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Abstract. Occurrence nets are a well known partial order model for the concurrent behavior of
Petri nets. The causality and conflict relations between events, which are explicitly represented in
occurrence nets, induce logical dependencies between event occurrences: the occurrence of an event
e in a run implies that all its causal predecessors also occur, and that no event in conflict with e
occurs. But these structural relations do not express all the logical dependencies between event
occurrences in maximal runs: in particular, the occurrence of e in any maximal run may imply the
occurrence of another event that is not a causal predecessor of e, in that run. The reveals relation
has been introduced to express this dependency between two events. Here we generalize the reveals
relation to express more general dependencies, involving more than two events, and we introduce
ERL logic to express them as boolean formulas. Finally we answer the synthesis problem that arises:
given an ERL formula ϕ, is there an occurrence netN such that ϕ describes exactly the dependencies
between the events of N ?

Keywords: synthesis of concurrent systems, occurrence nets, event logics, Petri nets, maximal
runs

1. Introduction

Partial order representations of runs of Petri nets provide an alternative to sequential semantics, exhibiting
the concurrency that naturally arises from the Petri net dynamics. Occurrence nets are the data structure
∗This work was partially supported by the FP7 European project UniverSelf and the French ANR project ImpRo.
CCorresponding author
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for the partial order semantics referred to as unfoldings; they are nets in which all transitions, called
events, are executable and the flow relation induced by the arcs is acyclic. Paths between events represent
causality.

The representation of all runs of a Petri net as an unfolding [15, 23] allows one to avoid the state-
space explosion due to interleavings when exploring the runs of a Petri net. Unfoldings are infinite in
general, but can be represented efficiently by a finite complete prefix [16, 21], for instance to check LTL
formulas [19].

The structure of an occurrence net induces three relations over its events, causality, concurrency
and conflict, thus generating a prime event structure [23]. Causality represents the partial ordering of
events due to the progress of the run. When two events may occur in the same run, but are not related
by causality, they are concurrent. The last possibility is that two events never occur in the same run;
then they are in conflict. The causality and conflict relations induce logical dependencies between event
occurrences: the occurrence of an event e in a run implies that all its causal predecessors also occur, and
that no event in conflict with e ever occurs.

Here, we focus on a particular setting where weak fairness [25] is assumed, i.e. any enabled event
has to occur or to be disabled, and when we consider these maximal runs, the structural relations do not
express all the logical dependencies between event occurrences. Indeed, in this context, concurrency
does not necessarily mean logical independency: it is possible that the occurrence of an event implies
the eventual occurrence of another one, which is structurally concurrent. This happens with events a and
c in Fig. 2(a): we have to observe that a is in conflict with b and that any maximal run contains either b
or c. Therefore, if a occurs in a maximal run, then b does not occur and eventually c necessarily occurs.
Yet c and a are not causally related.

Another case is illustrated by events a and d in the same figure: since a is a causal predecessor of d,
the occurrence of d implies the occurrence of a; but in any maximal run, the occurrence of a also implies
the occurrence of d because d is the only possible continuation to a and nothing can prevent it. Thus a
and d are actually made logically equivalent by the maximal progress assumption.

The reveals relation between events was introduced in [18] to express these implicit dependencies
between two events. Knowledge of reveals facilitates in particular the analysis of partially observable
systems, in the context of diagnosis, testing, or verification: an event b revealed by a needs not be
observable if a is, the occurrence of b can be inferred. The equivalence classes of events that mutually
reveal each other are called facets; contracting facets into single events creates a reduced occurrence net
whose set of maximal executions is in bijection with that of the initial occurrence net.

While the focus in [18] was on the binary reveals relation, we embed in this paper the relation in a
more general logical framework. Starting from the observation that the reveals relation corresponds to
logical implication between the occurrence of events, we consider general boolean formulas where the
atoms express the occurrence of events. The resulting logic, which we call ERL, captures dependencies in
occurrence nets. We then show first how to build a logical formula that describes all logical dependencies
between the occurrence of events. Then we ask what are the formulas that are satisfied by all the runs of
an occurrence net. An important result is that the logical dependencies between events, with the maximal
progress assumption, are not only binary: there are logical dependencies that cannot be deduced from
binary dependencies. This leads us to define an extended reveals relation.

Lastly, we solve the synthesis problem that arises: given an ERL formula over events (or facets), does
this formula describe the set of possible runs of an occurrence net? We propose a method for synthesizing
an occurrence net from an ERL formula. As a corollary, this allows us to identify a canonical occurrence
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net to represent the equivalence class of all occurrence nets that have the same logical dependencies
between events.

The paper is divided in two parts: first, Sections 2 to 4 give definitions about the structure and
semantics of Petri nets and occurrence nets, then, Sections 5 and 6 introduce a logic to describe the set of
runs of an occurrence net and develop a synthesis procedure. More precisely, Section 2 recalls definitions
about Petri nets, processes and occurrence nets. Section 3 presents the binary reveals relation and the
facets abstraction from [18]. Section 4 establishes a new result about the converse well-foundedness of
the reveals relation over facets and defines tight nets. Section 5 introduces the ERL logic, capable of
capturing general logical dependencies between events. ERL formulas can be interpreted with respect to
a set of acceptable runs of an occurrence net; an important case is that of maximal runs, which gives rich
dependencies, and which the last sections of the paper will focus on. Section 6 explains how to build
an ERL formula that describes the dependencies between the events of a given occurrence net, and then
solves the problem of synthesis of tight occurrence nets from ERL formulas. Section 7 presents a few
extensions. In particular it shows that, while synthesizing an occurrence net from an ERL formula, the
causality in the net can be freely chosen provided it is compatible with the reveals relation induced by the
formula; it also discusses synthesis under non-maximal semantics. These extensions were not published
in the conference version of this work [3].

2. Occurrence Nets and Petri Net Semantics

In this paper, only safe Petri nets are considered.

Definition 2.1. (Net)
A net is a triple (P, T, F ) where P and T are disjoint sets of places and transitions, respectively, and
F ⊆ (P × T ) ∪ (T × P ) is the flow relation.

For any node x ∈ P ∪ T , we call pre-set of x the set •x = {y ∈ P ∪ T | (y, x) ∈ F} and post-set of x
the set x• = {y ∈ P ∪ T | (x, y) ∈ F}.

A marking of a net is a subset of P . A Petri net (PN) is a tuple (P, T, F,M0), where (P, T, F ) is a
finite net andM0 ⊆ P is the initial marking. As usual, in figures, transitions are represented as rectangles
and places as circles. If p ∈M , a black token is drawn in p (see Fig. 1(a)). Transition t is enabled at M
iff •t ⊆M , i.e. t can fire, leading to M ′ = (M \ •t) ∪ t•, in that case, we write M t−→M ′. A marking
M is reachable if M0 −→∗ M . A PN is safe iff for each reachable marking M , for each transition t
enabled at M , (t• ∩M) ⊆ •t.

We now recall a few definitions required to introduce occurrence nets. We denote by l the direct
causality relation defined as: for any transitions s and t, s l t

def⇐⇒ s• ∩ •t 6= ∅. We write < for its
transitive closure and ≤ for its reflexive transitive closure, called causality. For any transition t, the set
dte def

= {s | s ≤ t} is the causal past or prime configuration of t, and for T ′ ⊆ T , the causal past of T ′ is
defined as dT ′e def

=
⋃
t∈T ′dte. Two distinct transitions s and t are in direct conflict, denoted by s #d t, iff

•s ∩ •t 6= ∅. Two transitions s and t are in conflict, denoted by s # t, iff ∃s′ ∈ dse, t′ ∈ dte : s′ #d t
′,

and the conflict set of t is defined as #[t]
def
= {s | s # t}. Lastly, two transitions s and t are concurrent,

denoted by s co t, iff ¬(s # t) ∧ ¬(s ≤ t) ∧ ¬(t ≤ s).
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Figure 1. A Petri net and a prefix of its unfolding

Definition 2.2. (Occurrence net)
An occurrence net (ON) is a net (B,E, F ) where elements of B and E are called conditions and events,
respectively, and such that:

1. ∀e ∈ E,¬(e # e) (no self-conflict),

2. ∀e ∈ E,¬(e < e) (≤ is a partial order),

3. ∀e ∈ E, |dee| <∞,

4. ∀b ∈ B, |•b| = 1 (no backward branching),

5. > ∈ E is the only ≤-minimal node (event > creates the initial conditions).

