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Abstract—We define tree automata with global constraints
(TAGC), generalizing the class of tree automata with global
equality and disequality constraints [1] (TAGED). TAGC can
test for equality and disequality between subterms whose posi-
tions are defined by the states reached during a computation.
In particular, TAGC can check that all the subterms reaching
a given state are distinct. This constraint is related to monadic
key constraints for XML documents, meaning that every two
distinct positions of a given type have different values.

We prove decidability of the emptiness problem for TAGC.
This solves, in particular, the open question of decidability of
emptiness for TAGED. We further extend our result by allowing
global arithmetic constraints for counting the number of
occurrences of some state or the number of different subterms
reaching some state during a computation. We also allow local
equality and disequality tests between sibling positions and the
extension to unranked ordered trees. As a consequence of our
results for TAGC, we prove the decidability of a fragment of the
monadic second order logic on trees extended with predicates
for equality and disequality between subtrees, and cardinality.

I. I NTRODUCTION

Tree automata techniques are widely used in several
domains like automated deduction (seee.g. [2]), static
analysis of programs [3] or protocols [4], [5], and XML
processing [6]. A severe limitation of standard tree automata
(TA) is however that they are not able to test for equality
(isomorphism) or disequality between subtrees in an input
tree. For instance, the language of trees described by a non-
linear pattern of the formf(x, x) is not regular (i.e. there
exists no TA recognizing this language). Similar problems
are also frequent in the context of XML documents process-
ing. XML documents are commonly represented as labeled
trees, and they can be constrained by XML schemas, which
define both typing restrictions and integrity constraints.All
the typing formalisms currently used for XML are based
on finite tree automata. The key constraints for databases
are common integrity constraints expressing that every two
distinct positions of a given type have different values.
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This is typically the kind of constraints that can not be
characterized by TA.

One first approach to overcome this limitation of TA con-
sists in adding the possibility to make equality or disequality
tests at each step of the computation of the automaton.
The tests are performedlocally, between subtrees at a
bounded distance from the current computation position in
the input tree. The emptiness problem, whether the language
recognized by a given automaton is empty, is undecidable
with such tests [7]. A decidable subclass is obtained by
restricting the tests to sibling subtrees [8] (see [2] for a
survey).

Another approach was proposed more recently in [9], [1]
with the definition of tree automata withglobal equality
and disequality tests (TAGED). The TAGED do not perform
the tests during the computation steps but globally on the
tree, at the end of the computation, at positions which are
defined by the states reached during the computation. For
instance, they can express that all the subtrees that reached
a given stateq are equal, or that every two subtrees that
reached respectively the statesq and q′ are different. The
emptiness has been shown decidable for several subclasses
of TAGED [9], [1], but the decidability of emptiness for the
whole class remained a challenging open question.

In this paper, we answer this question positively, even
for a class of tree recognizers more general than TAGED.
We define (in Section II) a class of tree automata with
global constraints (TAGC) which, roughly, corresponds to
TAGED extended with the possibility to express disequalities
between subtrees that reached the same state (specifying key
constraints, which are not expressible with TAGEDs), and
with arbitrary Boolean combinations (including negation)of
constraints. We show in Section III that emptiness is de-
cidable for TAGC. The decision algorithm uses an involved
pumping argument: every sufficiently large tree recognized
by the given TAGC can be reduced by an operation of
parallel pumping into a smaller tree which is still recognized.
The existence of the bound is based on a particular well
quasi-ordering.

In Section IV-A, we study the extension of TAGC with
global counting constraints on the number|q| of occurrences
of a given stateq in a computation, or the number‖q‖ of
distinct subtrees reaching a given stateq in a computation.
We show that emptiness is decidable for this extension when



counting constraints are only allowed to compare states to
constants, like in|q| ≤ 5 or ‖q‖ + 2‖q′‖ ≥ 9 (actually
in this case, the counting constraints do not improve the
expressiveness of TAGC). With counting constraints being
able to compare state cardinalities (like in|q| = |q′|),
emptiness becomes undecidable. We show that the emptiness
decision algorithm can also be applied to the combination
of TAGC with local tests between sibling subtrees a la [8]
(Section IV-B), and to unranked ordered labeled trees (Sec-
tion IV-C). This demonstrates the robustness of the method.

As an application of our results, in Section V we present a
(strict) extension of the monadic second order logic on trees
whose existential fragment corresponds exactly to TAGC. In
particular, we conclude its decidability. The full versionof
this paper including all proofs can be found in [10].

Related Work.:The languages of TAGC and tree au-
tomata with local equality and disequality constraints are
incomparable (seee.g. [11]). We show in Section IV-B that
the local tests between sibling subtrees of [8] can be added
to TAGC while preserving the decidability emptiness. The
tree automata of [8] have been generalized from ranked
trees to unranked ordered trees [12], [13]. The decidable
generalization of TAGC to unranked ordered trees proposed
in Section IV-C and the automata of [12], [13] are incompa-
rable. A combination of both formalisms could be the object
of a further study.

Another way to handle subtree equalities is to use au-
tomata computing on DAG representation of trees [14], [15].
This model is incomparable to TAGC whose constraints are
conjunctions of equalities [11]. The decidable extension of
TA with one tree shaped memory [16] can simulate TAGC
with equality constraints only, providing that at most one
state per run can be used to test equalities [9].

As explained in Section II-B, the TAGC strictly generalize
the TAGEDs of [9], [1]. The latter have been introduced as
a tool to decide a fragment of the spatial logic TQL [9].
Decidable subclasses of TAGEDs were also shown in cor-
respondence with fragments of monadic second order logic
on the tree extended with predicates for subtree (dis)equality
tests. In Section V, we generalize this correspondence to
TAGC and a more natural extension of MSO.

There have been several approaches to extend TA with
arithmetic constraints on cardinalities|q| described above:
the constraints can be added to transitions in order to count
between siblings [17], [18] (in this case we could call
them local by analogy with equality tests) or they can be
global [19]. We compare in Section IV-A the latter approach
(closer to our settings) with our extension of TAGC,wrt
emptiness decision. To our knowledge, this is the first time
that arithmetic constraints on cardinalities of the form‖q‖
are studied.

