
The VLDB Journal (2009) 18:1041–1064
DOI 10.1007/s00778-009-0146-1

SPECIAL ISSUE PAPER

On the expressiveness of probabilistic XML models

Serge Abiteboul · Benny Kimelfeld · Yehoshua Sagiv ·
Pierre Senellart

Received: 15 September 2008 / Revised: 1 April 2009 / Accepted: 5 May 2009 / Published online: 19 June 2009
© Springer-Verlag 2009

Abstract Various known models of probabilistic XML can
be represented as instantiations of the abstract notion of
p-documents. In addition to ordinary nodes, p-documents
have distributional nodes that specify the possible worlds and
their probabilistic distribution. Particular families of p-doc-
uments are determined by the types of distributional nodes
that can be used as well as by the structural constraints on
the placement of those nodes in a p-document. Some of the
resulting families provide natural extensions and combina-
tions of previously studied probabilistic XML models. The
focus of the paper is on the expressive power of families
of p-documents. In particular, two main issues are studied.

Some of the results described in this paper were reported in [1,2].
The work of Abiteboul and Senellart was supported by the Agence
Nationale de la Recherche under grant Docflow O6-MDCA-005, and
by the Webdam Grant of the European Research Council.
Some of the work of Benny Kimelfeld was done while he was at The
Hebrew University.
The work of Kimelfeld and Sagiv was supported by The Israel Science
Foundation (Grant 893/05).

S. Abiteboul
INRIA Saclay, Île-de-France, Orsay, France
e-mail: serge.abiteboul@inria.fr

S. Abiteboul
Université Paris-Sud, Orsay, France

B. Kimelfeld (B)
IBM Almaden Research Center, San Jose, USA
e-mail: kimelfeld@us.ibm.com; bennyk@cs.huji.ac.il

Y. Sagiv
Hebrew University of Jerusalem, Jerusalem, Israel
e-mail: sagiv@cs.huji.ac.il

P. Senellart
Institut Télécom, Télécom ParisTech, CNRS LTCI, Paris, France
e-mail: pierre.senellart@telecom-paristech.fr

The first is the ability to (efficiently) translate a given p-docu-
ment of one family into another family. The second is closure
under updates, namely, the ability to (efficiently) represent
the result of updating the instances of a p-document of a given
family as another p-document of that family. For both issues,
we distinguish two variants corresponding to value-based
and object-based semantics of p-documents.

Keywords XML · Probabilistic databases · Probabilistic
XML · Expressiveness · Updates

1 Introduction

Many automatic tasks, particularly on the Web, generate
uncertain data. Examples of these tasks include informa-
tion extraction, natural-language processing and data mining.
Moreover, in many of these tasks, information is described in
a semistructured model, because representation by means of a
hierarchy is natural, especially when the source (e.g., XML or
HTML) is already in this form. Uncertain hierarchical infor-
mation can be formalized in terms of a probabilistic XML
space, that is, a probability distribution over a set of ordinary
XML documents. A number of probabilistic XML models
[2–8] have been proposed for facilitating a succinct descrip-
tion of those spaces. In addition to the models themselves,
various problems of managing probabilistic XML data have
been studied, such as query evaluation [3,7,9,10], algebraic
manipulation [4] and updates [2,7].

For developing a system that manages probabilistic XML,
a proper data model should be chosen; to do that, two ques-
tions have to be addressed. First, what kind of information is
it desired to represent (e.g., how do different uncertain data
items correlate)? Second, which management tasks does the
system need to perform? As a concrete example, van Keulen
et al. [6] use a specific model to represent the result of inte-

123

1042 S. Abiteboul et al.

grating two XML documents (where uncertainty essentially
follows from heuristics for entity resolution). One may want
to use the model of [6] for representing similar data, but then,
will one be able to (efficiently) realize the algebra of [4] or
evaluate twig queries using the algorithm of [9]? The answer
is not obvious, given the differences among the three data
models.

A simple way of bridging the different models and
techniques is to devise translations between the models. That
is, given a probabilistic XML document represented in one
model, we translate it into another model, and then manage
the result using techniques devised for the latter model. More-
over, for this process to be practical, the translation should be
efficient. As we later show, it may be the case that a translation
between two specific models exists, but it necessarily entails
a major blowup in the size of the data. Thus, understanding
the ability to efficiently translate between the different mod-
els, which is a goal set by this work, has a central role in
choosing the suitable model for a system and analyzing the
implications of a specific choice. Moreover, if one already
has an implemented system based on a specific model and
yet wishes to use it for data of a different model, then trans-
lations are essentially the only way to go.

Another important property of a probabilistic XML model
is the ability to represent interesting evolution of the probabi-
listic data. So, in addition to comparing the expressive power
of probabilistic XML models (i.e., in terms of efficient trans-
lations), we study the ability of the models to handle updates.
More particularly, we consider insertion and deletion of data
items that are done at elements specified by queries. Con-
ceptually, these operations are done on the possible worlds.
We investigate the ability to apply these updates directly to
a probabilistic XML document and the cost thereof. We do
it in the context of specific models.

We begin with presenting a unified view of these different
models in terms of p-documents that are trees with two types
of nodes: ordinary and distributional. A p-document can be
thought of as a probabilistic process that generates a random
XML document in a conceptually simple way. Namely, each
distributional node v chooses a subset of its children.1 There-
fore, each distributional node of a p-document should specify
the probability distribution of choosing a subset of its chil-
dren in the above random process. There are several types of
distributional nodes that differ from one another in how they
specify probabilities and in certain properties thereof.

We consider five types of distributional nodes: det for
deterministic2 (each child is chosen with probability 1); ind
for independent (the choices of distinct children are inde-

1 This is an oversimplification—see Sect. 3.1 for the precise details.
2 It may seem that using det nodes is redundant, but actually they
increase the expressive power when used together with some of the
other types.

pendent); mux for mutually exclusive (at most one child
can be chosen); exp for explicit (the probability of choosing
each subset of children is explicitly given unless it is zero);
and cie for conjunction of independent events (each child is
chosen according to a conjunction of probabilistically inde-
pendent events, which can be used globally throughout the
p-document).

We define different families of p-documents in terms of
the types of distributional nodes that are allowed. PrXMLC ,
where C ⊆ {ind, mux, det, exp, cie}, denotes the family of
p-documents that use the types appearing in the subset C . We
also consider additional families by imposing the restriction
that there are no hierarchies consisting entirely of distribu-
tional nodes (i.e., a distributional node cannot have a distri-
butional child). PrXMLC|�h denotes the family of p-documents
that use the types of C and have no distributional hierarchies.
We later show that practically all the probabilistic XML mod-
els that have been proposed in the literature can be defined
in this way.

We thoroughly investigate the expressive power of the
above families. To define expressiveness properly, one should
realize that we are not interested in a p-document per se, but
rather in the probability space (over XML documents) that
it describes. Thus, two p-documents are equivalent if they
define the same probability space (called px-space in this
paper). Consequently, a family F2 is (at least) as expressive
as F1 if for every p-document of F1, there is an equiva-
lent p-document of F2 (if the opposite direction does not
hold, then F2 is more expressive). Practically, however, F2

subsumes F1 only if we can find an efficient algorithm, such
that given a p-document of F1, it computes an equivalent
p-document of F2. So, our emphasis is on efficient trans-
lators between families of p-documents. Furthermore, we
consider two types of translators: o-translators and v-trans-
lators. The former is based on the object semantics (i.e., two
p-documents are equivalent if they describe identical px-
spaces), whereas the latter subscribes to the value semantics
(that is, equivalence means isomorphic px-spaces).

Figure 8 summarizes our results about efficient o-transla-
tions, which are obtained in Sect. 5. This figure is complete
in the sense that if there is no directed path from a family F1

to a family F2, then there is no efficient o-translation from
F1 to F2. Note that if there is an efficient o-translation, then
there is also an efficient v-translation (but the converse is not
necessarily true). We show that in many cases, if there is no
efficient o-translation (between two specific families F1 and
F2 of our framework), then there is no efficient v-translation
as well. However, the existence of efficient v-translations (in
the absence of efficient o-translations) remains an open prob-
lem in some cases. Thus, Fig. 8 is not complete with respect
to v-translations, but it gives a fairly good picture.

We partially deal with the above open problems of Sect. 5
in Sect. 6, where we consider p-documents with the restric-

123

On the expressiveness of probabilistic XML models 1043

tion of a fixed bound on the degree of distributional nodes.
For instance, for a fixed integer b ≥ 2, the family PrXML{exp}

∆≤b

is the subset of PrXML{exp} comprising the p-documents
such that every distributional node has at most b children.
We consider (o- and v-) translations between families of
p-documents under this restriction (e.g., can we efficiently
change a p-document to meet this restriction while preserv-
ing equivalence?). In particular, we show that for all b2 >

b1 ≥ 2, there is an efficient v-translation from PrXML{exp}
∆≤b2

to PrXML{exp}
∆≤b1

and from PrXML{exp}
∆≤b1

(and PrXML{exp}
∆≤b2

) to

PrXML{ind,mux}; interestingly, these are the only cases for
which we show that there are efficient v-translations, but o-
translations do not exist at all.

We also investigate whether families of p-documents are
closed under updates. An update is naturally defined on the
px-space associated with a p-document, but we would like to
perform it efficiently on the p-document itself (without intro-
ducing additional types of distributional nodes). We consider
tractability of updates under both the object semantics and
the value semantics, but now the main difference between the
two is in the language defining updates, which is richer in the
case of the value semantics. We show that under the object
semantics, updates are tractable in all “reasonable” models.
Under the value semantics, insertions (even just those defined
by single-path queries) are intractable in PrXML{exp}, but
can be done efficiently in PrXML{cie} provided that they are
defined by monotone queries.

After presenting some preliminaries in Sect. 2, we intro-
duce p-documents in Sect. 3. Five types of distributional
nodes are defined in Sect. 4, and we show that they extend the
models of probabilistic XML that have been described in the
literature. In Sects. 5 and 6, we present results on translations
between models. Updates are the subject of Sect. 7.

This paper extends work reported in [1,2]. In particular, it
expands the results of [1] on expressiveness of probabilistic
XML models. A companion paper [10] extends the results
of [1] (and some of those reported in [9]) about query eval-
uation over probabilistic XML models.

2 Preliminaries

We represent (probabilistic) data by unordered, unranked,
labeled trees. Given a tree T , the set of nodes and the set
of edges are denoted by V (T) and E (T), respectively. Note
that E (T) ⊆ V (T) × V (T). We use root(T) to denote the
root of T . If (n1, n2) ∈ E (T), then n2 is a child of n1, which
in turn is the parent of n2. A leaf of T is a node without any
children. Suppose that there is a path from node n1 to node
n2. We say that n2 is a descendant of n1, whereas n1 is an
ancestor of n2. Note that every node is both a descendant and
an ancestor of itself. If n1 �= n2, then n2 is a proper descen-
dant of n1, which in turn is a proper ancestor of n2. We say

that the tree T ′ is a subtree of the tree T if V (T ′) ⊆ V (T)

and E (T ′) ⊆ E (T). If T ′ also contains the root of T , then it
is an r-subtree of T .

An XML document (a document for short) is a tree with
a label attached to each node. We do not distinguish here
between a tag and a value. Our notion of a label is meant to
capture both. Usually, we use d to denote documents, and u,
v and w to denote nodes of documents. The label of a node
v is denoted by lbl(v). As an example, Fig. 1 (bottom-right)
depicts a document d. Each node is represented as [i]l, where
i is a unique identifier and l is a label. For instance, the label of
Node 19 is “manager” while that of Node 14 is “Emma.” In
the figures, labels corresponding to values (rather than tags)
are in italic font.

Two documents d1 and d2 are isomorphic, denoted by
d1 ∼ d2, if one can be obtained from the other by replacing
nodes with some other nodes while preserving labels (but
not identifiers). Formally, d1 ∼ d2 if there is a bijection ϕ :
V (d1) → V (d2), such that (1) for all v ∈ V (d1) it holds that
lbl(v) = lbl(ϕ(v)), and (2) for all v1, v2 ∈ V (d1) we have
that (v1, v2) ∈ E (d1) if and only if (ϕ(v1), ϕ(v2)) ∈ E (d2).

3 Probabilistic XML and p-documents

A probabilistic XML space (abbr. px-space) is a probability
distribution over a space of ordinary documents. Formally, it
is a pair (D, p), where D is a nonempty, finite set of docu-
ments and p : D → R

+ maps every document d ∈ D to a
positive real number p(d), such that

∑
d∈D p(d) = 1.

Typically, a px-space contains a large number of docu-
ments, so it is usually impractical to use its explicit repre-
sentation (i.e., D and p). In this section, we show how to
represent a px-space by means of a p-document, which is (a
description of) a probabilistic process that generates a ran-
dom document; that is, this process generates a document
d ∈ D with probability p(d).

Formally, a p-document is a tree P̃ that consists of two
types of nodes. Ordinary nodes have labels (namely, they
are regular XML nodes), and they may appear in documents.
Distributional nodes are only used for defining the proba-
bilistic process that generates random documents (but they
do not actually occur in those documents). We denote by
V ord(P̃) and V dst(P̃) the disjoint sets of ordinary and dis-
tributional nodes of P̃ , respectively. The root and leaves of
P̃ are required to be ordinary nodes.

Example 3.1 Figure 1 (top) depicts a p-document P̃ .
Distributional nodes are shown as rounded-corner rectan-
gles. The types of those nodes are denoted by words inside
the rectangles (e.g., ind and mux), and they will be discussed
in Sect. 4.1.

In Sect. 4, we define several types of distributional nodes.
For now, it is sufficient to realize that each distributional

123

1044 S. Abiteboul et al.

Fig. 1 A p-document P̃ , an
r-subtree s ∈ �(P̃) and the
document d = doc(s)

node v has a probability distribution over (subsets of) its
children. In the probabilistic process that generates a random
document, a subset of the children of v is randomly chosen
according to the distribution specified for v.