Fig. 1(b) gives an example of ON. An ON can also be given as a tuple (B,E \ {>}, F, c0), where
c0 = >• is the set of minimal conditions.

The initial event is usually denoted by the symbol ⊥, but in this paper, we exceptionally denote it by
>. The reason is that, in the ERL logic that we introduce later, this event corresponds exactly to the true
logical formula (usually denoted >), in the sense that any event reveals the initial event like any logical
formula implies >.

Occurrence nets are closely related to the notion of event structures [23].

Definition 2.3. ((Prime) event structure [23])
A (prime) event structure is a triple (E,≤,#) where

1. E is a set, whose elements are called events,

2. ≤ is a partial order on E such that for all x ∈ E, {y ∈ E | y ≤ x} is finite,

3. # is a symmetric and irreflexive relation, and for all x, y, z ∈ E, x # y and y ≤ z together imply
x # z.

For any finite reduced ON (B,E, F ), the triple (E,≤,#) is an event structure [23].
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2.1. Branching Processes and Unfoldings

A net homomorphism from N to N ′ is a map π : P ∪ T → P ′ ∪ T ′ such that π(P ) ⊆ P ′, π(T ) ⊆ T ′,
and for all t ∈ T , π|•t, the restriction of π to •t, is a bijection between •t and •π(t), and π|t• is a bijection
between t• and π(t)•.

LetN = (P, T, F,M0) be a PN. A branching process ofN is a pair (N ′, π), whereN ′ = (P ′, T ′, F ′,
c0) is an ON and π is a homomorphism from (P ′, T ′, F ′) to (P, T, F ), such that:

1. π|c0 is a bijection between c0 and M0,

2. ∀t, t′ ∈ T ′,
(•t = •t′ ∧ π(t) = π(t′)

)
⇒ t = t′

For Π1, Π2 two branching processes, Π1 is a prefix of Π2, written Π1 v Π2, if there exists an injective
homomorphism h from ON1 into a prefix of ON2, such that h induces a bijection between c1

0 and c2
0 and

the composition π2 ◦ h coincides with π1.
By Theorem 23 of [23], there exists a unique (up to an isomorphism) v-maximal branching process,

called the unfolding of N ; by abuse of language, we will also call unfolding of N the ON obtained by
the unfolding.

2.2. Maximal and General Runs
Definition 2.4. (Run, Maximal run)
A run of an ON is a conflict-free and causally closed set of events, i.e. ω ⊆ E is a run iff ∀e ∈ ω,
(#[e] ∩ ω = ∅) ∧ (dee ⊆ ω).
A run is maximal iff it is maximal w.r.t. ⊆.

We write Ωgen for the set of all runs and Ωmax for the set of maximal runs.
The following lemma highlights the importance of the conflict relation in the definition of maximal

runs.

Lemma 2.1. A set of events ω is a maximal run iff ∀a ∈ E, a ∈ ω ⇐⇒ #[a] ∩ ω = ∅.

Proof:
If ω is a run and there exists a ∈ E \ ω that is not in conflict with any event of ω, then ω ∪ dae is also
a run and ω is not maximal. Conversely, a set of events ω which satisfies the equivalence for any event
a is conflict-free and ⊆-maximal, and since the conflict is inherited under the causality, ω must also be
causally closed. ut

3. Reveals Relation and Facets Abstraction

The structure of an occurrence net defines three relations over its events: causality, concurrency and
conflict.

But these structural relations do not express all the logical dependencies between the occurrence
of events in maximal runs. A central fact is that concurrency is not always a logical independency: it
is possible that the occurrence of an event implies the occurrence of another one, which is structurally
concurrent. This happens with events a and c in Fig. 2(a): we have to observe that a is in conflict with b
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Figure 2. An ON and its reduction through the facet abstraction.

and that any maximal run contains either b or c. Therefore, if a occurs in a maximal run, then b does not
occur and eventually c necessarily occurs. Yet c and a are concurrent.

Another case is illustrated by events a and d in the same figure: because a is a causal predecessor
of d, the occurrence of d implies the occurrence of a; but in any maximal run, the occurrence of a also
implies the occurrence of d because d is the only possible continuation to a and nothing can prevent it.
Then a and d are actually made logically equivalent by the maximal progress assumption.

3.1. Reveals Relation

The reveals relation expresses dependencies between events such as “if e occurs, then f has already
occurred or will occur eventually” in the sense that any run that contains e also contains f .

Definition 3.1. (Reveals relation [18])
Given a set Ω of sets of events (these sets of events intend to be interpreted as runs), we say that event e
reveals event f (in Ω), and write e . f , iff ∀ω ∈ Ω, (e ∈ ω ⇒ f ∈ ω).

Notice that . is transitive.

Property 1. For any events e and f , f ≤ e⇒ e . f , and if Ω = Ωgen, f ≤ e ⇐⇒ e . f .

Proof:
The implication comes directly from the fact that runs are causally closed.

For Ω = Ωgen, there is no progress assumption, then for any event e, dee is a valid run, and conse-
quently e does not reveal any event outside dee. ut

Property 2. (#-inheritance under .)
The conflict relation is inherited under the reveals relation: for any events a, b, c, a # b and c . b together
imply a # c.
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Figure 3. An occurrence net constrained by time delay intervals.

Proof:
Assume a run contains a and c. Then, because c . b, it also contains b, which contradicts a # b. ut

3.1.1. Several choices of Ω

As we have seen, the reveals relation depends on the set of runs Ω that we consider. Two natural choices
are the set of maximal runs Ωmax and the set of all runs Ωgen. But other sets of runs could also be
considered, like runs of time Petri nets. We give a quick outlook below.

Maximal semantics. The maximal semantics is the one which inspired the definition of the reveals
relation in [18]. Indeed this setting generates rich dependencies between events. In the following, we
focus on the maximal semantics, unless explicitly mentioned.

The first interesting point with the maximal semantics is a nice characterization of the reveals relation
based on the conflict relation. This characterization was actually used as the definition of the reveals
relation in [18]. The equivalence with our definition was proved in [18].

Lemma 3.1. (Reveals relation: alternative definition for maximal runs)
Event e reveals event f in Ωmax iff #[f ] ⊆ #[e].

Notice that, with the general semantics, the two definitions are not equivalent. For example, in
Fig. 2(a), d . a holds for general runs and therefore also for maximal runs, but a . d and d . c hold for
maximal runs only.

General semantics. When we do not assume maximal progress, the revels relation between events
coincides precisely with the structural causality as stated in Property 1.

Timed semantics. Beyond the two natural setups presented above, we see many relevant situations
where more specific sets of executions have to be considered. One example comes from the modeling
of real-time systems. Consider the occurrence net depicted in Fig. 3 and assume that its behavior is
constrained by the time constraints given by the intervals, which are interpreted like in time Petri nets [22]
with dense time. We observe that, because of urgency, the occurrence of b forces the occurrence of d two
time units later, i.e. b . d in the time semantics. As a consequence e reveals a. This also makes b and e
incompatible, although they are not in conflict in the sense of untimed occurrence nets.
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Studying the logical dependencies between events in real-time systems is actually one of our per-
spectives after this work.

3.2. Facets Abstraction
Definition 3.2. (Facet [18])
Let ∼ be an equivalence relation defined as: ∀e, f ∈ E, e ∼ f

def⇐⇒ (e . f) ∧ (f . e), then a facet of
an ON is an equivalence class of ∼.

For example, in Fig. 2(a), and with the maximal semantics, the ON has five facets: {>}, {a, c, d, g},
{b, e, f},{h} and {k}. If ψ is a facet, then for any run ω and for any event e such that e ∈ ψ, e ∈ ω iff
ψ ⊆ ω. In this sense, facets can be seen as atomic sets of events.

The causality relation, ≤, and the conflict relation, #, naturally extend to the set of facets as follows:
∀ψ1, ψ2 ∈ Ψ,

ψ1 ≤ ψ2
def⇐⇒ ∃e1 ∈ ψ1, e2 ∈ ψ2 : e1 ≤ e2

ψ1 # ψ2
def⇐⇒ ∃e1 ∈ ψ1, e2 ∈ ψ2 : e1 # e2

The set of facets equipped with ≤ and # is an event structure [18].

Reduced Occurrence Nets: For any facet and for any run, either all events in the facet are in the run
or no event in the facet is in the run. Therefore, facets can be seen as events. In the sequel, we consider
reduced ONs [18], i.e. ONs reduced by contracting the facets into events.