II. PRELIMINARIES

A. Terms, Positions, Tree Automata

We use the standard notations for terms and positions,
see [20]. A signatureΣ is a finite set of function sym-
bols with arity. We sometimes denoteΣ explicitly as
{f1 : a1, . . . , fn : an} where f1, . . . , fn are the function
symbols, anda1, . . . , an are the corresponding arities, or
as{f1, . . . , fn} when the arities are omitted. We denote the
subset of function symbols ofΣ of arity m asΣm. The set
of (ranked)termsover the signatureΣ is defined recursively
as T (Σ) := {f | f : 0 ∈ Σ} ∪ {f(t1, . . . , tm) | f : m ∈
Σ, t1, . . . , tm ∈ T (Σ)}.

Positions in terms are denoted by sequences of natural
numbers. WithΛ we denote the empty sequence (root
position), andp.p′ denotes the concatenation of positions
p and p′. The set of positions of a termt is defined
recursively asPos

(

f(t1, . . . , tm)
)

= {Λ} ∪ {i.p | i ∈
{1, . . . ,m} ∧ p ∈ Pos(ti)}. A term t ∈ T (Σ) can be seen
as a function from its set of positionsPos(t) into Σ. For
this reason, the symbol labeling the positionp in t shall
be denoted byt(p). By p < p′ and p ≤ p′ we denote
that p is a proper prefix ofp′, and thatp is a prefix of
p′, respectively. In this cases,p′ is necessarily of the form
p.p′′, and we definep′ − p as p′′. Two positionsp1, p2
incomparable with respect to the prefix ordering are called
parallel, and it is denoted byp1 ‖ p2. The subtermof t at
positionp, denotedt|p, is defined recursively ast|Λ = t and
f(t1, . . . , tm)|i.p = ti|p. The replacement int of the subterm
at position p by s, denotedt[s]p is defined recursively
as t[s]Λ = s and f(t1, . . . , ti−1, ti, ti+1, . . . , tm)[s]i.p =
f(t1, . . . , ti−1, ti[s]p, ti+1, . . . , tm). The factt = t[s]p may
also be used to emphasis thatt|p is s. Theheightof a termt,
denotedh(t), is the maximal length of a position ofPos(t).
In particular, the length ofΛ is 0.

A tree automaton(TA , see e.g. [2]) is a tuple A =
〈Q,Σ, F,∆〉 where Q is a finite set ofstates, Σ is a
signature,F ⊂ Q is the subset of final states and∆ is
a set of transitions rules of the formf(q1, . . . , qm) → q

wheref :m ∈ Σ, q1, . . . , qm, q ∈ Q. Sometimes, we shall
refer toA as a subscript of its components, like inQA to
indicate thatQ is the state set ofA.

A run of A is a pair r = 〈t,M〉 where t is a term in
T (Σ) andM : Pos(t) → QA is a mapping satisfying, for
all p ∈ Pos(t), that the rulet(p)

(

M(p.1), . . . ,M(p.m)
)

→
M(p) is in ∆A, wherem is the arity of the symbolt(p)
in Σ. By abuse of notation we writer(p) for M(p), and
say thatr is a run ofA on t. Moreover, byterm(r) we
refer to t, and bysymbol(r) we refer tot(Λ). The runr
is called successful(or accepting) if r(Λ) is in FA. The
languageL(A) of A is the set of termst for which there
exists a successful run ofA. A languageL is calledregular
if there exists a TAA satisfyingL = L(A). For facility
of explanations, we shall use term-like notations for runs



defined as follows in the natural way. For a runr = 〈t,M〉,
by Pos(r) we denotePos(t), and byh(r) we denoteh(t).
Similarly, by r|p we denote the run〈t|p,M |p〉, whereM |p
is defined asM |p(p

′) = M(p.p′) for eachp′ in Pos(t|p),
and say thatr|p is a subrun ofr. Moreover, for a runr′ =
〈t′,M ′〉, by r[r′]p we denote the run〈t[t′]p,M [M ′]p〉, where
M [M ′]p is defined asM [M ′]p(p.p

′) = M ′(p′) for eachp′

in Pos(t′), and asM [M ′]p(p
′) = M(p′) for eachp′ with

p 6≤ p′.
A well quasi-ordering [21]≤ on a setS is a reflexive and

transitive relation such that any infinite sequence of elements
e1, e2, . . . of S contains an increasing pairei ≤ ej with
i < j.

B. Tree Automata with Global Constraints

In this subsection, we define a class of tree automata
with global constraints which generalizes the class of
TAGEDs [1].

Definition II.1 A tree automaton with global constraints
(TAGC) over a signatureΣ is a tupleA = 〈Q,Σ, F, C,∆〉
such that〈Q,Σ, F,∆〉 is a TA, denotedta(A), and C is
a Boolean combination of atomic constraints of the form
q ≈ q′ or q 6≈ q′, whereq, q′ ∈ Q. A TAGCA is called
positive if CA is a disjunction of conjunctions of atomic
constraints. A TAGCA is called positive conjunctiveif
CA is a conjunction of atomic constraints. The subclasses
of positive and positive conjunctive TAGC are denoted by
PTAGC and PCTAGC, respectively.

A run r of the TAGCA is a run of ta(A) such thatr
satisfiesCA, denotedr |= CA, where the satisfiability of
constraints is defined as follows, wheret is term(r). For
atomic constraints,r |= q ≈ q′ holds (respectivelyr |=
q 6≈ q′) if and only if for all different positionsp, p′ ∈
Pos(t) such thatr(p) = q and r(p′) = q′, t|p = t|p′ holds
(respectivelyt|p 6= t|p′ holds). This notion of satisfiability is
extended to Boolean combinations as usual. As for TAs, we
say thatr is a run ofA on t.

A run ofA on t ∈ T (Σ) is successfulif r(Λ) ∈ FA. The
languageL(A) of A is the set of termst for which there
exists a successful run ofA. ♦

It is important to note that the semantics of¬(q ≈ q′) and
q 6≈ q′ differ, as well as the semantics of¬(q 6≈ q′) and
q ≈ q′. This is because we have a “for all” quantifier in
both definitions.

We use below the notation TAGC[τ ], whereτ is either≈
or 6≈, to characterise the subclass of TAGC with only atomic
constraints of typeτ (and same for PTAGC and PCTAGC).

The class of regular languages is strictly included in the
class of TAGC languages due to the constraints.

