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Abstract—We define tree automata with global constraints
(TAGC), generalizing the class of tree automata with global
equality and disequality constraints [1] (TAGED). TAGC can
test for equality and disequality between subterms whose -
tions are defined by the states reached during a computation.
In particular, TAGC can check that all the subterms reaching
a given state are distinct. This constraint is related to moadic
key constraints for XML documents, meaning that every two
distinct positions of a given type have different values.

We prove decidability of the emptiness problem for TAGC.
This solves, in particular, the open question of decidabity of
emptiness for TAGED. We further extend our result by allowing
global arithmetic constraints for counting the number of
occurrences of some state or the number of different subters
reaching some state during a computation. We also allow lota
equality and disequality tests between sibling positionsral the
extension to unranked ordered trees. As a consequence of our
results for TAGC, we prove the decidability of a fragment of the
monadic second order logic on trees extended with predicase
for equality and disequality between subtrees, and cardiniity.
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This is typically the kind of constraints that can not be
characterized by TA.

One first approach to overcome this limitation of TA con-
sists in adding the possibility to make equality or diseiyal
tests at each step of the computation of the automaton.
The tests are performebbcally, between subtrees at a
bounded distance from the current computation position in
the input tree. The emptiness problem, whether the language
recognized by a given automaton is empty, is undecidable
with such tests [7]. A decidable subclass is obtained by
restricting the tests to sibling subtrees [8] (see [2] for a
survey).

Another approach was proposed more recently in [9], [1]
with the definition of tree automata witglobal equality
and disequality tests (TAGED). The TAGED do not perform
the tests during the computation steps but globally on the
tree, at the end of the computation, at positions which are
defined by the states reached during the computation. For
instance, they can express that all the subtrees that ache
a given stateg are equal, or that every two subtrees that

Tree automata techniques are widely used in severdkached respectively the statgsand ¢’ are different. The

domains like automated deduction (seg. [2]), static

emptiness has been shown decidable for several subclasses

analysis of programs [3] or protocols [4], [5], and XML of TAGED [9], [1], but the decidability of emptiness for the
processing [6]. A severe limitation of standard tree autiama Whole class remained a challenging open question.

(TA) is however that they are not able to test for equality In this paper, we answer this question positively, even
(isomorphism) or disequality between subtrees in an inputor a class of tree recognizers more general than TAGED.
tree. For instance, the language of trees described by a noMve define (in Section 1) a class of tree automata with
linear pattern of the forny(x,z) is not regular iie. there  global constraints (TAGC) which, roughly, corresponds to
exists no TA recognizing this language). Similar problemsTAGED extended with the possibility to express disequesiti
are also frequent in the context of XML documents processbetween subtrees that reached the same state (specifying ke
ing. XML documents are commonly represented as labelegonstraints, which are not expressible with TAGEDs), and
trees, and they can be constrained by XML schemas, whicwith arbitrary Boolean combinations (including negatiof)
define both typing restrictions and integrity constraidf.  constraints. We show in Section Il that emptiness is de-
the typing formalisms currently used for XML are basedcidable for TAGC. The decision algorithm uses an involved
on finite tree automata. The key constraints for databasggumping argument: every sufficiently large tree recognized
are common integrity constraints expressing that every twy the given TAGC can be reduced by an operation of

distinct positions of a given type have different values.parallel pumping into a smaller tree which is still recoguiz
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The existence of the bound is based on a particular well
quasi-ordering.

In Section IV-A, we study the extension of TAGC with
global counting constraints on the numlgrof occurrences
of a given statg; in a computation, or the numbdy/|| of
distinct subtrees reaching a given staten a computation.
We show that emptiness is decidable for this extension when



counting constraints are only allowed to compare states to [l. PRELIMINARIES
constants, like injq| < 5 or lal +.2qu” =9 (_actually A. Terms, Positions, Tree Automata
in this case, the counting constraints do not improve the
expressiveness of TAGC). With counting constraints being We use the standard notations for terms and positions,
able to compare state cardinalities (like g = |¢/|), see [20]. AsignatureX is a finite set of function sym-
emptiness becomes undecidable. We show that the emptineggls with arity. We sometimes denotE explicitly as
decision algorithm can also be applied to the combination(f1 : a1,..., fn : an} Where fi,..., f, are the function

of TAGC with local tests between sibling subtrees a la [8]symbols, anda,...,a, are the corresponding arities, or
(Section IV-B), and to unranked ordered labeled trees (Se@s{fi, ..., f.} When the arities are omitted. We denote the
tion IV-C). This demonstrates the robustness of the methodsubset of function symbols df of arity m asX,,. The set

o . . of (ranked)termsover the signatur& is defined recursively
As an application of our results, in Section V we present a, 4 TE) = {f | f:0€ SYU{f(tr,..ortm) | f:m €
(strict) extension of the monadic second order logic onstree t " e T(i])}. S

whose existential fragment corresponds exactly to TAGC. In Positions in terms are denoted by sequences of natural

pe}rticular, we conclude its decidability. The full versioh numbers. With A we denote the empty sequence (root
this paper including all proofs can be found in [10]. position), andp.p’ denotes the concatenation of positions

Related Work.:The languages of TAGC and tree au- 7 and p. The set of positions of a term is defined
recursively asPos(f(ti,...,tm)) = {A}U{ip | i €

tomata with local equality and disequality constraints are
incomparable (see.g.[11]). We show in Section IV-B that {L,.. 'f’m}t./\ pr Poist(ti)}'t Afterm.tt_ EnBT(Z;) .Catn l:;;e [s:een
the local tests between sibling subtrees of [8] can be adde a function from its set of positionBos(t) into 3. For

to TAGC while preserving the decidability emptiness. Thet |sdreas:)r(1j, éhe syrrébol Iabell/ng tge pgsmlpnn tdshail
tree automata of [8] have been generalized from ranke&]e enote A (p). yp <,p andp = p we denote
at p is a proper prefix ofp’, and thatp is a prefix of

trees to unranked ordered trees [12], [13]. The decidablé, tively. In thi . iIv of the
generalization of TAGC to unranked ordered trees proposeﬂ ' Itespec Ively. In this casep, Is necessarily of the form

