select one specific component of that type; e.g., the tag  StartRep|<Run,CC1,x,> 
denotes a  run transition involving component  x among  the components of type  CC1. 
Special annotations can be used to associate more than one component in the same class 
with a given transition. 
     From the two models, we can derive an MDP and solve it, activating the sequence of 
modules described in Section 2. For each MDP state, the corresponding optimal action is 
reported as a sequence of non deterministic transition instances (e.g., NoAssignedRes(a1);  
NoAssignedRes(a2)). The size of the final MDP in general is smaller when the MDWN 
model is used, due to the exploitation of symmetries (SRG). The gain increases with the 
cardinality  of  the  classes  of  similarly  behaving  components.  As  a  consequence,  the 
optimal strategy encoding is more compact and parametric (expressed using the symbolic 
markings and symbolic transition instances notation, representing equivalence classes of 
states and transitions). For instance, symbolic action  NoAssignedRes(C1); AssignRes(C2) 
in a state where place Up contains <C2> and place Down contains <C1>  represents the 
decision  of  assigning  the  repair  resource  to  the  component  that  is  Down:  different 
assignments of actual  component identifiers  to parameters  C1 and  C2 allow to obtain 
specific states and corresponding optimal action. 

5. Interesting Applications of MDPN and MDWN
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     In this section, we present some interesting MDPN/MDWN application examples, 
giving a flavor of the type of optimization problems that can be dealt with this formalism, 
and discussing the model sizes that the tool can currently manage.
     The first  example, presented in   [2], concerns a Wireless Sensor Network (WSN) 
monitoring system, that has to track a moving object within a building composed of  F 
floors; each floor is partitioned in Z zones, each containing a fixed number S of sensors.
     In this context, the MDWN was used to find an optimal trade off between the power 
consumption  and  the  object  tracking  reliability;  the  power  saving  was  achieved  by 
periodically powering off some of the nodes for a given time interval (up to C time units 
long). The cost function to be optimized includes both the penalty due to losing track of 
the monitored object, and the cost of battery consumption; the possible non deterministic 
actions correspond to the choice of a set of nodes to be powered off and the respective 
sleeping time. The number of states is quite large, even for a relatively small system: to 
mitigate the complexity, the optimization problem has been solved on several simplified 
models,  each  representing  only  one  floor  in  details;  the  computed  optimal  power 
management  strategy  has  been simulated  on a  complete  and more detailed  model,  to 
estimate the interesting performability measures, including energy consumption.

   Table 1: The State Space Size of the WSN Monitoring Model in [2], where S  is the number of 
sensors/zone, Z the number of zones/floor, C the maximum sleep time; number of floors F=3. 

     

     Table 1 shows the state space size and solution time as a function of the system 
parameters (S, Z, C) for a three floors model: the solution is feasible only for a limited 
number of  sensors.  In details,  the  first  column reports the  experiment  parameters,  the 
second, third and fourth columns report the  number of ordinary states (RG size – derived 
from the SRG, not from direct computation) and symbolic states (SRG size), and the SRG 
generation time. The last two columns show the number of states of the reduced MDP and 
its generation and solution time. The results shown in this table shows the effectiveness of 
the SRG method in mitigating the state space explosion:  a good level  of reduction is 
achieved (e.g., for case 4,3,1, the reduction factor  (|RG|/|SRG|) is  131), moreover the 
SRG growth is smoother  than the RG one (e.g., moving from  configuration 2,3,3 to 3,3,3 
the SRG size grows by a factor 24 while the RG by factor 164).
     Another interesting application of  MDWNsolver  is the computation of the optimal 
repair policy of systems specified by means of Non deterministic Repairable Fault Trees 
(NdRFT) or Parametric NdRFT (ParNdRFT), indeed an NdRFT/ParNdRFT model can be 
automatically translated into an MDPN/MDWN [4,6]. 

