
An Automata-Theoretic Approach to the
Verification of Distributed Algorithms∗

C. Aiswarya1, Benedikt Bollig2, and Paul Gastin2

1 Uppsala University
aiswarya.cyriac@it.uu.se

2 LSV, ENS Cachan, CNRS, Inria
{bollig,gastin}@lsv.ens-cachan.fr

Abstract
Abstract. We introduce an automata-theoretic method for the verification of distributed al-
gorithms running on ring networks. In a distributed algorithm, an arbitrary number of processes
cooperate to achieve a common goal (e.g., elect a leader). Processes have unique identifiers (pids)
from an infinite, totally ordered domain. An algorithm proceeds in synchronous rounds, each
round allowing a process to perform a bounded sequence of actions such as send or receive a
pid, store it in some register, and compare register contents wrt. the associated total order. An
algorithm is supposed to be correct independently of the number of processes. To specify cor-
rectness properties, we introduce a logic that can reason about processes and pids. Referring to
leader election, it may say that, at the end of an execution, each process stores the maximum
pid in some dedicated register. Since the verification of distributed algorithms is undecidable, we
propose an underapproximation technique, which bounds the number of rounds. This is an ap-
pealing approach, as the number of rounds needed by a distributed algorithm to conclude is often
exponentially smaller than the number of processes. We provide an automata-theoretic solution,
reducing model checking to emptiness for alternating two-way automata on words. Overall, we
show that round-bounded verification of distributed algorithms over rings is PSpace-complete.

1998 ACM Subject Classification C.2.4 Distributed Systems; F.3.1 Specifying and Verifying
and Reasoning about Programs

1 Introduction

Distributed algorithms are a classic discipline of computer science and continue to be an active
field of research [17]. A distributed algorithm employs several processes, which perform one
and the same program to achieve a common goal. It is required to be correct independently
of the number of processes. Prominent examples are leader-election algorithms, whose task
is to determine a unique leader process and to announce it to all other processes. Those
algorithms are often studied for ring architectures. One practical motivation comes from
local-area networks that are based on a token-ring protocol. Moreover, rings generally allow
one to nicely illustrate the main conceptual ideas of an algorithm.

However, it is well-known that there is no (deterministic) distributed algorithm over
rings that elects a leader under the assumption of anonymous processes. Therefore, classical
algorithms, such as Franklin’s algorithm [12] or the Dolev-Klawe-Rodeh algorithm [7], assume
that every process is equipped with a unique process identifier (pid) from an infinite, totally
ordered domain. In this paper, we consider such distributed algorithms, which work on ring
architectures and can access unique pids as well as the associated total order.

Distributed algorithms are intrinsically hard to analyze. Correctness proofs are often
intricate and use subtle inductive arguments. Therefore, it is worthwhile to consider automatic

∗ Supported by LIA InForMel.

© C. Aiswarya, Benedikt Bollig, and Paul Gastin;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 An Automata-Theoretic Approach to the Verification of Distributed Algorithms

verification methods such as model checking. Besides a formal model of an algorithm, this
requires a generic specification language that is feasible from an algorithmic point of view but
expressive enough to formulate correctness properties. In this paper, we propose a language
that can reason about processes, states, and pids. In particular, it will allow us to formalize
when a leader-election algorithm is correct: At the end of an execution, every process stores,
in register r, the maximum pid among all processes. Our language is inspired by Data-XPath,
which can reason about trees over infinite alphabets [4, 11].

However, formal verification of distributed algorithms cumulates various difficulties that
already arise, separately, in more standard verification: First, the number of processes is
unknown, which amounts to parameterized verification [10]; second, processes manipulate
data from an infinite domain [4, 11]. In each case, even simple verification questions are
undecidable, and so is the combination of both.

A successful approach to retrieving decidability has been a form of bounded model checking.
The idea is to consider correctness up to some parameter, which restricts the set of runs of
the algorithm. This is natural in the context of distributed algorithms, which usually proceed
in rounds. In each round, a process may emit some messages (here: pids) to its neighbors,
and then receive messages from its neighbors. Pids can be stored in registers, and a process
can check the relation between stored pids before it moves to a new state. The number of
rounds is often exponentially smaller than the number of processes. Thus, a small number of
rounds allows us to verify correctness of an algorithm for a large number of processes.