T i 9
in Section IV-C and the automata of [12], [13] are incompa-P-? + @nd we definey’ — p as p”. Two positionsyps, p

rable. A combination of both formalisms could be the objectincomparable with respect to the prefix ordering are called
of a f'urther study parallel, and it is denoted by, || p2. The subtermof ¢ at

positionp, denoted|,, is defined recursively ag, =t and
Another way to handle subtree equalities is to use auf(ti,...,tm)|ip = ti|p. The replacement inof the subterm
tomata computing on DAG representation of trees [14], [15].at positionp by s, denotedt[s], is defined recursively
This model is incomparable to TAGC whose constraints ar@s ¢[s]a = s and f(t1,...,ti—1,ti, tit1, - tm)[Slip =
conjunctions of equalities [11]. The decidable extension o f(t1,...,ti—1,t[s]p, tit1, .., tm). The factt = ¢[s], may
TA with one tree shaped memory [16] can simulate TAGCalso be used to emphasis thgtis s. Theheightof a term¢,
with equality constraints only, providing that at most onedenotedh(t), is the maximal length of a position dtos(t).
state per run can be used to test equalities [9]. In particular, the length of\ is 0.
A tree automaton(TA, seee.g.[2]) is a tuple A =

As explained in Section II-B, the TAGC strictly generalize (Q,%, F,A) where Q is a finite set ofstates % is a

the TAGEDs of [9], [1]. The latter have been introduced assignature,F C Q is the subset of final states an is

a tool to decide a fragment of the spatial logic TQL [9]. "
) : a set oftransitionsrules of the formf(q1,...,qm) — ¢
Decidable subclasses of TAGEDs were also shown in cor- .
: ) wheref:m € X, q1,...,q9mn,q € Q. Sometimes, we shall
respondence with fragments of monadic second order logic ; ; .
. . L refer to A as a subscript of its components, like Gy to
on the tree extended with predicates for subtree (dis)@gual .~ ° .
. . : indicate thatQ is the state set afd.
tests. In Section V, we generalize this correspondence to A F A i — (4 M wheret | i .
TAGC and a more natural extension of MSO. fun o IS a pairr = <.’ ) W erec s a term in
T(X) and M : Pos(t) — Q.4 is a mapping satisfying, for
There have been several approaches to extend TA withll p € Pos(t), that the rulet(p) (M (p.1),..., M (p.m)) —
arithmetic constraints on cardinalitieg| described above: M (p) is in A4, wherem is the arity of the symbot(p)
the constraints can be added to transitions in order to counh 3. By abuse of notation we write(p) for M(p), and
between siblings [17], [18] (in this case we could call say thatr is a run of.4 on ¢. Moreover, byterm(r) we
them local by analogy with equality tests) or they can be refer to¢, and bysymbol(r) we refer tot(A). The runr
global[19]. We compare in Section IV-A the latter approachis called successfullor accepting if 7(A) is in F4. The
(closer to our settings) with our extension of TAG®t  languagel(.A) of A is the set of termg for which there
emptiness decision. To our knowledge, this is the first timeexists a successful run of. A languagel is calledregular
that arithmetic constraints on cardinalities of the folini| if there exists a TAA satisfying L = L£(A). For facility

are studied. of explanations, we shall use term-like notations for runs



defined as follows in the natural way. For a rus= (¢, M),
by Pos(r) we denotePos(t), and byh(r) we denoteh(t).

M
qm
Similarly, by 7|, we denote the rurt|,, M|,), where M|, . N// \

. . . L
is defined asM|,(p’) = M(p.p’) for eachp’ in Pos(tly),  @a a ar
and say that|, is a subrun ofr. Moreover, for a run’ = N 9 N 2 \ L
(t',M'"), byr[r'], we denote the rut¢(t'],,, M[M'],), where 9 AN Ga G qr
M[M'), is defined asM [M’],(p.p') = M'(p’) for eachp’ 200 /ﬂ/ \@
in Pos(t"), and asM[M'],(p’) = M (p') for eachp’ with N N
p £y 2 0o 4 N
A well quasi-ordering [21K on a setS is a reflexive and 94 9V Gid /qf \
transitive relation such that any infinite sequence of elgme 2 0
e1,e2,... of S contains an increasing pai; < e; with da N
i< Figure 1. Term and successful run (Ex. 11.2).

B. Tree Automata with Global Constraints

In this subsection, we define a class of tree automata # ¢’ for TAGEDs. Reflexive disequality constraints such

with global constraints which generalizes the class ofasgq # ¢ correspond to monadikey constraintfor XML

TAGEDSs [1]. documents, meaning that every two distinct positions oétyp
q have different values. A stateof a TAGC can be used for

Definition 11.1 A tree automaton with global constraints instance to characterize unique identifiers as in the foligw
(TAGC) over a signature® is a tuple.A = (Q, %, F,C, A)  example, which presents a TAGC whose language cannot be
such that(Q, %, F,A) is a TA, denoteda(A), and C is  recognized by a TAGED.

a Boolean combination of atomic constraints of the form .
g~ q orq# ¢, whereq,¢ € Q. A TAGCA is called Example 1.2 The TAGC of our running example accepts

positive if C4 is a disjunction of conjunctions of atomic (in Statéqas) lists of dishes called menus, where every dish is
constraints. A TAGCA is called positive conjunctiveif ~ associated with one identifier (stajg;) and the time needed
C.4 is a conjunction of atomic constraints. The subclassed® €Ok it (stateg;). We have other states accepting digits
of positive and positive conjunctive TAGC are denoted by?a), Numbers ¢y) and lists of dishesq).