For example, in Fig. 2(a), the reduced ON is obtained by contracting, for each facet, the squared
events into an event. With the maximal semantics, this gives the reduced ON of Fig. 2(b). From now on,
runs are thus considered as conflict-free and causally closed sets of facets.

Definition 3.3. (Reduced occurrence net)
A reduced ON is an ON (B,Ψ, F ) such that ∀ψ1, ψ2 ∈ Ψ, ψ1 ∼ ψ2 ⇐⇒ ψ1 = ψ2 (i.e. such that . is
antisymmetric).

Since this reduction yields an occurrence net, the concurrency relation, co, and the reveals relation,
., also naturally extend to the set of facets: ∀ψ1, ψ2 ∈ Ψ,

ψ1 co ψ2
def⇐⇒ ¬(ψ1 # ψ2) ∧ ¬(ψ1 ≤ ψ2) ∧ ¬(ψ2 ≤ ψ1)

⇐⇒ ψ1 6= ψ2 ∧ ∀e1 ∈ ψ1, e2 ∈ ψ2 : e1 co e2

ψ1 . ψ2
def⇐⇒ ∃e1 ∈ ψ1, e2 ∈ ψ2 : e1 . e2

Remark 3.1. If we consider the set of general runs, then, because of Property 1, any event is a facet, and
therefore, the ON is already reduced. Therefore, in the sequel, we consider the set of maximal runs, and
Ω denotes the set of maximal runs.

4. Tight Occurrence Nets and Event Structures

4.1. Concurrency vs Logical Independency

Two facets may be causally ordered (≤), in conflict (#) or concurrent (co). The conflict relation exactly
coincides with the fact that two facets never occur in the same execution. Moreover the causal ordering
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Figure 4. a ind b, ¬(b ind c) and ¬(b ind a′)

induces a reveals relation as stated in Property 1. But two concurrent facets are not necessarily logically
independent in maximal runs. Hence causality and reveals together give a finer partition of the possible
dependencies between two facets that are not in conflict. They can be either:

• causally related (and therefore also related by .),

• concurrent but related by ., or

• logically independent (and hence concurrent).

Formally, we define the independency relation among facets, denoted by ind , as the complement of the
conflict and reveals relations:

ψ1 ind ψ2
def⇐⇒ ¬(ψ1 # ψ2) ∧ ¬(ψ2 . ψ1) ∧ ¬(ψ1 . ψ2)

⇐⇒ ψ1 co ψ2 ∧ ¬(ψ2 . ψ1) ∧ ¬(ψ1 . ψ2)

That is, two facets are independent if they are neither in conflict nor related by the reveals relation. For
example, in Fig. 4, facets b and c are concurrent but not independent because c reveals b, and facets a
and b are independent. Therefore, if a is in a run, this gives no information on the presence (or absence)
of b in the run.

4.2. Well-foundedness of the Inverse Reveals Relation

Lemma 4.1. In any reduced ON N = (B,Ψ, F ) where there is no infinite set of pairwise concurrent
events (in particular in the reduced unfolding of any safe Petri net), the reveals relation, ., is converse
well-founded on Ψ, i.e. there is no infinite chain of distinct facets ψ1 . ψ2 . . . .

Proof:
In the proof, we use the alternative characterization of well-foundedness: . is converse well-founded on
Ψ iff every nonempty subset S of Ψ has a .-maximal facet, i.e. a facet ψ such that for any facet ψ′ ∈ S,
ψ′ 6= ψ ⇒ ¬(ψ . ψ′).

Assume first that the set S ⊆ Ψ is conflict-free, and consider the set S′ of the facets of S that have
no strict causal predecessor in S. Because causality is well-founded, S′ is not empty. Moreover, by
definition, the facets of S′ are pairwise concurrent. Thus, by hypothesis, S′ is finite. Therefore there
must be a facet ψ that is .-maximal in S′. It remains to show that ψ is also .-maximal in S. Let ψ′ be
a facet of S such that ψ . ψ′. By construction of S′ there exists a facet ψ′′ in S′ such that ψ′′ ≤ ψ′. By
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Figure 5. A Petri net and its unfolding (which is already a reduced ON)

Property 1, this implies that ψ′ . ψ′′, and by transitivity of ., we get ψ . ψ′′. Since ψ is .-maximal in
S′, ψ′′ must equal ψ. Then we have ψ . ψ′ . ψ, which implies that ψ equals ψ′ by construction of the
facets.

If S ⊆ Ψ is not conflict-free, then for any facet χ ∈ S, the subset of S, Sχ = {χ′ ∈ S | χ . χ′} is
conflict-free and hence has a .-maximal facet ψ. Moreover, by construction of Sχ, ψ does not reveal any
facet in S, therefore, ψ is also .-maximal in S. ut

We do not know if this lemma still holds without the hypothesis that there is no infinite set of pairwise
concurrent events.

Anyway, Lemma 4.1 does not imply that any facet reveals only finitely many other facets. As a
counterexample, consider the reduced ON of Fig. 5: facet ψ3, associated with transition t3, reveals all
the facets ψ1,i, i ∈ N∗, associated with transition t1.

Remark 4.1. For any finite reduced ON (B,Ψ, F ), the triple (Ψ, .−1,#) is an event structure because:

1. .−1 is a partial order on Ψ,

2. For all x ∈ Ψ, {y ∈ Ψ | x . y} is finite,

3. # ⊆ Ψ × Ψ is an irreflexive and symmetric relation, and for all x, y, z ∈ Ψ, x # y and z . y
together imply x # z (Property 2).

4.3. Tight (Occurrence) Nets

A tight (occurrence) net is a reduced ON in which all binary logical dependencies among facets (given
by the reveals relation) are represented as causalities.

Definition 4.1. (Tight net)
A tight net is an ON (B,E, F ) such that ∀e, f ∈ E, e . f ⇐⇒ f ≤ e.
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Tight nets constitute a natural and canonical class of occurrence nets, of interest in their own right
as representations of logical dependencies (as opposed to temporal ones). Moreover, all nets obtained as
the output of the synthesis procedure defined in Section 6 are tight.

Proposition 4.1. Every tight net is a reduced ON.

Proof:
If two events e and f of a tight net are in the same facet, then we have e . f ∧ f . e, which is equivalent
to f ≤ e ∧ e ≤ f because the net is tight. This implies e = f by antisymmetry of ≤. ut

Remark 4.2. In a tight net, ind is equivalent to co, and therefore the observation of the independency
relation is easier than in a general reduced ON.

Remark 4.3. If we consider the set of general runs, then, since any ON is reduced (see Remark 3.1),
and for any events e and f , e . f ⇐⇒ f ≤ e, any ON is tight.

We will show in Section 7.1 that it is possible to transform any finite reduced ON in a canonical
tight net which accepts the same set of maximal runs Ωmax. This canonical tight net gives an efficient
representation of the reveals relation. The example of Fig. 5, shows that the assumption of finiteness is
necessary.

5. ERL: A Logic for Occurrence Nets

We introduce a logic, called ERL for Event Reveal Logic, that describes the properties of the runs of an
ON by giving relations between event occurrences. Events are used as boolean variables: e stands for
the presence of event e in a run.

We have seen that the causality relation does not explain all the dependencies between events of the
type “if a occurs in a maximal run, then eventually b also occurs”. The reveal relation was introduced to
capture all these binary dependencies. But they are still not sufficient to describe more complex logical
dependencies between events. Consider the ON of Fig. 4: causality gives only the dependencies a < c
and a < b′, plus the trivial ones involving ψ>. With the reveals relation we get c . b and a′ . b. They
express that in any maximal run the occurrence of c implies the occurrence of b and the occurrence of
a′ implies the occurrence of b. But is it true that any set of events (containing ψ>) that satisfies these
constraints, is a maximal run? The answer is no: for instance {ψ>, a, b} satisfies these constraints, but
is not a valid maximal run, since c is enabled and does not occur. Actually, all the maximal runs of this
ON satisfy the following constraint: if a and b occur, then c also occurs.

Our logic is designed so that it allows us to express this kind of complex dependencies between event
occurrences, and to define an appropriate extended reveals relation.

5.1. Syntax and Semantics

5.1.1. Syntax

The alphabet consists of:

variables: E is the set of variables (including >)
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constants: {tt, ff}

logical connectives: ∧ and ¬.

Well-formed formulas are called ERL formulas and defined inductively with the following BNF
grammar:

ϕ ::= tt | ff | e | ¬ϕ | ϕ ∧ ϕ, where e ∈ E

5.1.2. Semantics

The semantics is given for a set of events γ ⊆ E and an ERL formula ϕ. We write γ |= ϕ when γ
satisfies ϕ, defined as follows:

• for any event e ∈ E, γ |= e iff e ∈ γ,

• the logical connectives ¬ and ∧ have the usual semantics.