MDWN MDP (SRG)

S,Z,C |RG| |SRG| TimeSRG States Time

2,3,1 19,253 6,356 5s 144 0s

2,3,2 80,272 24,475 56s 380 5s

2,3,3 229,661 67,001 75s 825 26s

2,3,4 527,768 149,708 341s 1,575 6m

2,3,5 1,050,757 292,324 609s 2,744 20m

3,3,1 920,981 55,508 119s 420 6s

3,3,2 7,818,304 379,840 992s 1,600 17m

3,3,3 37,737,589 1,623,725 52m 4,725 34m

4,3,1 45,246,989 345,200 862s 975 201s
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     Here we present a model inspired to the Multiprocessors system in [8].  The system 
structure is shown Fig. 5(top left):  it comprises two parts: the disk access (DA) and the 
CPU-Memory (CM) subsystem. The former unit  is composed by two disks  D1, D2 in 
mirroring (RAID-1) and a bus (DBUS); while the latter unit comprises two processing 
units:  PU1 and  PU2. Each processing unit includes a processor  Pi and three redundant 
banks of local memory Mi1-3. Moreover, the two processing units share a global memory 
SM composed by two redundant memory banks R1, R2. 
     Figure 5 (right) shows, the NdRFT model for this system: the Fault Tree structure 
represents  the  Boolean  function  specifying  which  combinations  of  basic  fault  events 
(leaves) lead to the fault of each subsystems (internal nodes) and of  the whole system 
(root - TE). In particular, the system (TE) fails if the DA or the CM subsystem fails.  The 
DA fails if both disks fail or the bus fails; while the CM fails if both PU1 and PU2 fail. 
Each PUi fails if its processor or all its local memory banks and the global memory fail. 
Finally SM fails if both memory banks are not accessible (due to a faulty memory or bus).

Figure 5: Example of NdRFT for a Multiprocessors System

     The NdRFT model includes information on the fault rates (downward arrows) and on 
the possible repair actions that  can be performed on the system components, and their 
rates  (upward  arrows):  five  basic  components  of  the  multiprocessors  system  can  be 
repaired:  R1,  B1,  D1,  D2,  DBUS. Their  repair  process  can  be  activated  either  upon 
detection of an SM fault (R1 and B1), or when a fault is detected in DA, (D1 and D2 or 
DBUS), but also immediately when a fault is detected in a disk Di. In our case study we 
suppose that only  one repair resource is available and only one resource is required to 
perform each repair process. 
     In [4,6], it has been shown how an NdRFT can be automatically translated into an 
MDPN, where the cost function may include both the cost for the system (or subsystem) 
being down per time unit, and the repair cost. The dashed part at the bottom left of Fig. 1 
shows the software components that allow to design the NdRFT model (DrawNet GUI) 
and   to  translate  it  into  an  MDPN.  The  PNpr and  PNnd subnets  resulting  from  the 
translation of the multiprocessor NdRFT have 26 places 24 transitions overall; the  PNpr 

subnet  models  the  system components  behavior,  while  the  PNnd subnet  represents  the 
choice of which failed component has to be repaired at any time. For this model we have 
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computed the optimal repair policy that minimizes the TE probability at time t (defining a 
constant positive cost per time unit for all the states where the whole system has failed, 
and no repair cost). The RG of the MDPN model obtained from the NdRFT  has 586.826 
states and it  has been generated in 88 seconds,  while the underlying MDP has  8.875 
states and it  has been generated and solved in 11 minutes (Intel Centrino Duo 2.4GHz, 
2GiB RAM). 
     The computed optimal repair policy is not trivial even if the system has only five 
repairable components, since when more repairable components have failed, their repair 
order must be dynamically chosen according to the whole system state. 
The optimal repair policy is shown in Table 2 ; where the first three columns represent the 
state  of subsystems  CM, DA, and  SM,  while  the last column shows the corresponding 
optimal repair order. For instance if all  subsystems have failed then the optimal repair 
order is  B1, R1, DBUS, D1, D2, while if only  CM is working then the optimal repair 
order is  DBUS, D1, B1, R1, D2.

Table 2: The Repair Order corresponding to the Optimal Repair Policy

CM DA SM Repair Order

Working  Failed Failed/Working DBUS,D1,D2,B1,R1

Failed/Working Working  Failed B1,R1,D1,D2

Working Failed  Failed DBUS,D1,B1,R1,D2

Failed  Failed  Failed B1,R1,DBUS,D1,D2

     In order to illustrate the performance of the optimal repair strategy we have computed 
the corresponding TE probability at time t solving the DTMC obtained from the  MDP by 
fixing the action to take in every state according to the computed optimal strategy and we 
have  compared  it   with  that  obtained  using  the  following  state  independent  repair 
strategies: 1) always repair  first all the failed components in  subsystem CM; 2) always 
repair first all  the failed components in  subsystem DA.
     The obtained  TE probabilities at time t with 400≤t<10000 are plotted in Fig. 6; as 
expected the curve representing the TE  probability associated with the optimal strategy 
lays below those obtained when applying the state independent repair strategies.
     It  is  interesting  to  observe  that  despite  the  multiprocessor  model  is  structurally 
symmetric, the symmetry is not reflected in the failure and repair rates, as a consequence 
in this case, it is not possible to apply the SRG state space reduction method. 

