
International Journal of Performability Engineering, Vol.7, No. 5, September 2011, pp. 417-428.
© RAMS Consultants
Printed in India

MDWNsolver: A Framework to Design and
Solve Markov Decision Petri Nets

MARCO BECCUTI*1, GIULIANA FRANCESCHINIS2 AND SERGE
HADDAD3

 1Università degli studi di Torino, Italy
2Università del Piemonte Orientale, Italy

 3LSV, ENS Cachan, France

(Received on December 02 and revised on March 22, 2011)

Abstract: MDWNsolver is a framework for system modeling and optimization of
performability measures based on Markov Decision Petri Net (MDPN) and Markov
Decision Well-formed Net (MDWN) formalisms, two Petri Net extensions for high level
specification of Markov Decision Processes (MDP). It is integrated in the GreatSPN suite
which provides a GUI to design MDPN/MDWN models. From the analysis point of
view, MDWNsolver uses efficient algorithms that take advantage of system symmetries,
thus reducing the analysis complexity. In this paper the MDWNsolver framework
features and architecture are presented, and some application examples are discussed.

Keywords: Markov decision process, dependability optimization tool, Markov decision
well-formed nets.

1. Introduction

 The Markov Decision Process (MDP) formalism [12] can be used for modeling
systems which exhibit both non deterministic and probabilistic behavior (e.g., distributed
systems, resource management systems, etc,). Being a low level formalism, it is rather
hard to directly use MDPs to model complex systems. Some high level MDP specification
formalisms have been proposed in the literature to overcome this problem (e.g., Stochastic
Transition Systems [9], Dynamic Decision Network [10], Reactive Modules [1], etc,); in
this context, the originality of Markov Decision Petri Net (MDPN) and Markov Decision
Well-formed Net (MDWN) [5] high level formalisms is that they allow to describe the
system in terms of its components and their interactions. As a consequence, the models
are more compact and manageable; in particular, it is possible to define a complex non
deterministic or probabilistic behavior as a composition of simpler non deterministic or
probabilistic steps (that take zero time). From the analysis point of view, the MDWN
formalism inherits the efficient algorithms originally devised for WNs, allowing to
automatically taking advantage of the model symmetries to reduce the analysis
complexity.
 This paper presents a framework, integrated in the GreatSPN suite [14]:
MDPN/MDWN models can be designed using the GreatSPN GUI, and solved by means
of specific new modules integrated in the distribution. These modules transform an
MDPN/MDWN model expressed as a pair of non-deterministic and probabilistic subnets
plus a reward function specification into an MDP model and then solve such MDP
deriving an optimal strategy.
 The paper is organized as follows: Section 2 briefly recalls the MDP, MDPN and
MDWN formalisms. In Section 3, the main features of the framework are explained, and

__
Communicating author’s email: beccuti@di.unito.it 417

 Marco Beccuti, Giuliana Franceschinis and Serge Haddad

its architecture is outlined. In Section 4 and 5, some examples of MDPN and MDWN
models are presented, together with some analysis results obtained with the MDWNsolver
and some considerations on the efficiency of the MDWN solution. Section 6 concludes
the paper.

2. Background

 In this section we recall briefly the MDP, MDPN and MDWN formalisms which will
be used in this paper; the reader can find more details in [5].

2.1 Markov Decision Process

 MDP [12] is a well-know formalism providing a simple mathematical model to
express optimization problems in random environments. In particular, a discrete time
finite MDP1 is an extension of a Markov Chain which allows non deterministic
choices/actions, and rewards function expressing a target function to be
minimized/maximized. For every non deterministic action allowed in a given state a
reward/cost and a transition probability distribution are defined. Hence, the evolution of
an MDP can be described as an alternation of non deterministic transitions (actions) and
probabilistic transitions.
 Solving an MDP consists in finding an optimal strategy (optimal action to be chosen in
each state) w.r.t. a given reward function.