Since we are interested in properties of sets of runs, we look at the satisfaction of ERL formulas by
sets of sets of events: for any ERL formula ϕ and for any set of sets of events Γ,

Γ |= ϕ iff ∀γ ∈ Γ, γ |= ϕ

i.e. the formula is satisfied by all sets of events. Notice that, Γ 6|= ϕ iff ∃γ ∈ Γ : γ 6|= ϕ (which is
different from Γ |= ¬ϕ).

We define the set [[ϕ]] as [[ϕ]]
def
= {γ ⊆ E | γ |= ϕ}. We write ϕ ≡ ϕ′ when [[ϕ]] = [[ϕ′]].

5.1.3. Extended Reveals Relation

Any well-formed formula can be brought into a conjunctive normal form:∧
i∈I

(bi,1 ∨ bi,2 ∨ · · · ∨ bi,ni ∨ ¬ai,1 ∨ ¬ai,2 ∨ · · · ∨ ¬ai,mi)

iff
∧
i∈I

(
(ai,1 ∧ ai,2 ∧ · · · ∧ ai,mi)→ (bi,1 ∨ bi,2 ∨ · · · ∨ bi,ni)

)
iff

∧
i∈I

(
∧
a∈Ai

a→
∨
b∈Bi

b),

where Ai = {ai,1, . . . , ai,mi} and Bi = {bi,1, . . . , bi,ni}. And since for any set of runs Ω,

Ω |=
∧
i∈I

(
∧
a∈Ai

a→
∨
b∈Bi

b)

iff ∀i ∈ I,Ω |=
∧
a∈Ai

a→
∨
b∈Bi

b

iff ∀i ∈ I, ∀ω ∈ Ω, Ai ⊆ ω ⇒ Bi ∩ ω 6= ∅,

we can focus on formulas of the form
∧
a∈A a→

∨
b∈B b, where A and B are two sets of events and that

are satisfied by a set of runs Ω iff whenever all events in A occur in a run ω ∈ Ω, then at least one event
in B occurs in ω. This leads us to define the extended reveals relation.
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Definition 5.1. (Extended reveals relation)
Let Ω ⊆ 2E be a set of runs, and A,B two sets of events, A reveals B written A _ B, iff ∀ω ∈ Ω,
A ⊆ ω ⇒ B ∩ ω 6= ∅

In this notation, Ω becomes implicit. Notice that ¬(A _ B) means Ω 6|=
∧
a∈A a →

∨
b∈B b i.e.

∃ω ∈ Ω : A ⊆ ω ∧B ∩ ω = ∅.
Notice that the binary reveals relations a . b correspond to the extended reveals relations between

singletons {a}_ {b}.

Proposition 5.1. In the maximal semantics and the general semantics, conflicts can be expressed using
this extended reveals relation: {a, b}_ ∅ ⇐⇒ a # b.

This equivalence comes directly from the definition of runs. We should however consider it as a strong
property of these two semantics and notice that only one direction would hold, for instance, in the timed
semantics evoked at the end of Subsection 3.1.1: in the example of Fig. 3, events b and e are incompatible
({b, e}_ ∅), although they are not in conflict in the sense of untimed occurrence nets (¬(b # e)).

Remark 5.1. The extended reveals relation is not transitive: in general A _ B ∧ B _ C does not
imply A _ C. Indeed, the extended reveals relation is interpreted as a conjunction of events in the left
part and as a disjunction of events in the right part.

5.2. Minimal and Immediate Constraints

Expressions of the form A _ B are called constraints. We notice that some constraints can be deduced
from others by monotonicity and by inheritance, which leads us to define minimal constraints.

5.2.1. Monotonicity Properties

First, the extended reveals relation has the following monotonicity properties:

Left Monotonicity Property . ∀A,B,C ∈ 2E , A _ C ∧A ⊆ B ⇒ B _ C.
Indeed, A ⊆ B ⇔ Ω |=

∧
b∈B b→

∧
a∈A a, and→ is transitive.

Right Monotonicity Property . ∀A,B,C ∈ 2E , A _ C ∧ C ⊆ B ⇒ A _ B.
Indeed, C ⊆ B ⇔ Ω |=

∨
c∈C c→

∨
b∈B b, and→ is transitive.

Therefore, we begin by considering the constraints A _ B where the sets A and B are minimal.

Definition 5.2. (Minimal reveals relation)
We define the minimal reveals relation, _m, as: ∀A,B ∈ 2E ,

A _m B
def⇐⇒ (A 6= B) ∧ (A _ B) ∧ (@B′ ( B : A _ B′) ∧ (@A′ ( A : A′ _ B)

i.e. if one event is removed from the left part or the right part, the reveals relation is lost.
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c c′ d d′ee′

ψ>

ba

(a) {c, d} _ {b} is an immediate
constraint and {a, d}_ {b} is not.

ψ>

bb′ a a′

cc′ d

(b) {a} _ {c, d} is an immediate
constraint and {a}_ {b, d} is not.

Figure 6. Immediate constraints

For example, in Fig. 4, {a, b} _m {c} because none of the following constraints holds: {a} _ {c},
{b}_ {c}, ∅_ {c} and {a, b}_ ∅.

Intuitively the minimal reveals provides a more precise description than the extended reveals. Indeed,
if A _m B, we know that for each b ∈ B, there is a run that contains A and b and no other event in B
(otherwise A _ B \ {b}). Similarly, for each a ∈ A, there is a run that contains A \ {a} and no event of
B (otherwise A \ {a}_ B).

5.2.2. Deduction Through a Singleton

Moreover, the following properties also hold:

Left Inheritance Property . ∀A,B ∈ 2E , (A ∪ {d}_ B) ∧ (d′ . d)⇒ A ∪ {d′}_ B

Right Inheritance Property . ∀A,B ∈ 2E , (A _ B ∪ {d}) ∧ (d . d′)⇒ A _ B ∪ {d′}

We can now identify the extended reveals relations that are minimal w.r.t. deduction through a singleton.

Definition 5.3. (Immediate reveals relation)
We define the immediate reveals relation, _i, as: ∀A,B ∈ 2E ,

A _i B
def⇐⇒


A _m B

∧ ∀a ∈ A,@a′ ∈ E \ {A ∪B} : (a . a′ ∧Aa′/a _ B)

∧ ∀b ∈ B, @b′ ∈ E \ {A ∪B} : (b′ . b ∧A _ Bb′/b)

where Aa′/a denotes A ∪ {a′} \ {a}.

For example, in Fig. 6(a), {a, d}_m {b} is not an immediate constraint because a . c and {c, d}_
{b}. And in Fig. 6(b) {a}_m {b, d} is not an immediate constraint because c . b and {a}_ {c, d}.

When . is antisymmetric, the conjunction of all immediate constraints implied by some formula ϕ,
is equivalent to ϕ (by definition of the immediate constraints).
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5.3. Properties of the extended reveals relation

When we consider the maximal or the general semantics, a set of events that never occur together neces-
sarily contains two events in conflict.

Lemma 5.1. For any set of events A, A _m ∅ ⇒ |A| = 2.

Proof:
The reveals relation A _ ∅ implies that there exists no general run ω ∈ Ωgen such that A ⊆ ω: in the
general semantics, this holds simply by definition of the reveals relation; in the maximal semantics, the
definition says that there exists no maximal run ω ∈ Ωmax such that A ⊆ ω, which implies that there
exists no general run ω ∈ Ωgen such that A ⊆ ω.

Then in particular dAe is not a general run. Since it is causally closed, the reason why it is not a
general run, is that it contains two events a and b that are in conflict. Since a and b are in dAe, there exist
events a′ and b′ in A such that a ∈ da′e and b ∈ db′e. By inheritance of the conflict along the causality,
a′ is in conflict with b′, which implies {a′, b′} _ ∅. And since {a′, b′} ⊆ A and A _m ∅, we must
have A = {a′, b′}. Finally, the absence of self-conflicts in occurrence nets guarantees that a′ and b′ are
distinct. ut

Remark 5.2. As well as Prop. 5.1, the previous lemma should be considered as an important property
of the maximal and general semantics, and would not hold, for instance, in the timed semantics evoked
at the end of Subsection 3.1.1 nor for contextual occurrence nets [4, 7, 26, 27], used for unfoldings of
nets with read arcs, where weak causality may cause non binary conflicts. Non binary conflicts have also
arisen from symbolic unfoldings of colored Petri nets [9, 10, 14].