Moreover, the TAGEDs of [1] are also a particular case of
TAGC, since they can be redefined in our setting as restricted
PCTAGC. In particularq andq′ are required to be distinct in
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Figure 1. Term and successful run (Ex. II.2).

q 6≈ q′ for TAGEDs. Reflexive disequality constraints such
as q 6≈ q correspond to monadickey constraintsfor XML
documents, meaning that every two distinct positions of type
q have different values. A stateq of a TAGC can be used for
instance to characterize unique identifiers as in the following
example, which presents a TAGC whose language cannot be
recognized by a TAGED.

Example II.2 The TAGC of our running example accepts
(in stateqM ) lists of dishes called menus, where every dish is
associated with one identifier (stateqid) and the time needed
to cook it (stateqt). We have other states accepting digits
(qd), numbers (qN ) and lists of dishes (qL).

The TAGC A = 〈Q,Σ, F, C,∆〉 is defined as fol-
lows: Σ = {0, . . . , 9 : 0, N, L0 : 2, L,M : 3}, Q =
{qd, qN , qid, qt, qL, qM}, F = {qM}, and ∆ = {i →
qd | qN | qid | qt | 0 ≤ i ≤ 9} ∪ {N(qd, qN ) → qN | qid |
qt, L0(qid, qt) → qL, L(qid, qt, qL) → qL,M(qid, qt, qL) →
qM}.
The constraintC ensures that all the identifiers of the dishes
in a menu are pairwise distinct (i.e. thatqid is a key) and
that the time to cook is the same for all dish:C = qid 6≈
qid ∧ qt ≈ qt. Key constraints such asqid 6≈ qid cannot be
simulated by TAGEDs (see [10]).
A term inL(A) together with an associated successful run
are depicted in Figure 1. ♦

Similarly to TAGED (see [1]) TAGC can be proved
to be closed under union and intersection, but not under
complementation. The membership problem (given a term
t and a TAGCA, do we havet ∈ L(A)?) is NP-complete
while universality (given a TAGCA over Σ, do we have
L(A) = T (Σ)?) is undecidable for PCTAGC[≈] [11]. The
following consequence is a new result for TAGEDs.

Proposition II.3 It is undecidable whether the language of
a given PTAGC[≈] is regular.

Proof: (Sketch) A reduction from universality to reg-
ularity can be easily described as follows by using a new



function symbolf with arity 2, and any non-regular lan-
guageL which is recognizable by a PTAGC[≈].

Let A be an input of universality for PTAGC[≈]. It is not
difficult to compute a new PTAGC[≈] A′ recognizing the
language{f(t1, t2) | t1 ∈ T (Σ)∧t2 ∈ L}∪{f(t1, t2} | t1 ∈
L(A)∧ t2 ∈ T (Σ)}. Then we can show thatL(A) = T (Σ)
if and only if L(A′) is regular.

The emptinessis the problem to decide, given a TAGCA,
whetherL(A) = ∅? The proof that it is decidable for TAGC
is rather involved and is presented in Section III.

III. E MPTINESSDECISION ALGORITHM

In this section we prove the decidability of theemptiness
problem for TAGC. We start by stating that it suffices to
prove this result for PCTAGC.

Lemma III.1 Given a TAGCA, one can effectively con-
struct a PCTAGC recognizingL(A).

The proof of this lemma, given in [10], is technical but also
straightforward. It is based on the fact that negative literals
¬(q1 6≈ q2) or ¬(q1 ≈ q2) can be encoded with the addition
of new states and positive literals.

The decidability of emptiness for PCTAGC is proved in
three steps. In Subsection III-A, we present a new notion
of pumping which allows to transform a run into a smaller
run under certain conditions. In Subsection III-B, we definea
well quasi-ordering≤ on a certain setS. In Subsection III-C,
we connect the two previous subsections by describing
how to compute, for each runr with height h = h(r), a
certain sequenceeh, . . . , e0 of elements ofS satisfying the
following fact: there exists a pumping onr if and only if
ei ≤ ej for someh ≥ i > j ≥ 0. Finally, all of these
constructions are used as follows. Suppose the existence of
an accepting runr. If r is “too high”, the fact that≤ is a
well quasi-ordering and the property of the sequence imply
the existence of suchi, j. Thus, it follows the existence of a
pumping providing a smaller accepting runr′. We conclude
the existence of a computational bound for the height of an
accepting run, and hence, decidability of emptiness.

A. Global Pumpings

Pumping is a traditional concept in automata theory, and
in particular, they are very useful to reason about tree
automata. The basic idea is to convert a given runr into
another run by replacing a subrun at a certain positionp in r

by a runr′, thus obtaining a runr[r′]p. Pumpings are useful
for deciding emptiness: if a “big” run can always be reduced
by a pumping, then decision of emptiness is obtained by a
search of an accepting “small” run.

For plain tree automata, a necessary and sufficient condi-
tion to ensure thatr[r′]p is a run is that the resulting states
of r|p andr′ coincide, since the correct application of a rule
at a certain position depends only on the resulting states of

i Hi Ȟi

5 {Λ} ∅
4 {3} {1, 2}
3 {3.3} {1, 2, 3.1, 3.2}
2 {3.3.3} {1, 2, 3.1, 3.2, 3.3.1, 3.3.2}
1 {2, 3.2, 3.3.2, 3.3.3.2} {1, 3.1, 3.3.1, 3.3.3.1}
0 {1, 2.1, 2.2, 3.1, 3.2.1, ∅

3.2.2, 3.3.1, 3.3.2.1, 3.3.2.2,

3.3.3.1, 3.3.3.2.1, 3.3.3.2.2}

Figure 2. Hi and Ȟi (Example III.3).

the subruns of the direct children. In this case, an accepting
run with height bounded by the number of states exists,
whenever the accepted language is not empty.

When the tree automaton has global equality and dise-
quality constraints, the constraints may be falsified when
replacing a subrun by a new run. For PCTAGC, we will
define a notion of pumping ensuring that the constraints are
satisfied. This notion of pumping requires to perform several
replacements in parallel. We first define the sets of positions
involved in such a kind of pumping.

Definition III.2 Let A be a PCTAGC. Letr be a run of
A. Let i be an integer between0 and h(r). We defineHi

as {p ∈ Pos(r) | h(r|p) = i} and Ȟi as {p.j ∈ Pos(r) |
h(r|p.j) < i ∧ h(r|p) > i}. ♦

Example III.3 According to Definition III.2, for our run-
ning example (Example II.2), we have theHi and Ȟi

presented in Figure 2. ♦

The following lemma is rather straightforward from the
previous definition.