Figure 6: TE Probability at time t for Different Repair Strategies

     When instead also the fault/repair rates are uniform for replicated components, the 
SRG technique can be applied (the ParNdRFT formalism has been defined to represent in 
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a compact and parametric  form systems with symmetric structure and rates). In [6]  an 
MDWN  model  automatically  generated  from  a  ParNdRFT  model  is  illustrated:  it 
represents an Active Heat Rejection System composed by a parametric number of thermal 
units, each composed by one source and one heat component. Each thermal unit belongs 
to one of three types (U1,  U2 or U3) that  have different  parameters  concerning fault 
occurrence probability and repair costs, and different possible repair actions. The failure 
of a  thermal  unit  occurs when its  source or its  heat  component fail;  while  the  whole 
system fails when all its thermal units fail. The MDWN model of this example has been 
used to compute the repair strategy minimizing the probability of a system fault at time t. 
     Table 2 shows the state space size and solution time for this MDWN model, as a 
function  of  the  number  of  thermal  units  for  each  type.  The  first  column shows  the 
experiment parameters, while the following two groups of four columns refer to the RG- 
versus SRG approach. For each approach the state space size, its  generation time, the 
corresponding MDP size and its generation and solution time are reported.

Table 2: State Space Size and Computation Time of the Active Heat  Rejection System model in 
[4] varying the number of sub-components of types U1,U2,U3.

RG approach SRG approach 
|U1|,|U2|,|U3| |RG| TimeRG |MDPRG| TimeMDP |SRG| TimeSRG |MDPSRG| TimeMDP

1,1,1 3,189 0s 389 0s 1,572 1s 389 0s
2,1,1 35,555 5s  937 5s 15,246 47s 579 0s
2,2,1 453,257 230s 7,754  11m 228,917 168s 3,143 4s
2,2,2 2,919,999 67m 32,558  2h 784,945 200s 16,222   3m
2,2,3 83,524,010 --- --- --- 10,280,241 5h 52.271 2h   

6. Conclusion

     In this paper we have presented the MDWNsolver framework, able to generate an MDP 
from an  MDPN/MDWN specification:  this  contribution  extends  an earlier  two  pages 
communication  [3];  w.r.t. that  prototype  several  optimizations  on  the  solver  have 
significantly improved its performance. The advantage of the proposed  MDWNsolver is 
the possibility to express in a quite easy way MDP models using a high level language, 
supporting a component based specification with the possibility to put in evidence and 
exploit symmetries, and a way of specifying multi-step actions (composed of component-
oriented sub-actions) and multi step probabilistic evolution. To the best of our knowledge 
the other tools supporting a high level specification language for MDPs do not include all 
the above mentioned features:  for instance PRISM [11] allows to specify a system by 
composition of modules (resembling our notion of component), but at each time step there 
can be  either  a  synchronized  action  of  a  subset  of  modules,  followed  by  a  one-step 
probabilistic  state  change,  or  an action can be performed by only  one module,  again 
followed by a probabilistic  state change, so that  modeling the concurrent  evolution of 
independent  components  within  each  time step  requires  some effort.  The  experiments 
performed up to now with the MDWNsolver in different application domains have shown 
that the current prototype can handle models with RG or SRG of up to 10.000.000 states: 
in all the considered cases the resulting MDP structure had less than 55.000 states (which 
is  also a  limit  to find  the  optimal  strategy  without  running out of memory  with  the 
current solver). These are at the moment the limit sizes that can be managed in reasonable 
time, and without running out of memory, on a machine with an Intel Core Duo T7500 
2,20 GHz processor and 2GiB  RAM, with Linux. Although the time required to generate 
and solve the MDP depends on several factors (not only the number of states) the time 
required in our experiments to generate the MDP from the MDPN/MDWN model and 
solve it,  were  comprised  between a  few  seconds for  models  with  a  (S)RG of a  few 
thousands states and an MDP of a few hundreds of states, to some hours, for models with 
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a (S)RG of several millions of states and an MDP of up to fifty  thousand states. The 
MDWNsolver is distributed with the GreatSPN tool: it can be downloaded from [15]. 
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