PTAGC and PCTAGG, respectively. The TAGCA = (Q,%,F,C,A) is defined as fol-

A run r of the TAGCA is a run of ta(A) such thatr ~ 1OWs: X = {0,...,9: O,N, Lo : 2,L, M : 3}, Q@ =
satisfiesC 4, denotedr = C 4, where the satisfiability of {QdaQNinvataqLaQM}’_ F = {qu}, and A = {i —
constraints is defined as follows, whetrés term(r). For ~ %d lan [ dia | g | 0 < i < 9} U {N(qa,qn) = an | Gia |
atomic constraintsy = ¢ ~ ¢’ holds (respectively- = at, Lo(qia> gt) — qr, L(Gia; @1, q1) — qr, M (qia, qt,qr) —

q % ¢') if and only if for all different positiong,p’ € qn}- . . . .
Pos(t) such thatr(p) = ¢ and r(p) = ¢, t|, = t|,» holds The constrainC ensures that all the identifiers of the dishes
= — 4 tp = tp

(respectivelyt|, # t,» holds). This notion of satisfiability s " @ Menu are pairwise distinct (i.e. thai, is a key) and

extended to Boolean combinations as usual. As for TAs, wifiat the time to cook is the same for all disfi: = gia 7
say thatr is a run of A on ¢. Gia N q¢ = q. Key constraints such agg % ¢;q cannot be

Arun of A ont € 7(X) is successfulf r(A) € F4. The ~ Simulated by TAGEDs (see [10]). ,
language(A) of A is the set of terms for which there A term in £(A) together with an associated successful run

exists a successful run of. ¢  are depicted in Figure 1. %

Similarly to TAGED (see [1]) TAGC can be proved
to be closed under union and intersection, but not under
complementation. The membership problem (given a term
t and a TAGCA, do we havet € £(A)?) is NP-complete
while universality (given a TAGCA over 3, do we have
L(A) = T(X)?) is undecidable for PCTAGE] [11]. The
following consequence is a new result for TAGEDs.

It is important to note that the semantics 6fg ~ ¢’) and
q # ¢ differ, as well as the semantics ef(¢ % ¢') and
g ~ ¢'. This is because we have a “for all’ quantifier in
both definitions.

We use below the notation TAGE, wherer is eithera
or %, to characterise the subclass of TAGC with only atomic
constraints of type- (and same for PTAGC and PCTAGC).

The class of regular languages is strictly mcluded n theProposition [1.3 It is undecidable whether the language of
class of TAGC languages due to the constraints. a qi PTAGGY i

) given Cx] is regular.

Moreover, the TAGEDs of [1] are also a particular case of
TAGC, since they can be redefined in our setting as restricted  Proof: (Sketch) A reduction from universality to reg-
PCTAGC. In particulay andq’ are required to be distinct in ularity can be easily described as follows by using a new



function symbolf with arity 2, and any non-regular lan- | ? H; Hi
guageL which is recognizable by a PTAGE]. 5 {a} 0

Let A be an input of universality for PTAGE]. It is not 4 {s} {1.2}
difficult to compute a new PTAGE| A’ recognizing the | 3 {s.3} {1.2,31,3.2}
language( f(t1,t2) | t1 € T(Z) Aty € LYU{f(t1,ta} | t1 € 2 {3.3.3} {1.2.31,32,331,33.2}
L(A) At € T(X)}. Then we can show thal(A) = T(X) 1 {2.3.2.3.3.2,3.33.2} {1.31,33.1,3.3.3.1}
if and only if £L(A’) is regular. [ 0| {121,22,81,321, 0

] ] ] ) 3.2.2,3.3.1,3.3.2.1,3.3.2.2,

The emptinesss the problem to decide, given a TAGG, 3.3.3.1,3.3.3.2.1,5.3.3.2.2}
whetherL(.A) = (? The proof that it is decidable for TAGC §
is rather involved and is presented in Section III. Figure 2. H; and H; (Example III.3).

I1l. EMPTINESSDECISIONALGORITHM

In this section we prove the decidability of tkeenptiness
problem for TAGC. We start by stating that it suffices to
prove this result for PCTAGC.

the subruns of the direct children. In this case, an acogptin
run with height bounded by the number of states exists,
whenever the accepted language is not empty.

When the tree automaton has global equality and dise-
quality constraints, the constraints may be falsified when
replacing a subrun by a new run. For PCTAGC, we will
define a notion of pumping ensuring that the constraints are

The proof of this lemma, given in [10], is technical but also Satisfied. This notion of pumping requires to perform selvera
straightforward. It is based on the fact that negativediter replacements in parallel. We first define the sets of position
—(q1 # q2) of ~(q1 ~ ¢2) can be encoded with the addition involved in such a kind of pumping.
of new states and positive literals. o

The decidability of emptiness for PCTAGC is proved in Definition 1ll.2 Let A be a PCTAGC. Let be a run of
three steps. In Subsection III-A, we present a new notiorl- Lt i be an integer betweed and A(r). We definel?;
of pumping which allows to transform a run into a smaller@ {P € Pos(r) | h(rl,) = i} and H; as {p.j € Pos(r) |
run under certain conditions. In Subsection 1I-B, we define "(7lp.j) <@ Ah(rlp) > i}, %
well quasi-ordering< on a certain sef. In Subsection II-C,
we connect the two previous subsections by describin
how to compute, for each run with heighth = h(r), a
certain sequence,, ..., eq of elements ofS satisfying the
following fact: there exists a pumping onif and only if The following lemma is rather straightforward from the
e; < e; for someh > i > j > 0. Finally, all of these previous definition.
constructions are used as follows. Suppose the existence of
an accepting rum. If r is “too high”, the fact that< is a  Lemma I1l.4 Let A be a PCTAGC. Let be a run ofA. Let
well quasi-ordering and the property of the sequence imply be an integer betweemand i(r). Then, any two different
the existence of such j. Thus, it follows the existence of a positions in H; U H; are parallel, and for any arbitrary
pumping providing a smaller accepting ruh We conclude  positionp in Pos(r) there is a positiorp in H; U H; such
the existence of a computational bound for the height of anhat, eitherp is a prefix ofp, or  is a prefix ofp.
accepting run, and hence, decidability of emptiness.