2.2 Markov Decision Petri Net and Markov Decision Well-formed Net
Formalisms

 MDPN was first introduced in [5] as a high level formalism to specify MDPs. The
main features of MDPNs are the possibility to specify the general behavior as a
composition of the behavior of several concurrent components (some of which are subject
to local non deterministic choice, and are thus called controllable, while the others are
called non controllable); moreover any non deterministic or probabilistic transition of an
MDP can be composed by a set of non deterministic or probabilistic steps, each one
involving a subset of components.
 An MDPN model is composed of two parts, both specified using the PN formalism
with priorities associated with transitions: the PNnd subnet and the PNpr subnet (describing
the non deterministic (ND) and probabilistic (PR) behavior respectively). The two subnets
share the set of places, while having disjoint transition sets. In both subnets the transitions
are partitioned into run and stop subsets, and each transition has an associated set of
components involved in its firing (in the PNnd only controllable components can be
involved). Transitions in PNpr have a “weight” attribute, used to compute the probability
of each firing sequence. Firing of run transitions represent intermediate steps in an
ND/PR transition at the MDP level, while stop transitions represent the final step in an
ND/PR MDP transition, for all components involved in it. An MDPN model behavior
alternates between ND transition sequences and PR transition sequences, initially starting
from an ND state. The PR sequences are determined according to the PNpr structure, start
with a PR state reached by an ND state, and include exactly one stop transition for each
component; the ND sequences are determined by the PNnd structure, start from an ND
state reached by a PR state, and include exactly one stop transition for each controllable
component plus possibly a global stop transition. Moreover, in the MDPN formalism we
can specify a reward/cost function, called rs() associated with every system state and one,

1

In the rest of this paper we will use MDP to indicate a discrete time finite MDP.

418

 MDWNsolver: a framework to design and solve Markov Decision Petri Nets 163

called rt(), associated with every non deterministic transition; the global reward function
is obtained by summing up a state reward function and an action reward function.
 The generation of the MDP corresponding to a given MDPN has been described in [5]:
it consists of (1) a composition step, merging the two subnets in a single net, (2) the
generation of the RG of the composed net, (3) two reduction steps transforming each PR
and ND sequence in the RG into a single MDP transition.
 MDWN [5] extends the MDPN formalism with color: the PNpr and PNnd subnets are
specified using Well-formed Nets (WN) [7] and a subset of the color classes is used to
represent the system components. The transitions are still partitioned into run and stop
subsets (with the same semantics defined in the MDPN), and each transition firing
involves a set of components identified by the transition color instance. MDWNs
enable the modeler to specify in a concise way similar components, obtaining a more
compact and readable model; it is always possible to derive an equivalent MDPN
applying an unfolding algorithm. From an analysis point of view, the generation of the
MDP corresponding to an MDWN follows the same two steps already explained for
MDPN, but in this case the Symbolic Reachability Graph (SRG) [7] approach developed
for the WN formalism can be adapted to produce a smaller MDP w.r.t. the original one.

3. MDWNsolver Features and Architecture

 MDWNsolver consists of a module that builds the MDP corresponding to a given
MDWN or MDPN model, and produces an output suitable for the MDP analysis by means
of an MDP solver built upon the graphMDP library [13]; it may be adapted to interact (at
the MDP analysis level) with other tools like e.g., ZMDP, allowing to derive both optimal
and suboptimal strategies, or PRISM, featuring the computation of properties expressed in
PCTL through efficient model checking algorithms.
 The architecture of MDWNsolver is depicted in Figure 1. The user must specify two
subnets (Prob_net and ND_net) by means of the GreatSPN GUI, representing the
probabilistic and non deterministic behavior of the model. A special annotation is used to
associate sets of components with transitions, and to distinguish between run and stop
transitions. In case MDWN models are used, the components are represented by means of
a color class: this is useful when the system under study comprises several similarly
behaving components, and should be used when the system structure and behavior exhibit
a certain degree of symmetry that can be exploited to achieve a more compact
representation, and - what is most important - to reduce the model transformation cost as
well as the MDP solution cost. Different priorities can be assigned to transitions: this
allows to avoid useless interleavings when deriving the MDP model, and to force a
correct ordering of probabilistic or non deterministic intermediate (immediate) steps. In
addition the RewardSpec file must be prepared: it is a textual file where the reward
function to be optimized is specified according to a given grammar.
 The transformation process consists of four steps: (1) the non deterministic and
probabilistic subnets are modified by the MDWN2WN module that adds some places and
two (timed) transitions; (2) the resulting new subnets (Prob_netM and ND_netM) are
composed through the algebra module of GreatSPN; (3) from the obtained PN/WN the
(S)RG is generated using the module MDWN(S)RG, that produces also two files
containing the list of the non deterministic transition sequences (the MDP actions) and
markings description (the MDP states), needed to compute the value of the reward
function associated with the MDP states and actions; (4) module RG2MDP, generates the
final MDP: the states of the MDP correspond to the tangible states produced by the
previous module, the MDP actions and the subsequent probabilistic transitions,
correspond to the maximal immediate non deterministic/probabilistic paths respectively,
departing from the non deterministic/probabilistic tangible markings and reaching