The key idea of our method is to interpret a (round-bounded) execution of a distributed
algorithm symbolically as a word-like structure over a finite alphabet. The finite alphabet is
constituted by the transitions that occur in the algorithm and possibly contain tests of pids
wrt. equality or the associated total order. To determine feasibility of a symbolic execution
(i.e., is there a ring that satisfies all the guards employed?), we use propositional dynamic
logic with loop and converse (LCPDL) over words [13]. Basically, we translate a given
distributed algorithm into a formula that detects cyclic (i.e., contradictory) smaller-than
tests. Its models are precisely the feasible symbolic executions. A specification is translated
into LCPDL as well so that verification amounts to checking satisfiability of a single formula.
The latter can be reduced to an emptiness problem for alternating two-way automata over
words so that we obtain a PSpace procedure for round-bounded model checking.

Related Work: Considerable effort has been devoted to the formal verification of fault-
tolerant algorithms, which have to cope with faults such as lost or corrupted messages
(e.g., [6, 15]). After all, there have been only very few generic approaches to model checking
distributed algorithms. In [14], several possible reasons for this are identified, among them
the presence of unbounded data types and an unbounded number of processes, which we
have to treat simultaneously in our framework. Parameterized model checking of ring-based
systems where communication is subject to a token policy and the message alphabet is finite
has been studied in [3, 8, 9]. In [8], cutoff results are obtained for LTL\X specifications when
a bound is placed on the number of times a token may change values.

The theory of words and trees over infinite alphabets (aka data words/trees) provides an
elegant formal framework for database-related notions such as XML documents [4], or for
the analysis of programs with data structures such as lists [2]. The difference to our work
is that we model distributed algorithms and provide a logical specification language which
borrows concepts from [4,11]. The paper [5] pursued a symbolic model-checking approach
to sequential systems involving data, but pids could only be compared for equality. The
ordering on the data domain has a subtle impact on the choice of the specification language.

Full proofs can be found in the full version of the paper [1].

C. Aiswarya, B. Bollig, and P. Gastin 3

2 Distributed Algorithms

By N = {0, 1, 2, . . .}, we denote the set of natural numbers. For n ∈ N, we set [n] = {1, . . . , n}
and [n]0 = {0, 1, . . . , n}. The set of finite words over an alphabet A is denoted by A∗, and
the set of nonempty finite words by A+.

Syntax of Distributed Algorithms. We consider distributed algorithms that run on arbitrary
ring architectures. A ring consists of a finite number of processes, each having a unique
process identifier (pid). Every process has a unique left neighbor (referred to by left) and a
unique right neighbor (referred to by right). Formally, a ring is a tuple R = (n : p1, . . . , pn),
given by its size n ≥ 1 and the pids pi ∈ N assigned to processes i ∈ [n]. We require that
pids are unique, i.e., pi 6= pj whenever i 6= j. For a process i < n, process i+ 1 is the right
neighbor of i. Moreover, 1 is the right neighbor of n. Analogously, if i > 1, then i− 1 is the
left neighbor of i. Moreover, n is the left neighbor of 1. Thus, processes 1 and n must not be
considered as the “first” or “last” process. Actually, a distributed algorithm will not be able
to distinguish between, for example, (4 : 4, 1, 5, 2) and (4 : 5, 2, 4, 1).

One given distributed algorithm can be run on any ring. It is given by a single pro-
gram D, and each process runs a copy of D. It is convenient to think of D as a (finite)
automaton. Processes proceed in synchronous rounds. In one round, every process ex-
ecutes one transition of its program. In addition to changing its state, each process may
optionally perform the following phases within a round: (i) send some pids to its neigh-
bors, (ii) receive pids from its neighbors and store them in registers, (iii) compare register
contents with one another, (iv) update its registers. For example, consider the transition
t = 〈s: left!r ; right!r′ ; right?r′ ; r < r′ ; r := r′ ;goto s′〉. A process can execute t if it is in
state s. It then sends the contents of register r to its left neighbor and the contents of r′ to
its right neighbor. If, afterwards, it receives a pid p from its right neighbor, it stores p in r′.
If p is greater than what has been stored in r, it sets r to p and goes to state s′. Otherwise,
the transition is not applicable. The first phase can, alternatively, be filled with a special
command fwd. Then, a process will just forward any pid it receives. Note that a message
can be forwarded, in one and the same round, across several processes executing fwd.

