
Enhancing the Inverse Method with State
Merging

Étienne André†, Laurent Fribourg‡, Romain Soulat‡

†LIPN, CNRS UMR 7030, Université Paris 13, France
‡LSV, ENS Cachan & CNRS, France

Abstract. Keeping the state space small is essential when verifying real-
time systems using Timed Automata (TA). In the model-checker Uppaal,
the merging operation has been used extensively in order to reduce the
number of states. Actually, Uppaal’s merging technique applies within
the more general setting of Parametric Timed Automata (PTA). The
Inverse Method (IM) for a PTA A is a procedure that synthesizes a
zone around a given point π0 (parameter valuation) over which A is
guaranteed to behave in an equivalent time-abstract manner. We show
that the integration of merging into IM leads to the synthesis of larger
zones around π0. It also often improves the performance of IM , both in
terms of computational space and time, as shown by our experimental
results.

1 Introduction

A fundamental problem in the exploration of the reachability space in Timed
Automata (TA) is to compact as much as possible the generated space of sym-
bolic states. In [11], the authors show that, in a network of TAs, all the successor
states can be merged together when all the interleavings of actions are possible.
In [7, 8], A. David proposed to replace the union of two states by a unique state
when this union is convex. More precisely, if the union of two states is included
into their convex hull, then one can replace the two states by their hull. This
technique is applied to timed constraints represented under the form of “Differ-
ence Bound Matrices” (DBMs). Actually, such a merging technique applies as
well in the more general setting of parametric timed automata (PTA), where pa-
rameters can be used instead of constants, and timed constraints are represented
under the form of polyhedra.

The Inverse Method (IM) for a PTA A is a procedure that synthesizes a zone
around a given point π0 (parameter valuation) over which A is guaranteed to
behave in an equivalent time-abstract manner [2]. We show that the integration
of merging into IM often leads to the synthesis of larger zones around π0. More
surprisingly, our experiments show that even a simple implementation of merging
often improves the performance of IM , not only in terms of computational space
but also in time.

2 Background and Definition

2.1 Timed Automata

Given a finite set X of n non-negative real-valued variables (called “clocks”),
a timed constraint is a conjunction of linear inequalities of the form xi ≺ c,
−xi ≺ c or xi − xj ≺ c with ≺∈ {<,≤}, xi, xj ∈ X and c ∈ Z.

A Timed Automaton (TA) is a tuple (Σ,Q, l0, X, I,→), with Σ a finite set
of actions, Q a finite set of locations, l0 ∈ Q the initial location, X a set of
clocks, I the invariant assigning to every l ∈ Q a constraint over X, and → a
step relation consisting of elements (l, g, a, ρ, l′), where l, l′ ∈ Q, a ∈ Σ, g is a
timed constraint (guard) and ρ is a subset of X (set of clocks reset to 0).

A state is a couple (l, v) where l is a location of Q and v a valuation of X.
The operational semantics of TA is informally given as follows: given two

states s = (l, v) and s′ = (l′, v′) with l, l′ ∈ Q, v, v′ two valuations of X, the step

s
a→ s′ means that, for some (l, g, a, ρ, l′) ∈→ and some δ ∈ R+ :

(l, v)
g,a,ρ⇒ (l′, v′)

δ→ (l′, v′ + δ),

where (l, v)
g,a,ρ⇒ (l′, v′) means that discrete transition (l, g, a, ρ0, l′) can take

place (i.e. v satisfies g, and v′ is obtained from v by resetting the clocks of ρ

to zero), and (l′, v′)
δ→ (l′, v′ + δ) means that time can pass during δ units in

location l′ (i.e., v′ + δ′ satisfies the invariant I(l′) for all 0 ≤ δ′ ≤ δ).
A run is a sequence of the form (l0, v0)

a1→ (l1, v1)
a2→ · · · an→ (ln, vn). A

trace (or time-abstracted run) associated to a run is a sequence of the form

l0
a1⇒ l1

a2⇒ · · · an⇒ ln. A trace can be seen as an alternating sequence of locations
and actions. Given a TA A, we denote by Tr(A) the set of traces associated to
all possible runs of A. When two TAs have the same set of traces, we say that
they behave in an equivalent time-abstract manner.

Given a set of states S, one defines PostA(S) as the set of states reachable
from S in one step, i.e.:

PostA(S) = {s′ = (l′, v′) ∈ Q× Rn+ | s = (l, v)
a→ s′,

for some s ∈ S, l ∈ Q, v ∈ Rn+ and (l, g, a, ρ, l′) ∈ →}.

Likewise, Post iA(S) is the set of states reachable from S in exactly i steps and
let Post∗A(S) =

⋃
i≥0 Post iA(S).