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

probabilistic/non deterministic tangible markings. In order to make the MDP solution
more efficient, the reduction algorithm selects among the actions that connect the same
tangible states, that with minimal (or maximal, depending on the optimization problem)
reward value. The MDP file is produced in an efficient format which is accepted in input
by the MDP solver module (based on the graphMDP library), that produces the optimal
strategy and corresponding optimal reward value.

Figure 1: MDWNsolver Architecture

 The implementation of the MDWN(S)RG module derives from the WN(S)RG module
of GreatSPN: the main difference is that it performs already the first step of probabilistic
paths reduction, so that the resulting (S)RG does not contain the intermediate
probabilistic markings: large part of the code is reused from WN(S)RG, hence future
improvements in WN(S)RG will be inherited. In particular, the SRG approach is applied
to MDWN to reduce the number of generated states (and hence the size of the final
MDP): it exploits the model symmetries, without introducing any approximation, thanks
to the lumpability property of the MDP corresponding to the ordinary RG.
 A detailed example of model specification and solution procedures are presented in
Section 4 for a simple example; the state space reduction due to the exploitation of
symmetries is shown on more complex examples in Section 5.

4. A Simple Example of MDPN and MDWN

 In this section we show how the MDWNsolver works on a simple example; more
complex examples are discussed in the next section. Let us consider a system with two
identical components, that can be in service (UP) or out of service (DOWN), and a
centralized recovery system (decision maker), that can apply different repair policies. The
recovery system must decide whether a given down component must be assigned a repair
resource (to restore it to the UP state) or not. We consider the case where there is only one
repair resource, so that the components cannot be repaired in parallel. The goal of the
study is to find the optimal strategy that reduces the costs incurred by the system when
the components break down: a penalty (Cpenalty) is paid at each time unit if both
components are down, moreover each time a repair activity starts, a repair cost (Crepair) is
charged.
 Figs. 2 and 3 show an MDPN model for this system. In particular the former shows the
probabilistic behavior of the two identical components; while the latter shows the
possible actions of the centralized recovery system (assigning or not the repair resources
to DOWN components).

164

 MDWNsolver: a framework to design and solve Markov Decision Petri Nets 165

Figure 2: Example of MDPN Probabilistic Net

Figure 3: Example of MDPN non-Deterministic Net

 The component lists are specified through the GreatSPN GUI by defining appropriate
parameters with reserved names: a two letters prefix distinguishes among controllable
(CC), non controllable (NC) and global (GL) components (in the example CC1 and CC2
are defined). By properly annotating the model, stop and run transitions can be identified,
and the components involved in each firing are specified: these annotations are integrated
in the “tag” attribute of transitions, concatenated to the transition name after the |
separator. For example the annotation StartRep2|<Run,CC2,> means that transition
StartRep2 is a run transition involving only controllable component CC2, while the
annotation Fail1|<Stop,CC1,> means that transition Fail1 is a stop transition involving
component CC1. Since places can be shared between the non deterministic and
probabilistic subnet, these must be identified through a common label (concatenated with
the place name) in the two models: in the example this is the case for places AvailableRes,
AssignResi, and Downi, i=1,2 identified as shared places by the suffixes |AR, |ARi, |Di