3.1 The probabilistic process of a p-document

A random document of a p-document P̃ is generated in two
steps. In the first step, one subset of children is randomly
chosen for each distributional node. Note that choices made
for different nodes could be dependent. All the unchosen
children and their descendants (even descendants that have
been chosen by their own parents) are deleted. The result is
an r-subtree s of P̃ .

The second step removes all the distributional nodes. If an
ordinary node u no longer has a parent, then the new parent of
u is the lowest node that is both ordinary and a proper ances-
tor of u. The resulting document is ordinary and denoted by
doc(s).

In terms of formal probability theory, a p-document
defines the probability space that comprises the documents
obtained by all the combinations of choosing for each dis-
tributional node, a subset of its children (and then removing

distributional nodes, as described above). As explained in
Sect. 4, the probability of each combination depends on the
types of the distributional nodes and the probability distribu-
tions specified for those nodes (moreover, it also depends on
the probabilistic dependencies that exist among those nodes).

The above pair of steps for generating a random document
can be described by two random variables as follows. Let
�(P̃) denote the set of all the r-subtrees s of P̃ , such that
every ordinary node u of s has the same set of children in both
s andP̃ . The first step above chooses an r-subtree s ∈ �(P̃),
and we use the random variable P� to denote that choice
(i.e., s). The second step generates the document doc(P�),
and this document is denoted3 by the random variable P .
Note that P is deterministically determined by P� .

Note that the operation doc(·) is not necessarily one-
to-one; that is, two different r-subtrees s1 and s2 may yield
the same document. This follows from two facts: A distri-
butional node can have a distributional child, and an empty
subset of children might be selected for a distributional node.

3 Note that P̃ denotes a p-document, whereas P (i.e., without the tilde)
is the random variable that denotes a document generated from P̃ by
the two-step probabilistic process.

123

On the expressiveness of probabilistic XML models 1045

Let s ∈ �(P̃) be given. Pr(P� = s) is the probability
that each distributional node of s chooses the exact set of
children that it has in s. Thus, the probability of a random
document d is given by

Pr (P = d) =
∑

s∈�(P̃),
doc(s)=d

Pr
(
P� = s

)
.

Note that Pr(P = d) could be 0. In particular, the above equa-
tion implies that Pr(P = d) = 0 if d cannot be obtained from
P̃ , that is, there is no s ∈ �(P̃) such that Pr(P� = s) > 0
and d = doc(s). For example, if d has a node that does not
appear in P̃ , then Pr(P = d) = 0.

Example 3.2 Consider again Fig. 1. Recall that the p-docu-
ment P̃ is discussed in Example 3.1. The bottom part of the
figure depicts two trees. The one on the left is an r-subtree s ∈
�(P̃), and the one on the right is the document d = doc(s).
It can be easily shown that s is the only r-subtree of �(P̃) that
generates d and, consequently, Pr(P = d) = Pr(P� = s).
The computation of the probability on the right-hand side
will be explained in Sect. 4.1.

The possible worlds of a p-document P̃ are all the doc-
uments with a nonzero probability, i.e., documents d, such
that Pr (P = d) > 0. We use pwd(P̃) to denote the set of
all the possible worlds. Clearly,

∑

d∈pwd(d)

Pr (P = d) = 1.

To conclude, a p-document P̃ defines the px-space
(D, p), where D is the set pwd(P̃) and p is the function
Pr(P = ·). We use �P̃� to denote this px-space.

3.2 Isomorphism and equivalence

Two px-spaces (D1, p1) and (D2, p2) are isomorphic,
denoted by (D1, p1) ∼ (D2, p2), if they are identical up
to isomorphism, that is, for all documents d,

∑

d ′∈D1|d ′∼d

p1(d
′) =

∑

d ′∈D2|d ′∼d

p2(d
′).

In words, for all documents d, the probability that a document
of (D1, p1) is isomorphic to d is equal to the probability that
a document of (D2, p2) is isomorphic to d.

Two p-documents are equivalent if they define the same
px-space. There are two variants of equivalence depending
on whether two px-spaces are deemed the same based on
equality or isomorphism. The first notion of equivalence fol-
lows the object-based semantics, whereas the second uses
the value-based semantics. The formal definitions follow.

Two p-documents P̃1 and P̃2 are o-equivalent, denoted
by P̃1 ≡o P̃2, if �P̃1� = �P̃2�; namely, for all documents
d, we have that Pr (P1 = d) = Pr (P2 = d). Analogously,

P̃1 and P̃2 are v-equivalent, denoted by P̃1 ≡v P̃2, if
�P̃1� ∼ �P̃2�, namely, Pr (P1 ∼ d) = Pr (P2 ∼ d) holds
for all documents d. Observe that if P̃1 ≡o P̃2, then P̃1 and
P̃2 have the same set of possible worlds; however, this does
not necessarily hold if P̃1 ≡v P̃2. Clearly, object equiva-
lence implies value equivalence,4 but not vice versa.

Observe that if P̃1 ≡o P̃2, then their sets of ordinary
nodes are identical. More precisely, either P̃1 or P̃2 may
have an ordinary node that does not appear in the other one if
the probability of choosing that node is zero; however, such
nodes are useless and can always be eliminated.

4 Families of concrete p-documents

In this section, we define several types of distributional nodes.
A concrete p-document is obtained by specifying the types
and probability distributions of the distributional nodes. Later
in this section, we discuss families of p-documents. A spe-
cific family is characterized by two properties: (1) the types of
distributional nodes that are allowed in the p-documents, and
(2) whether one can construct hierarchies consisting of only
distributional nodes. We explain how our framework gives
rise to a variety of models of probabilistic XML, including
most (if not all) of the models that have been studied in the
literature.

4.1 Types of distributional nodes

To obtain a concrete p-document, we should specify for each
distributional node v, the probability distribution of choosing
a subset of the children of v. We define five types of distri-
butional nodes, each with a different way of describing that
probability distribution.

Type ind (for independent). A node v of type ind specifies
for every child w, the probability pv(w) of choosing w; this
choice is independent of any other choice of children (of
either v or other distributional nodes). Hence, the probability
of choosing a subset C of children of v is
∏

w∈C

pv(w)
∏

w∈C̄

(1 − pv(w)) ,

where C̄ is the set of children of v that are not in C .

Type mux (for mutually exclusive). A node v of type mux
specifies the probabilities pv(w1), . . . , pv(wk) for its chil-
dren w1, . . . , wk , respectively. Node v chooses at most one
child wi with the probability pv(wi), independently of the
other distributional nodes. We require that

∑k
i=1 pv(wi)≤1.

4 By definition, if a node of a p-document exists in two different
documents, then it has the same label in both.

123

1046 S. Abiteboul et al.

The probability that v chooses none of its children is 1 −
∑k

i=1 pv(wi).

Type det (for deterministic). A node v of type det always
chooses all of its children, namely, each child is chosen with
probability 1.

Type exp (for explicit). A node v of type exp specifies
probabilities pv(W1), . . . , pv(Wl), where the Wi are some
(but not necessarily all of the) distinct subsets of the chil-
dren of v. Node v chooses exactly one subset Wi with the
probability pv(Wi), independently of the other distributional
nodes. Note that one of the Wi may be empty. We require that
∑l

i=1 pv(Wi) = 1.

Type cie (for conjunction of independent events). In a given
p-document, nodes of this type are associated with indepen-
dent random Boolean variables e1, . . . , em , called events. For
each event ei , the p-document specifies the probability p(ei)

that ei is true. A node v of type cie specifies for every child
w, a conjunction αv(w) = a1 ∧ · · · ∧ akw (kw > 0), where
each a j is either ei or ¬ei for some 1 ≤ i ≤ m. Note that dif-
ferent conjunctions can share common events, and the num-
ber of events in αv(w) (i.e., kw) may vary from one child
of v to another. Before generating a document, values for
e1, . . . , em are randomly determined. A child w is chosen if
its corresponding conjunction αv(w) is true.

Note that if the type of a distributional node v is one of the
first four (i.e., ind, mux, det or exp), then v randomly picks
children independently of the probabilistic choices made by
the other distributional nodes of the p-document. But differ-
ent distributional nodes of type cie can correlate their choices
by sharing events.

Example 4.1 The p-document P̃ of Fig. 1 has ind and mux
nodes. The probability specified for each child is shown next
to the edge that leads to that child. We now describe how
to compute the probability Pr(S = s) of the document s ∈
�(P̃) that is shown in the bottom-left part of Fig. 1. Each
mux node of s chooses exactly one child with the probabil-
ity specified for that child. The probabilities of the choices
made by the ind nodes are as follows. Node 9 chooses its only
child with probability 0.8. Node 10 chooses both children
with probability 0.7 · 0.65 = 0.455. And Node 23 chooses
the empty set of children with probability 1 − 0.8 = 0.2.
Pr(S = s) is the product of the probabilities of the choices
made by all the distributional nodes.

A node v of a p-document is useless if there is no r-subtree
s of P̃ , such that Pr

(
P� = s

)
> 0 and v appears in s. One

can efficiently find all the useless nodes of a p-document and
delete them (as well as their descendants). If, as a result, a dis-
tributional node has no ordinary descendants, then it is also
removed. In practice, it is not necessary to remove useless
nodes; however, we assume that p-documents do not have
useless nodes, because it is needed in some of the proofs.

We denote by PrXML{type1,type2,...} the family of all the
p-documents, such that the types of their distributional nodes
are among those listed in the superscript. For example, the
p-documents of PrXML{ind,mux} use only ind and mux nodes.

In the following, our complexity analysis makes an
implicit assumption that numbers (e.g., probabilities of the
form pv(wi) or p(ei) specified in p-documents) are repre-
sented in a way that the basic arithmetic operations (e.g.,
computing the product or sum of a series of numbers) can be
performed efficiently.

4.2 Hierarchy of distributional nodes

The straightforward way of using a distributional node is
when both its parent and children are ordinary nodes. In this
case, the role of the distributional node is to choose ordinary
children for its ordinary parent. Sometimes, however, we can
obtain more complex distributions (over the probability space
of documents) by constructing hierarchies of distributional
nodes.

If every distributional node of a p-document P̃ has only
ordinary children, we say that P̃ is distributional-hierarchy
free (abbr. DHF). As an example, consider Fig. 1. The
p-document P̃ is not DHF, because Node 10 is the child
of Node 9 and both are distributional nodes. If F is a set
of p-documents, then F|�h denotes the restriction of F to its
DHF p-documents.

In Sect. 5, we show that in some families of p-documents,
we can express more px-spaces by allowing hierarchies of
distributional nodes.

4.3 Previously studied models

The family PrXML{ind,mux} is the same as the ProTDB docu-
ments of [3]. The probabilistic XML model5 of [6] is a subset
of PrXML{mux,det}, where mux nodes (called “probability
nodes”) have as children only det nodes (called “possibility
nodes”) and det nodes have only ordinary children (called
“XML nodes”).

The model of probabilistic XML that was investigated
in [2,7] is PrXML{cie}

|�h . In the next section, we show that

adding hierarchies of distributional nodes to PrXML{cie}
|�h is

not needed (that is, every p-document of PrXML{cie} can be
efficiently translated to a p-document of PrXML{cie}

|�h). The
“simple probabilistic trees” of [7] are actually the family
PrXML{ind}

|�h (hierarchies make a difference in this case). The
same is true for the probabilistic XML model underlying the
“PEPX” system [11].

5 In the probabilistic documents of [6], the root is distributional. We
can assume that a dummy ordinary node is added for compliance with
the definition of p-documents.

123

On the expressiveness of probabilistic XML models 1047

The work of [4] introduced a model of probabilistic XML
graphs, where each node explicitly specifies the probability
distribution over its possible sets of children. Restricting their
XML graphs to trees yields a sub-family of PrXML{exp}

|�h (a
lack of hierarchies is significant when only exp nodes are
allowed). The same is true for [5] if we restrict their intervals
to points.

With respect to probabilistic relational models [12–14],
the comparison is more delicate because there has been a lot
of research in this direction, some of it not relevant here. (In
particular, a large part deals with query processing or the ori-
gins of imprecision.) From a modeling viewpoint, one can
easily represent a relation as an XML tree with a node for
each tuple and a node for each entry in a tuple. Distributional
nodes can then be used to specify probabilities on tuples and
on values inside tuples. For the relational model, the notion
of probabilistic possible worlds has also been used and many
representation systems have been proposed. The block-inde-
pendent model of [12] (which is an incomplete representation
system) can be translated into the family PrXML{ind,mux} in
a straightforward way. Other probabilistic relational models
(in particular, [13]) can be seen as probabilistic versions of the
conditional tables of [15]. (In that direction, one most elab-
orate work is that of [16].) In some sense, the PrXML{cie}
model generalizes this idea to trees, and the main features
of corresponding probabilistic relational models can accord-
ingly be represented in this probabilistic XML model. For
instance, the lineage of Trio [13] can naturally be encoded
as independent events.6 A general study of the translation
of existing probabilistic relational models into probabilistic
XML models is an interesting issue, but beyond the scope of
this paper.

5 Translations between families of P-documents

The previous section described several families of p-docu-
ments. In this section, we compare the expressive power of
these families. We first formalize the notion of expressive
power.

5.1 Translators

Consider two (infinite) sets F1 and F2 of p-documents. We
say that F1 is o-translatable to F2, denoted by F1 �o

F2, if each document of F1 is o-equivalent to some doc-
ument of F2. That is, for each document P̃1 ∈ F1, there

6 Note that Trio allows annotating tuples with arbitrary propositional
formulas. An efficient translation into a PrXML{cie} tree requires such
formulas to be in DNF. Allowing arbitrary formulas as conditions on
distributional nodes makes query processing less efficient, as discussed
in [8].

exists a document P̃2 ∈ F2, such that P̃1 ≡o P̃2. An
o-translator from F1 to F2 is an algorithm that receives as
input a P̃1 ∈ F1 and generates an o-equivalent P̃2 ∈ F2.
If there is an efficient o-translator from F1 to F2 (i.e., a
translator that runs in polynomial time in the size of its input
P̃1), then F1 is efficiently o-translatable to F2, denoted by
F1 �poly

o F2. If F1 �o F2 and F2 �o F1, then we write
F1 ≡o F2. Similarly, F1 ≡poly

o F2 means that there are
efficient o-translators in both directions.