2.2 Parametric Timed Automata

We assume now given a finite set P of symbols (called “parameters”). A para-
metric term is a linear combination of parameters and integer constants. A para-
metric timed constraint is a conjunction of linear inequalities of the form xi ≺ e,
−xi ≺ e or xi − xj ≺ e where ≺∈ {<,≤}, xi, xj ∈ X and e is a parametric
term. A constraint over P is a conjunction of inequalities of the form e1 ≺ e2

with ≺∈ {<,≤} and e1, e2 two parametric terms. Given a parametric timed
constraint C, the expression (∃X : C) denotes the constraint over P obtained

from C by eliminating the variables of X. Given a parametric timed constraint
C and a valuation π over P (i.e. a function from P to N), we denote by C[π] the
result of replacing every parameter in C by its π-valuation. We write π |= C to
express that ∃X : C[π] is true. A (symbolic parametric) state is a couple (l, C)
where l is in Q and C is a parametric timed constraint. A Parametric Timed
Automaton (PTA) is a TA where some constants appearing in the guard and
invariant inequalities have been replaced by parameters. Given a PTA A, we
denote by A[π] the TA obtained from A by replacing the parameters by their
π-valuations. Given a parametric constraint K, we denote by A(K) the PTA
where the parameters are assumed to satisfy K.

2.3 Inverse Method

Given a PTA A and a valuation π0 over P , the goal of IM introduced in [2]
is to synthesize a constraint K0 over P such that: π0 |= K0 and Tr(A[π0]) =
Tr(A[π]), for all π |= K0. This implies that for every π |= K0, A[π] and A[π0]
have the same time-abstracted behavior. The size of K0 gives us a measure
of the “robustness” (see [10]) of the behavior of A around π0. The larger K0

is, the more robust A is guaranteed to be. The algorithm IM is given below
(where s0 denotes the set of states of location l0 whose clocks are equal and
satisfy the invariant I(l0)). The idea of the procedure is to refine iteratively a
current constraint K over P by adding inequalities J in order to eliminate all the
generated π0-incompatible states (i.e., states (l, C) such that π0 6|= (∃X : C)).

Algorithm 1: Algorithm IM (A, π0)

input : PTA A of initial state s0, parameter valuation π0

output: Constraint K0 on the parameters

i← 0 ; K ← true ; S ← {s0}
while true do

while there are π0-incompatible states in S do
Select a π0-incompatible state (l, C) of S (i.e., s.t. π0 6|= (∃X : C)) ;
Select a π0-incompatible inequality J in (∃X : C) (i.e., s.t. π0 6|= J) ;
K ← K ∧ ¬J ; S ←

⋃i
j=0 Post

j
A(K)({s0}) ;

if PostA(K)(S) v S then return K0 =
⋂

(l,C)∈S(∃X : C)

i← i+ 1 ; S ← S ∪ PostA(K)(S) ; // S =
⋃i

j=0 Post
j
A(K)({s0})

3 Enhancement of IM with Merging

Let us recall the notion of merging, following the lines of [7].

Definition 1 (Merging). We say that two states s = (l, C) and s′ = (l′, C ′)
are mergeable iff l = l′ and C ∪C ′ is convex; then, (l, C ∪C ′) is their merging.

In [7], the main technique for merging two timed constraints C,C ′ consists
of comparing their convex hull H with their union. If the hull and the union are
equal (or alternatively, if (H \ C) \ C ′ = ∅ where \ is the operation of convex
difference), then C and C ′ are mergeable into H. In [7, 8], this technique is
specialized to the case where the timed constraints are represented as DBMs.
Actually, as mentioned in the introduction, such a merging technique based on
convex difference is more general and still applies in the setting of PTA, where
parametric timed constraints are represented under the form of polyhedra.

Given a set of (symbolic parametric) states S, let Merging(S) denote the
result of applying iteratively the merging of a pair of states of S (using con-
vex difference) until no further merging applies. We define Postmerge(S) as
Merging(Post(S)). Let us denote by IM merge the algorithm obtained from IM
(see algorithm 1) by replacing the Post operator by Postmerge . Let K0

merge =
IM merge(A, π0) and K0 = IM (A, π0). It is easy to see that we have always

K0 ⊆ K0
merge .

Informally, this is because the merging of a π0-incompatible state with a π0-
compatible state gives a π0-compatible state. Therefore, there are less π0-incompatible
states generated. Accordingly, the current set K is less often refined with inequal-
ities J in IM merge . The property of trace preservation still holds with IM merge :

Proposition 1. Given a PTA A and a valuation π0, let K0
merge = IM merge(A, π0).

We have: π0 |= K0
merge ; furthermore: ∀π |= K0

merge , Tr(A[π]) = Tr(A[π0]).

The proof of this proposition is similar to its counterpart in [2].
We have implemented IM merge through a simple extension of the tool Imitator

[4] using the operation of convex difference on polyhedra from the Parma Poly-
hedra Library (PPL) [6]. We give in Table 1 some experimental results obtained
with IM merge compared with those obtained with IM . The experiments have
been done on a 2.4 GHz Intel single-core processor with 4 GB of RAM memory.