respectively. Places with these labels appear in both the subnets.
 A token in place Upi, i=1,2 means that component i is in service. The firing of
transition Faili with probability 1-Pwork corresponds to component i failure and moves the
token in Downi|Di. The repair of component i starts firing the run transition StartRepi

when the decision maker has assigned a repair resource to that component putting a token
into place AssignResi|ARi. In each time unit an ongoing repair process can finish,
represented by the firing of stop transition EndRepi, with probability 1-Prepair, or can go
on, represented by the firing of stop transition ContRepi, with probability Prepair.
 In the non deterministic net the stop transitions AssignedResi and NoAssignedResi

model the choice to activate or not the repair of a down component.

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

Figure 4: Example of MDWN Probabilistic Net (A) and Non-Deterministic Net (B)

 The reward function associated with this model, defining the optimization problem, is:
T AssignedRes1 -1
T AssignedRes2 -1
F -100 (Down2|D1 = 1 && Down2|D2 = 1)
where, the first two items represent the cost associated with each repair action, while the
last item expresses the penalty paid for the whole system being inactive (all components
down). The MDWNsolver expects to find the reward function in a separate file, expressed
according to a given grammar (see the manual in [16]).
 When the system comprises sets of identical components, as is the case in the example,
the MDWN formalism should be preferred since it allows a more compact and parametric
definition of the model, since the behavior of each component type appears only once in
the model. In Fig. 4, the MDWN model for this system is depicted, where the list of
controllable components contains only one element, CC1, that is associated with the color
class C containing the identifiers of the two identical components. The annotations of the
MDWN models are a bit more complex because it is required to specify the (tuple of)
transition color elements (variables) that are used to identify one component within a set
of identical ones. In the example of Fig. 4, variable is x and the transition annotation must
specify a component type followed by the variable(s) that are instantiated upon transition
firing to select one specific component of that type; e.g., the tag StartRep|<Run,CC1,x,>
denotes a run transition involving component x among the components of type CC1.
Special annotations can be used to associate more than one component in the same class
with a given transition.
 From the two models, we can derive an MDP and solve it, activating the sequence of
modules described in Section 2. For each MDP state, the corresponding optimal action is
reported as a sequence of non deterministic transition instances (e.g., NoAssignedRes(a1);
NoAssignedRes(a2)). The size of the final MDP in general is smaller when the MDWN
model is used, due to the exploitation of symmetries (SRG). The gain increases with the
cardinality of the classes of similarly behaving components. As a consequence, the
optimal strategy encoding is more compact and parametric (expressed using the symbolic
markings and symbolic transition instances notation, representing equivalence classes of
states and transitions). For instance, symbolic action NoAssignedRes(C1); AssignRes(C2)
in a state where place Up contains <C2> and place Down contains <C1> represents the
decision of assigning the repair resource to the component that is Down: different
assignments of actual component identifiers to parameters C1 and C2 allow to obtain
specific states and corresponding optimal action.

5. Interesting Applications of MDPN and MDWN

166

 MDWNsolver: a framework to design and solve Markov Decision Petri Nets 167

 In this section, we present some interesting MDPN/MDWN application examples,
giving a flavor of the type of optimization problems that can be dealt with this formalism,
and discussing the model sizes that the tool can currently manage.
 The first example, presented in [2], concerns a Wireless Sensor Network (WSN)
monitoring system, that has to track a moving object within a building composed of F
floors; each floor is partitioned in Z zones, each containing a fixed number S of sensors.
 In this context, the MDWN was used to find an optimal trade off between the power
consumption and the object tracking reliability; the power saving was achieved by
periodically powering off some of the nodes for a given time interval (up to C time units
long). The cost function to be optimized includes both the penalty due to losing track of
the monitored object, and the cost of battery consumption; the possible non deterministic
actions correspond to the choice of a set of nodes to be powered off and the respective
sleeping time. The number of states is quite large, even for a relatively small system: to
mitigate the complexity, the optimization problem has been solved on several simplified
models, each representing only one floor in details; the computed optimal power
management strategy has been simulated on a complete and more detailed model, to
estimate the interesting performability measures, including energy consumption.