We use analogous definitions and notation for the notion of
v-translation. As an example, F1 �poly

v F2 means that there
is an efficient v-translator that receives as input a P̃1 ∈ F1

and generates a P̃2 ∈ F2, such that P̃1 ≡v P̃2.

5.2 The types ind, mux and det

In this section, we consider the three types ind, mux and det.
We first study the families that use only one of these three
types.

5.2.1 Using each type individually

Using only distributional nodes of type det is, obviously,
meaningless in the sense that the resulting p-document is
deterministic. Formally, the px-space defined by a p-docu-
ment P̃ of the family PrXML{det} consists of only one doc-
ument, namely, doc(P̃). Consequently, PrXML{det} ≡poly

o

PrXML{}, which means that the family PrXML{det} is trivi-
ally o-translatable to any other family (among those we con-
sider).

Next, we show that hierarchy is not required in the family
PrXML{mux}.

Lemma 5.1 PrXML{mux} ≡poly
o PrXML{mux}

|�h .

Proof Let P̃ ∈ PrXML{mux} be given. We efficiently trans-
form P̃ into an o-equivalent p-document P̃ ′ ∈ PrXML{mux}

|�h
by repeatedly eliminating each distributional node u that has
a distributional parent, until there is no such node (and, thus,
the p-document is DHF). The elimination process is the fol-
lowing. Consider two distributional nodes u and v of P̃ , such
that v is the parent of u (and, of course, both u and v are of
type mux). Let w1, . . . , wk be the children of u. We remove
u from P̃ and connect every wi to v (i.e., wi becomes a
child of v). For all 1 ≤ i ≤ k, the probability pv(wi) is set
to pv(u) · pu(wi). Observe that each step of the elimination
process preserves o-equivalence; hence, this transformation
is correct. �

Unlike PrXML{mux}, hierarchy is essential in the family
PrXML{ind}. In particular, the following lemma shows that
PrXML{ind} is not v-translatable (and, hence, not
o-translatable) to PrXML{ind}

|�h (regardless of efficiency).

123

1048 S. Abiteboul et al.

Fig. 2 a A p-document of
PrXML{ind} that cannot be
v-translated to PrXML{ind}

|�h .

b O-translating PrXML{ind}
|�h to

PrXML{mux}

(a) (b)

Lemma 5.2 PrXML{ind} ��v PrXML{ind}
|�h .

Proof Let P̃ denote the p-document of PrXML{ind} that is
depicted in Fig. 2a. Note that the ordinary nodes w1 and
w2 of P̃ are labeled with a and b, respectively. We will
prove that there is no DHF p-document of PrXML{ind}

|�h that is

v-equivalent to P̃ . Suppose, by way of contradiction, that
P̃ ′ is such a p-document. Observe that none of the proba-
bilities specified in P̃ ′ is zero, because there are no useless
nodes. Therefore, P̃ ′ has a possible world that includes all of
its ordinary nodes. Consequently, the assumption P̃ ′ ≡v P̃
implies that P̃ ′ must have the following three properties.
First, the root of P̃ ′ has exactly two ordinary descendants.
Second, one of these two nodes, denoted by ua , is labeled
with a and the other, denoted by ub, is labeled with b. Third,
neither one of ua and ub is an ancestor of the other (because
some possible world of P̃ contains both w1 and w2 as sib-
lings). Note that each of ua and ub is either a child or a
grandchild of the root, because P̃ ′ is DHF. It follows that
the probabilistic events “P ′ includes the label a” and “P ′
includes the label b” are independent. However, this is not
the case for P , because the probability that P includes both
a and b is 0.53 whereas the probabilities of the events “P
includes a” and “P includes b” are both 0.52. This contra-
dicts the v-equivalence of P̃ and P̃ ′. �

Next, we consider the relationships between families that
use different types of distributional nodes. The first lemma
below gives a negative result, namely, p-documents with only
mux nodes and no hierarchies are not v-translatable to p-doc-
uments that use only ind nodes. The second lemma states a
positive result for the opposite direction; that is, p-documents
with only ind nodes and no hierarchies are efficiently o-trans-
latable (and v-translatable) to p-documents that use only mux
nodes.

Lemma 5.3 PrXML{mux}
|�h ��v PrXML{ind}.

Proof The lemma holds because PrXML{mux}
|�h , but not

PrXML{ind}, contains a p-document that has two labels l1
and l2, such that (1) each of l1 and l2 appears in one or more

possible worlds, and (2) no possible world contains both l1
and l2. �

Lemma 5.4 PrXML{ind}

|�h �poly
o PrXML{mux}.

Proof To prove the lemma, we describe an efficient
o-translator from PrXML{ind}

|�h to PrXML{mux}
|�h . Consider a

p-document P̃ ∈ PrXML{ind}
|�h and let v be an ind node of

P̃ . Suppose that the parent of v is u and the children of v

are w1, . . . , wk . The nodes u and w1, . . . , wk are ordinary,
because P̃ is DHF. We replace v with k new mux nodes
v1, . . . , vk , as illustrated in Fig. 2b. Each vi is a child of u and
the parent of wi . For 1 ≤ i ≤ k, we define pvi (wi) = pv(wi).

�

The following lemma shows that the previous result

no longer holds if we allow hierarchies of ind nodes;
furthermore, PrXML{ind} is not even v-translatable to
PrXML{mux}.

Lemma 5.5 PrXML{ind} ��v PrXML{mux}.

Proof Recall the proof of Lemma 5.2 and, in particular,
consider again the p-document P̃ (which is depicted in
Fig. 2a). To derive a contradiction, we use Lemma 5.1 and
assume that PrXML{mux}

|�h has a p-document P̃ ′ that is

v-equivalent to P̃ . All the probabilities specified in P̃ ′ are
nonzero, because there are no useless nodes.

The root r of P̃ ′ cannot have ordinary children, because
there is a possible world of P̃ that consists of a single node.
Hence, all the children of r are mux nodes and each of them
has only ordinary children (because P̃ ′ is DHF).

The same label (i.e., either a or b) cannot appear under two
distinct mux children of r , or else some possible world of P̃ ′
contains more than one occurrence of that label. Let ua and
ub be the mux nodes of P̃ ′ that have, among their children,
all the nodes with the labels a and b, respectively. If ua and
ub are distinct, then the probabilistic events “P ′ includes
the label a” and “P ′ includes the label b” are independent.
Hence, as in the proof of Lemma 5.2, this contradicts the
assumption that P̃ ≡v P̃ ′. If ua = ub, then no possible
world of P̃ ′ contains both a and b which, again, contradicts
P̃ ≡v P̃ ′. �

123

On the expressiveness of probabilistic XML models 1049

The following theorem summarizes this section.

Theorem 5.6 The following hold.

1. PrXML{mux} ≡poly
o PrXML{mux}

|�h .

2. PrXML{ind} ��v PrXML{ind}
|�h .

3. PrXML{det} ≡poly
o PrXML{det}

|�h ≡poly
o PrXML{}.

4. PrXML{mux} ��v PrXML{ind} and
PrXML{mux} ��v PrXML{ind}.

5. PrXML{ind}
|�h �poly

o PrXML{mux}.

5.2.2 Combinations of the types ind, mux and det

We now consider the families that use at least two of the types
ind, mux and det. Observe that the type det is a special case
of ind (i.e., each child is chosen with probability 1). There-
fore, adding the type det does not change the expressive
power of a family that is allowed to use ind nodes. In partic-
ular, PrXML{ind,mux} ≡poly

o PrXML{ind,mux,det}. (Recall that
PrXML{ind,mux} is the same as the ProTDB model [3].)

We first show that under the value-based semantics, the
family P̃ ∈ PrXML{mux,det} can represent every px-space
consisting of documents that have the same label in their
roots. Formally, a px-space (D, p) is root consistent if for
every two documents d1, d2 ∈ D , it holds that lbl(root(d1))=
lbl(root(d2)).

Proposition 5.7 For all the root-consistent px-spaces
(D, p), there exists a p-document P̃ ∈ PrXML{mux,det}
such that (D, p) ∼ �P̃�. As a special case, for every subset
C ⊆ {ind, mux, det, exp, cie}, it holds that PrXMLC �v

PrXML{mux,det}.

Proof Let (D, p) be a px-space, where D = {d1, . . . , dn}.
For each i , let wi,1, . . . , wi,ki be the ki children of the root of
di . We construct the p-document P̃ shown in Fig. 3. Namely,
u is a new node that has the same label as the roots of
d1, . . . , dn , and its only child is a new mux node. Each di

Fig. 3 Transforming a px-space into a hierarchy of det and mux nodes

Fig. 4 Transforming an ind node into a hierarchy of det and mux
nodes

becomes a subtree of the mux node after replacing its root
with a new det node, which is chosen by the mux node with
probability p(di). Clearly, (D, p) is isomorphic to �P̃�. �

Note that the above proof constructs a p-document having a
size that is linear in the given px-space (D, p).

The following lemma shows that just by adding det nodes
to the family PrXML{mux}, we get the expressive power of all
the three types det, ind, and mux. This lemma and Part 4 of
Theorem 5.6 imply that PrXML{mux,det} ��v PrXML{mux}.

Lemma 5.8 PrXML{mux,det} ≡poly
o PrXML{ind,mux}.

Proof PrXML{mux,det} �poly
o PrXML{ind,mux} is trivial,

because a det node is a special case of an ind node (i.e., every
child is chosen with probability 1). For the other direction,
PrXML{ind,mux} �poly

o PrXML{mux,det}, let P̃ be a
p-document of PrXML{ind,mux}. We efficiently transform P̃
into a p-document of PrXML{mux,det} while preserving
o-equivalence as described next. Consider an ind node v of
P̃ , and let w1, . . . , wk be the children of v. We replace v

and its children with the subtree shown in Fig. 4. That is, v is
replaced with a new det node v′ that has k new mux nodes
u1, . . . , uk as children. For each ui , the node wi is the only
child of ui and it is chosen with probability pv(wi). �

Now, we consider the need for hierarchies of distributional
nodes when combining two or more of the three types ind,
mux and det. Note that PrXML{ind,det}

|�h ≡poly
o PrXML{ind}

|�h ,
so this case has been studied in the previous section. Also
observe that PrXML{ind,mux,det}

|�h ≡poly
o PrXML{ind,mux}

|�h . The
following lemma shows that in p-documents without hier-
archies of distributional nodes, ind is not needed if mux is
used.

Lemma 5.9 PrXML{ind,mux}
|�h ≡poly

o PrXML{mux}
|�h .

Proof The proof of Lemma 5.4 shows that if both the par-
ent and the children of an ind node v are ordinary, then v

can be emulated by some mux nodes without introducing
hierarchies. Therefore, PrXML{ind,mux}

|�h �poly
o PrXML{mux}

|�h .

The opposite direction, PrXML{mux}
|�h �poly

o PrXML{ind,mux}
|�h ,

is trivially true. �

The following theorem is an immediate corollary of

Lemmas 5.5, 5.8 and 5.9.

123

1050 S. Abiteboul et al.

Fig. 5 a Transforming a
hierarchy of exp nodes into a
single exp node. b A
p-document of PrXML{ind} that
cannot be v-translated to
PrXML{exp}

|�h without an
exponential blowup. c A
p-document that cannot be
o-translated to PrXML{cie}

(a) (b)

(c)

Theorem 5.10 The following hold.

1. PrXML{ind,mux,det} ≡poly
o PrXML{ind,mux} ≡poly

o

≡poly
o PrXML{mux,det} ��v PrXML{mux}.

2. PrXML{ind,mux,det}
|�h ≡poly

o PrXML{mux}
|�h .

In the remainder of this section, we omit the specification
of the type det in a family that uses the type ind, because the
first can be thought of as a special case of the second.

5.3 The type exp

We now consider the family PrXML{exp}. Observe that the
type mux is a special case of exp; that is, a mux node chooses
with nonzero probability only singletons and possibly the
empty set. Similarly, a node of type det is an exp node that
chooses the set of all of its children with probability 1. In the
proof of Lemma 5.8, we showed how an ind node is emulated
by mux and det nodes. Thus, we get the following result,
which implies that PrXML{exp} generalizes PrXML{ind,mux}.
As shown later in Lemma 5.14, this generalization is strict,
namely, there is no o-translation from PrXML{exp} (or even
PrXML{exp}

|�h) to the family PrXML{ind,mux}.

Lemma 5.11 PrXML{ind,mux,exp} ≡poly
o PrXML{exp}.

Next, we consider the need for hierarchies of distribu-
tional nodes in PrXML{exp}. The following theorem shows
that one can always eliminate hierarchies from a p-document
of PrXML{exp} (while preserving o- and v-equivalence), but
it may cause an exponential blowup even if all the exp nodes
actually emulate ind nodes. A particular consequence is that

the models of [4,5], restricted to trees with point probabil-
ities, are not as general as PrXML{exp}. This theorem also
shows that if a p-document of PrXML{ind,mux,exp} is DHF,
then it can be efficiently o-translated to a p-document of
PrXML{exp} without introducing hierarchies of distributional
nodes (note that the construction in the proof of Lemma 5.11
does not have this property).

Theorem 5.12 The following hold.

1. PrXML{ind,mux,exp} ≡o PrXML{exp}
|�h .

2. PrXML{ind,mux,exp}
|�h ≡poly

o PrXML{exp}
|�h .

3. PrXML{ind} ��poly
v PrXML{exp}

|�h .

4. PrXML{exp} ��poly
v PrXML{exp}

|�h .