I Definition 1. A distributed algorithm D = (S, s0,Reg,∆) consists of a nonempty finite set S
of (local) states, an initial state s0 ∈ S, a nonempty finite set Reg of registers, and a nonempty
finite set ∆ of transitions. A transition is of the form 〈s: send ; rec ; guard ; update ;goto s′〉
where s, s′ ∈ S and the components send, rec, guard, and update are built as follows:

send ::= skip | fwd | left!r | right!r | left!r ; right!r′

rec ::= skip | left?r | right?r | left?r ; right?r′

guard ::= skip | r < r′ | r = r′ | guard ; guard
update ::= skip | r := r′ | update ; update

with r and r′ ranging over Reg. We require that (1) in a rec statement of the form
left?r ; right?r′, we have r 6= r′ (actually, the order of the two receive actions does not
matter), and (2) in an update statement, every register occurs at most once as a left-hand
side. In the following, occurrences of “skip ;” are omitted. J

Note that a guard r ≤ r′ can be simulated in terms of guards r < r′ and r = r′, using
several transitions. We separate < and = for convenience. They are actually quite different
in nature, as we will see later in the proof of our main result.

4 An Automata-Theoretic Approach to the Verification of Distributed Algorithms

states: active, passive t1 = 〈active: left!id ; right!id ; left?r1 ; right?r2 ; r1 < id ; r2 < id ;goto active〉
found t2 = 〈active: ; id < r1 ;goto passive〉

initial state: active t3 = 〈active: ; id < r2 ;goto passive〉
registers: id, r, r1, r2 t4 = 〈active: ; id = r1 ; r := id ;goto found〉

t5 = 〈passive: fwd ; left?r ;goto passive〉

Figure 1 Franklin’s leader-election algorithm DFranklin

states: active0, active1 t1 = 〈active0: right!r ; left?r′ ;goto active1〉
passive, found t2 = 〈active1: right!r′ ; left?r′′ ; r′′ < r′ ; r < r′ ; r := r′ ;goto active0〉

initial state: active0 t3 = 〈active1: ; r′ < r ;goto passive〉
registers: id, r, r′, r′′ t4 = 〈active1: ; r′ < r′′ ;goto passive〉

t5 = 〈active1: ; r = r′ ;goto found〉
t6 = 〈passive: fwd ; left?r ;goto passive〉

Figure 2 Dolev-Klawe-Rodeh leader-election algorithm DDKR

At the beginning of an execution of an algorithm, every register contains the pid of the
respective process. We also assume, wlog., that there is a special register id ∈ Reg that
is never updated, i.e., no transition contains a command of the form left?id, right?id, or
id := r. A process can thus, at any time, access its own pid in terms of id.

In the semantics, we will suppose that all updates of a transition happen simultaneously,
i.e., after executing r := r′ ; r′ := r, the values previously stored in r and r′ will be swapped
(and do not necessarily coincide). As, moreover, the order of two sends and the order of
two receives within a transition do not matter, this will allow us to identify a transition
with the set of states, commands (apart from skip), and guards that it contains. For
example, t = 〈s: left!r ; right!r′ ; right?r′ ; r < r′ ; r := r′ ;goto s′〉 is considered as the set
t = {s , left!r , right!r′ , right?r′ , r < r′ , r := r′ , goto s′}.

Before defining the semantics of a distributed algorithm, we will look at two examples.