 Table 1: The State Space Size of the WSN Monitoring Model in [2], where S is the number of
sensors/zone, Z the number of zones/floor, C the maximum sleep time; number of floors F=3.

 Table 1 shows the state space size and solution time as a function of the system
parameters (S, Z, C) for a three floors model: the solution is feasible only for a limited
number of sensors. In details, the first column reports the experiment parameters, the
second, third and fourth columns report the number of ordinary states (RG size – derived
from the SRG, not from direct computation) and symbolic states (SRG size), and the SRG
generation time. The last two columns show the number of states of the reduced MDP and
its generation and solution time. The results shown in this table shows the effectiveness of
the SRG method in mitigating the state space explosion: a good level of reduction is
achieved (e.g., for case 4,3,1, the reduction factor (|RG|/|SRG|) is 131), moreover the
SRG growth is smoother than the RG one (e.g., moving from configuration 2,3,3 to 3,3,3
the SRG size grows by a factor 24 while the RG by factor 164).
 Another interesting application of MDWNsolver is the computation of the optimal
repair policy of systems specified by means of Non deterministic Repairable Fault Trees
(NdRFT) or Parametric NdRFT (ParNdRFT), indeed an NdRFT/ParNdRFT model can be
automatically translated into an MDPN/MDWN [4,6].

MDWN MDP (SRG)

S,Z,C |RG| |SRG| TimeSRG States Time

2,3,1 19,253 6,356 5s 144 0s

2,3,2 80,272 24,475 56s 380 5s

2,3,3 229,661 67,001 75s 825 26s

2,3,4 527,768 149,708 341s 1,575 6m

2,3,5 1,050,757 292,324 609s 2,744 20m

3,3,1 920,981 55,508 119s 420 6s

3,3,2 7,818,304 379,840 992s 1,600 17m

3,3,3 37,737,589 1,623,725 52m 4,725 34m

4,3,1 45,246,989 345,200 862s 975 201s

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

 Here we present a model inspired to the Multiprocessors system in [8]. The system
structure is shown Fig. 5(top left): it comprises two parts: the disk access (DA) and the
CPU-Memory (CM) subsystem. The former unit is composed by two disks D1, D2 in
mirroring (RAID-1) and a bus (DBUS); while the latter unit comprises two processing
units: PU1 and PU2. Each processing unit includes a processor Pi and three redundant
banks of local memory Mi1-3. Moreover, the two processing units share a global memory
SM composed by two redundant memory banks R1, R2.
 Figure 5 (right) shows, the NdRFT model for this system: the Fault Tree structure
represents the Boolean function specifying which combinations of basic fault events
(leaves) lead to the fault of each subsystems (internal nodes) and of the whole system
(root - TE). In particular, the system (TE) fails if the DA or the CM subsystem fails. The
DA fails if both disks fail or the bus fails; while the CM fails if both PU1 and PU2 fail.
Each PUi fails if its processor or all its local memory banks and the global memory fail.
Finally SM fails if both memory banks are not accessible (due to a faulty memory or bus).

Figure 5: Example of NdRFT for a Multiprocessors System

 The NdRFT model includes information on the fault rates (downward arrows) and on
the possible repair actions that can be performed on the system components, and their
rates (upward arrows): five basic components of the multiprocessors system can be
repaired: R1, B1, D1, D2, DBUS. Their repair process can be activated either upon
detection of an SM fault (R1 and B1), or when a fault is detected in DA, (D1 and D2 or
DBUS), but also immediately when a fault is detected in a disk Di. In our case study we
suppose that only one repair resource is available and only one resource is required to
perform each repair process.
 In [4,6], it has been shown how an NdRFT can be automatically translated into an
MDPN, where the cost function may include both the cost for the system (or subsystem)
being down per time unit, and the repair cost. The dashed part at the bottom left of Fig. 1
shows the software components that allow to design the NdRFT model (DrawNet GUI)
and to translate it into an MDPN. The PNpr and PNnd subnets resulting from the
translation of the multiprocessor NdRFT have 26 places 24 transitions overall; the PNpr

subnet models the system components behavior, while the PNnd subnet represents the
choice of which failed component has to be repaired at any time. For this model we have