Proof We first prove Part 1. By Lemma 5.11, it is suffi-
cient to show that PrXML{exp} is o-translatable to the family
PrXML{exp}

|�h , and that can be done by repeatedly applying the

following transformation to a P̃ ∈ PrXML{exp}. Consider
an ordinary node u of P̃ that has some exp children as well
as exp grandchildren. Let T (u) be the maximal subtree of
P̃ , such that the root is u, all the interior nodes are distribu-
tional and all the leaves are ordinary. We replace T (u) with
T ′(u), as shown in Fig. 5a. That is, we remove all the interior
nodes of T (u), add a new exp node v as the only child of u,
and each leaf of T (u) becomes a child of v. For each subset
W of the children of v, we define

pv(W) = Pr(W is the set of children of u in P |
u ∈ V (P)).

123

On the expressiveness of probabilistic XML models 1051

Observe that the above translation is, in general, inefficient,
since exponentially many probabilities are computed (i.e.,
for each of the subsets of the children of u).

For Part 2, the proof of Lemma 5.4 shows how, in a DHF
p-document, we can transform an ind node to several mux
nodes without creating a hierarchy, and a mux node is a spe-
cial case of an exp node.

To prove Part 3, consider the p-document P̃ ∈PrXML{ind}
of Fig. 5b. Nodes v and u of P̃ choose each of their children
with probability 1/2. The ordinary nodes w1, . . . , wn have n
distinct labels l1, . . . , ln , respectively.

Suppose that someP̃ ′ ∈ PrXML{exp}
|�h satisfiesP̃ ′ ≡v P̃ .

The children of root(P̃ ′) are exp nodes and the grandchil-
dren are ordinary nodes, because some possible world of P̃
comprises just the root r . Each child of an exp node belongs
to some subset with nonzero probability, because there are
no useless nodes.

If children of distinct exp nodes have the same label
li , then there is a document d ∈ pwd(P̃ ′) that has two
occurrences of li , which cannot happen in any document of
pwd(P̃), in contradiction to P̃ ′ ≡v P̃ . Therefore, each
label occurs under exactly one exp child of root(P̃ ′).

Now, suppose that the labels li and l j (i �= j) occur below
two distinct exp nodes of P̃ ′. Hence, the probabilistic events
“P ′ includes the label li ” and “P ′ includes the label l j ” are
independent. However, this is not the case in documents of
pwd(P̃), because if li appears in a document d ∈ pwd(P̃),
it means that node u of P̃ has been chosen, and therefore,
the probability that l j also appears in d is 1/2 and not 1/4.
Consequently, P̃ ′ has only one exp node.

Since every subset of the labels occurs in some possible
world of P̃ , it follows that 2n probabilities are specified by
the exp node of P̃ ′. Therefore, the size of this specification
is exponential in the size of P̃ .

Part 4 follows from Part 3 and Lemma 5.11. �

5.4 The type cie

We now discuss the expressive power of PrXML{cie}. The
following theorem proves that this family generalizes
PrXML{ind,mux}; a later result in this section shows that the
generalization is strict. Moreover, hierarchies of distribu-
tional nodes are not needed in PrXML{cie}.

Theorem 5.13 PrXML{ind,mux,cie} ≡poly
o PrXML{cie}

|�h .

Proof We transform a p-document P̃ of the family
PrXML{ind,mux,cie} to a document of PrXML{cie} as follows.
We consider every node v of P̃ , such that the type of v is
either ind or mux; let w1, . . . , wk be the children of v. First,
we change the type of v to cie and introduce k new events
e1, . . . , ek . If v is an ind node, then for all 1 ≤ i ≤ k, we
define p(ei) = pv(wi) and αv(wi) = ei . If v is a mux node,

then no wi satisfies pv(wi) = 0, because there are no useless
nodes, and so we do the following. For all 1 ≤ i ≤ k, we
define αv(wi) = ei ∧¬ei−1 ∧· · ·∧¬e1 and specify the prob-
abilities p(e1) = pv(w1), p(e2) = pv(w2)/(1 − pv(w1))

and, in general, p(ei) = pv(wi)·∏i−1
j=1(1− p(e j))

−1. Hence,
the probability that αv(wi) is true is pv(wi). To show that
the probabilities are well defined, we prove that p(ei) < 1
for 1 ≤ i < k. (We also have to show that p(ek) ≤ 1
and this is proved similarly.) Suppose otherwise and con-
sider the smallest l, such that p(el) ≥ 1 or equivalently
pv(wl) ≥ ∏l−1

j=1(1−p(e j)). 1−∏l−1
j=1(1−p(e j)) is the prob-

ability that at least one of the events e1, . . . , el−1 is true or,
equivalently, exactly one of αv(w1), . . . , α

v(wl−1) is true.
The αv(wi) are disjoint events and therefore 1 − ∏l−1

j=1(1 −
p(e j)) = ∑l−1

j=1 pv(w j). Since we assumed that pv(wl) ≥
∏l−1

j=1(1 − p(e j)), it follows that
∑l

j=1 pv(w j) ≥ 1, in con-
tradiction to pv(wl+1) > 0.

We showed that PrXML{ind,mux,cie} �poly
o PrXML{cie}.

For proving PrXML{cie} �poly
o PrXML{cie}

|�h , we use the fol-
lowing transformation. If u is a cie node that has a cie child
v, then we remove v, connect each child wi of v directly to
u and define αu(wi) = αu(v) ∧ αv(wi). �

By Proposition 5.7 and Theorem 5.13, every family of
p-documents is v-translatable to PrXML{cie}. However, this
particular translation creates a p-document that is linear in
the combined size of all the possible worlds. So, when this
v-translation is from PrXML{exp}, it involves an exponen-
tial blowup. Whether PrXML{exp} can be efficiently v-trans-
lated to PrXML{cie} is an open problem. In any case, the
following lemma shows that under the object-based seman-
tics, PrXML{cie} does not even generalize PrXML{exp}

|�h . That

is, PrXML{exp}
|�h is not o-translatable to PrXML{cie} (and, by

Theorem 5.13, neither to PrXML{ind,mux,cie}).

Lemma 5.14 PrXML{exp}
|�h ��o PrXML{ind,mux,cie}.

Proof By Theorem 5.13, it suffices to show that there is a
p-document P̃ ′∈ PrXML{exp}

|�h , such that no P̃ in PrXML{cie}

satisfies P̃ ′ ≡o P̃ . The existence of P̃ ′ is a consequence
of the following inequality that holds for all p-documents
P̃ ∈ PrXML{cie} and all ordinary nodes w1 and w2 of P̃ ,
such that w1 and w2 appear together in at least one document
d of pwd(P̃).

Pr (w1, w2 ∈ V (P))

≥ Pr (w1 ∈ V (P)) · Pr (w2 ∈ V (P)) (5.1)

That is, the probability that both nodes exist in a possible
world is at least as high as the product of the probabilities that
each one exists. Clearly, there is a p-document in PrXML{exp}

|�h
that violates this inequality, e.g., the one depicted in Fig. 5c.
We prove the above inequality by showing how to calculate

123

1052 S. Abiteboul et al.

Fig. 6 A p-document of PrXML{cie} that can be neither efficiently
v-translated nor o-translated to PrXML{ind,mux,exp}

the probability of the event “a possible world of P̃ contains
a set of ordinary nodes U .”

Let U be a set of ordinary nodes of P̃ , such that all
the nodes of U appear together in at least one document
of pwd(P̃). Consider the minimal r-subtree p(U) of P̃ that
contains all the nodes of U . Let A(U) be the set of all the
literals (i.e., events or negated events) that appear in the con-
junctions αv(w), where w is a node of p(U). A(U) does not
contain both an event e and its negation ¬e, because pwd(P̃)

has a document that contains all the nodes of U . Therefore,
the probability that all the nodes of U appear in a random
document is the product of the probabilities that the liter-
als of A(U) are true. Hence, the inequality follows because
A({w1, w2}) = A({w1}) ∪ A({w2}). �

We now discuss whether PrXML{exp} generalizes the
family PrXML{cie}. Proposition 5.7 and the first part of
Theorem 5.12 imply that PrXML{cie} is v-translatable to
PrXML{exp}

|�h . But this is not an efficient v-translation. The
next theorem shows that an efficient v-translation does not
exist. Moreover, regardless of efficiency, there is no
o-translation.

Theorem 5.15 The following hold.

1. PrXML{cie} ��poly
v PrXML{ind,mux,exp}.

2. PrXML{cie} ��o PrXML{ind,mux,exp}.

Proof We use the same proof for both parts. For all n > 2,
let P̃n be the p-document of PrXML{cie} depicted in Fig. 6.
P̃n has 2n + 3 ordinary nodes and n events e1, . . . , en , each
with probability 1/2. The root r has two ordinary children
labeled with a and a′. In addition, each of the two nodes
labeled with a and a′ has n ordinary grandchildren labeled
with a1, . . . , an and a′

1, . . . , a′
n , respectively. Note that if the

event ei is true, then the two nodes labeled with ai and a′
i

are chosen; conversely, if ei is false, then none of these two
nodes is chosen.

For n > 2, let P̃ ′
n be a minimal p-document of

PrXML{ind,mux,exp}, such that P̃ ′
n ≡v P̃n . We will show

that P̃ ′
n has at least 2n ordinary nodes, thereby proving

that PrXML{cie} is neither efficiently v-translatable nor
o-translatable to the family PrXML{ind,mux,exp}.

First, we show that all the distributional nodes of P̃ ′
n

appear in a hierarchy immediately below the root. That is,
no distributional node is a descendant of an ordinary node
that is labeled with either a or a′. Suppose that this is not so.
Namely, there is a distributional node v that is a descendant
of an ordinary node u that is labeled with a (the symmetric
case where u is labeled with a′ is handled similarly).

If in all the possible worlds that contain u, the set of labels
appearing in the children of u is the same, then v (possibly
with some other nodes) can be eliminated while preserving
v-equivalence, contradicting the assumption that P̃ ′

n is min-
imal. (Note that this argument includes the case where no
possible world contains u.) Hence, there is a label aj and
two possible worlds d1 and d2, such that the following holds.
Both d1 and d2 contain u, but only in d1 does the label aj
appear among the children of u.

Every possible world of P̃n that includes the label aj also
has the label a′

j . Hence, d1 has a node u′
j that is labeled with

a′
j . It follows that in P̃ ′

n , the least common ancestor of u and

u′
j must be a proper ancestor of u, because P̃n has no node

labeled with a′
j that appears as a descendant of a node labeled

with a.
Let s1 and s2 be two r-subtrees of P̃ ′

n such that doc(s1) =
d1 and doc(s2) = d2. We construct an r-subtree s of P̃ ′

n as
follows. Distributional nodes that are not descendants of u
choose children as in s1, whereas the descendants of u choose
their children as in s2. Note that distinct distributional nodes
of P̃ ′

n choose their children independently of one another,
because none of them is of type cie. Hence, the resulting
random document d = doc(s) has a nonzero probability.
Clearly, d has the label a′

j but not the label aj, contradicting

P̃ ′
n ≡v P̃n .
This contradiction proves that all the distributional nodes

of P̃ ′
n appear above all the nodes labeled with either a or a′,

that is, in a hierarchy immediately below the root. It thus fol-
lows that for all possible worlds d of P̃n , the subtree rooted
at the node labeled with a must appear as is in P̃ ′

n . But there
are 2n different possible worlds, yielding 2n such subtrees.
Therefore, P̃ ′

n has more than 2n ordinary nodes. �

Finally, we consider the expressive power of exp and cie

without hierarchies of distributional nodes, namely,
PrXML{exp,cie}

|�h . By Theorem 5.13, this family is at least as

general as the family PrXML{ind,mux,cie}. However, the fol-
lowing theorem shows that it does not generalize PrXML{exp}
(under the object-based semantics).

Theorem 5.16 PrXML{exp} ��poly
o PrXML{exp,cie}

|�h .

Proof We assume, by way of contradiction, that there is an
efficient o-translator from the family PrXML{exp} to

123

On the expressiveness of probabilistic XML models 1053

Fig. 7 A p-document of PrXML{exp,ind} that cannot be efficiently

o-translated to PrXML{exp,cie}
|�h

PrXML{exp,cie}
|�h . Hence, Lemma 5.11 implies that there is also

an efficient o-translator ϕ from PrXML{exp,ind} to
PrXML{exp,cie}

|�h . Let P̃n be the p-document of Fig. 7. The
index n denotes the number of children of each of the nodes
w and u. Since the o-translator ϕ is efficient, we can choose
a fixed value for n so that the following holds. For all exp
nodes v̂ of the p-document ϕ(P̃n), the number of subsets in
the specification of v̂ is smaller than 2n .

Observe that the root of ϕ(P̃n) has only distributional
nodes as children, because there is a possible world of P̃n

that comprises just the root. Since ϕ(P̃n) is DHF, every one
of these distributional nodes has only ordinary children. All
these children are leaves, because random documents of P̃n

have a height of at most one, ϕ(P̃n) has no useless nodes,
and a distributional node cannot be a leaf.

If a random document d of P̃n includes wi , then the prob-
ability that it also includes w j (i �= j) is 0.5. But the prior
probability of including w j is just (0.4 + 0.05) · 0.52 =
0.1125. Therefore, the random variable Pn has the follow-
ing property. For all 1 ≤ i < j ≤ n, the two events “Pn

includes node wi ” and “Pn includes node w j ” are probabi-
listically dependent. By symmetry, a similar property holds
for all ui and u j (i �= j).

Yet another similar property of Pn is the following. For
all 1 ≤ i, j ≤ n, the two events “Pn includes node wi ” and
“Pn includes node u j ” are probabilistically dependent. To
see why, observe that the existence of wi in Pn decreases
the probability of the event7 “Pn includes node u j ,” because
it forces node v of P̃n to choose both w and u (with the low
probability 0.05) in order for u j to be in Pn .