I Example 2 (Franklin’s Leader-Election Algorithm). Consider Franklin’s algorithm DFranklin
to determine a leader in a ring [12]. It is given in Figure 1. The goal is to assign leadership
to the process with the highest pid. To do so, every process sends its own pid to both
neighbors, receives the pids of its left and right neighbor, and stores them in registers r1 and
r2, respectively (transitions t1, . . . , t4). If a process is a local maximum, i.e., r1 < id and
r2 < id hold, it is still in the race for leadership and stays in state active. Otherwise, it has
to take t2 or t3 and goes into state passive. In passive, a process will just forward any pid it
receives and store the message coming from the left in r (transition t5). Notice that, within
the same round, a message may be forwarded through (and stored by) several consecutive
passive processes, until it reaches an active one. When an active process receives its own pid
(transition t4), it knows it is the only remaining active process. It copies its own pid into r,
which henceforth refers to the leader. We may say that a run is accepting (or terminating)
when all processes terminate in passive or found. Then, at the end of any accepting run, (i)
there is exactly one process i0 that terminates in found, (ii) all processes store the pid of i0
in register r, and the pid of i0 is the maximum of all pids in the ring. Since, in every round,
at least half of the active processes become passive, the algorithm terminates after at most
blog2 nc+ 1 rounds where n is the number of processes. J

I Example 3 (Dolev-Klawe-Rodeh Leader-Election Algorithm). The Dolev-Klawe-Rodeh leader-
election algorithm [7] is an adaptation of Franklin’s algorithm to cope with unidirectional

C. Aiswarya, B. Bollig, and P. Gastin 5

rings, where a process can only, say, send to the right and receive from the left. The algorithm,
denoted DDKR, is given in Figure 2. The idea is that the local maximum among the processes
i− 2, i− 1, i is determined by i (rather than i− 1). Therefore, each process i will execute
two transitions, namely t1 and t2, and store the pids sent by i − 2 and i − 1 in r′′ and r′,
respectively. After two rounds, since r still contains the pid of i itself, i can test if i− 1 is
a local maximum among i− 2, i− 1, i using the guards in transition t2. If both guards are
satisfied, i stores the pid sent by i− 1 in r. It henceforth ”represents” process i− 1, which is
still in the race, and goes to state active0. Otherwise, it enters passive, which has the same
task as in Franklin’s algorithm. The algorithm is correct in the following sense: At the end of
an accepting run (each process ends in passive or found), (i) there is exactly one process that
terminates in found (but not necessarily the one with the highest pid), and (ii) all processes
store the maximal pid in register r. The algorithm terminates after at most 2blog2 nc+ 2
rounds. Note that the correctness of DDKR is less clear than that of DFranklin. J

Semantics of Distributed Algorithms. Now, we give the formal semantics of a distributed
algorithm D = (S, s0,Reg,∆). Recall that D can be run on any ring R = (n : p1, . . . , pn).
An (R-)configuration of D is a tuple (s1, . . . , sn, ρ1, . . . , ρn) where si is the current state of
process i and ρi : Reg → {p1, . . . , pn} maps each register to a pid. The configuration is called
initial if, for all processes i ∈ [n], we have si = s0 and ρi(r) = pi for all r ∈ Reg. Note that
there is a unique initial R-configuration.

In one round, the algorithm moves from one configuration to another one. This is described
by a relation C t

 C ′ where C = (s1, . . . , sn, ρ1, . . . , ρn) and C ′ = (s′1, . . . , s′n, ρ′1, . . . , ρ′n) are
R-configurations and t = (t1, . . . , tn) ∈ ∆n is a tuple of transitions where ti is executed by
process i. To determine when C

t
 C ′ holds, we first define two auxiliary relations. For

registers r, r′ ∈ Reg and processes i, j ∈ [n], we write r@i� r′@j if the contents of r is sent
to the right from i to j, where it is stored in r′. Thus, we require that

right!r ∈ ti ∧ left?r′ ∈ tj ∧ fwd ∈ tk for all k ∈ Between(i, j)

where Between(i, j) means {i + 1, . . . , j − 1} if i < j or {1, . . . , j − 1, i + 1, . . . , n} if j ≤ i.
Note that, due to the fwd command, r@i � r′@j may hold for several r′ and j. The
meaning of r′@j � r@i is analogous, we just replace “right direction” by “left direction”:

left!r ∈ ti ∧ right?r′ ∈ tj ∧ fwd ∈ tk for all k ∈ Between(j, i).