When we consider the set of general runs, Ωgen, we have already noticed that the binary reveals
relation is given by the causality: ∀a, b ∈ E, {a}_ {b} ⇐⇒ b ≤ a. Furthermore, we have:

Proposition 5.2. (Decomposition of reveals relation in the general semantics)
With the general semantics, for any sets of events A and B,

A _ B ⇐⇒ (∃a ∈ A, b ∈ B : b ≤ a) ∨ (∃a, a′ ∈ A : a # a′) .

Proof:
(⇐) If there exist a, a′ ∈ A such that a # a′, then, no run contains A and for any set of events C,
A _ C. And if there exist a ∈ A and b ∈ B such that b ≤ a, then a . b and by the monotonicity
properties of _, A _ B.
(⇒) Assume A _ B and A is conflict-free. Denote by dAe the causal past of A i.e. the set
dAe = ∪a∈Adae. Since we make no progress assumption, dAe is a valid run. By definition of the
extended reveals relation, ∀ω ∈ Ωgen, A ⊆ ω ⇒ ω ∩B 6= ∅, and in particular, for ω = dAe, this implies
that dAe ∩B 6= ∅ i.e. that there exist b ∈ B and a ∈ A such that b ≤ a. ut

Therefore, with general runs, non binary constraints can be decomposed as disjunctions of binary ones,
in contrast to the case for Ωmax.
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5.3.1. Binary Immediate Constraints

Two kinds of binary immediate constraints will be particularly useful in the sequel.
First we define the immediate conflict relation, #i, as a special case of the immediate reveals relation:

for all events a and b, a #i b
def⇐⇒ {a, b} _i ∅. For example, in Fig. 6(b), a′ and c are in conflict but

not in immediate conflict because a′ # a and c . a. For any formula ϕ describing the runs of an ON, we
have #i ⊆ #d.

Secondly, we define the immediate reveals relation, .i, as: a .i b
def⇐⇒ {a} _i {b}. For example,

in Fig. 6(b), b .i ψ> and ¬(c .i ψ>).

Remark 5.3. When . is antisymmetric, the reveals relation is the transitive and reflexive closure of the
immediate reveals relation and the conflict relation can be deduced by .-inheritance from the immediate
conflict relation. Therefore, the conflict relation can be deduced from the immediate reveals relation and
the immediate conflict relation: # = (.−1

i )∗◦ #i ◦ .∗i .

6. A Synthesis Problem

In Section 5 we have introduced ERL logic to describe logical dependencies between events of an occur-
rence net. Now two synthesis problems arise naturally.

First, we show how to build the ERL formula ΦN which describes the set of maximal runs of a finite
ONN , i.e. such that ΩNmax = [[ΦN ]] . Then we present a procedure to answer whether there exists a tight
net N such that its set of maximal runs is described by a given ERL formula ϕ.

This synthesis procedure allows us to understand the power of the logical properties expressed via
reveals-relations or, equivalently, ERL formulas. They also allow - see below - to identify the canonical
shape of occurrence nets with respect to these properties. Note that we restrict our attention in this
section to finite occurrence nets, i.e. over a fixed finite set of individuals interpreted as events. Naturally,
one would hope to obtain synthesis procedures for occurrence nets of arbitrary size, imposing only
regularity properties; the set of events would then be structured by an adequate equivalence relation of
finite index. However, the technical difficulties posed by this general endeavor have not been resolved;
note in particular the fact, highlighted by Fig. 5, that a facet (here ψ3) may reveal infinitely many others,
which means that the procedure below would fail to produce event ψ3.

Even so, the capability of synthesizing occurrence nets with a given finite set of facets from ERL
formulas has potential even in practical terms. In fact, suppose you take any finite occurrence net ON
obtained by synthesis from ϕ, and convert it into a safe Petri net by adding,

• for every maximal run ω ofON , a transition tω whose pre-set is formed by the maximal conditions
of ω,

• an extra place p whose post-set is {>} and whose pre-transitions are the tω,

• and a token on p and no tokens elsewhere.

Then the resulting net N is a workflow net whose behaviors are concatenations of ωs, i.e. such that the
properties satisfied at each workflow round are given by ϕ.
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6.1. From Occurrence Nets to ERL Formulas

For a given finite ON N , we start by building ΦNgen, a formula such that [[ΦNgen]] = ΩNgen, from the
characterization of general runs. Then we build ΦN , a formula such that [[ΦN ]] = ΩNmax, by adding
terms corresponding to the progress assumption to ΦNgen. The construction of ΦNgen is similar to [20],
where the authors build what they call “configuration constraints” also by considering the causal closure
and the conflict-freeness of the configurations (or general runs).

By definition, a set of events is a general run iff it is closed under causality and conflict-free. That is,
for a given finite ON N = (B,E, F ), we can build the formula ΦNgen as follows:

ΦNgen =
∧

a,b∈E,a<b
(b→ a)︸ ︷︷ ︸

causal closure

∧
∧

a,b∈E,a#b

(¬a ∨ ¬b)︸ ︷︷ ︸
conflict-freeness

Therefore, for a given finite ON N , ΦN can be built as follows:

ΦN =
∧

a,b∈E,a<b
(b→ a) (causal closure)

∧
∧

a,b∈E,a#b

(¬a ∨ ¬b) (conflict-freeness)

∧
∧
a∈E

(
(
∧

b∈E,bla
b︸ ︷︷ ︸

a enabled

)→ (a ∨
∨

c∈E,c#da

c)
)

(progress assumption)

The new part is implied by the maximality and stands for “for any event a, if a is enabled, then a or
an event in direct conflict with a has to fire”.

Since < is the transitive closure of the direct causality l, the first part can be rewritten using only l,
and since # is inherited through <, in the second part, we can consider only the direct conflict #d, and
eventually:

ΦN ≡
∧

a,b∈E,alb
(b→ a) ∧

∧
a,b∈E,a#db

(¬a ∨ ¬b) ∧
∧
a∈E

(
(
∧

b∈E,bla
b)→ (a ∨

∨
c∈E,c#da

c)
)

Notice that, since> has no conflict and no causal predecessor, the third part with a = > gives tt→ >
which can be reduced in >, i.e. > is always true (and so is ψ> when we consider reduced ONs).

For example, in Fig. 6(b):

ΦN ≡ (c′ → b) ∧ (c→ b) ∧ (c→ a) ∧ (d→ a)

∧ (ā′ ∨ ā) ∧ (b̄′ ∨ b̄) ∧ (c̄′ ∨ c̄) ∧ (c̄ ∨ d̄)

∧ ψ> ∧ ((a ∧ b)→ (c ∨ c′ ∨ d))

∧ (a→ (c ∨ d)) ∧ (b→ (c′ ∨ c))
∧ (ψ> → (b′ ∨ b)) ∧ (ψ> → (a′ ∨ a)),

where ā stands for ¬a.
We have deliberately omitted terms of the form a→ ψ> that are redundant since ψ> must be true.
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6.1.1. Complexity

The formula is built as a conjunction of terms. First, identifying the causalities and the conflicts requires
looking at each pair of events {a, b} ⊆ E. Therefore, this gives O(n2) terms with two events, where
n = |E|. Second, there are n terms that describe the progress assumption (one for each event), and these
terms are of size O(n). Therefore, the size of the formula is O(n2).

6.2. From ERL formulas to Tight Nets: a Synthesis Procedure

The synthesis problem for PNs has been widely studied. It consists in answering whether, given a
behavior, there exists a PN with this behavior. The behavior can be specified as a transition system
[1,6,8,12] or a language, be it (i) a sequential language: in [11], the behavior is bounded by two regular
languages; or (ii) a finite partial language (finite set of labeled partial orders): [5]. Most of the time, the
synthesis procedure is based on the notion of region [2, 13].

In this paper, we propose another approach and we solve the following synthesis problem: given an
ERL formula ϕ, is there a tight net N whose behavior is the one specified by ϕ, i.e. such that the set of
maximal runs of N , ΩNmax, is equivalent to [[ϕ]]?

In the sequel, we give a procedure to build a net, CN(ϕ), from an ERL formula ϕ. First, a set of
binary immediate constraints is extracted from ϕ, then, CN(ϕ), is built from these constraints. If CN(ϕ)
is a reduced ON, then ΦCN(ϕ) is computed and compared with ϕ. As in the other synthesis procedures,
places are used to restrict the behavior of the net and denote dependencies between occurrences of tran-
sitions.