Now, suppose that the root r̂ of ϕ(P̃n) has a child y of type
exp. If r̂ has a second child y′, then an ordinary descendant

7 An exact calculation shows that the prior and posterior probabilities
of this event are 0.1125 and 1/18, respectively.

of y and an ordinary descendant of y′ are probabilistically
independent, in contradiction to the above properties of P̃n .
Hence, y is the only child of r̂ . Note that for all subsets S
of {w1, . . . , wn} ∪ {u1, . . . , un}, there is a possible world of
P̃n with S as the set of leaves. Therefore, the specification
of y must include 22n subsets, which contradicts our choice
of n.

It thus follows that ϕ(P̃n) does not contain exp nodes
and, therefore, is in PrXML{cie}. Recall that the proof of
Lemma 5.14 shows that Eq. (5.1) holds for all p-documents
P̃ of PrXML{cie}. We now derive a contradiction by showing
that the following inequality holds (note that some possible
world of P̃n includes both w1 and u1).

Pr (w1, u1 ∈ V (Pn))

< Pr (w1 ∈ V (Pn)) · Pr (u1 ∈ V (Pn))

The left side is 0.05 · 0.53 = 0.00625. Each multiplicand
on the right side is (0.4 + 0.05) · 0.52, so their product is
0.01265625. �

It is not known whether PrXML{exp} is efficiently
v-translatable to PrXML{exp,cie}

|�h .

5.5 Overview

Figure 8 shows the efficient o-translations that exist between
the families of p-documents that have been discussed in this
section. This figure is complete in the sense that if there
is no directed path from a family F1 to F2, then there
is no efficient o-translator from F1 to F2. As shown in
Fig. 8, the family PrXML{exp,cie} is the most general, and
the families PrXML{exp} and PrXML{exp,cie}

|�h are just below

PrXML{exp,cie}. The family PrXML{cie} is right below
PrXML{exp,cie}

|�h .
Recall that an o-translation is also a v-translation. In

addition, we have shown that every family F of p-documents
is v-translatable to PrXML{mux,det} and, hence, also to
PrXML{exp} and PrXML{cie}. However, the family
PrXML{cie} is not efficiently v-translatable to
PrXML{mux,det}, or even to PrXML{ind,mux,exp}; namely,
such a v-translation causes an exponential blowup.

We also considered the need for hierarchies of distribu-
tional nodes. We showed that such hierarchies are not
required in the case of either PrXML{cie} or PrXML{mux}.
However, for the families PrXML{ind}, PrXML{ind,mux},
PrXML{mux,det} and PrXML{exp}, these hierarchies properly
increase the expressive power, in the sense that there are no
efficient v- or o-translations that can eliminate them (note
that in some of these cases, there are no translations regard-
less of efficiency). In the case of PrXML{exp,cie}, we only
proved that there is no efficient o-translation that eliminates
hierarchies (and for v-translation, it is open).

123

1054 S. Abiteboul et al.

Fig. 8 Efficient o-translations
between families of
p-documents

For the families of p-documents considered thus far, the
results of this section determine for every pair F1 and F2

whether or not there is an efficient o-translation from F1

to F2. When there is no efficient o-translation, then it is
often the case that there is no efficient v-translation as well
(although an inefficient v-translation usually exists).
However, in some cases, the existence of an efficient v-trans-
lation is left as an open problem. The main unsolved ques-
tion is whether the family PrXML{exp} (or even PrXML{exp}

|�h)

can be efficiently v-translated to PrXML{mux,det}, or even to
PrXML{cie}. In the next section, we partially solve this prob-
lem by showing the existence of an efficient v-translation
(but no o-translations) from PrXML{exp} to PrXML{mux,det}
under the assumption of a fixed upper bound on the out-
degree of exp nodes (or on the maximal number of distribu-
tional nodes on any path from the root to a leaf).

6 Distributional nodes with bounded degrees

In this section, we restrict families of p-documents by impos-
ing a bound on the number of children that a distributional
node may have. We study the effect of this bound on the
expressive power. The combination of this restriction with a
lack of distributional hierarchies is beyond the scope of this
paper.

Let F be a family of p-documents and b ≥ 2 be an inte-
ger. We denote by F∆≤b the subset of F that comprises
all the p-documents P̃ , such that each distributional node
v ∈ V dst(P̃) has b or fewer children. For example, in a
p-document P̃ of PrXML{exp}

∆≤2 , every distributional node is
of type exp and has either one or two children (recall that
every distributional node must have at least one child). Note
that there is no bound on the number of children of an ordinary
node.

The following theorem shows that for the families that do
not include the type exp, the bound 2 is enough.

Proposition 6.1 The following hold.

1. PrXML{ind} ≡poly
o PrXML{ind}

∆≤2.

2. PrXML{mux} ≡poly
o PrXML{mux}

∆≤2 .

3. PrXML{ind,mux} ≡poly
o PrXML{mux,det}

∆≤2 .

4. PrXML{cie} ≡poly
o PrXML{cie}

∆≤2.

Proof Observe that for each of the four parts, the direction
�poly

o is trivial. To prove the opposite direction, let P̃ be a
p-document of the family on the left-hand side of one of
the four parts. We describe an efficient process that pre-
serves o-equivalence and does the following. Given a dis-
tributional node v ∈ V dst(P̃) that has k > 2 children, the
process replaces v with three distributional nodes of the same
type and degrees 1, 2 and k − 1. By repeatedly applying
this process, we get an o-equivalent p-document, such that
each distributional node has one or two children. Note that
this is sufficient for proving Parts 1, 2 and 4. For Part 3,
we first apply the above process to the given p-document
of PrXML{ind,mux}, and then use the o-translation (into the
family PrXML{mux,det}) that is described in the proof of
Lemma 5.8. Note that this translation does not increase the
maximal out-degree of distributional nodes; hence, the end
result is a p-document of PrXML{mux,det}

∆≤2 .
The process of replacing v is illustrated in Fig. 9. The

children of v are denoted by w1, . . . , wk . In the subtree that
replaces v, the root is the distributional node v′ and it has
two distributional children u and uk . The children of u are
w1, . . . , wk−1, and the only child of uk is wk . Note that the
nodes w1, . . . , wk , as well as the whole subtrees under them,
are not changed. Recall that v′, u and uk have the same type
as v. In the remainder of the proof, we give additional details
of this construction according to the type of v.

v is of type ind. In this case, v′ chooses both of its children
with probability 1 (as if it is a det node). The probabilities

123

On the expressiveness of probabilistic XML models 1055

Fig. 9 Reducing the degree of
a distributional node

Fig. 10 A p-document P̃ ∈ PrXML{exp}
∆≤b+1 that cannot be o-translated

to PrXML{exp}
∆≤b

of choosing the children w1, . . . , wk are unchanged, that is,
puk (wk) = pv(wk) and pu(wi) = pv(wi) for 1 ≤ i ≤ k−1.

v is of type mux. Let p = pv(wk). Node v′ chooses (the
mutually exclusive) u and uk with probabilities (1− p) and p,
respectively. Node uk chooses wk with probability 1. Finally,
for 1 ≤ i ≤ k − 1, we set pu(wi) to pv(wi)/(1 − p). Note
that p < 1 since there are no useless nodes and v has more
than one child.

v is of type cie. This case is handled similarly to the case
where v is of type ind. In particular, αv′

(u) and αv′
(uk)

are true (i.e., empty conjunctions), αuk (wk) = αv(wk) and
αu(wi) = αv(wi) for 1 ≤ i ≤ k − 1. �

Next, we consider the type exp. If b2 ≥ b1 ≥ 2, then
PrXML{exp}

∆≤b1
�poly

o PrXML{exp}
∆≤b2

trivially holds. The next
lemma shows that the opposite direction does not hold. That
is, Proposition 6.1 cannot be extended to the type exp and,
moreover, raising the bound b increases the expressive power
of PrXML{exp}

∆≤b under the o-semantics.

Lemma 6.2 PrXML{exp}
∆≤b+1 ��o PrXML{exp}

∆≤b holds for all
b ≥ 2.

Proof Consider the p-document P̃ ∈ PrXML{exp}
∆≤b+1 that is

depicted in Fig. 10. The root r of P̃ has a single child v

which is an exp node, and v has b + 1 ordinary children
w1, . . . , wb+1. Let W = {w1, . . . , wb+1}. For all 1 ≤ i ≤
b + 1, node v specifies the probability 1/(b + 1) for the set
W \ {wi }, that is, pv(W \ {wi }) = 1

b+1 .
For i �= j , the events “P does not include wi ” and “P

does not include w j ” are probabilistically dependent. To see
why, observe that wi must appear in P if w j is absent.

By using this property, we will show that no p-document
of PrXML{exp}

∆≤b is o-equivalent to P̃ .

Suppose, by way of contradiction, that a p-documentP̃0 ∈
PrXML{exp}

∆≤b is o-equivalent to P̃ . It is easy to show that r is

the root of P̃0 and W comprises exactly all the leaves of P̃0

(since P̃0 has no useless nodes). We will prove that there is
a probability greater than 0 that all the nodes of W appear in
the random document P0, thereby deriving a contradiction
to the o-equivalence of P̃0 and P̃ , because the probability
that P contains all of W is 0.

Let ua be the least common ancestor of W in P̃0. Note
that ua has at least two children. If ua is the root r , then there
are two distinct leaves wi and w j in W , such that each one
is a descendant of a different child of r . Hence, the events
“P0 does not include wi ” and “P0 does not include w j ”
are probabilistically independent, which is the opposite of
the above property of P . Therefore, P̃0 ≡o P̃ implies that
ua is not r , so ua is a distributional node. Consequently, ua

has at most b children. Since all the b + 1 nodes of W are
descendants of ua , there is a child uc of ua that has two or
more descendants that are in W . Let Wc ⊆ W be the set
of ordinary descendants of uc. Since ua has more than one
child, uc has at most b descendants from W . It follows that
2 ≤ |Wc| ≤ b. By the definition of P̃ , the probability that P
contains all the nodes of Wc (and, possibly, additional nodes
of W) is greater than 0. Consequently, the probability that
P0 contains Wc is greater than 0, because P̃0 ≡o P̃ . Note
that for P0 to contain Wc, the r-subtree P�

0 must contain
Wc and uc. We conclude the following.

0 < Pr
(
Wc ⊆ V (P�

0)
)

Pr
(
Wc ∪ {uc} ⊆ V (P�

0)
)

= Pr
(
uc ∈ V (P�

0)
)

× Pr
(
Wc ⊆ V (P�

0) | uc ∈ V (P�
0)

)

In particular, the following holds.

Pr
(
Wc ⊆ V (P�

0) | uc ∈ V (P�
0)

)
> 0 (6.1)

We arbitrarily choose wc ∈ Wc, and denote by Wc the set
(W \ Wc). Observe that Wc ∪ {wc} has at most b nodes. So,
again, the probability that P�

0 contains Wc ∪{wc} is greater
than 0 and, since wc is a descendant of uc, the r-subtree P�

0
must contain uc in order to contain wc. Thus, the following
holds.

0 < Pr
(
Wc ∪ {wc} ⊆ V (P�

0)
)

≤ Pr
(
Wc ∪ {uc} ⊆ V (P�

0)
)

(6.2)

123

1056 S. Abiteboul et al.

Fig. 11 Simple replacement

Fig. 12 Greedy replacement

We now consider the probability that P0 (or, equivalently,
that P�

0) contains all the nodes of W .

Pr
(
W ⊆ V (P�

0)
)

Pr
(
W ∪ {uc} ⊆ V (P�

0)
)

= Pr
(
Wc ∪ {uc} ⊆ V (P�

0)
)

× Pr
(
Wc ⊆ V (P�

0) | Wc ∪ {uc} ⊆ V (P�
0)

)
(6.3)

The random process of constructing P�
0 and the fact that

P̃0 has no cie nodes imply the following. Given the con-
dition that P�

0 includes uc, the events “P�
0 contains Wc”

and “P�
0 contains Wc” are probabilistically independent. In

particular, the following holds.

Pr
(
Wc ⊆ V (P�

0) | Wc ∪ {uc} ⊆ V (P�
0)

)

= Pr
(
Wc ⊆ V (P�

0) | uc ∈ V (P�
0)

)
(6.4)

From Eqs. (6.1), (6.2), (6.3) and (6.4), we conclude the fol-
lowing.

Pr
(
W ⊆ V (P�

0)
) = Pr

(
Wc ∪ {uc} ⊆ V (P�

0)
)

× Pr
(
Wc ⊆ V (P�

0) | Wc ∪ {uc} ⊆ V (P�
0)

)

= Pr
(
Wc ∪ {uc} ⊆ V (P�

0)
)

× Pr
(
Wc ⊆ V (P�

0) | uc ∈ V (P�
0)

)
> 0

As explained above, this yields a contradiction. �

6.1 Efficient v-translation from PrXML{exp} to
PrXML{mux,det}

By Proposition 5.7, every p-document of PrXML{exp} can be
v-translated to PrXML{mux,det}, but the size of the result is

linear in the number of possible worlds of P̃ . In this section,
we present two v-translations that are efficient for important
sub-classes of PrXML{exp}.

SimpleTrans and GreedyTrans are two v-translations
that traverse the p-document top down and operate as fol-
lows. Whenever an exp node v is visited, the subtree of P̃
that is rooted at v is replaced with a different subtree that has
a root of type mux. In SimpleTrans, this operation is called
simple replacement, and in GreedyTrans, it is called greedy
replacement. The details of these replacements are described
below.

Consider a p-document P̃ ∈ PrXML{exp}. Let v be an
exp node of P̃ with the set of children W = {w1, . . . , wk}.
Suppose that v specifies nonzero probabilities for the subsets
W1, . . . , Wm of W . Note that

∑m
j=1 pv(W j) = 1. By P̃v we

denote the subtree of P̃ rooted at v and consisting of all the
descendants of v. Similarly, for 1 ≤ i ≤ k, the subtree P̃i of
P̃ is the one rooted at wi and comprising all the descendants
of wi .

The simple replacement is illustrated in Fig. 11. It replaces
P̃v with the tree T that is constructed as follows. The root
of T is a mux node that has m det children u1, . . . , um . For
all 1 ≤ j ≤ m and wi ∈ W j , we create a copy of P̃i and
make it a subtree of u j .