Lemma III.4 LetA be a PCTAGC. Letr be a run ofA. Let
i be an integer between0 andh(r). Then, any two different
positions inHi ∪ Ȟi are parallel, and for any arbitrary
positionp in Pos(r) there is a position̄p in Hi ∪ Ȟi such
that, eitherp is a prefix ofp̄, or p̄ is a prefix ofp.

Definition III.5 Let A be a PCTAGC. Letr be a run ofA.
Let i, j be integers satisfying0 ≤ j < i ≤ h(r). A pump-
injectionI : (Hi∪Ȟi) → (Hj∪Ȟj) is an injection function
such that the following conditions hold:

(C1) I(Hi) ⊆ Hj and I(Ȟi) ⊆ Ȟj .
(C2) For eachp̄ in Hi ∪ Ȟi, r(p̄) = r(I(p̄)).
(C3) For each p̄1, p̄2 in Hi ∪ Ȟi, (term(r|p̄1 ) =

term(r|p̄2 )) ⇔ (term(r|I(p̄1)) = term(r|I(p̄2))).

Let {p̄1, . . . , p̄n} beHi ∪ Ȟi more explicitly written. The
run r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n

is called aglobal pumpingon
r with indexesi, j, and injectionI. ♦

By Condition C2, r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n
is clearly a

run of ta(A), but it is still necessary to prove that it
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Figure 3. Pump-injection of Example III.6.

is a run of A. By abuse of notation, when we write
r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n

, we sometimes consider thatI and
{p̄1, . . . , p̄n} are still explicit, and say that it is a global
pumping with some indexes0 ≤ j < i ≤ h(r).

Example III.6 Following our running example, we define
a pump-injectionI : (H4 ∪ Ȟ4) → (H3 ∪ Ȟ3) as follows:
I(1) = 3.1, I(2) = 2, I(3) = 3.3. We note thatI is a correct
pump-injection:I(H4) ⊆ H3 and I(Ȟ4) ⊆ Ȟ3 hold, thus
(C1) holds. For (C2), we haver(1) = r(I(1)) = qid, r(2) =
r(I(2)) = qt, andr(3) = r(I(3)) = qL. Regarding (C3), for
each different̄p1, p̄2 in H4 ∪ Ȟ4, term(r|p̄1 ) 6= term(r|p̄2 )
and term(r|I(p̄1)) 6= term(r|I(p̄2)) hold.

After applying the pump-injectionI, we obtain the term
and runr′ of Figure 3. ♦

Our goal is to prove that any global pumping
r[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n

is a run, and in particular, that all
global equality and disequality constraints are satisfied.To
this end we first state the following intermediate statement,
which determines the height of the terms pending at some
positions after the pumping action. It can be easily proved
by induction on the height of the involved term.

Lemma III.7 Let A be a PCTAGC. Letr be a run ofA.
Let r′ be the global pumpingr[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n

on
r with indexes0 ≤ j < i ≤ h(r) and injectionI. Let k ≥ 0
be a natural number and letp be a position ofr such that
h(r|p) is i+ k.
Then,p is also a position ofr′ andh(r′|p) is j + k.

Corollary III.8 Let A be a PCTAGC. Letr be a run ofA.
Let r′ be a global pumping ofr. Then,h(r′) < h(r).

The following lemma states that equality and disequality
relations are preserved, not only for terms pending at the
positions of the domain ofI, but also for terms pending at
prefixes of positions of such domain. Again, it is rather easy
to prove by induction on the height of the involved terms.

Lemma III.9 Let A be a PCTAGC. Letr be a run ofA.
Let r′ be the global pumpingr[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n

with

indexes0 ≤ j < i ≤ h(r) and injectionI. Let p1, p2 be
positions ofr satisfyingh(r|p1), h(r|p2 ) ≥ i.

Then,p1, p2 are also positions ofr′ and (term(r|p1 ) =
term(r|p2 )) ⇔ (term(r′|p1) = term(r′|p2)) holds.

As a consequence of the previous lemmas, we prove that the
result of a global pumping is a run.

Lemma III.10 Let A be a PCTAGC. Letr be a run ofA.
Let r′ be the global pumpingr[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n

with
indexes0 ≤ j < i ≤ h(r) and injectionI.

Then,r′ is a run ofA.

Proof: By Condition (C2) of the definition of pump-
injection, in order to see thatr′ is a run, it suffices to see
that all global constraints are satisfied. Thus, let us consider
two different positionsp1, p2 of Pos(r′) involved in an
atom of the constraint ofA, i.e. either r′(p1) ≈ r′(p2) or
r′(p1) 6≈ r′(p2) occurs in the constraint ofA. According to
Lemma III.4, we can distinguish the following cases:
• Suppose that a position inHi ∪ Ȟi, say p̄1, is a prefix
of both p1, p2. Then, r′|p1 = r|I(p̄1).(p1−p̄1) and r′|p2 =
r|I(p̄1).(p2−p̄1) hold. Hence,r′|p1 andr′|p2 are also subruns
of r occurring at different positions. Thus, sincer is a run,
they satisfy the atom involvingr′(p1) andr′(p2).
• Suppose that two different positions inHi ∪ Ȟi, say
p̄1 and p̄2, are prefixes ofp1 and p2, respectively. Then,
r′|p1 = r|I(p̄1).(p1−p̄1) and r′|p2 = r|I(p̄2).(p2−p̄2) hold. By
the injectivity of I, I(p̄1) 6= I(p̄2) holds. Moreover, by
Lemma III.4, I(p̄1) ‖ I(p̄2) holds. Hence, as before,r′|p1