6.2.1. Extracting the Immediate Constraints

The set of maximal runs is given by the conflict relation which can be deduced from the immediate
reveals relation and the immediate conflict relation (Lemma 2.1 and Remark 5.3). Therefore, if there
exists a reduced ONN such that Ωmax

N = [[ϕ]], then the binary immediate constraints, i.e. expressions of
the form a .i b and a #i b, are enough to describe Ωmax

N (and thus also to describe ϕ). That is why we
focus on binary immediate constraints.

Our problem is to decide whether binary constraints of the form a . b (respectively {a, b} _ ∅)
are satisfied by ϕ. This amounts to deciding whether ϕ → (a → b) (respectively ϕ → (¬a ∨ ¬b)) is a
tautology. This problem is co-NP-complete and can be solved quite efficiently in practice by SAT-solvers.

6.2.2. Building a Canonical Tight Net

We denote by Ψ(ϕ) the set of variables that appear in ϕ which is supposed to be “reduced”, i.e. such that
for any distinct variables a, b ∈ Ψ(ϕ), [[ϕ]] 6|= a ↔ b. Each binary immediate constraint extracted from
ϕ is represented by a condition connected to the facets that appear in the constraint. The net CN(ϕ) is
defined as follows.

Definition 6.1. (CN(ϕ))
Let ϕ be an ERL formula. CN(ϕ) = (B,Ψ, F ) is the finite net such that Ψ = Ψ(ϕ), B = B1 ∪B2 and
F = F1 ∪ F2, where:

• B1 =
{
{ψ,ψ′} | ψ #i ψ

′},
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• F1 =
{

({ψ,ψ′}, ψ) ∈ B1 ×Ψ
}
∪
{

(ψ>, {ψ,ψ′}) ∈ Ψ×B1

}
.

That is, for each constraint of the form ψ #i ψ
′, one condition b is created and connected to ψ>, ψ and

ψ′ such that •b = {ψ>} and b• = {ψ,ψ′}.

• B2 =
{

(ψ,ψ′) ∈ (Ψ \ {ψ>})2 | ψ′ .i ψ
}

,

• F2 =
{(

(ψ,ψ′), ψ′
)
∈ B2 ×Ψ

}
∪
{(
ψ, (ψ,ψ′)

)
∈ Ψ×B2

}
.

That is, for each constraint of the form ψ′ .i ψ, one condition is created and connected to ψ and ψ′ such
that •b = {ψ} and b• = {ψ′}. Notice that constraints of the form ψ .i ψ> are not considered because, if
ϕ describes the maximal runs of a reduced ON, they are already represented by B1 and F1.

Remark 6.1. Actually, it is more the set of runs described by ϕ, i.e. [[ϕ]], than ϕ itself which is interest-
ing. Indeed for two formulas, ϕ1 and ϕ2, ϕ1 ≡ ϕ2 ⇐⇒ CN(ϕ1) = CN(ϕ2). Therefore, we could also
define CN(Ω) for a given Ω ⊆ 2Ψ.

Lemma 6.1. Let N be a finite reduced ON, then CN(ΦN ) is a tight net and ΦCN(ΦN ) ≡ ΦN .

Proof:
First, we show that CN(ΦN ) is a tight net. We call CN the net CN(ΦN ). We first show that CN is an
ON, then that it is reduced, and lastly that it is a tight net. N and CN have the same conflict relation,
because they have the same reveals relation and the same immediate conflict relation (Remark 5.3).
Moreover CN is built so that ∀a, b ∈ Ψ, a ≤CN b ⇐⇒ b . a. Therefore, CN is an ON because:

• There is no self-conflict in CN , because there is no self-conflict in N .

• ≤CN is equivalent to .−1 therefore it is a partial order.

• ∀ψ ∈ Ψ, {ψ′ | ψ′ ≤CN ψ} is finite because Ψ is finite.

• There is no backward branching by construction.

• ψ> ∈ Ψ is the only minimal node by construction.

Since ΦN is associated with the reduced ON N , it is such that, for any distinct variables v1, v2 ∈
Ψ, [[ΦN ]] 6|= v1 ↔ v2. Therefore, CN is also reduced. Lastly, by construction, CN is a tight net.

Second, we show that ΦCN(ΦN ) ≡ ΦN . By Lemma 2.1, the set of maximal runs can be defined from
the conflict relation only. N and CN(ΦN ) have the same conflict relation. Therefore, N and CN(ΦN )
have the same set of runs and equivalent associated ERL formulas. ut

Notice that N and CN(ΦN ) may not accept the same general runs because the facets that are con-
current but related by the reveals relation in N , become causally ordered in CN(ΦN ).

From Lemma 6.1, we can derive the following theorem.

Theorem 6.1. Let ϕ be an ERL formula such that for any distinct variables a, b ∈ Ψ(ϕ), [[ϕ]] 6|= a↔ b.
There exists a reduced ON N such that ΦN ≡ ϕ iff CN(ϕ) is a reduced ON and ΦCN(ϕ) ≡ ϕ.
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Proof:
(⇒) If there exists a reduced ON N such that ΦN ≡ ϕ, then, by Lemma 6.1 CN(ϕ) is a candidate.
(⇐) CN(ϕ) is an example of suitable reduced ON. ut

Example 6.4 illustrates that the net CN(ϕ), obtained by the synthesis from an arbitrary formula ϕ, may
not be a reduced ON. When CN(ϕ) is a reduced ON, it is called the canonical tight net associated with
ϕ (or with N when φ is defined as the formula ΦN associated with some reduced occurrence net N ).

6.2.3. Examples

We extract a set of binary immediate constraints from ϕ and build the net CN(ϕ).

Example 6.1. Consider the following formula:

ϕ = ψ> ∧ (a→ b) ∧ (b′ → a′)

∧ (ā ∨ ā′) ∧ (b̄ ∨ b̄′)
∧ (a ∨ a′) ∧ (b ∨ b′)

The set of runs described by ϕ is [[ϕ]] =
{
{ψ>, a, b}, {ψ>, a′, b}, {ψ>, a′, b′}

}
. The binary immediate

constraints are: a .i b, b′ .i a′, b .i ψ>, a′ .i ψ>, a #i a
′ and b #i b

′, and the net synthesized from
these constraints is given in Fig. 7(a). This net is a reduced ON and its set of maximal runs is indeed [[ϕ]].

Example 6.2. Consider the following formula:

ϕ = ψ> ∧ (ā ∨ b̄)

The set of runs described by ϕ is [[ϕ]] =
{
{ψ>}, {ψ>, a}, {ψ>, b}

}
. The binary immediate constraints

are: a .i ψ>, b .i ψ> and a #i b, and the ONN synthesized from these constraints is given in Fig. 7(b).
N is a reduced ON but ΩN =

{
{ψ>, a}, {ψ>, b}

}
6= [[ϕ]]. Therefore, there is no reduced ON N such

that ϕ ≡ ΦN . We can see that the maximality constraint a ∨ b is not respected by ϕ.

Example 6.3. Consider the following formula:

ϕ = (ψ> ∧ a ∧ b ∧ c̄ ∧ ā′ ∧ b̄′ ∧ c′)
∨ (ψ> ∧ a ∧ b̄ ∧ c ∧ ā′ ∧ b′ ∧ c̄′)
∨ (ψ> ∧ ā ∧ b ∧ c ∧ a′ ∧ b̄′ ∧ c̄′)
∨ (ψ> ∧ ā ∧ b̄ ∧ c̄ ∧ a′ ∧ b′ ∧ c′)

The set of runs described by ϕ is [[ϕ]] =
{
{ψ>, a, b, c′}, {ψ>, a, b′, c}, {ψ>, a′, b, c}

}
. The binary im-

mediate constraints are: a #i a
′, b #i b

′, c #i c
′ and for each ψ ∈ Ψ \ {ψ>}, ψ .i ψ>. The

ON N synthesized from these constraints is given in Fig. 7(c). N is a reduced ON but ΩN ={
{ψ>, a, b, c}, {ψ>, a′, b, c}, {ψ>, a, b′, c}, {ψ>, a, b, c′}, {ψ>, a′, b′, c′}, {ψ>, a, b′, c′}, {ψ>, a′, b, c′},
{ψ>, a′, b′, c}

}
6= [[ϕ]]. Therefore, there is no reduced ON N such that ϕ ≡ ΦN .