The greedy replacement is more complicated. It is illus-
trated in Fig. 12 and defined as follows. First, we choose
the node wi of W that has the maximal number of descen-
dants (i.e., P̃i has the maximal number of nodes among
P̃1, . . . , P̃k). By renaming if necessary, we assume that this
node is wk . The sets W k and W ¬k , and the number pk are
defined as follows.

123

On the expressiveness of probabilistic XML models 1057

W k def= {W j \ {wk} | 1 ≤ j ≤ m ∧ wk ∈ W j }
W ¬k def= {W j | 1 ≤ j ≤ m ∧ wk /∈ W j }
pk

def= 1 −
∑

W j ∈W ¬k

pv(W j)

In other words, W k comprises all the sets W ′, such that wk /∈
W ′ and W ′ ∪ {wk} is given a nonzero probability by v; W ¬k

is the set of all the W j that do not include wk ; and pk is the
probability that v chooses wk (possibly in addition to other
nodes). The tree P̃v is replaced with the tree T that consists
of four new distributional nodes v′, u′, uk and u¬k , as well as
copies of P̃1, . . . , P̃k . Note that uk and u¬k are of type exp
and they will be handled by GreedyTrans in due course. The
full details are given below.

The root of T is the mux node v′. The children of v′ are
u′ and u¬k , and they are chosen with probabilities pk and
1 − pk , respectively. The type of u′ is det and one of its two
children is uk .

For 1 ≤ i ≤ k − 1, one copy of P̃i becomes a subtree
of uk and a second copy—a subtree of u¬k . P̃k becomes a
subtree of u′.

As mentioned above, the type of both uk and u¬k is exp.
Node u¬k specifies the probability pv(W j)/(1− pk) for each
W j ∈ W ¬k . Node uk specifies the probability pv(W ′ ∪
{wk})/pk for each subset W ′ ∈ W k .

An exception to the above construction is when k = 1
or pk = 1 (note that pk > 0, because there are no useless
nodes). An exp node with a single child is actually a mux
node, so GreedyTrans does nothing at node v if k = 1. If
pk = 1, then u¬k and its descendants are not added to T .

The distributional depth of a p-document P̃ is defined
as the maximal number of distributional nodes along any
path from the root to a leaf. The next proposition shows that
SimpleTrans is efficient if the distributional depth of P̃ is
bounded by a constant. Note that the number of possible
worlds can still be exponential in the size of P̃ even if this
bound is 2. Formally, for a natural number h, we denote by
PrXML{exp}

↓≤h the set of all p-documents P̃ ∈ PrXML{exp},
such that the distributional depth of P̃ is at most h.

Proposition 6.3 Let h ≥ 0 be a constant. The algorithm
SimpleTrans is an efficient v-translation from the family
PrXML{exp}

↓≤h to PrXML{mux,det}. Hence, we have that

PrXML{exp}
↓≤h �poly

v PrXML{mux,det}.

Proof Consider a p-document P̃ ∈ PrXML{exp}
↓≤h having N

nodes. Let M be the smallest integer, such that for all distri-
butional nodes v of P̃ , there are at most M subsets in the
specification of v. Clearly, both N and M are not larger than
the size of P̃ .

We extend earlier notation so that P̃v , as well as the sub-
trees P̃1, . . . , P̃k rooted at the children of v, are defined for

all the nodes of P̃ (rather than just exp nodes). In addition,
let Nv and Ni be the numbers of nodes of the subtrees P̃v

and P̃i , respectively. G(P̃v) denotes the number of nodes
in the result of applying SimpleTrans to P̃v .

We prove the following claim by a bottom-up induction on
P̃: If the distributional depth of the subtree P̃v is bounded
by c, then G(P̃v) ≤ (M + 1)c Nv . This claim implies that
G(P̃) ≤ (M + 1)h N , thereby proving the proposition.

For the basis of the induction, the subtree P̃v is just a leaf
(and hence v is an ordinary node). So, SimpleTrans does
not change P̃v and, consequently, the induction hypothesis
holds, because 1 ≤ (M + 1)0.

For the inductive step, there are two cases to consider.
First, if v is an ordinary node, then SimpleTrans does not
change v. Hence, by applying the induction hypothesis to
P̃1, . . . , P̃k , we get the following.

G(P̃v) = 1 +
k∑

i=1

G(P̃i)

≤ 1 +
k∑

i=1

(M + 1)c Ni

≤ 1 + (M + 1)c
∑

i=1

Ni ≤ (M + 1)c Nv

The second line, in the above equation, follows from the
induction hypothesis. The last inequality follows from 1 +
∑

i=1 Ni = Nv .
If v is a distributional node, then SimpleTrans replaces

v with at most 1 + M nodes and replicates each P̃i at most
M times. In the equation below, the second line follows from
the induction hypothesis (note that the distributional depth
of each P̃i is at most c − 1).

G(P̃v) ≤ 1 + M + M
k∑

i=1

G(P̃i)

≤ 1 + M + M
k∑

i=1

(M + 1)c−1 Ni

≤ (M + 1)c(1 +
k∑

i=1

Ni) = (M + 1)c Nv

�

Next, we show that SimpleTrans is not an efficient

v-translation from PrXML{exp}
∆≤2 . In proof, for all n > 0, let

P̃n be the p-document shown in Fig. 13. When applying
SimpleTrans to P̃n , the resulting document has a depth of
2n+1. It can be easily verified that the number of mux nodes
at depth 2n − 1 of the result is 2n−1. As opposed to Simple-
Trans, the following lemma shows that GreedyTrans is an
efficient v-translation from PrXML{exp}

∆≤b to PrXML{mux,det},
for all b ≥ 2.

123

1058 S. Abiteboul et al.

Fig. 13 An example of a series of p-documents of PrXML{exp}
∆≤2 over

which SimpleTrans results in an exponential blowup

Theorem 6.4 Let b ≥ 2 be a constant. GreedyTrans is an
efficient v-translation from the family PrXML{exp}

∆≤b to

PrXML{mux,det}.

Proof In this proof, G(P̃) denotes the number of nodes in
the result of applying GreedyTrans to P̃ . Clearly, Greedy-
Trans does not introduce exp nodes with specifications that
are larger than the maximal specification in the source docu-
ment. So, it suffices to prove that the following holds for all
p-documents P̃ ∈ PrXML{exp}

∆≤b . For all subtrees P̃v of P̃ , it

holds that G(P̃v) is polynomial in |V (P̃v)| (i.e., the number
of nodes of P̃v). Let c > 1 be the smallest (fixed) integer,
such that (1 − 1

b+1)c−1 ≤ 1/2. We prove by induction on

|V (P̃v)| that G(P̃v) ≤ 2|V (P̃v)|c −1 for all subtrees P̃v .
For the basis of the induction, we assume that v is a leaf.

In this case, GreedyTrans does not change P̃v , and hence,
G(P̃v) = 1, as required.

For the inductive step, we consider a node v of some
P̃ ∈ PrXML{exp}

∆≤b . Recall that P̃1 . . . , P̃k denote the sub-

trees rooted at the children of P̃v , and P̃k has the maximal
number of nodes among these subtrees.

There are two cases to consider. First, if v is an ordinary
node, then the following equation holds, where the second
line follows from the induction hypothesis.

G(P̃v) ≤ 1 +
k∑

i=1

G(P̃i)

≤ 1 +
k∑

i=1

(2|V (P̃i)|c − 1)

≤ 2
k∑

i=1

|V (P̃i)|c

≤ −1 + 2

(

1 +
k∑

i=1

|V (P̃i)|c
)

≤ −1 + 2

(

1 +
k∑

i=1

|V (P̃i)|
)c

= 2|V (P̃v)|c − 1

In the second case, v is an exp node, and we apply the
greedy replacement as illustrated in Fig. 12. If k = 1, then
nothing is done at node v, so the proof is the same as in the
case where v is an ordinary node. If k > 1, then after applying
GreedyTrans to v, we continue recursively with the subtrees
P̃u¬k , P̃uk and P̃k (the transformation does nothing when
visiting the det node u′). Each of these three subtrees has
fewer nodes than P̃v , so the induction hypothesis implies
the following.

G(P̃v) ≤ 2 + G(P̃u¬k) + G(P̃uk) + G(P̃k) (6.5)

Note that if pk = 1, then G(P̃u¬k) = 0. The proof below
holds also in this case.

Let N = |V (P̃v)| and Ni = |V (P̃i)|. Note that N =
1+∑k

i=1 Ni . Since v has k children, it follows that k ≤ b and
the sum 1 + ∑k

i=1 Ni has at most b + 1 operands. We have
assumed that P̃k has the largest number of nodes among
P̃i , . . . , P̃k . Therefore, Nk ≥ N/(b + 1).

Let rk be the ratio Nk/N . Then rk ≥ 1/(b + 1). For each
of P̃uk and P̃u¬k , the number of nodes is at most N − Nk =
(1 − rk)N . The number of nodes of P̃k is rk N . We now
continue with Eq. (6.5) and get the following. Note that the
fifth inequality below uses rk ≥ 1/(b+1), which was shown
above.

G(P̃v) ≤ 2 + G(P̃u¬k) + G(P̃uk) + G(P̃k)

≤ 2 + 2 · (2((1 − rk)N)c − 1) + 2(rk N)c − 1

≤ −1 + 2 · 2(1 − rk)
c N c + 2rc

k N c

≤ −1 + 2 · 2(1 − rk)
c N c + 2rk N c

≤ −1 + 2 · 2

(

1 − 1

b + 1

)c−1

(1 − rk)N c

+ 2rk N c

Recall that c satisfies
(

1 − 1
b+1

)c−1 ≤ 1/2. Therefore,

G(P̃v) ≤ 2(1 − rk)N c + 2rk N c − 1 = 2N c − 1 ,

as required. �

As a result, we get the following corollary.

Corollary 6.5 PrXML{exp}
∆≤b �poly

v PrXML{mux,det} for all
constants b ≥ 2.

We conclude with the following theorem.

123

On the expressiveness of probabilistic XML models 1059

Theorem 6.6 For all constants b2 > b1 ≥ 2, the following
hold.

1. PrXML{ind,mux} �poly
o PrXML{exp}

∆≤b1
�poly

o

�poly
o PrXML{exp}

∆≤b2
�poly

o PrXML{exp}.
2. PrXML{exp} ��o PrXML{exp}

∆≤b2
��o

��o PrXML{exp}
∆≤b1

��o PrXML{ind,mux}.
3. PrXML{ind,mux} ≡poly

v PrXML{exp}
∆≤b1

≡poly
v

≡poly
v PrXML{exp}

∆≤b2
.

Proof For Part 1, PrXML{ind,mux} �poly
o PrXML{exp}

∆≤b1
fol-

lows from Part 3 of Proposition 6.1 and the fact that mux
and det nodes can be viewed as special cases of exp nodes.
The rest of the o-translations are trivial.

For Part 2, Lemma 6.2 implies both PrXML{exp} ��o

PrXML{exp}
∆≤b2

and PrXML{exp}
∆≤b2

��o PrXML{exp}
∆≤b1

. As for the
third result of Part 2, it is a consequence of the following
observation. In the proof of Lemma 5.14, we showed an
example of a p-document P̃ ∈ PrXML{exp} that cannot be
o-translated to PrXML{ind,mux,cie} (see Fig. 5c), and P̃
belongs to PrXML{exp}

∆≤2 . Therefore, PrXML{exp}
∆≤b1

��o

PrXML{ind,mux}.
Finally, Part 3 follows from Corollary 6.5, Part 3 of

Proposition 6.1 and Lemma 5.8. �

7 Probabilistic updates

Another perspective on the expressiveness of probabilistic
XML models is to consider their ability for capturing updates.
A main question is whether the result of an update is express-
ible in some model. Another issue is how complex it is
to compute a representation of this result. As is natural in
the context of probabilistic data, we consider probabilistic
updates, that are conditioned by a certain confidence in the
operation. Typically, a probabilistic database could be the
result of a number of successive probabilistic updates on an
initial ordinary document.

As with o-translations and v-translations, we consider here
two kinds of probabilistic updates: o-updates, based on object
identity, and v-updates, based on value equality. For simplic-
ity, we consider here only elementary updates, that is, updates
consisting of a single insertion or deletion. The extension to
arbitrary updates is not too involved, and is discussed in [8].

7.1 Object-based updates

In a real-life system, o-updates are obtained for instance when
a user clicks on a node to attach an annotation to it or to delete
it. Such an update is thus directly specified on an object.
The system may, for instance, attach a confidence to that

update depending on the expertise of the particular user. More
formally:

Definition 7.1 A probabilistic o-update operation is a pair
τ = (o, c) where 0 < c ≤ 1 is the confidence in the opera-
tion, and o is either:

1. an o-insertion, that is, an expression ι(v, F) where v is
a node identifier and F is a document forest;

2. an o-deletion, that is, an expression δ(v) where v is a
node identifier.

If c = 1, τ is said to be deterministic.

In the following, we assume that all nodes to be inserted (that
is, all nodes of the document forest F in expressions ι(v, F))
are fresh nodes that do not appear in any document where F
will be inserted.

The semantics of a deterministic update on a document is
clear. (In the case it speaks of a non-existing node, the update
is simply ignored.) Formally:

Definition 7.2 Let τ = (o, 1) be a deterministic o-update
operation and d a document. The result of the operation τ on
d, denoted τ(d), is defined as follows:

1. d is unchanged if v /∈ V (d) (for o = ι(v, F) or o =
δ(v));

2. if o = ι(v, F) and v ∈ V (d), each tree in F is inserted
as a child of v;

3. if o = δ(v) and v ∈ V (d), v is deleted (unless v is the
root of d, in which case d is left unchanged).

More interestingly, we now define the semantics of an
o-update operation on a px-space. Intuitively, a probabilis-
tic o-update (o, c) performs the update on a document with
probability c, and does nothing with probability 1 − c.