Lemma lll.1 Given a TAGCA, one can effectively con-
struct a PCTAGC recognizing(.A).

%xample [11.3 According to Definition 111.2, for our run-

ing example (Example 11.2), we have tt# and H;
presented in Figure 2. %

Definition 1Il.5 Let.A be a PCTAGC. Let be a run ofA.

Let 4, j be integers satisfying < j < i < h(r). A pump-
Pumping is a traditional concept in automata theory, andnjection : (H; U H,) — (H;UH;) is an injection function

in particular, they are very useful to reason about treguch that the following conditions hold:

automata. The basic idea is to convert a given ruimto () I(H;) C H,; and I(H,) C H,.

another run by replacing a subrun at a certain posgienr  (¢,) For eachp in H; U H;, r(p) = r(I(p)).

by a runs’, thus obtaining a run[r’],. Pumpings are useful (c.) For each p1,p» in H; U I, (term(r|;,) =

for deciding emptiness: if a “big” run can always be reduced tern(r|p,)) & (term(r|r(p,)) = tern(r|1(p,)))-

by a pumping, then decision of emptiness is obtained by a Let {p1,...,pn) be H; U H; more explicitly written. The

search of an accepting “small” run. : :
. . un el le, - [7l1a)]p. 1S called aglobal pumpingon
For plain tree automata, a necessary and sufficient cond;,— with indexes, j, and injection. o

tion to ensure that[r’], is a run is that the resulting states
of r|, andr’ coincide, since the correct application of arule By Condition Ca, 7[r|;,)lp, - - - [Tl1(5,)lp. IS Clearly a
at a certain position depends only on the resulting states ain of ¢a(A), but it is still necessary to prove that it

A. Global Pumpings



Figure 3. Pump-injection of Example Il1.6.

is a run of A. By abuse of notation, when we write
rlrlieolpy -+ [Pl15.)]p.» WE SOMetimes consider thaand
{p1,...,pn} are still explicit, and say that it is a global
pumping with some indexes < j < ¢ < h(r).

Example 1.6 Following our running example, we define
a pump-injectionl : (H, U Hy) — (H3 U H3) as follows:
I(1) =3.1,1(2) = 2, I(3) = 3.3. We note thaf is a correct
pump-injection:I(H,) C Hs and I(H,) C Hs hold, thus
(C1) holds. For (C5), we haver(1) = r(I(1)) = ¢, (2) =
r(I(2)) = ¢, andr(3) = r(I(3)) = ¢qz. Regarding (s), for
each differentp;, po in Hy U Hy, term(r|p, ) # term(r|p,)
and term(r|;(,)) # term(r|;(,)) hold.

After applying the pump-injectiofi, we obtain the term

and runs’ of Figure 3. ¢
Our goal is to prove that any global pumping
rlrligolp -+ - [Pl ]p. 1S @ run, and in particular, that all

global equality and disequality constraints are satisfied.

this end we first state the following intermediate statement"’

which determines the height of the terms pending at somé (1) ) _
¢ Suppose that one ofi, p2, sayp, is a proper prefix of a

positions after the pumping action. It can be easily prove
by induction on the height of the involved term.

Lemma 1.7 Let A be a PCTAGC. Let be a run of A.

Let " be the global pumping(r|;;,)lp, - - [7lr,)lp. ON
r with indexed) < j < < h(r) and injection!. Letk > 0

be a natural number and lgt be a position ofr such that
h(r|p) is i + k.

Then,p is also a position of’ and h(r'|,) is j + k.

Corollary 111.8 Let. A be a PCTAGC. Let be a run ofA.
Let ' be a global pumping of. Then,h(r’") < h(r).

indexes0 < j < ¢ < h(r) and injection!. Let py,py be
positions ofr satisfyingh(r|,, ), h(r|p,) > t.

Then,p,p. are also positions of’ and (term(r|,,) =
term(r|p,)) < (term(r’|,,) = term(r'|,,)) holds.

As a consequence of the previous lemmas, we prove that the

result of a global pumping is a run.

Lemma 111.10 Let A be a PCTAGC. Let be a run of A.
Letr" be the global pumping[r|;,)lp, - - [7]1¢5,)]p. With
indexesd < j <4 < h(r) and injection].

Then,r’ is a run of A.