168

 MDWNsolver: a framework to design and solve Markov Decision Petri Nets 169

computed the optimal repair policy that minimizes the TE probability at time t (defining a
constant positive cost per time unit for all the states where the whole system has failed,
and no repair cost). The RG of the MDPN model obtained from the NdRFT has 586.826
states and it has been generated in 88 seconds, while the underlying MDP has 8.875
states and it has been generated and solved in 11 minutes (Intel Centrino Duo 2.4GHz,
2GiB RAM).
 The computed optimal repair policy is not trivial even if the system has only five
repairable components, since when more repairable components have failed, their repair
order must be dynamically chosen according to the whole system state.
The optimal repair policy is shown in Table 2 ; where the first three columns represent the
state of subsystems CM, DA, and SM, while the last column shows the corresponding
optimal repair order. For instance if all subsystems have failed then the optimal repair
order is B1, R1, DBUS, D1, D2, while if only CM is working then the optimal repair
order is DBUS, D1, B1, R1, D2.

Table 2: The Repair Order corresponding to the Optimal Repair Policy

CM DA SM Repair Order

Working Failed Failed/Working DBUS,D1,D2,B1,R1

Failed/Working Working Failed B1,R1,D1,D2

Working Failed Failed DBUS,D1,B1,R1,D2

Failed Failed Failed B1,R1,DBUS,D1,D2

 In order to illustrate the performance of the optimal repair strategy we have computed
the corresponding TE probability at time t solving the DTMC obtained from the MDP by
fixing the action to take in every state according to the computed optimal strategy and we
have compared it with that obtained using the following state independent repair
strategies: 1) always repair first all the failed components in subsystem CM; 2) always
repair first all the failed components in subsystem DA.
 The obtained TE probabilities at time t with 400≤t<10000 are plotted in Fig. 6; as
expected the curve representing the TE probability associated with the optimal strategy
lays below those obtained when applying the state independent repair strategies.
 It is interesting to observe that despite the multiprocessor model is structurally
symmetric, the symmetry is not reflected in the failure and repair rates, as a consequence
in this case, it is not possible to apply the SRG state space reduction method.

Figure 6: TE Probability at time t for Different Repair Strategies

 When instead also the fault/repair rates are uniform for replicated components, the
SRG technique can be applied (the ParNdRFT formalism has been defined to represent in

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

a compact and parametric form systems with symmetric structure and rates). In [6] an
MDWN model automatically generated from a ParNdRFT model is illustrated: it
represents an Active Heat Rejection System composed by a parametric number of thermal
units, each composed by one source and one heat component. Each thermal unit belongs
to one of three types (U1, U2 or U3) that have different parameters concerning fault
occurrence probability and repair costs, and different possible repair actions. The failure
of a thermal unit occurs when its source or its heat component fail; while the whole
system fails when all its thermal units fail. The MDWN model of this example has been
used to compute the repair strategy minimizing the probability of a system fault at time t.
 Table 2 shows the state space size and solution time for this MDWN model, as a
function of the number of thermal units for each type. The first column shows the
experiment parameters, while the following two groups of four columns refer to the RG-
versus SRG approach. For each approach the state space size, its generation time, the
corresponding MDP size and its generation and solution time are reported.

Table 2: State Space Size and Computation Time of the Active Heat Rejection System model in
[4] varying the number of sub-components of types U1,U2,U3.