and r′|p2 are subruns ofr occurring at different (in fact,
parallel) positions. Thus, they satisfy the atom involving
r′(p1) andr′(p2).
• Suppose that one ofp1, p2, sayp1, is a proper prefix of a
position inHi ∪ Ȟi, and thatp2 satisfies that some position
in Hi ∪ Ȟi is a prefix of p2. It follows that h(r′|p2) is
smaller than or equal toj, and r′|p2 is also a subrun of
r. Moreover,p1 is also a position ofr, r′(p1) = r(p1)
holds, andh(r|p1) = i + k holds for somek > 0.
Hence,term(r|p1 ) 6= term(r′|p2) holds. Sincer is a run
and r′|p2 is a subrun ofr, the atom involvingr(p1) and
r′(p2) is necessarily of the formr(p1) 6≈ r′(p2). Thus,
the atom involvingr′(p1) and r′(p2) is necessarily of the
form r′(p1) 6≈ r′(p2). By Lemma III.7,h(r′|p1) is j + k.
Therefore,term(r′|p1) 6= term(r′|p2) holds, and hence,
such an atom is satisfied for such positions inr′.
• Suppose that bothp1, p2 are proper prefixes of positions
in Hi ∪ Ȟi. Then, p1, p2 are positions ofr satisfying
h(r|p1 ), h(r|p2 ) ≥ i. Moreover,r(p1) = r′(p1) andr(p2) =
r′(p2) hold. Sincer is a run, the atom involvingr(p1) and
r(p2) is satisfied in the runr for positionsp1 and p2. By
Lemma III.9,(term(r|p1 ) = term(r|p2 )) ⇔ (term(r′|p1) =
term(r′|p2)) holds. Thus, the atom involvingr′(p1) and
r′(p2) is satisfied in the runr′ for positionsp1 andp2.



B. A well quasi-ordering

In this subsection we define a well quasi-ordering. It
assures the existence of a computational bound for certain
sequences of elements of the corresponding well quasi-
ordered set. It will be connected with global pumpings in
the next subsection.

Definition III.11 Let ≤ denote the usual quasi-ordering on
natural numbers. Letn be a natural number.

We define the extension of≤ to n-tuples of natural
numbers as〈x1, . . . , xn〉 ≤ 〈y1, . . . , yn〉 if xi ≤ yi for eachi
in {1, . . . , n}. We definesum(〈x1, . . . , xn〉) := x1+· · ·+xn.

We define the extension of≤ to multisets ofn-tuples of
natural numbers as[e1, . . . , eα] ≤ [e′1, . . . , e

′
β] if there is an

injection I : {1, . . . , α} → {1, . . . , β} satisfyingei ≤ e′
I(i)

for each i in {1, . . . , α}. We definesum([e1, . . . , eα]) :=
sum(e1) + · · ·+ sum(eα).

We define the extension of≤ to pairs of multisets ofn-
tuples of natural numbers as〈P1, P̌1〉 ≤ 〈P2, P̌2〉 if P1 ≤ P2

and P̌1 ≤ P̌2. ♦

As a direct consequence of Higman’s Lemma [21] we
have the following:

Lemma III.12 Givenn, ≤ is a well quasi-ordering for pairs
of multisets ofn-tuples of natural numbers.

In any infinite sequencee1, e2, . . . of elements from a well
quasi-ordered set there always exist two indexesi < j

satisfyingei ≤ ej . In general, this fact does not imply the
existence of a bound for the length of sequences without
such indexes. For example, the relation≤ between natural
numbers is a well quasi-ordering, but there may exist arbi-
trarily long sequencesx1, . . . , xk of natural numbers such
that (‡) xi > xj for all 1 ≤ i < j ≤ k. In order to bound
the length of sequences satisfying(‡), it is sufficient to force
that the first element and each next element of the sequence
are chosen among a finite number of possibilities. Indeed in
this this case, by König’s lemma, the prefix trees describing
all such (finite) sequences is finite. As a particular case of
this fact we have the following result (proved in [10]).

Lemma III.13 There exists a computable functionB : N×
N → N such that, given two natural numbersa, n, B(a, n)
is a bound for the lengthℓ of the maximum-length sequence
〈T1, Ť1〉, . . . , 〈Tℓ, Ťℓ〉 of pairs of multisets ofn-tuples of
natural numbers such that the following conditions hold:

1) The tuple〈0, . . . , 0〉 does not occur in anyTi, Ťi for
i in {1, . . . , ℓ}.

2) sum(T1) = 1 and sum(Ť1) = 0.
3) For eachi in {1, . . . , ℓ−1}, sum(Ti+1)+sum(Ťi+1) ≤

a · sum(Ti) + sum(Ťi).
4) There are noi, j satisfying 1 ≤ i < j ≤ ℓ and

〈Ti, Ťi〉 ≤ 〈Tj , Ťj〉

i rHi
rȞi

5 [〈0,0,0,0,0,1〉] [ ]
4 [〈0,0,0,0,1,0〉] [〈0,0,1,0,0,0〉, 〈0,0,0,1,0,0〉]
3 [〈0,0,0,0,1,0〉] [〈0,0,1,0,0,0〉, 〈0,0,0,2,0,0〉,

〈0,0,1,0,0,0〉]
2 [〈0,0,0,0,1,0〉] [〈0,0,1,0,0,0〉, 〈0,0,0,3,0,0〉,

〈0,0,1,0,0,0〉, 〈0,0,1,0,0,0〉]
1 [〈0,0,0,4,0,0〉] [〈0,0,1,0,0,0〉, 〈0,0,1,0,0,0〉,

〈0,0,1,0,0,0〉, 〈0,0,1,0,0,0〉]
0 [〈0,0,1,0,0,0〉, 〈4,0,1,0,0,0〉,

〈0,4,0,0,0,0〉, 〈0,0,1,0,0,0〉,

〈0,0,1,0,0,0〉 ]

[ ]

Figure 4. MultisetsrHi
, r

Ȟi
(Example III.16).

In order to bound the height of a term accepted by a given
PCTAGCA (and of minimum height), Lemma III.13 will be
used by makinga to be the maximum arity of the signature
of A, and makingn to be the number of states ofA.

C. Mapping a run to a sequence of the well quasi-ordered
set

We will associate, to each numberi in {0, . . . , h(r)}, a
pair of multisets of tuples of natural numbers, which can be
compared with other pairs according to the definition of≤
in the previous subsection. To this end, we first associate
tuples to terms and multisets of tuples to sets of positions.

Definition III.14 LetA be a PCTAGC. Letq1, . . . , qn be the
states ofA. Let r be a run ofA. LetP be a set of positions
of r. Let t be a term. We definert,P as the following tuple
of natural numbers:

〈∣

∣{p ∈ P | term(r|p) = t ∧ r(p) =
q1}

∣

∣, . . . ,
∣

∣{p ∈ P | term(r|p) = t ∧ r(p) = qn}
∣

∣

〉

♦

Definition III.15 Let A be a PCTAGC. Letr be a run of
A. Let P be a set of positions ofr. Let {t1, . . . , tk} be the
set of terms{t | ∃p ∈ P : term(r|p) = t}. We definerP as
the multiset[rt1,P , . . . , rtk,P ]. ♦

Example III.16 Following our running example, for the
representation of the tuples of natural numbers we order
the states as〈qd, qN , qid, qt, qL, qM 〉. The multisetsrHi

and
rȞi

are presented in Figure 4. ♦

The following lemma connects the existence of a pump-
injection with the quasi-ordering relation.