Proof: By Condition (C2) of the definition of pump-
injection, in order to see that is a run, it suffices to see
that all global constraints are satisfied. Thus, let us cmmsi
two different positionspy,pa of Pos(r’) involved in an
atom of the constraint of4, i.e. either+/(p1) ~ 7'(p2) or
r'(p1) % r'(p2) occurs in the constraint ofl. According to
Lemma I11.4, we can distinguish the following cases:

e Suppose that a position iH; U H;, say pi, is a prefix
of both p1,p2. Then,r'[,, = 7/1,).(p1—p) @A 7],
7|1(51).(pa—p1) NOID. Hencey'|,,, andr’|,, are also subruns
of r occurring at different positions. Thus, sincés a run,
they satisfy the atom involving’(p;) and+’(pz).

e Suppose that two different positions iH; U H;, say
p1 and po, are prefixes ofp; and po, respectively. Then,
o = 7110 (1 —p1) ATy = 71152, (po—pa) DOID. By
the injectivity of I, I(p1) # I(p2) holds. Moreover, by
Lemma lIl.4,1(p1) || I(p2) holds. Hence, as before)|,,
andr'|,, are subruns of- occurring at different (in fact,
parallel) positions. Thus, they satisfy the atom involving
andr’(pa).

position in H; U H;, and thatp, satisfies that some position
in H; U H; is a prefix ofpy. It follows that h(r'[,,) is
smaller than or equal tg, and+’|,, is also a subrun of
r. Moreover, p; is also a position ofr, '(p1) = r(p1)
holds, andh(r|,,) = ¢+ k holds for somek > 0.
Hence,term(r|,,) # term(r’|,,) holds. Sincer is a run
andr’|,, is a subrun ofr, the atom involvingr(p,) and
r’'(p2) is necessarily of the formr(p;) % +/(p2). Thus,
the atom involvingr’(p;) andr’(p2) is necessarily of the
form r'(p1) % ' (p2). By Lemma 1.7, h(r'|,,) is j + k.
Therefore, term(r’|,,) # term(r’|,,) holds, and hence,
such an atom is satisfied for such positions-in

The following lemma states that equality and disequalitye Suppose that botp,, p> are proper prefixes of positions
relations are preserved, not only for terms pending at thén H; U H;. Then, py,p. are positions ofr satisfying

positions of the domain of, but also for terms pending at

h(r|p, ), h(r|p,) > i. Moreover,r(p1) = r'(p1) andr(pz) =

prefixes of positions of such domain. Again, it is rather easy' (p2) hold. Sincer is a run, the atom involving(p;) and

to prove by induction on the height of the involved terms.

Lemma 111.9 Let A be a PCTAGC. Let be a run of A.
Letr’ be the global pumping(r|;,)]p, - - - [7l1(5,)]p. With

r(p2) is satisfied in the rum for positionsp; andps. By
Lemma lll.9,(term(r|,, ) = term(r|,,)) < (term(r'|,,) =
term(r’|,,)) holds. Thus, the atom involving’(p:) and
r’'(p2) is satisfied in the rum’ for positionsp; andp,. H



B. A well quasi-ordering i T'H; T
. . , . . 5 [€0,0,0,0,0,1)] []
In this subsection we define a well quasi-ordering. It
- : 4 [(0,0,0,0,1,0)] [(0,0,1,0,0,0), (0,0,0,1,0,0)]
assures the existence of a computational bound for certajn
X L3 [(0,0,0,0,1,0)] [(0,0,1,0,0,0), (0,0,0,2,0,0),
sequences of elements of the corresponding well quasi- (0,0,1.0.00)]
ordered set. It will be connected with global pumpings in R
. 2 [(0,0,0,0,1,0)] [(0,0,1,0,0,0), (0,0,0,3,0,0),
the next subsection. (0,0,1,0,0,0), (0.0.1,0,0,0)]
- . . 1 0,0,0,4,0,0 0,0,1,0,0,0), (0,0,1,0,0,0),
Definition 11.11 Let < denote the usual quasi-ordering on L ) [<<0 0.1.0.0 0>> <<0 0.1.0.0 0>>]
natural numbers. Let be a natural number. 0| [00.1000), 10,1000 T [’] T
We define the extension of to n-tuples of natural (© ’4"()’0"0’@ 7(0 ’0 "1 ’0"()’0>’
numbers agzy, ..., xn) < (y1,...,yn) if x; <y, for each: N (0"071"070,'0) ]

in{1,...,n}. We definesun((z1,...,z,)) := z1+- -+ 2.
We define the extension &f to multisets ofn-tuples of
natural numbers ager, ..., eq] < [e},..., e}] if there is an
injection I : {1,...,a} — {1,..., 3} satisfyinge; < e}(i)
for eachi in {1,...,a}. We definesum([ey,...,es]) :=
sum(ey) + - - - + sum(ey).
We define the extension gf to pairs of multisets of.-

tuples of natural numbers 4P, P) < (P, P)if P, < P,
and P, < P». O C. Mapping a run to a sequence of the well quasi-ordered
set

As a direct consequence of Higman's Lemma [21] we ) ) .
We will associate, to each numbein {0,...,h(r)}, a

have the following: pair of multisets of tuples of natural numbers, which can be
compared with other pairs according to the definition<of

in the previous subsection. To this end, we first associate
tuples to terms and multisets of tuples to sets of positions.

Figure 4. Multisetsp,, T, (Example 111.16).

In order to bound the height of a term accepted by a given
PCTAGC A (and of minimum height), Lemma I11.13 will be
used by making: to be the maximum arity of the signature
of A, and makingn to be the number of states of.

Lemma 1l.12 Givenn, < is a well quasi-ordering for pairs
of multisets ofn-tuples of natural numbers.