RG approach SRG approach
|U1|,|U2|,|U3| |RG| TimeRG |MDPRG| TimeMDP |SRG| TimeSRG |MDPSRG| TimeMDP

1,1,1 3,189 0s 389 0s 1,572 1s 389 0s
2,1,1 35,555 5s 937 5s 15,246 47s 579 0s
2,2,1 453,257 230s 7,754 11m 228,917 168s 3,143 4s
2,2,2 2,919,999 67m 32,558 2h 784,945 200s 16,222 3m
2,2,3 83,524,010 --- --- --- 10,280,241 5h 52.271 2h

6. Conclusion

 In this paper we have presented the MDWNsolver framework, able to generate an MDP
from an MDPN/MDWN specification: this contribution extends an earlier two pages
communication [3]; w.r.t. that prototype several optimizations on the solver have
significantly improved its performance. The advantage of the proposed MDWNsolver is
the possibility to express in a quite easy way MDP models using a high level language,
supporting a component based specification with the possibility to put in evidence and
exploit symmetries, and a way of specifying multi-step actions (composed of component-
oriented sub-actions) and multi step probabilistic evolution. To the best of our knowledge
the other tools supporting a high level specification language for MDPs do not include all
the above mentioned features: for instance PRISM [11] allows to specify a system by
composition of modules (resembling our notion of component), but at each time step there
can be either a synchronized action of a subset of modules, followed by a one-step
probabilistic state change, or an action can be performed by only one module, again
followed by a probabilistic state change, so that modeling the concurrent evolution of
independent components within each time step requires some effort. The experiments
performed up to now with the MDWNsolver in different application domains have shown
that the current prototype can handle models with RG or SRG of up to 10.000.000 states:
in all the considered cases the resulting MDP structure had less than 55.000 states (which
is also a limit to find the optimal strategy without running out of memory with the
current solver). These are at the moment the limit sizes that can be managed in reasonable
time, and without running out of memory, on a machine with an Intel Core Duo T7500
2,20 GHz processor and 2GiB RAM, with Linux. Although the time required to generate
and solve the MDP depends on several factors (not only the number of states) the time
required in our experiments to generate the MDP from the MDPN/MDWN model and
solve it, were comprised between a few seconds for models with a (S)RG of a few
thousands states and an MDP of a few hundreds of states, to some hours, for models with

170

 MDWNsolver: a framework to design and solve Markov Decision Petri Nets 171

a (S)RG of several millions of states and an MDP of up to fifty thousand states. The
MDWNsolver is distributed with the GreatSPN tool: it can be downloaded from [15].

References

[1] Alur R. and T. Henzinger. Reactive Modules. Formal Methods in System Design 1999;
15(1):7–48.

[2] M. Beccuti, D. Codetta-Raiteri, and G. Franceschinis. Multiple abstraction levels in
performance analysis of WSN monitoring systems. In Proc. of the WSNperf (Satellite
Workshop of VALUETOOLS09), Pisa, Italy, October 2009. ICST.

[3] M. Beccuti, D. Codetta-Raiteri, G. Franceschinis, and S. Haddad. A framework to design
and solve Markov Decision Well-formed Net models. In Proc. of the 4th IEEE Int. Conf.
on Quantitative Evaluation of Systems (QEST’07); 165–166, Edinburgh, Scotland, UK,
September 2007. IEEE Computer Society Press.

[4] M. Beccuti, D. Codetta-Raiteri, G. Franceschinis, and S. Haddad. Non deterministic
Repairable Fault Trees for computing optimal repair strategy. In Proc. of the 3rd Int.
Conf. on Performance Evaluation, Methodologies and Tools (VALUETOOLS’08),
Athens, Greece, October 2008. ICST.

[5] M. Beccuti, G. Franceschinis, and S. Haddad. Markov Decision Petri Net and Markov
Decision Well-formed Net formalisms. Proc of the 28th Int. Conference on Applications
and Theory of Petri Nets and other Models of Concurrency 2007. LNCS vol. 4546:43–62.