Lemma III.17 Let A be a PCTAGC. Letr be a run ofA.
Let i, j be integers satisfying0 ≤ j < i ≤ h(r).

Then, there exists a pump-injectionI : (Hi ∪ Ȟi) →
(Hj ∪ Ȟj) if and only if 〈rHi

, rȞi
〉 ≤ 〈rHj

, rȞj
〉.

Proof: We just prove the right-to-left direction: the
other direction is technical but not conceptually difficult,
and it is not necessary for the rest of the paper. Hence



assume that〈rHi
, rȞi

〉 ≤ 〈rHj
, rȞj

〉 holds. We have to
construct a pump-injectionI : (Hi ∪ Ȟi) → (Hj ∪ Ȟj).
We just defineI : Hi → Hj and prove Conditions (C2)
and (C3) for p̄, p̄1, p̄2 in Hi. This is becauseI : Ȟi → Ȟj

can be defined analogously, and Conditions (C2) and (C3)
for the corresponding positions can be checked analogously.
Moreover, for positionsp̄′1 ∈ Hi and p̄′2 ∈ Ȟi, Condi-
tion (C3) holds whenever Condition (C1) holds since in
this caseterm(r|p̄′

1
) 6= term(r|p̄′

2
) and term(r|I(p̄′

1)
) 6=

term(r|I(p̄′

2)
) hold. Hence, this simple case is enough to

prove the whole statement.
We write {term(r|p) | p ∈ Hi} and {term(r|p) | p ∈

Hj} more explicitly as{ti,1, . . . , ti,α} and{tj,1, . . . , tj,β},
respectively. Since〈rHi

, rȞi
〉 ≤ 〈rHj

, rȞj
〉 holds, rHi

≤
rHj

also holds. Thus, there exists an injective functionI ′ :
{1, . . . , α} → {1, . . . , β} satisfying the following statement
for eachδ in {1, . . . , α} and each stateq of A:
∣

∣{p ∈ Hi | term(r|p) = ti,δ ∧ r(p) = q}
∣

∣ ≤
∣

∣{p ∈ Hj |
term(r|p) = tj,I′(δ) ∧ r(p) = q}

∣

∣ (†).
In order to defineI : Hi → Hj , we defineI for each of

such sets{p ∈ Hi | term(r|p) = ti,δ ∧ r(p) = q} as any
injective functionI : {p ∈ Hi | term(r|p) = ti,δ ∧ r(p) =
q} → {p ∈ Hj | term(r|p) = tj,I′(δ) ∧ r(p) = q}, which
is possible by the above inequality (†). The globalI is then
injective thanks to the injectivity ofI ′. Conditions (C2) and
(C3) trivially follow from this definition.

Example III.18 Following our running example, we first
prove 〈rH4 , rȞ4

〉 ≤ 〈rH3 , rȞ3
〉. To this end just note that

[〈0, 0, 0, 0, 1, 0〉] ≤ [〈0, 0, 0, 0, 1, 0〉], [〈0, 0, 1, 0, 0, 0〉] ≤
[〈0, 0, 1, 0, 0, 0〉], and [〈0, 0, 0, 1, 0, 0〉] ≤ [〈0, 0, 0, 2, 0, 0〉]
hold. We can defineI : (H4 ∪ Ȟ4) → (H3 ∪ Ȟ3) from
this relation according to Lemma III.17. Doing the adequate
guess we obtain the following definition:I(1) = 3.1,
I(2) = 2, I(3) = 3.3 which is the pump-injection considered
above for our running example. ♦

The following lemma follows directly from the definition
of the setsHi andȞi, and allows to connect such definitions
with Lemma III.13.

Lemma III.19 LetA be a PCTAGC. Leta be the maximum
arity of the symbols in the signature ofA. Let r be a run
of A. Then, the following conditions hold:
(1) |Hh(r)| = 1 and |Ȟh(r)| = 0.
(2) For each i in {1, . . . , h(r)}, |Hi−1| + |Ȟi−1| ≤ a ·

|Hi|+ |Ȟi|.
(3) For each i in {0, . . . , h(r)}, |Hi| = sum(rHi

) and
|Ȟi| = sum(rȞi

).

Lemma III.20 Let B : N × N → N be the computable
function of Lemma III.13. LetA be a PCTAGC. Leta be
the maximum arity of the symbols in the signature ofA. Let
n be the number of states ofA. Letr be a run ofA satisfying
h(r) ≥ B(a, n). Then, there is a global pumping onr.

Proof: Consider the sequence〈rHh(r)
, rȞh(r)

〉,. . . ,
〈rH0 , rȞ0

〉. Note that then-tuple 〈0, . . . , 0〉 does not ap-
pear in the multisets of the pairs of this sequence. By
Lemma III.19, |Hh(r)| = 1 and |Ȟh(r)| = 0 hold, and for
eachi in {1, . . . , h(r)}, |Hi−1| + |Ȟi−1| ≤ a · |Hi| + |Ȟi|
holds. Moreover, for eachi in {0, . . . , h(r)}, |Hi| =
sum(rHi

) and |Ȟi| = sum(rȞi
). Thus, sum(rHh(r)

) =
1, sum(rȞh(r)

) = 0, and for eachi in {1, . . . , h(r)},
sum(rHi−1 )+sum(rȞi−1

) ≤ a·sum(rHi
)+sum(rȞi

). Hence,
sinceh(r) ≥ B(a, n) holds, by Lemma III.13 there exist
i, j satisfying h(r) ≥ i > j ≥ 0 and 〈rHi

, rȞi
〉 ≤

〈rHj
, rȞj

〉. By Lemma III.17, There exists a pump-injection
I : (Hi∪ Ȟi) → (Hj ∪ Ȟj). Therefore, there exists a global
pumping onr.

Theorem III.21 Emptiness is decidable for PCTAGC.

Proof: Let a be the maximum arity of the symbols in
the signature ofA. Let n be the number of states ofA. Let
r be an accepting run ofA with minimum height.