PTA X P
IM IMmerge K0 ⊆ K0

merget States Trans. M t States Trans. M
AndOr 4 12 0.112 16 17 1,262 0.101 13 14 1,187 =

Flip-Flop 5 12 0.183 14 13 1,692 0.227 14 13 1,762 =
Latch 8 13 1.18 18 68 3,686 0.621 12 40 2,662 (
BRP 7 6 4.29 428 474 25,483 7.015 426 473 25,845 =

WLAN 2 8 220.157 7,038 11,052 733,044 286.141 6,020 9,538 1,408,702 =
SPSMALL1 10 26 1.578 31 35 5,098 1.642 31 35 5,442 =
SPSMALL2 28 62 - - - overflow 593 397 499 180,888 -

SIMOP 8 7 18.959 1,108 1,404 43,333 5.179 239 347 14,371 (
CSMA/CD 3 3 0.801 240 383 6,580 0.947 240 383 7,049 =

Jobshop 3 8 1.865 253 387 10,658 1.147 118 179 5,221 (
Mutex 3 3 2 0.802 307 1,060 14,598 0.671 241 811 11,934 =
Mutex 4 4 2 22.373 4,769 19,873 373,900 22.03 3,287 13,459 260,962 =

Table 1. Comparison between IM and IMmerge

The models of PTA in Table 1 are described in [5], except Jobshop which
corresponds to the jobshop scheduling problem with 2 jobs and 4 tasks of [1]
(Table 1), and the Mutex i model (i = 3, 4) which corresponds to Fisher’s mutual

exclusion protocol with i tasks of [9]. In Table 1, column X (resp. P) denotes
the number of clocks (resp. parameters) of the PTA. Column t (resp. M) denotes
the computational time in seconds (resp. the memory used in KB), column
States (resp. Trans.) the number of states (resp. transitions) of the generated
reachability graph. The last column indicates if K0 = K0

merge or K0 (K0
merge .

We can see thatK0
merge is strictly larger thanK0 on 3 examples. Furthermore,

the reachability graphs produced with IM merge are always smaller than the
corresponding graphs produced with IM (as illustrated in Appendix). Let us
also point out that IM merge , unlike IM , is able to treat the SPSMALL2 example
(which contains no less than 62 parameters). Finally, the experiments are often
faster with IM merge , in spite of the simplicity of our implementation.

4 Final Remarks

We have shown that the integration of a general technique of state merging into
IM often increases the size of the synthesized constraint while reducing the com-
putation space. Surprisingly, in spite of our simple implementation of merging,
the extended procedure is often faster than the basic procedure on our exper-
iments. We presently study the combined integration into IM of the general
technique of state merging with specific improvements presented in [3].

Acknowledgment. We are grateful to T. Chatain for helpful discussions.

References

1. Y. Abdeddaim and O. Maler. Job-shop scheduling using timed automata. In
CAV’01, volume 2102 of LNCS, pages 478–492. Springer Berlin / Heidelberg, 2001.

2. É. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method for
parametric timed automata. IJFCS, 20(5):819–836, 2009.

3. É. André and R. Soulat. Synthesis of timing parameters satisfying safety properties.
In RP’11, volume 6945 of LNCS, pages 31–44, Italy, 2011. Springer.

4. Étienne André. IMITATOR II: A tool for solving the good parameters problem in
timed automata. In INFINITY, pages 91–99, 2010.

5. Étienne André. An Inverse Method for the Synthesis of Timing Parameters in
Concurrent Systems. Thèse de doctorat, ENS Cachan, France, 2010.

6. R. Bagnara, P. M. Hill, and E. Zaffanella. The Parma Polyhedra Library: Toward a
complete set of numerical abstractions for the analysis and verification of hardware
and software systems. Science of Computer Programming, 72(1–2):3–21, 2008.

7. Alexandre David. Merging DBMs efficiently. In 17th Nordic Workshop on Pro-
gramming Theory, pages 54–56. DIKU, University of Copenhagen, 2005.

8. Alexandre David. Uppaal DBM Library Programmer’s Reference. http://people.
cs.aau.dk/~adavid/UDBM/manual-061023.pdf, 2006.

9. T.A. Henzinger, P.H. Ho, and H. Wong-Toi. A user guide to HyTech. In TACAS’95,
pages 41–71, 1995.

10. Nicolas Markey. Robustness in real-time systems. In SIES’11, pages 28–34, Sweden,
2011. IEEE Computer Society Press.

11. R. Ben Salah, M. Bozga, and O. Maler. On interleaving in timed automata. In
CONCUR ’06, volume 4137 of LNCS, pages 465–476. Springer, 2006.

Appendix: Compared Reachability Graphs for Jobshop
and SIMOP examples

Fig. 1. Reachability graph of the jobshop example with IM (left) and IMmerge (right)

Fig. 2. Reachability graph of the SIMOP example with IM (left) and IMmerge (right)