In any infinite sequencey, es, ... of elements from a well

quasi-ordered set there always exist two indexes ;  Definition ll.14 LetAbe a PCTAGC. Lef, .. ., ¢, be the
Satisfyingei < e;. In generaL this fact does not |mp|y the states ofA. Letr be arun of A. Let P be a set of positions
existence of a bound for the length of sequences withou®f 7. Lett be a term. We define, » as the following tuple
such indexes. For example, the relatisnbetween natural  Of natural numbers(|{p € P | tern(r|,) = t Ar(p) =
numbers is a well quasi-ordering, but there may exist arbilh}‘a R ‘{P € P|tern(r[,) =t Ar(p) = qn}|>

trarily long sequences, ...,z of natural numbers such o

that (1) z; > z; for all 1 <i < j < k. In order to bound Definition 111.15 Let A b_e_a PCTAGC. Let be a run of
the length of sequences satisfyifig, it is sufficient to force A Let P be a set of positions of. Let {¢1,..., ¢} be the
that the first element and each next element of the sequen&gt of terms{t | 3p € P : term(r|,) = t}. We definep as
are chosen among a finite number of possibilities. Indeed ithe multisetrs, p, ..., 7, pl. O
this this case, by Konig’'s lemma, the prefix trees descgibin ) )

all such (finite) sequences is finite. As a particular case ofxample I1.16 Following our running example, for the

this fact we have the following result (proved in [10]). representation of the tuples of natural numbers we order
the states asqq, qn, Gid, 4t, 91, qur)- The multisetsy, and

7y, are presented in Figure 4. %

The following lemma connects the existence of a pump-
injection with the quasi-ordering relation.

Lemma 1ll.13 There exists a computable functiéh: N x

N — N such that, given two natural numbetsn, B(a,n)

is a bound for the length of the maximum-length sequence
(Ty,T1),...,(T,,Ty) of pairs of multisets ofr-tuples of

natural numbers such that the following conditions hold:

1) The tuple(0,...,0) does not occur in an{;, T; for
tin {1,...,¢}. 3

2) sum(7y) =1 and sum(7;) = 0. 3

3) Foreachiin {1,...,0—1}, sum(T;41)+sum(7T;41) <
a - sum(7T;) + sum(7;).

4) There are noi, j satisfyingl < ¢ < j < ¢ and

(T;, T,y < (T}, Ty)

Lemma I11.17 Let A be a PCTAGC. Let be a run of A.
Let i, j be integers satisfying < j < i < h(r).

Then, there exists a pump-injectidn: (H; U H;) —
(H; U Hy) if and only if (rp,,ry) < (re; i,

Proof: We just prove the right-to-left direction: the
other direction is technical but not conceptually difficult
and it is not necessary for the rest of the paper. Hence



assume thatry,,ry,) < (rm,,rg,) holds. We have to Proof: Consider the sequeanth(r),th(T)>,...,
construct a pump-injectiod : (H; U H;) — (H; U Hj). (rH,,7p,)- Note that then-tuple (0,...,0) does not ap-
We just definel : H; — H; and prove Conditions(f;)  pear in the multisets of the pairs of this sequence. By
and (Cs) for p,p1,pe in H;. This is becausd : H; — H; Lemma IIl.19, |H},(,y| = 1 and [Hy,| = 0 hold, and for
can be defined analogously, and Conditio6s)(and (s)  eachi in {1,...,h(r)}, |Hi_1| + |Hi_1| < a- |H;| + |H;|

for the corresponding positions can be checked analogouslifiolds. Moreover, for each in {0,...,a(r)}, [Hi| =
Moreover, for positionsy) € H; andp, € H;, Condi- sum(rg,) and |H;| = sum(rg, ). Thus, sun(rp, ) =
tion (C3) holds whenever Condition(f;) holds since in 1, sum(th(T)) = 0, and for eachi in {1,...,h(r)},

this caseterm(r|y) # term(r|p) and term(r|;p;)) #  sum(rg, ,)+sum(rg ) < a-sum(ry,)-+sum(ry ). Hence,
term(r|7,)) hold. Hence, this simple case is enough tosince h(r) > B(a,n) holds, by Lemma 1I1.13 there exist
prove the whole statement. i,j satisfying h(r) > i > j > 0 and (rg,,ryz,) <
We write {tern(r|,) | p € H;} and {tern(r|,) | p €  (ry,,ry ). By Lemmalll.17, There exists a pump-injection
Hj} more explicitly as{t;1,....tio} and{t;1,....t;5},  1:(H;UH,;) — (H;UH,). Therefore, there exists a global
respectively. Sincerg,,r;,) < (rHj,rHj) holds, ry, < pumping onr. m
ry; also holds. Thus, there exists an injective functién
{1,...,a} = {1,..., B} satisfying the following statement Theorem 1ll.21 Emptiness is decidable for PCTAGC.

for eachd in {1,...,a} and each state of A: _ . .
[{p € H; | tern(r|y) = tis Ar(p) = q}| < |{p € H; | Proof: Let a be the maximum arity of the symbols in
% p) — U, - = J

term(rly) = t; 1) A r(p) = q}’ (4). the signature ofd. Let n be the number of states of. Let

In order to definel : H; — H;, we definel for each of 7 P& an accepting run ofl with minimum height.

such sets{p € H; | tern(r|,) = t;s A r(p) = q} as any Suppose that h(r) = B(a,n) holds_. Then, by
injective function] : {p € H; | term(r|,) = tis Ar(p) = Lemma 111.20, therle exists a global pumpingon r. By
gt — {p € Hj | term(r|,) = t; /(5 A r(p) = q}, which Cor.o!lfary .8, h(r') < _h(r)l holds. Moreover, py the
is possible by the above inequality){ The globall is then  definition of global pumping;’(A) = r(A) holds. Finally,
injective thanks to the injectivity of’. Conditions (;) and ~ PY Lemma lll.10,-" is a run of A. Thus,” contradicts the
(Cs) trivially follow from this definition. m  Minimality of r. We conclude thab(r) < B(a,n) holds.