Suppose thath(r) ≥ B(a, n) holds. Then, by
Lemma III.20, there exists a global pumpingr′ on r. By
Corollary III.8, h(r′) < h(r) holds. Moreover, by the
definition of global pumping,r′(Λ) = r(Λ) holds. Finally,
by Lemma III.10,r′ is a run ofA. Thus,r′ contradicts the
minimality of r. We conclude thath(r) < B(a, n) holds.
The decidability of emptiness ofA follows, since the ex-
istence of successful runs implies that one of them can be
found among a computable and finite set of possibilities.

Using Lemma III.1 and Theorem III.21, we can conclude
the decidability of emptiness for TAGC.

Corollary III.22 Emptiness is decidable for TAGC.

IV. EXTENSIONS

In this section, we extend the emptiness result by considering
the addition of new constraints to TAGC. We shall extend
the notation TAGC[τ1, . . . , τk] introduced in Section to these
new type of constraints, in addition to≈ and 6≈.

A. Arithmetic Constraints

We study first the addition of counting constraints to
TAGC. LetQ be a set of states. Alinear inequalityoverQ is
an expression of the form

∑

q∈Q

aq.|q| ≥ a or
∑

q∈Q

aq.‖q‖ ≥ a

where everyaq anda belong toZ.
Let r be a run on a termt of a TA or TAGC A over Σ
and with state setQ, and let q ∈ Q. The interpretations
of |q| and ‖q‖ wrt r (and t) are defined respectively by
the following cardinalities J |q| Kr = |r−1(q)| and
J ‖q‖ Kr =

∣

∣{s ∈ T (Σ) | ∃p ∈ Pos(t), r(p) = q, s = t|p}
∣

∣.

This permits to define the satisfiability of linear equalities
wrt t andr and the notion of successful runs for extensions
of TAGC with atomic constraints which can have the form
of the above linear inequalities.



Let us denote by|.|Z and ‖.‖Z the types of the above
linear inequalities, seen as atomic constraints of TAGC. The
class TAGC[ |.|Z] has been studied under different names
(e.g.Parikh automata in [19], linear constraint tree automata
in [22]) and it has a decidable emptiness test.

Combining constraints of type≈ and counting constraints
of type |.|Z however leads to undecidability.

Theorem IV.1 Emptiness is undecidable for PTAGC[≈,|.|Z].

Proof: (Sketch) The proof is based on a reduction from
the Hilbert’s tenth problem. The main point is the fact
that we can encode (non negative) integer multiplication by
combining≈ and|.|Z. We can indeed build a PTAGC[≈, |.|Z]
A∗ recognizing terms of the form∗(t1, t2, t12) such that in
a run ofA∗, all the leaves oft1, t2 andt12 respectively are
labeled by the stateq1, q2 andq12. Moreover,t12 is of the
form f(t1, . . . , f(t1, b)), and in a run ofA∗, the position of
the firstt1 (first argument of∗) is labelled by a stater1 and
the positions of all thet1’s in t12 are labeled byr′1. The
constraintr1 ≈ r′1 ∧ |r′1| = |q2| ensures thatt12 contains
|q2| occurrences oft1, hence that|q12| = |q1| ∗ |q2|.

We present now a restriction on linear equalities which
enables a decidable emptiness test when combined with≈
and 6≈ as global constraints. Anatural linear inequalityover
Q is a linear inequality as above whose coefficientsaq and
a all have the same sign. The types of the natural linear
inequalities are denoted by|.|N and ‖.‖N. Below, we shall
abbreviate these two types byN.
We show in [10] that the class PTAGC[≈, 6≈,N] has the
same expressiveness as TAGC[≈, 6≈]. The proofs works in
two steps, using the intermediate class (equally expressive)
PTAGC[≈, 6≈,N]. We add new states and replace: in the first
step, the negative constraints by counting constraints and
positive constraints (of type≈ and 6≈), and in the second
step, the counting constraints by positive constraints.

Both Lemma III.1 and the next theorem follow immedi-
ately from this result.

Theorem IV.2 Emptiness is decidable for TAGC[≈, 6≈,N].

B. Equality Tests Between Brothers

The constraints of TAGC are checked once for all on
a whole run. There exists another kind of equality and
disequality constraints for extending TA which are tested
locally at every transition step. One example of TA with
such local constraints defined in [8] are tree automata with
constraints between brothers (TACB ).

A TACB is a tupleA = 〈Q,Σ, F,∆〉 whereQ, F , Σ
are defined as with TA and the transitions rules of∆ have
the form: f(q1, . . . , qn) −→

c
q, wherec is a conjunction of

atoms of the formi = j or i 6= j with 1 ≤ i, j ≤ n. A run
of the TACB A on a termt ∈ T (Σ) is a functionr from
Pos(t) into Q such that, for allp ∈ Pos(t), there exists

a rule t(p)
(

r(p.1), . . . , r(p.m)
)

−→c r(p) ∈ ∆ satisfying
t(p) ∈ Σm, and moreover, for alli = j in the conjunction
c, t|p.i = t|p.j holds, and for alli 6= j in the conjunctionc,
t|p.i 6= t|p.j holds.

The notions of successful runs and languages can be
extended straightforwardly from TA to TACB. Global con-
straints can also be added to TACB in the natural way. The
automata of the resulting classes TACB[≈, 6≈, ...] will there-
fore perform global and local test during their computations.
The emptiness decision algorithm of Section III still works
for this extension of TAGC with local brother constraints.
This is because a global pumpingr[r|I(p̄1)]p̄1 . . . [r|I(p̄n)]p̄n

on a runr can be proved to satisfy the constraints between
brothers in a completely analogous way as in the proof of
Lemma III.10 and Theorem IV.2.

Theorem IV.3 Emptiness is decidable for TACB[≈, 6≈,N].

C. Unranked Ordered Trees

Our tree automata models and results can be generalized
from ranked to unranked ordered terms. In this setting,Σ is
called anunranked signature, meaning that there is no arity
fixed for its symbols,i.e. that in a terma(t1, . . . , tn), the
numbern of children is arbitrary and does not depend on
a. Let us denote byU(Σ) the set of unranked ordered terms
over Σ. The notions of positions, subtermsetc are defined
for unranked terms ofU(Σ) as for ranked terms ofT (Σ).