[6] M. Beccuti, D. Codetta-Raiteri, G. Franceschinis and S. Haddad. Parametric NdRFT for
the derivation of optimal repair strategies. Proceeding of the 39th International
Conference on Dependable Systems and Networks (DSN-2009); 399–408 Estoril, Lisbon,
Portugal, 29 June-2 July 2009. IEEE Computer Society Press.

[7] G. Chiola, C. Dutheillet, G. Franceschinis, and S. Haddad. Stochastic well-formed
coloured nets for symmetric modelling applications. IEEE Transactions on Computers
1993; 42(11):1343–1360.

[8] D. Codetta-Raiteri. Extended Fault Trees Analysis supported by Stochastic Petri Nets.
PhD thesis, Univ. degli Studi di Torino, Torino,Italia, 2005.

[9] L. de Alfaro. Stochastic Transition Systems. 9th Int. Conf. on Concurrency Theory 1998,
LNCS Springer 1466:423–438.

[10] T. Dean and M. P. Wellman. Planning and Control. Morgan Kaufmann, 1991.
[11] A. Hinton, M. Kwiatkowska, G. Norman, and D. Parker. PRISM: A Tool for Automatic

Verification of Probabilistic Systems. In 12th Int. Conf. on Tools and Algorithms for the
Construction and Analysis of Systems 2006; LNCS Springer 3920:441–444. Springer.

[12] M.L. Puterman. Markov Decision Processes. Discrete Stochastic Dynamic
Programming, Wiley, Chichester 2005.

[13] GraphMDP Web Page. http://www.cert.fr/dcsd/cd/teichteil/.
[14] S. Baarir, M. Beccuti, D. Cerotti, M. De Pierro, S. Donatelli and G. Franceschinis. The

GreatSPN Tool: Recent Enhancements. ACM Performance Evaluation Review Special
Issue on Tools for Performance Evalaluation 2009; 36(4): 4–9.

[15] GreatSPN Web Page: http://www.di.unito.it/~greatspn
[16] MDWNsolver Web page:

http://www.di.unito.it/~greatspn/MDWNsolver/

Marco Beccuti received Ph.D degree in Computer Science in 2008 from University
of Torino in ``cotutela'' with the Universite' Paris Dauphine. From January 2008 to
December 2008, he was a research assistant at Consorzio Nazionale Interuniversitario
per le Telecomunicazioni (CNIT). He is currently temporary researcher at University
of Torino and member of Consorzio Nazionale Interuniversitario per le
Telecomunicazioni (CNIT). His main research interests are in the fields of Petri net
and Markov Decision theory and applications, performance evaluation, parallel

http://www.di.unito.it/~greatspn/MDWNsolver/
http://www.di.unito.it/~greatspn
http://www.cert.fr/dcsd/cd/teichteil/

Marco Beccuti, Giuliana Franceschinis and Serge Haddad

discrete-event simulation, parallel architectures, and he is the (co-)author of more
than twenty papers published in proceedings or journals.

Giuliana Franceschinis received the PhD degree in computer science from the
University of Torino in 1992. From 1992 to 1998 she was an assistant professor at
the Computer Science Department of the University of Torino, Italy. From 1998 to
2002, she was an associate professor at the Università del Piemonte Orientale in
Alessandria, Italy; since 2002 she is full professor in the same University. She
teaches computer architecture, operating systems, and simulation. Her current
research interests are in the areas of dependability and performance evaluation of
computer and communication systems and in stochastic Petri nets theory and
applications. She has published several papers in international conference
proceedings and journals, and is a coauthor of the book “Modelling with Generalized
Stochastic Petri Nets”. She participates in several international research cooperation
initiatives and projects.

Serge Haddad is a former student at the Ecole Normale Supérieure de Cachan. He
received the MSc degree in mathematics in 1977 from the University of Orsay and
the MSc and PhD degrees in computer science in 1983 and 1987, respectively, from
the University of Paris 6. He is currently a full professor at the Ecole Normale
Supérieure de Cachan. His research interests include quantitative verification with
emphasis on timed and stochastic systems and applications to software engineering.

172

	
	Figure 3: Example of MDPN non-Deterministic Net