Notice that this example illustrates an immediate conflict between a, b and c: {a, b}, {a, c}, and
{b, c} can occur in a run, but {a, b, c} cannot, which is not possible in general ONs (see Lemma 5.1).
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ψ>

a′

b′

b

a

(a) ΦCN(ϕ) ≡ ϕ

ψ>

a b

(b) ΦCN(ϕ) 6≡ ϕ

ψ>

b b′a a′ c c′

(c) ΦCN(ϕ) 6≡ ϕ

c

ψ>

a′

b′

b

a

(d) CN(ϕ) is not an ON

Figure 7. (a): There is a reduced ON N such that ϕ ≡ ΦN . (b) to (d): There is no reduced ON N such that
ϕ ≡ ΦN .

Example 6.4. Consider the following formula:

ϕ = ψ> ∧ (a→ c) ∧ (b′ → c) ∧ (b′ → a′)

∧ (ā ∨ ā′) ∧ (b̄ ∨ b̄′)
∧ (a ∨ a′) ∧ (b ∨ b′) ∧ (c→ (a ∨ b′))

The set of runs described by ϕ is [[ϕ]] =
{
{ψ>, a, b, c}, {ψ>, a′, b′, c}, {ψ>, a′, b}

}
. The binary imme-

diate constraints are: a .i b, a .i c, b′ .i a′, b′ .i c, b .i ψ>, a′ .i ψ>, c .i ψ>, a #i a
′ and b #i b

′,
and the net synthesized from these constraints is given in Fig. 7(d). We can see that this net is not an
ON because there are two minimal events, c and ψ>. Therefore, there is no reduced ON N such that
ϕ ≡ ΦN .

6.2.4. Complexity

Identifying the immediate constraints requires looking at each pair of facets {a, b} ⊆ Ψ(ϕ), and for
each pair, deciding whether the formula ϕ → (a → b) (respectively ϕ → (¬a ∨ ¬b)) is a tautology is
co-NP-complete.

Once the immediate constraints are computed, the number of places and arcs in CN(ϕ) is linear
in the number of constraints, and therefore at most quadratic in the number of events. The events are
simply the variables that appear in the formula. The quadratic bound is reached for a formula of the type
(ψ1 ∨ · · · ∨ ψn)→ (ψ′1 ∧ · · · ∧ ψ′n) which implies ψi → ψ′j for all i, j.

7. Going Further

7.1. Tightening a reduced ON

A simple corollary of our synthesis procedures is the following.

Corollary 7.1. Given any finite reduced ON N , it is always possible to build a tight net N ′ such that
ΩN = ΩN ′ .
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a′ a

bb′

ψ>

c

(a) Reduced ONN1

c

b

a′

a

b′

ψ>

(b) Canonical tight net
associated withN1

a a′ c b′ b

ψ>

(c) Reduced ONN2

c

aa′ b b′

ψ>

(d) Canonical tight net asso-
ciated withN2

Figure 8. Examples of reduced ONs with their associated canonical tight net.

Proof:
We can compute ΦN as in Subsection 6.1, and build the tight net N ′ = CN(ΦN ) as in Subsection 6.2.

ut

The example of Fig. 5, shows that the corollary does not hold in general if we drop the assumption of
finiteness.

Example 7.1. The initial reduced ON, N1, is depicted in Fig. 8(a). The set of maximal runs is ΩN1 ={
{ψ>, a, b, c}, {ψ>, a, b′}, {ψ>, a′, b}

}
and the binary immediate constraints are a .i ψ>, b .i ψ>,

c .i a, c .i b, a′ .i b, b′ .i a, a #i a
′ and b #i b

′. The canonical tight net obtained by the synthesis from
these constraints is represented in Fig. 8(b).

Example 7.2. Fig. 8(c) and 8(d) give another example of a reduced ON and its associated canonical
tight net. The set of maximal runs is ΩN2 =

{
{ψ>, a, b, c}, {ψ>, a, b′}, {ψ>, a′, b}, {ψ>, a′, b′}

}
and

the binary immediate constraints are a .i ψ>, b .i ψ>, c .i a, c .i b, a #i a
′ and b #i b

′.

It is a fact that the modifications brought about by (reduction and) tightening are often counter-
intuitive and are unconventional net surgeries. At the same time, we believe that the “right” interpretation
of these structural modifications should not be sought in the usual form of temporal properties. Rather,
the reveals relations show logical dependencies that can be used for inference properties of the type “if a
is known, then b must be the case”. Thus the resulting net is in fact drastically changed, to better reflect
which deductions are possible e.g. from a partial observation of behaviors.
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7.2. Characterization of adequate [[ϕ]]

There are two reasons why an ERL formula ϕ does not describe the set of maximal runs of any ON: either
the formula allows non-maximal runs, or it expresses non-binary minimal conflicts, while all minimal
conflicts are binary in occurrence nets under the maximal semantics (see Lemma 5.1).

It is possible to characterize directly the formulas ϕ (or equivalently the sets Γ of sets of events) such
that [[ϕ]] (respectively Γ) is the set of maximal runs of an ON.

Theorem 7.1. (Direct characterization of adequate Γ)
Let E be a finite set whose elements are called events, and Γ ⊆ 2E such that any event occurs at least
once in Γ, and one event denoted > occurs in all the sets of Γ. Then, there exists an ON N such that
ΩN = Γ, iff

Γ = {γ ⊆ E | ∀a ∈ E, a ∈ γ ⇐⇒ #[a] ∩ γ = ∅}

where the # relation over E is defined as:

a # b
def⇐⇒ @γ ∈ Γ : {a, b} ⊆ γ .

Proof:
By Prop. 5.1, any ON N satisfying ΩN = Γ, has # as its conflict relation. Then by Lemma 2.1 Γ is its
set of maximal runs.

Now, when Γ = {γ ⊆ E | ∀a ∈ E, a ∈ γ ⇐⇒ #[a] ∩ γ = ∅}, we can define an occurrence net
N = (B,E, F ) whose set of events is E, whose set of conditions is B def

= {{e, e′} | e # e′} and whose
flow relation F is defined such that >• = B and for every e ∈ E \ {>}, •e = {{e, e′} | e # e′} and
e• = ∅. N trivially satisfies the conditions for being an occurrence net. Moreover, its set of maximal
runs coincides with Γ, by immediate application of Lemma 2.1. ut

Remark 7.1. Let Γ be a set of sets of events satisfying the condition of Theorem 7.1. The occurrence
nets N such that ΩN = Γ are reduced iff for all distinct events a, b ∈ E, Γ 6|= a ↔ b, or equivalently
#[a] 6= #[b]. Indeed, combining the definition of facets and Lemma 3.1, we get that two events a and b
are in the same facet iff #[a] = #[b].

7.3. Untightened synthesis

As well as runs are given as unordered sets of events, the syntax of ERL logic does not consider the
structural causality between events. Therefore, the synthesis problem that we solve in Section 6 mentions
only the logical dependencies between events and not the structural ones. This means that the causalities
between events in the synthesized net, which represent the logical dependencies given by the formula,
may come from causalities in the original net or from more complex dependencies involving the maximal
progress assumption.

Indeed, we decided to represent the logical dependencies as causalities, and that is the reason why we
get a tight net. However, we observed in Lemma 2.1 that the conflict relation gives enough information
to define the maximal runs. That is, preserving the conflict relation is preserving the set of maximal runs.
Hence, given a set of maximal runs, it is always possible to solve the synthesis problem by building a
net with no causality (but the ones required by >) and only conflicts, like the ones used in the proof
of Theorem 7.1. Fig. 8(c) shows an example of such ON. However, with this construction, the reveals
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relations in the resulting net are all hidden in the conflict relation, whereas our net CN(ϕ) makes explicit
all the binary reveals relations as causalities, which lets us represent as little direct conflicts as possible,
i.e. only the immediate conflict.

Between these two choices of representation there is a range of other possible choices which differ by
the chosen causality relation (and therefore also by the conflict relation). The point is now to characterize
the acceptable choices for the direct causality relation to impose in the net. To answer this question, we
introduce a synthesis where a relation � is given, together with a formula ϕ. The synthesis problem is
now: given an ERL formula ϕ on a set E of events (containing >) and a partial order relation � on E, is
there an ON N whose behavior is the one specified by ϕ, and such that the causality in N matches �?