We extend the definition of automata for unranked ordered
terms, called hedge automata [23], with global constraints.
A hedge automaton with global constraints(HAGC ) is a
tupleA = 〈Q,Σ, F, C,∆〉 whereQ, F andC are as in the
definition of TAGC in Section II-B and the transitions of
∆ have the forma(L) → q wherea ∈ Σ, q ∈ Q andL

is a regular (word) language overQ∗, assumed given by a
NFA with input alphabetQ. The notion of run is extended
to HAGC in the natural way.

The emptiness decision results of Corollary III.22 can be
extended from TAGC to HAGC using a standard transforma-
tion from unranked to ranked binary terms, like theextension
encoding described in [2], Chapter 8.

Theorem IV.4 Emptiness is decidable for HAGC[≈, 6≈,N].

V. M ONADIC SECOND ORDER LOGIC

A ranked termt ∈ T (Σ) overΣ can be seen as a model
for logical formulae, with an interpretation domain which
is the set of positionsPos(t). We consider monadic second
order formulae interpreted on such models, with quantifi-
cations over first order variables (interpreted as positions),
denotedx, y . . . and over unary predicates (i.e. set variables
interpreted as sets of positions), denotedX,Y . . .

The formulae are built with the following predicates:

1) equalityx = y, and membershipX(x) – the position
x belongs to the setX ,



2) a(x), for a ∈ Σ – the positionx is labeled bya in t,
3) Si(x, y), for all i smaller than or equal to the maximal

arity of symbols ofΣ, which is true on every pair
of positions (p, p.i), (we call +1 the type of such
predicates),

4) term equalityX ≈ Y , resp. disequalityX 6≈ Y , which
is true when for allx in X and ally in Y , t|x = t|y,
resp.t|x 6= t|y, (predicate types≈ and 6≈),

5) linear inequalities
∑

ai.|Xi| ≥ a or
∑

ai.‖Xi‖ ≥ a,
where everyai anda belong toZ; |Xi| is interpreted
as the cardinality ofXi and ‖Xi‖ as the cardinality
of {t|p | p ∈ Xi}. (predicate types|.|Z and‖.‖Z).

We write MSO[τ1, . . . , τk] for the set of monadic second
order logic formulae with equality, membership, labeling
predicates and other predicates of typeτ1, . . . , τk, amongst
the above types+1, ≈, 6≈, and |.|Z, ‖.‖Z. We also use the
notations|.|N and‖.‖N for natural linear inequalities and the
abbreviationsZ and N as in Section IV-A. Let EMSO[τ ]
be the fragment of MSO[τ ] of the formulae of the form
∃X1 . . . ∃Xn φ where all the set variables inφ belong to
{X1, . . . , Xn}.

It is well known that MSO[+1] has exactly the same
expressiveness as TA [24] and therefore it is decidable.
The extension MSO[+1,≈] is undecidable, seee.g. [9],
as well as MSO[+1, |.|Z] [19] (the latter extension is also
undecidable for unranked ordered terms when counting
constraints are applied to sibling positions [17]), but the
fragment EMSO[+1, |.|Z] is decidable [19].

In [1] the fragment EMSO with≈ and a restricted form of
6≈ is shown decidable, with a two way correspondence be-
tween these formulae and a decidable subclass of TAGEDs.
This construction can be straightforwardly adapted to estab-
lish a two way correspondence between EMSO[+1,≈, 6≈,N]
and TAGC[≈, 6≈,N]. With Theorem IV.2, it gives the follow-
ing result.

Theorem V.1 EMSO[+1,≈, 6≈,N] is decidable on ranked
terms.

Unranked Ordered Terms.:In unranked ordered terms,
the number of child of a position is unbounded. Therefore,
for navigating in such terms with logical formulae, the
successor predicates of category 3 above are not sufficient.
In order to describe unranked ordered terms as models, we
replace the above predicatesSi by: S↓(x, y) which holds on
every pair of positions of the form(p, p.i) (i.e. y is a child
of x), S→(x, y) which holds on every pair of positions of
the form(p.i, p.i+ 1) (i.e. y is the successor sibling ofx).
The type of these predicate is still called+1. Note that the
above predicatesS1, S2, . . . can be expressed using these
two predicates only.

Using the results of Section IV-C, we can generalize
Theorem V.1 to EMSO over unranked ordered terms.

Theorem V.2 EMSO[+1,≈, 6≈,N] is decidable on unranked
ordered terms.

VI. CONCLUSION

We have answered (positively) the open problem of de-
cidability of the emptiness problem for the TAGEDs [1],
by proposing a decision algorithm for a class TAGC of
tree automata with global constraints extending TAGEDs.
Our method for emptiness decision, presented in Section III
appeared to be robust enough to deal with several extensions
like global counting constraints, local equality tests between
sibling subterms and extension to unranked terms. It could
perhaps be extended to equality modulo commutativity and
other equivalence relations. Another interesting subjectmen-
tioned in the introduction is the combination of the HAGC
of Section IV-C with the unranked tree automata with tests
between siblings [12], [13].

A challenging question would be to investigate the precise
complexity of the problem, avoiding the use of Higman’s
Lemma in the algorithm. For instance, in [1], it is shown,
using a direct reduction into solving positive and negative
set constraints [25], [26], that emptiness is decidable in
NEXPTIME for PCTAGC[ 6≈] such that in every atomic
constraintsq 6≈ q′, q andq′ are distinct states. On the other
hand, the best known lower bound for emptiness decision
for TAGC is EXPTIME-hardness (this holds already for
PCTAGC[≈] as shown in [1]).

Another branch of research related to TAGC concerns
automata and logics fordata trees, i.e. trees labeled over an
infinite (countable) alphabet (see [27] for a survey). Indeed,
data trees can be represented by terms over a finite alphabet,
with an encoding of the data values into terms. This can be
done in several ways, and with such encodings, the data
equality relation becomes the equality between subterms.
Therefore, this could be worth studying in order to relate
our results on TAGC to decidability results on automata or
logics on data trees like those in [28], [22].
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[10] L. Barguñó, C. Creus, G. Godoy, F. Jacquemard,
and C. Vacher, “The Emptiness Problem for Tree
Automata with Global Constraints,” available at
www.lsi.upc.edu/˜ggodoy/publications.html .

[11] F. Jacquemard, F. Klay, and C. Vacher, “Rigid tree automata,”
in Proceedings of the 3rd International Conference on Lan-
guage and Automata Theory and Applications (LATA 2009),
ser. Lecture Notes in Computer Science, vol. 5457. Springer,
2009, pp. 446–457.
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