The decidability of emptiness oft follows, since the ex-
Example 111.18 Following our running example, we first istence of successful runs implies that one of them can be
prove (ru,,r,) < (rm,,7s,). To this end just note that found among a computable and finite set of possibilitims.
[(0,0,0,0,1,0)] < [(0,0,0,0,1,0Y], [(0,0,1,0,0,0)] < Using Lemma 1.1 and Theorem I11.21, we can conclude
[(0,0,1,0,0,0], and [(0,0,0,1,0,0)] < [(0,0,0,2,0,0)] the decidability of emptiness for TAGC.
hold. We can defind : (Hy U Hy) — (Hs U Hs) from _ _ _
this relation according to Lemma 111.17. Doing the adequateCorollary 11.22- Emptiness is decidable for TAGC.
guess we obtain the_ fol_lowing defin_iti.orf:(l) = 31 IV. EXTENSIONS
1(2) = 2, 1(3) = 3.3 which is the pump-injection considered

above for our running example. 0 In this section, we extend the emptiness result by consideri

the addition of new constraints to TAGC. We shall extend
The following lemma follows directly from the definition the notation TAGQr, . .., 7] introduced in Section to these
of the setsH; andH;, and allows to connect such definitions new type of constraints, in addition te and #.

with Lemma 111.13. A. Arithmetic Constraints

Lemma Il.19 Let A be a PCTAGC. Let be the maximum We study first the addition of counting constraints to
arity of the symbols in the signature gf. Letr be a run  TAGC. LetQ be a set of states. #near inequalityoverQ is
of A. Then, the following conditions hold: an expression of the form) ~ a,.lg| > a or Y ag.lq| > a

(1) |Hh(r)| =1and |ﬁh(r)| =0. B q€qQ q€Q
(2) For eachi in {1,... h(r)}, |Hi_1| + |[Hii1| < a- where everys, anda belong toZ.
|H;| + |H,). Let » be a run on a ternt of a TA or TAGC A over X
(3) For eachi in {0,...,h(r)}, |H;| = sum(rg,) and and with state set), and letq € Q. The interpretations
|H;| = sum(rg ). of |g| and ||¢|| wrt » (andt) are defined respectively by
' the following cardinalites  [|q|], = [r~1(q)| and

Lemma 1Il.20 Let B : N x N — N be the computable [||g||]. = [{s € T(Z)|3p € Pos(t),r(p) = q,5 =t[,}|.
function of Lemma 111.13. Led be a PCTAGC. Let: be  This permits to define the satisfiability of linear equatitie
the maximum arity of the symbols in the signaturedolLet  wrt ¢ andr and the notion of successful runs for extensions
n be the number of states @f Letr be a run ofA satisfying  of TAGC with atomic constraints which can have the form
h(r) > B(a,n). Then, there is a global pumping on of the above linear inequalities.



Let us denote by.|z and .||z the types of the above a rule ¢(p)(r(p.1),...,7(p.m)) = r(p) € A satisfying
linear inequalities, seen as atomic constraints of TAG@ Th¢(p) € ¥,,, and moreover, for all = j in the conjunction
class TAG(|.|z] has been studied under different namese, t|,.; = t|,.; holds, and for alli # j in the conjunctior,
(e.g.Parikh automata in [19], linear constraint tree automata|, ; # t|,,; holds.

in [22]) and it has a decidable emptiness test. The notions of successful runs and languages can be
Combining constraints of type and counting constraints extended straightforwardly from TA to TACB. Global con-
of type |.|z however leads to undecidability. straints can also be added to TACB in the natural way. The
automata of the resulting classes TAGB#, ...] will there-
Theorem IV.1 Emptiness is undecidable for PTAGG.|;].  fore perform global and local test during their computagion

_ i , The emptiness decision algorithm of Section Ill still works
Proof: (Sketch) The proof is based on a reduction fromfor this extension of TAGC with local brother constraints.

the Hilbert's tenth problem. The main point is the fact This is because a global pumping| s, )lp. - - - [l ru) 1o

that we can encode (non negative) integer multiplication by, 5 vyn; can be proved to satisfy the constraints between

combining~ and|.|. We can indeed build a PTAGE, |.1z]  prothers in a completely analogous way as in the proof of
A, recognizing terms of the form(ty, t2, t12) such that in Lemma 1110 and Theorem IV.2.

a run of A,, all the leaves oty t; andt,, respectively are

labeled by the statg,, ¢ andq,2. Moreoveryt, is of the  rhaqrem v.3 Emptiness is decidable for TAGB #,N|.
form f(t1,..., f(t1,b)), and in a run ofA,, the position of

the firstt, (first argument of) is labelled by a state; and  C. Unranked Ordered Trees

the positions of all the,’s in ¢,, are labeled by-y. The Our tree automata models and results can be generalized

constraintr; ~ ry A |ri| = |g2| ensures that,; contains  from ranked to unranked ordered terms. In this settids

|q2| occurrences of;, hence thatqia| = |q1| * [ga|- B called anunranked signaturemeaning that there is no arity
We present now a restriction on linear equalities whichfixed for its symbols,.e. that in a terma(ts, ..., t,), the

enables a decidable emptiness test when combined-with numbern of children is arbitrary and does not depend on
and# as global constraints. Aatural linear inequalityover ~ a- Let us denote by/(%) the set of unranked ordered terms
Q is a linear inequality as above whose coefficienfsand ~ Over Y. The notions of positions, subterme¢c are defined

a all have the same sign. The types of the natural lineafor unranked terms of/(X) as for ranked terms of (X).
inequalities are denoted byly and ||.||x. Below, we shall We extend the definition of automata for unranked ordered

abbreviate these two types by terms, called hedge automata [23], with global constraints

We show in [10] that the class PTAGE, #,N] has the A hedge automaton with global constrainidAGC) is a
same expressiveness as TAGC:]. The proofs works in  tuple A =(Q, %, F,C, A) where@, F andC are as in the
two steps, using the intermediate class (equally expressiv definition of TAGC in Section II-B and the transitions of
PTAGO~, #, N]. We add new states and replace: in the firstA have the forma(L) — ¢ wherea € ¥, ¢ € Q and L
step, the negative constraints by counting constraints ani§ @ regular (word) language ové}*, assumed given by a
positive constraints (of type: and #), and in the second NFA with input alphabet). The notion of run is extended

step, the counting constraints by positive constraints. to HAGC in the natural way.
Both Lemma l1l.1 and the next theorem follow immedi- The emptiness decision results of Corollary I11.22 can be
ately from this result. extended from TAGC to HAGC using a standard transforma-
tion from unranked to ranked binary terms, like theension
Theorem IV.2 Emptiness is decidable for TAGE, %, N]|. encoding described in [2], Chapter 8.
B. Equality Tests Between Brothers Theorem V.4 Emptiness is decidable for HAGE, %, N].