In order to solve this synthesis problem, we adapt the construction CN(ϕ) of Def. 6.1 in order to
represent only the causalities described by �: for each pair of events (e, e′) in the transitive reduction
≺i of �, a condition b is created and connected to e and e′ (•b = {e} and b• = {e′}). Then, we want
to represent as few direct conflicts as possible w.r.t. this imposed causality, and in order to adapt our
construction, we define the direct conflict of our synthesized net, similarly to the immediate conflict, but
with � instead of ..

a #d b
def⇐⇒ a # b ∧ @c : (c ≺ a ∧ c # b) ∨ (c ≺ b ∧ c # a)

where ≺ denotes the reflexive reduction of �.
Notice also that the general conflict relation can be defined with this direct conflict and the relation

�, as: # = �−1 ◦ #d ◦ �. Therefore, the construction of Subsection 6.2 can be adapted by replacing
#i by #d and .i by ≺−1

i .

Definition 7.1. (CN(ϕ,�))
Let ϕ be an ERL formula over a set E of events (containing >) and � a partial order relation over E.
CN(ϕ,�) = (B,E, F ) is the finite net where E is the set of events, B = B1 ∪ B2 and F = F1 ∪ F2,
with:

• B1 =
{
{e, e′} | e #d e

′},

• F1 =
{

({e, e′}, e) ∈ B1 × E
}
∪
{

(>, {e, e′}) ∈ E ×B1

}
.

• B2 = ≺i,

• F2 =
{(

(e, e′), e′
)
∈ B2 × E

}
∪
{(
e, (e, e′)

)
∈ E ×B2

}
.

Then, Lemma 6.1 and Theorem 6.1 can be strengthened to:

Lemma 7.1. Let N be a finite ON, and � a partial order relation on E such that > is the only minimal
event w.r.t. � and � is a subrelation of the reverse of the reveals relation of N . Then CN(ΦN ,�) is an
ON and ΦCN(ΦN ,�) ≡ ΦN and the causality in N matches �.

Proof:
The proof follows the steps of the proof of Lemma 6.1. ut
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Now comes the main result of this section, which states that, while synthesizing an ON N from an
ERL formula ϕ, the causality in N (denoted ≤N ) can be freely chosen provided it is compatible with
the reveals relation induced by ϕ.

Theorem 7.2. Given an adequate formula ϕ (i.e. a formula that describes the set of maximal runs of
some ON), an ON N such that ΦN ≡ ϕ and ≤N = � exists for any partial order relation � on E,
provided > is the only minimal event w.r.t. � and � is a subrelation of the reverse of the reveals relation
induced by ϕ.

Proof:
The existence of N trivially implies the required conditions on �. The other direction is ensured by
Lemma 7.1. ut

As previously mentioned, there are two special cases of such synthesis:

• � = .−1, then #d = #i and the resulting net is a tight net.

• � relates simply > to any event; then #d = # and the resulting net has no causality but the one
linking any event to >.

Remark 7.2. For a given set of runs (or ERL formula), less causality implies more direct conflict in the
synthesized net: �1 ⊆ �2 ⇒ #d2 ⊆ #d1.

Example 7.3. Consider again the reduced ON N1, depicted in Fig. 8(a). Its associated canonical tight
net was built in Example 7.1. Define now � such that ≺ relates a to c and ψ> to every facet (except
ψ>). Our goal is to build CN(ΦN1 ,�). The direct conflicts w.r.t. � are: a #d a

′, b #d b
′, c #d b

′

and a′ #d b
′. The reduced ON N ′1 obtained by the synthesis from these constraints is represented in

Fig. 9(a).
If we define now another � that relates simply ψ> to the other facets, then the direct conflicts are the

same as above plus c #d b
′ (actually every conflict becomes direct). And the ON N ′′1 obtained by the

synthesis from these constraints is represented in Fig. 9(b).

Example 7.4. Consider now the reduced ON N2, depicted in Fig. 8(c). N2 is already the result of the
synthesis with no causality (except causality from ψ> to every other facet).

Define now � such that ≺ also relates a to c. Then the direct conflicts w.r.t. � are a #d a
′, b #d b

′

and c #d b
′. The reduced ON obtained by the synthesis from these constraints is represented in Fig. 9(c).

7.3.1. Synthesis in the General Semantics

We have seen in Subsection 6.1 that the set of general runs of an occurrence net can be expressed as the
following ERL.

ΦNgen =
∧

a,b∈E,a<b
(b→ a)︸ ︷︷ ︸

causal closure

∧
∧

a,b∈E,a#b

(¬a ∨ ¬b)︸ ︷︷ ︸
conflict-freeness
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ψ>

b′a′ ba

c

(a) Reduced ONN ′1 (a ≺i c)

ψ>

b′a′ bac

(b) Reduced ONN ′′1

ψ>

b′a′ ba

c

(c) Reduced ONN ′2 (a ≺i c)

Figure 9. Examples of synthesis parameterized by a causality relation �. According to Def. 7.1, additional
conditions and arcs should connect ψ> to other facets in order to code causality. They are omitted here since this
causality is already induced by the conditions used to code the conflicts.

Now we show that the problem of synthesizing an occurrence net from an ERL formula can also be
solved for the general semantics. More surprisingly, the procedure for solving it is exactly the same as
in Subsection 6.2 and Theorem 6.1 can be adapted.

Theorem 7.3. Let ϕ be an ERL formula such that for any distinct variables a, b ∈ Ψ(ϕ), [[ϕ]] 6|= a↔ b.
There exists a finite reduced ON N such that ΦNgen ≡ ϕ iff CN(ϕ) is a reduced ON and Φ

CN(ϕ)
gen ≡ ϕ.

Proof:
The steps described in 6.2.1 and 6.2.2, can be repeated. Then we prove that if N is a finite reduced ON,

then CN(ΦNgen) is a tight net and Φ
CN(ΦNgen)
gen ≡ ΦNgen, as in the proof of Lemma 6.1, except that, in order

to prove that N and CN(ΦNgen) have equivalent formulas (i.e. the same set of general runs), we use that
they have the same conflict an causality relations. ut

With the general semantics, the set of runs cannot be described with the conflict relation only. But since a
net CN(ΦN ), built from the formula associated with ONN has the same causality and conflict relations
as N , they accept the same set of general runs. Notice also that we have no longer the choice on the
causality relation.

Remark 7.3. In the construction, the immediate conflicts are represented by a condition connected to
ψ>. This results in a large set of initial conditions. It is possible to improve the construction by repre-
senting each immediate conflict ψ #i ψ

′ by a condition connected to any facet ψ1 such that ψ . ψ1

and ψ′ . ψ1. One possible choice would be to consider the .-successors of ψ and ψ′, defined as
.[ψ,ψ′] = {ψ1 ∈ Ψ | ψ . ψ1 ∧ ψ′ . ψ1}, create one condition b1 for each .-minimal facet, ψ1, in
.[ψ,ψ′], and connect b1 to ψ1, ψ and ψ′. This would define B1 and F1. Then, any constraint of the form
ψ′ .i ψ would be represented as previously by B2 and F2, except that, in B2, we need to consider only
non-redundant conditions. Indeed, if there exists b ∈ B1 such that (ψ, b) ∈ F1 ∧ (b, ψ′) ∈ F1, then
ψ′ .i ψ is already represented and can be ignored in B2.
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8. Conclusion

We have shown how the structural and binary reveals-relation from [18] generalizes into a relational
framework for the description of logical dependencies - as opposed to temporal ones - between occur-
rences of sets of events in occurrence nets. For expressing these properties, a new logic, ERL, has been
introduced and studied. In particular, we have solved the problem of synthesis for finite occurrence nets
from ERL formulas. The extension to general occurrence nets is a future task, which is not trivial; see
Fig. 5 and the discussion at the beginning of Section 6.

Even if ERL is a logic adapted for partial order semantics, it differs in its aim and structure from the
other logics that have been proposed in the literature (for temporal logics for traces and event structures,
see e.g. [17,24]). First, ERL is not, strictly speaking, a temporal logic, since the notions of before, after,
future, until etc. are of no particular relevance here; in fact, the progression of time is encapsulated
in the underlying structure over which one chooses to interpret ERL formulas, and in the choice of
admissible runs in that structure: maximal runs, any runs, runs satisfying additional context or timing
constraints, etc. In the light of Subsection 7.3, causal ordering can be viewed as a refinement of the
logical dependencies captured by the ERL formulas.

Thus far, we have intended and used the ERL logic as a means for coding and manipulating structure
(of occurrence nets) and knowledge (observingA revealsB, i.e. gives knowledge aboutB’s occurrence).
The results here open some new roads towards efficient verification of system properties, as well as
towards enforcing such properties through behavior control, or directly through synthesis of systems
from logical specifications.
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