Definition 7.3 Let (D, p) be a px-space and τ = (o, c) an
o-update operation. The result of the operation τ on (D, p)

is the px-space (D ′, p′) where D ′ = D ∪{(o, 1)(d) | d ∈ D}
and for each d ′ ∈ D ′:

p′(d ′) = p(d ′) × (1 − c) +
∑

d∈D
(o,1)(d)=d ′

(p(d) × c).

We now consider the expressiveness of the different fam-
ilies of p-documents, which were presented in Sect. 4, with
respect to probabilistic o-updates. The general question is,
given a family of p-documents F and a probabilistic
o-update operation τ , is the result of τ on the px-space asso-
ciated with a p-document of F always representable as a
p-document of F ? We define this next while taking tracta-
bility into consideration.

123

1060 S. Abiteboul et al.

Definition 7.4 Let F be a family of p-documents. We say
thatF is closed under (respectively, deterministic) o-updates
if for each (respectively, deterministic) o-update τ and for
each P̃ ∈ F , there exists a P̃ ′ ∈ F such that τ(�P̃�) =
�P̃ ′�. We say that F is tractably closed under o-updates if
there exists a polynomial-time algorithm that, given a
p-document P̃ ∈ F and an o-update operation τ , returns a
p-document P̃ ′ ∈ F such that �P̃ ′� = τ(�P̃�).

We can now study the closure of concrete families of
p-document under o-updates, and the tractability of
o-updates:

Proposition 7.5 1. Every family of the form
PrXML{type1,type2,...} or PrXML{type1,type2,...}|�h (with typei
any of the types of distributional nodes defined in Sect.4)
is tractably closed under deterministic o-updates.

2. Every family of the form PrXML{ind,type2,type3,...} is trac-
tably closed under o-updates.

3. PrXML{exp}
|�h and PrXML{exp,cie}

|�h are tractably closed
under o-updates.

4. A family F of p-documents such that PrXML{} �o F �o

PrXML{mux} is not closed under o-updates.

Proof 1. Let F be such a family and P̃ ∈ F . Let (o, 1) be
a deterministic o-update. Let P̃ ′ be the result of applying
o directly to the tree P̃ , as follows:

– if o = ι(v, F) or o = δ(v), and v /∈ V (P̃), then
P̃ ′ = P̃;

– if o = ι(v, F) with v an ordinary node of P̃ , then
we insert F as children of v in P̃;

– if o = δ(v) with v a non-root node of P̃ , we delete
v from P̃; additionally, if v is a child of a distribu-
tional node u, we adjust the probability of choosing
its siblings:
– if u is a det, ind, mux, or cie node, we do not

change anything (in the case of mux, it means
that the probability of not choosing any of the
children of u increases by the amount pu(v));

– if u is an exp node, we set p′u(W) = pu(W) +
pu(W ∪ {v}).

Then it is easy to see that P̃ ′ ∈ F and �P̃ ′� = (o, 1)

(�P̃�).
2. Let F be such a family and P̃ ∈ F . Let (o, c) be an

o-update. We build P̃ ′ from P̃ as follows:

– if o = ι(v, F) or o = δ(v), and v /∈ V (P̃), then
P̃ ′ = P̃;

– if o = ι(v, F) with v an ordinary node of P̃ , then
we add as child of v an ind node v1 that has for child
another ind node v2 that has for children the forest
F , and we set p′v1(v2) = c and p′v2(wk) = 1 for all
wk roots of F ;

– if o = δ(v) with v a non-root node of P̃ , we insert
between v and its parent an ind note v′ such that
p′v′

(v) = 1 − c. If the parent of v is distributional,
then the specifications of the probabilities are modi-
fied by replacing v with v′.

Then P̃ ′ is obviously an element of F and we can check
that �P̃ ′� = τ(�P̃�).

3. Let P̃ be a document of either family. We can apply
the update τ as in Part 2 above, yielding a document
P̃ ′ ∈ PrXML{ind,exp,cie} in which ind nodes have either
a single child or are in effect det nodes. Either way, they
can be transformed in polynomial time into exp nodes
with probabilities specified for at most two subsets of
children (the empty set and the full set), or into cie nodes.
As already seen in the proof of Theorem 5.13, a hierar-
chy of cie nodes can be merged into a single cie node in
polynomial time. There only remains the case of a hier-
archy of exp nodes, with a succession of at most three
exp nodes, two of which with probabilities specified for
at most two subsets of children. This can be merged into
a single exp node, with probabilities specified for at most
4k subsets, where k is the number of specifications of the
third exp node.

4. Let P̃ be a trivial p-document consisting of only one
node u. This is a p-document of PrXML{} and thus of F .
Let τ = (ι(u, F), 0.5) be an o-update, where F is a for-
est that comprises only two nodes w and w′ and no edges.
Then τ(�P̃�) = ({d1, d2}, p) where d1 is a single-node
tree and d2 is a three-node tree, with p(d1) = 0.5 and
p(d2) = 0.5. There is no possible way to represent this
px-space in PrXML{mux} since the absence of siblings w

and w′ is correlated. �

Observe that for every two families F1 and F2 of

p-documents, if F1 ≡o F2, then F1 is closed under o-
updates if and only if F2 is closed under o-updates. Similarly,
for F1 and F2 two families of p-documents, if F1 ≡poly

o F2,
then F1 is tractably closed under o-updates if and only if F2

is tractably closed under o-updates. Note also that an imme-
diate consequence of Proposition 7.5 and of the o-transla-
tions between families of p-documents obtained in Sect. 5 is
the following characterization of the families closed under
o-updates:

Corollary 7.6 The following families are all tractably
closed under o-updates:

PrXML{ind}, PrXML{mux,det}, PrXML{cie}, PrXML{exp},
PrXML{exp,cie}, PrXML{exp}

|�h and PrXML{exp,cie}
|�h .

However, PrXML{mux} and PrXML{ind}
|�h are not closed under

o-updates.

In other words, all reasonable probabilistic XML models
are tractably closed under o-updates. However, value-based

123

On the expressiveness of probabilistic XML models 1061

updates may in practice often be viewed as more “natural”.
We consider them next.

7.2 Value-based updates

Suppose we want to annotate all addresses in a document. We
use a query to recognize addresses. We then update all the
nodes returned by the query. In general, a value-based update
uses a locator query to locate the objects to update and then
applies the update to all the objects. For example, the loca-
tors that are embedded in the XML update languages XUp-
date [17] and XQuery Update [18] rely on XPath [19] and
XQuery [20] queries, respectively. We consider simple query
languages described later. First, we define queries abstractly.

Definition 7.7 A locator query Q is defined as a function
that maps each document d to a set of pairs (d ′, v′) where
d ′ is an r-subtree of d and v′ is a locator, that is, a node in
d ′. We assume that applying the same query to isomorphic
documents yields isomorphic answers.

We can now define v-updates in terms of queries.

Definition 7.8 A probabilistic v-update operation is a pair
τ = (o, c) where 0 < c ≤ 1 is the confidence in the opera-
tion, and o is either:

1. a v-insertion, that is, an expression ι(Q, F) where Q is
a query and F is a document forest (to be inserted as
children of the nodes mapped by Q);

2. a v-deletion, that is, an expression δ(Q) where Q is a
query (indicating the nodes to delete).

If c = 1, τ is said to be deterministic.

Observe that again our updates are probabilistic. The loca-
tor query may introduce uncertainty, e.g., the system may
make errors in recognizing addresses.

As in the discussion of Sect. 7.1 about o-updates, we con-
sider the following two issues with respect to various families
of p-documents: closure under v-updates, and the complex-
ity of computing a representation of the result of an update.
We first define the semantics of deterministic v-updates on
ordinary documents.

Definition 7.9 Let τ = (o, 1) be a (deterministic) v-update
operation and d a document. The result of the operation τ on
d, denoted τ(d), is the result of applying o to d:

1. if o = ι(Q, F), each tree in F is inserted as a child of
each v′ such that some (d ′, v′) ∈ Q(d) (possibly insert-
ing F multiple times at the same place);

2. if o = δ(Q), each v′ such that some (d ′, v′) ∈ Q(d) is
deleted.

The definition of the result of a v-update operation on a
px-space is a straightforward adaptation of Definition 7.3 for
o-updates. Closure under v-updates, however, uses px-space
isomorphism instead of equality:

Definition 7.10 Let F be a family of p-documents. We say
that F is closed under v-updates (respectively, deterministic
v-updates) for the class of queries Q if, for any
v-update (respectively, deterministic v-update) τ = (o, c)
with o defined by a query Q ∈ Q, for each P̃ ∈ F , there
exists a P̃ ′ ∈ F such that τ(�P̃�) ∼ �P̃ ′�. We say F is
tractably closed under v-updates for the class Q if there is an
algorithm that returns such a P̃ ′ given P̃ in time polynomial
in the size of P̃ .8

We next introduce three classes of queries that we will
consider for closure and tractability results. The first one is
the class of tree-pattern queries, e.g., queries of the form
a[b/c][d]. This is one of the most studied classes of que-
ries for XML. We use here for simplicity a restricted notion
of tree-pattern queries, without descendant edges (the //
of XPath). This class can be extended in a straightforward
manner. But, as we shall see, even simple branching as con-
sidered here leads to negative results. We also consider a
simpler class, namely that of restricted single-path queries,
e.g., queries of the form /a/b/c. Finally, we consider a
more abstract class, namely the “locally monotone queries”
that includes the tree-pattern queries. We will show for that
class a very strong positive result (the tractable closure of
PrXML{cie} under v-insertions defined by locally monotone
queries).

Definition 7.11 1. A tree-pattern query Q is defined by an
underlying tree-pattern dQ (which is simply an ordinary
document) and a locator node vQ ∈ V (dQ). For a doc-
ument d, Q(d) is the set of all pairs {d ′, v′} such that d ′
is an r-subtree of d, there is a homomorphism from dQ

to d ′, and v′ is the image of vQ by this homomorphism.
2. A single-path query is a tree-pattern query such that the

underlying tree-pattern is a single path without branch-
ing. A restricted single-path query Q is a single-path
query whose locator node is the terminal node vQ of the
path.

3. A query Q is locally monotone if either of the following
two equivalent conditions holds:

(i) For any three documents d1, d2 and d3 such that
d1 is an r-subtree of d2 and d2 is a r-subtree of d3,
(d1, v) ∈ Q(d2) ⇐⇒ (d1, v) ∈ Q(d3);

(ii) For any two documents d1 and d2 such that d1 is
an r-subtree of d2, Q(d1) is the subset of elements
of Q(d2) that are r-subtrees of d1.

8 We consider only here the data complexity, i.e., the query is not con-
sidered to be part of the input.

123

1062 S. Abiteboul et al.

The previous definition is well-defined because 3i and 3ii are
equivalent as we briefly argue next:

3i ⇒ 3ii. Let d1 and d2 be two documents such that d1 is
an r-subtree of d2. Let (d ′, v′) ∈ Q(d1). By definition of
queries, d ′ is an r-subtree of d1. By 3i, (d ′, v′) ∈ Q(d2).
Now let (d ′, v′) ∈ Q(d2) with d ′ an r-subtree of d1. By 3i,
(d ′, v′) ∈ Q(d1). This concludes the proof of the impli-
cation.

3ii ⇒ 3i. Let d1, d2 and d3 be three documents such that d1

is an r-subtree of d2 and d2 an r-subtree of d3. Suppose
first that (d1, v

′) ∈ Q(d3). As d1 is an r-subtree of d2,
by 3ii, (d1, v

′) ∈ Q(d2). Now suppose (d1, v
′) ∈ Q(d2).

By 3ii, (d1, v
′) ∈ Q(d3).

Locally monotone queries actually generalize tree-pattern
queries:

Proposition 7.12 Every tree-pattern query is locally mono-
tone.

Proof We prove (ii) of Definition 7.11. Let Q be a tree-
pattern query defined by the pattern dQ and locator vQ . Let
d1 and d2 be two documents, such that d1 is an r-subtree
of d2. Let (d ′, v′) ∈ Q(d1). By definition, d ′ is an r-sub-
tree of d1. As there is a homomorphism from dQ to d ′ map-
ping vQ to v′ and d ′ is an r-subtree of d2, (d ′, v′) ∈ Q(d2).
Now let (d ′, v′) ∈ Q(d2) be an r-subtree of d1. Then there
is a homomorphism from dQ to d ′ mapping vQ to v′, so
(d ′, v′) ∈ Q(d1). �

We showed in [8] that tree-pattern queries with descen-
dant edges and value joins (both positive and negative) are
still locally monotone. On the other hand, a simple query such
as “Return the root if all its children are labeled by l” is not
locally monotone because the universal quantifier involves
some form of negation. We present now basic results about
closure under v-updates and tractability.

Proposition 7.13 1. Let F be a family of p-documents that
is closed with respect to relabeling of ordinary nodes. If
F is closed under v-updates (respectively, deterministic
v-updates) for the class of restricted single-path queries,
then it is closed under o-updates (respectively, determin-
istic o-updates).

2. If F is a family of documents (tractably) closed under
deterministic o-updates, then it is (tractably) closed
under deterministic v-updates for restricted single-path
queries.

3. Let F1 and F2 be two families of p-documents such that
F1 ≡v F2. Then, F1 is closed under v-updates if and
only if F2 is closed under v-updates.

4. Let F1 and F2 be two families of p-documents closed
under v-updates for some class of queries Q, such that

F1 ≡poly
v F2. Then F1 is tractably closed under

v-updates for the class of queries Q if and only if F2

is tractably closed under v-updates for the class of que-
ries Q.