The constraints of TAGC are checked once for all on
a whole run. There exists another kind of equality and
disequality constraints for extending TA which are tested A ranked termt € 7(X) over X can be seen as a model
locally at every transition step. One example of TA with for logical formulae, with an interpretation domain which
such local constraints defined in [8] are tree automata withs the set of positiong®os(t). We consider monadic second
constraints between brotherSACB). order formulae interpreted on such models, with quantifi-

A TACB is a tuple A = (Q, %, F,A) where@, F, © cations over first order variables (interpreted as posdion
are defined as with TA and the transitions rules’ohave  denotedr,y ... and over unary predicatese( set variables

V. MONADIC SECOND ORDERLOGIC

the form: f(q1,...,qn) - ¢, Wherec is a conjunction of interpreted as sets of positions), denofedy”. ..
atoms of the formi = j ori # j with 1 <i,5 < n. A run The formulae are built with the following predicates:
of the TACB A on a termt € T(X) is a functionr from 1) equalityz =y, and membershig (z) — the position

Pos(t) into @ such that, for allp € Pos(t), there exists x belongs to the sek,



2) a(x), for a € ¥ — the positionz is labeled bya in ¢,  Theorem V.2EMSQ+1, ~, %, N] is decidable on unranked
3) Si(z,y), for all i smaller than or equal to the maximal grdered terms.

arity of symbols ofY, which is true on every pair

of positions (p,p.i), (we call +1 the type of such V1. CONCLUSION
predicates), .

4) term equalityX ~ Y, resp. disequalityX % Y, which _We_ have answered. (positively) the open problem of de-
is true when for allz in X and ally in Y, ¢, = t|,, cidability o_f the empu_ness proplem for the TAGEDs [1],
resp.t|, # t|,, (predicate types- and by proposing a decision algorithm for a class TAGC of

5) linear inequalitiesy” a;.|X;[ > a or Zai,-”Xi” > q, tree automata with global constraints extending TAGEDSs.
where eveny; anda belong toZ; |X;| is interpreted  Our method for emptiness decision, presented in Section IlI
as the cardinality ofX; and ||X;|| as the cardinality appeared to be robust enough to deal with several extensions
of {t|, | p € X;}. (predicate types.|z and|.||z). like global counting constraints, local equality testswesn

sibling subterms and extension to unranked terms. It could

perhaps be extended to equality modulo commutativity and
other equivalence relations. Another interesting subyjesmn-
tioned in the introduction is the combination of the HAGC
of Section IV-C with the unranked tree automata with tests

between siblings [12], [13].

A challenging question would be to investigate the precise
complexity of the problem, avoiding the use of Higman’s
Lemma in the algorithm. For instance, in [1], it is shown,
using a direct reduction into solving positive and negative
set constraints [25], [26], that emptiness is decidable in
SNEXPTIME for PCTAGG#] such that in every atomic

We write MSOry, ..., x| for the set of monadic second
order logic formulae with equality, membership, labeling
predicates and other predicates of type. .., 7, amongst
the above types-1, ~, %, and|.|z, |.]z. We also use the
notations|.|y and||.||y for natural linear inequalities and the
abbreviationsZ and N as in Section IV-A. Let EMS(7F]
be the fragment of MS@] of the formulae of the form
3X;:...3X,, ¢ where all the set variables ia belong to
{X1,..., X}

It is well known that MSQ+1] has exactly the same
expressiveness as TA [24] and therefore it is decidabl

The el)l(tensl'\jl)g MISprl’ %1]9'3 tlﬁndlegdablet, S€e.g. [9]’| constraintsy % ¢/, ¢ andq’ are distinct states. On the other
as wet as @1, |.lz] [19] (the latter extension is also hand, the best known lower bound for emptiness decision

undecidable for unranked ordered terms when counting = trcc is EXPTIME-hardness (this holds already for
constraints are applied to sibling positions [17]), but thePCTAqu] as shown in [1])

fragment EMSQ+-1, |.|] is decidable [19]. Another branch of research related to TAGC concerns

In [1] the fragment EMSO with- and a restricted form of ~ 5;omata and logics fatata treesi.e. trees labeled over an
7 Is shown decidable, with a two way correspondence bejqnite (countable) alphabet (see [27] for a survey). Intee

twgen these fqrmulae and a (_1ecidable subclass of TAGEDa'ata trees can be represented by terms over a finite alphabet,
This construction can be straightforwardly adapted tokesta | it an encoding of the data values into terms. This can be

lish a two way correspondence between EM$Q ~,%,N|  jone in several ways, and with such encodings, the data
and TAGQ=;, 7, N]. With Theorem IV.2, it gives the follow- o 3jity relation becomes the equality between subterms.

ing result. Therefore, this could be worth studying in order to relate
our results on TAGC to decidability results on automata or

Theorem V.1EMSQ+1, ~, %,N] is decidable on ranked |09ics on data trees like those in [28], [22].

terms.
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