5. Any family F that satisfies PrXML{mux,det} �v F is
closed under v-updates for any class of queries.

Proof 1. Suppose F is closed under v-updates (the proof
is the same for deterministic v-updates) for the class of
restricted single-path queries. Let P̃ ∈ F and τo be
an o-update. Let ϕ be a function that maps each ordi-
nary node of P̃ to a unique label (ϕ−1 then maps these
identifiers to nodes of P̃). τo is defined by a node v. If
this node is not in P̃ , then τo(�P̃�) = �P̃�. Otherwise,
let P̃v be the relabeling of P̃ by ϕ and d the minimal
r-subtree of doc(P̃ ′) containing the node labeled by
ϕ(v) (this is obviously a single path). Let τv be the v-
update corresponding to τo where the locatorv is replaced
by the restricted single-path query d with locator the node
labeled by ϕ(v). Since F is closed under v-updates, there
is a document P̃ ′

v such that �P̃ ′
v� = τv(�P̃v�). Observe

now that if one apply ϕ−1 to the labels of the nodes of
τv(�P̃v�) to get back original nodes of P̃ , one obtains
exactly τo(�P̃v�) since τo and τv both perform the same
update at the same place. Let now P̃ ′ be the p-document
obtained from P̃ ′

v by applying ϕ−1 to the labels to get
back original nodes of P̃ . Then �P̃ ′� = τo(�P̃�). Note
that this construction might not be polynomial even if
F is tractably closed under v-updates for the class of
restricted single-path queries, since the query defining
τv is not fixed.

2. Suppose F is closed under deterministic o-updates. Let
P̃ ∈ F and τv = (ov, cv) be a deterministic v-update
defined by restricted single-path query Q. Let S be the
set of answers of Q on doc(P̃). Since Q is a single-path
query the number of elements in |S| is at most the num-
ber of ordinary nodes in P̃ . For each {(d ′, v′)} ∈ S, we

define the deterministic o-update τ
(d ′,v′)
o that performs

the same update operation as τv except that the locator
query is replaced by v′. We apply now the o-updates

τ
(d ′,v′)
o for each {(d ′, v′)} sequentially on �P̃�, yielding

a px-space (D ′, p′). Observe that the ordering of these
o-updates is not significant and that (D ′, p′) is exactly
τv(�P̃�). As F is closed under deterministic o-updates,
there is a P̃ ′ ∈ F such that �P̃ ′� = (D ′, p′). The con-
struction of P̃ ′ from P̃ is polynomial if F is tractably
closed under o-updates (we use here the bound on |S|).

3. Suppose F1 is closed under v-updates. Let P̃2 ∈ F2 and
τ be a v-update. Since F2 �v F1, there exists P̃1 ∈
F1 such that �P̃1� ∼ �P̃2�. As F1 is closed under
v-updates, there exists P̃ ′

1 ∈ F1 such that �P̃ ′
1� ∼

τ(�P̃1�). Since F1 �v F2, there exists P̃ ′
2 ∈ F2 such

that �P̃ ′
2� ∼ �P̃ ′

1�. Then �P̃ ′
2� ∼ τ(�P̃2�), and F2 is

123

On the expressiveness of probabilistic XML models 1063

(a) (b)

Fig. 14 A p-document (a) of PrXML{ind}
|�h on which a v-insertion

defined by single-path pattern (b) can result in exponential blowup

closed under v-updates. The other direction is obtained
by symmetry.

4. This is proved as in 3, since P̃1, P̃ ′
1 and P̃ ′

2 can be
obtained in polynomial time from, respectively, P̃2, P̃1

and P̃ ′
1 (observe that the query defining τ remains fixed).

5. This is a direct consequence of Proposition 5.7. �

We now consider the tractability of v-updates for families
such as PrXML{exp} and PrXML{cie}. The following result
shows that, at least for v-insertions, the ability of expressing
complex dependencies through cie nodes makes a difference
in the complexity of updates.

Theorem 7.14 1. Every family of the form
PrXML{type1,type2,...} or PrXML{type1,type2,...}|�h with typei
any of the types of distributional nodes defined in Sect.4,
except cie, is not tractably closed under deterministic
v-insertions defined by single-path queries.

2. PrXML{cie} is tractably closed under v-insertions defined
by locally monotone queries, as long as computing query
results can be done in polynomial time.9

Proof 1. With the exception of such families as PrXML{}

that are not even closed under o-updates, PrXML{ind}
|�h

is efficiently v-translatable to each considered family
F . For one such F , and for an arbitrary positive inte-
ger n, let P̃ be the efficient v-translation in F of the
p-document of PrXML{ind}

|�h shown in Fig. 14a. We only
show here node labels, not node identifiers. Let τ be the
deterministic v-insertion defined by the single-path pat-
tern of Fig. 14b, that inserts a single node labeled by c as
a child of the root node a.

9 This is especially the case for tree-pattern queries, whose data com-
plexity is polynomial-time.

Suppose that P̃ ′ is a p-document of F such that �P̃ ′� ∼
τ(�P̃�). We proceed very similarly to the proof of The-
orem 5.15: as the number of existing c nodes needs to be
correlated with the number of existing bi nodes, all dis-
tributional nodes appearing below a b child must yield
possible worlds with a fixed number of b′ children and
must thus appear above all nodes labeled by b′. This
means that, for a given value of k (say, k = n/2, assum-
ing n is even), each possible choice of k bi nodes among
n must appear as an ordinary subtree in P̃ . But

(
n

n/2

)

= n!
(n/2)!2 ∼

√
2πnnnen

enπn × (n/2)n
= 2n

√
2√

πn

= 	(2n)

using Stirling’s formula.
2. This has been proved in [8]. As the proof requires a num-

ber of intermediate results (especially on the possibility
of applying locally monotone queries directly to p-docu-
ments of PrXML{cie}), we only describe here the general
idea. Given a v-insertion τ defined by a query Q and a
p-document P̃ , we apply Q directly to doc(P̃), keep-
ing for each query result r the set of event conjunctions
condr on nodes appearing in the query result. Then, for
each query result r , the nodes to be inserted are inserted at
the place indicated by the locator, under a fresh cie node,
with the conjunction of condr as the condition. Because
Q is locally monotone, it can be shown that this pro-
cess yields a p-document P̃ ′ such that �P̃ ′� ∼ τ(�P̃�).
Besides, it is obviously a polynomial-time process, as
long as Q takes polynomial time on doc(P̃). �

It is an open issue whether PrXML{cie} is tractably closed
under arbitrary v-updates (including deletions) defined by
tree-pattern queries. We have shown in [8], however, that
v-updates are intractable in PrXML{cie} if we impose the
result of an update to be expressed with the same events
as in the original document (this is usually what we want
when updating PrXML{cie} p-documents, since this allows
the keeping of lineage or provenance information, each event
being a trace of the update that introduced it).

8 Conclusion

Under the object-based semantics, PrXML{exp,cie} is the most
expressive family (among those studied) and has two cru-
cial properties. It is tractably closed under o-updates, and all
the other families can be efficiently o-translated into it (but
the converse is not true). Under the value-based semantics,
PrXML{exp,cie} remains the most expressive. Notwithstand-
ing, other families, including PrXML{ind,mux}, PrXML{exp}
and PrXML{cie}, are as expressive as PrXML{exp,cie}.

123

1064 S. Abiteboul et al.

V-translations from PrXML{cie} into either PrXML{ind,mux}
or PrXML{exp} may entail an exponential blowup in the size
of the p-document. It is unknown whether there are effi-
cient v-translations from PrXML{exp} into PrXML{ind,mux}
and PrXML{cie}. Nonetheless, p-documents of PrXML{exp}
with a bounded distributional depth or out-degree can be
efficiently v-translated into the other two families. As for
updates, v-insertions (defined by locally monotone queries)
are tractable for PrXML{cie}, but not for PrXML{exp}. There-
fore, under the value-based semantics, PrXML{cie} has the
advantage in terms of insertions, the ability to efficiently
translate into it, and the power to express correlations between
different distributional nodes. However, tree-pattern queries
with projection can be evaluated efficiently (under data com-
plexity) in the family PrXML{ind,mux} [9], and even in
PrXML{exp} [1,10], but (except for trivial cases) they are
#P-hard in PrXML{cie} [1,10]. Thus, the choice of a proba-
bilistic XML model hinges on a trade-off between efficient
query processing and the ability to capture complex correla-
tions.

We conclude by discussing some extensions. In [21], the
family PrXML{exp} is enriched with constraints that make it
possible to express correlations between distributional nodes,
without sacrificing the efficiency of query evaluation; how-
ever, update tractability is still open. In [22], p-documents are
extended by allowing order among siblings. Alternatively,
one might consider two p-documents to be the same if there
are homomorphisms in both directions; the effect on trans-
latability and updates is left for future work. Finally, it is
important to study the complexity of some additional prob-
lems, such as testing equivalence of p-documents and enu-
merating all random documents that have probability above
a given threshold. In particular, it would be interesting to find
out how these complexities depend on the types of distribu-
tional nodes being used.

References

1. Kimelfeld, B., Kosharovski, Y., Sagiv, Y.: Query efficiency in prob-
abilistic XML models. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data. ACM Press, New
York (2008)

2. Senellart, P., Abiteboul, S.: On the complexity of managing proba-
bilistic XML data. In: Proceedings of the 28th ACM SIGACT-SIG-
MOD-SIGART Symposium on Principles of Database Systems,
pp. 283–292. ACM Press, New York (2007)

3. Nierman, A., Jagadish, H.V.: ProTDB: Probabilistic data in XML.
In: VLDB 2002, Proceedings of 28th International Conference on
Very Large Data Bases, pp. 646–657. Morgan Kaufmann, Menlo
Park (2002)

4. Hung, E., Getoor, L., Subrahmanian, V.S.: PXML: A probabilis-
tic semistructured data model and algebra. In: Proceedings of the
19th International Conference on Data Engineering, pp. 467–478
(2003)

5. Hung, E., Getoor, L., Subrahmanian, V.S.: Probabilistic interval
XML. ACM Trans. Comput. Logic 8(4), (2007)

6. van Keulen, M., de Keijzer, A., Alink, W.: A probabilistic XML
approach to data integration. In: Proceedings of the 21st Interna-
tional Conference on Data Engineering, ICDE 2005, pp. 459–470.
IEEE Computer Society, Washington, DC (2005)

7. Abiteboul, S., Senellart, P.: Querying and updating probabilistic
information in XML. In: Advances in Database Technology—
EDBT 2006, 10th International Conference on Extending Data-
base Technology. Lecture Notes in Computer Science, vol. 3896,
pp. 1059–1068. Springer, Berlin (2006)

8. Senellart, P.: Comprendre le Web caché. Understanding the Hidden
Web, vol. 11. Ph.D. thesis, Université Paris-Sud (2007)

9. Kimelfeld, B., Sagiv, Y.: Matching twigs in probabilistic XML. In:
Proceedings of the 33rd International Conference on Very Large
Data Bases, pp. 27–38. ACM Press, New York (2007)

10. Kimelfeld, B., Kosharovsky, Y., Sagiv, Y.: Query evaluation over
probabilistic XML. VLDB J. (2009)

11. Li, T., Shao, Q., Chen, Y.: PEPX: a query-friendly probabilistic
XML database. In: Proceedings of the 2006 ACM CIKM Interna-
tional Conference on Information and Knowledge Management,
pp. 848–849. ACM Press, New York (2006)

12. Dalvi, N.N., Suciu, D.: Management of probabilistic data: founda-
tions and challenges. In: Proceedings of the 26th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, pp. 1–12. ACM Press, New York (2007)

13. Widom, J.: Trio: A system for integrated management of data,
accuracy, and lineage. In: CIDR 2005, 2nd Biennial Conference
on Innovative Data Systems Research, pp. 262–276 (2005)

14. Koch, C.: MayBMS: A system for managing large uncertain and
probabilistic databases. In: Aggarwal, C. (ed.) Managing and Min-
ing Uncertain Data. Springer, Berlin (2009)

15. Imieliński, T., Lipski, W., Jr.: Incomplete information in relational
databases. J. ACM 31(4), 761–791 (1984)

16. Green, T.J., Tannen, V.: Models for incomplete and probabilistic
information. In: Current Trends in Database Technology—EDBT
2006, EDBT 2006 Workshops PhD, DataX, IIDB, IIHA, ICSNW,
QLQP, PIM, PaRMA, and Reactivity on the Web. Lecture Notes in
Computer Science, vol. 4254, pp. 278–296. Springer, Berlin (2006)

17. XML::DB Initiative: XUpdate. http://xmldb-org.sourceforge.net/
xupdate/ (2000). Working Draft

18. W3C: XQuery Update facility. http://www.w3.org/TR/
xquery-update-10/ (2008). Candidate Recommandation

19. W3C: XML Path language (XPath). http://www.w3.org/TR/xpath
(1999). Recommandation

20. W3C: XQuery 1.0: An XML query language. http://www.w3.org/
TR/xquery/ (2007). Recommandation

21. Cohen, S., Kimelfeld, B., Sagiv, Y.: Incorporating constraints in
probabilistic XML. In: Proceedings of the 27th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, pp. 109–118. ACM Press, New York (2008)

22. Cohen, S., Kimelfeld, B., Sagiv, Y.: Running tree automata on
probabilistic XML. In: Proceedings of the 28th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Database Systems
(2009, to appear)

123

http://xmldb-org.sourceforge.net/xupdate/
http://xmldb-org.sourceforge.net/xupdate/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xquery-update-10/
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xquery/

	On the expressiveness of probabilistic XML models
	Abstract
	1 Introduction
	2 Preliminaries
	3 Probabilistic XML and p-documents
	3.1 The probabilistic process of a p-document
	3.2 Isomorphism and equivalence

	4 Families of concrete p-documents
	4.1 Types of distributional nodes
	4.2 Hierarchy of distributional nodes
	4.3 Previously studied models

	5 Translations between families of P-documents
	5.1 Translators
	5.2 The types `=`ind, `=`mux and `=`det
	5.3 The type `=`exp
	5.4 The type `=`cie
	5.5 Overview

	6 Distributional nodes with bounded degrees
	6.1 Efficient v-translation from PrXML{`=`exp} to PrXML{`=`mux,`=`det}

	7 Probabilistic updates
	7.1 Object-based updates
	7.2 Value-based updates

	8 Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