The guards in the transitions t1, . . . , tn are checked against “intermediate” register
assignments ρ̂1, . . . , ρ̂n : Reg → {p1, . . . , pn}, which are defined as follows:

ρ̂j(r′) =
{
ρi(r) if r@i� r′@j or r′@j � r@i
ρj(r′) if, for all r, i, neither r@i� r′@j nor r′@j � r@i

Note that this is well-defined, due to condition (1) in Definition 1.
Now, we write C t

 C ′ if, for all j ∈ [n] and r, r′ ∈ Reg, the following hold:

1. sj ∈ tj and (goto s′j) ∈ tj ,

2. ρ̂j(r) < ρ̂j(r′) if (r < r′) ∈ tj ,

3. ρ̂j(r) = ρ̂j(r′) if (r = r′) ∈ tj ,

4. ρ′j(r) =
{
ρ̂j(r′) if (r := r′) ∈ tj
ρ̂j(r) if tj does not contain an update of the form r := r′′

6 An Automata-Theoretic Approach to the Verification of Distributed Algorithms

pi = 4 8 3 1 6 5 7
i = 1 2 3 4 5 6 7

C0

C1

C2

C3

C4

C5

C6

right!r

left?r ′

right!r

left?r ′

right!r

left?r ′

right!r

left?r ′

right!r

left?r ′

right!r

left?r ′

right!r

left?r ′

right!r ′

left?r ′′

{r ′′
, r} < r ′

r := r ′

right!r ′

left?r ′′

r ′
< r

right!r ′

left?r ′′

{r ′′
, r} < r ′

r := r ′

right!r ′

left?r ′′

r ′
< r ′′

right!r ′

left?r ′′

r ′
< r

right!r ′

left?r ′′

{r ′′
, r} < r ′

r := r ′

right!r ′

left?r ′′

r ′
< r

right!r

left?r ′

fwd

left?r

right!r

left?r ′

fwd

left?r

fwd

left?r

right!r

left?r ′

fwd

left?r

right!r ′

left?r ′′

r ′
< r ′′

fwd

left?r

right!r ′

left?r ′′

r ′
< r

fwd

left?r

fwd

left?r

right!r ′

left?r ′′

{r ′′
, r} < r ′

r := r ′

fwd

left?r

fwd

left?r

fwd

left?r

fwd

left?r

fwd

left?r

fwd

left?r

right!r

left?r ′

fwd

left?r

fwd

left?r

fwd

left?r

fwd

left?r

fwd

left?r

fwd

left?r

right!r ′

left?r ′′

r = r ′

fwd

left?r

active0

4 4 4

active0

8 8 8

active0

3 3 3

active0

1 1 1

active0

6 6 6

active0

5 5 5

active0

7 7 7

active1

4 7 4

active1

8 4 8

active1

3 8 3

active1

1 3 1

active1

6 1 6

active1

5 6 5

active1

7 5 7

active0

7 7 5

passive

8 4 7

active0

8 8 4

passive

1 3 8

passive

6 1 3

active0

6 6 1

passive

7 5 6

active1

7 6 5

passive

7 4 7

active1

8 7 4

passive

8 3 8

passive

8 1 3

active1

6 8 1

passive

6 5 6

passive

7 6 8

passive

6 4 7

passive

8 7 6

passive

7 3 8

passive

7 1 3

active0

8 8 7

passive

8 5 6

passive

8 6 8

passive

8 4 7

passive

8 7 6

passive

8 3 8

passive

8 1 3

active1

8 8 7

passive

8 5 6

passive

8 6 8

passive

8 4 7

passive

8 7 6

passive

8 3 8

passive

8 1 3

found

8 8 8

passive

8 5 6

➊

➋

➌

➍

➎

➏

➊

➋

➌

➍

➎

A1

r′′ :
➊ ➋ ➌ ➍ ➎ ➏

msg
0,1

r,r′ upd
1,2

r′,r′ next
2,0

r′,r′ loc
0,1

r′,r′ upd
1,2

r′,r next2,0
r,r msg

0,1

r,r′ upd
1,2

r′,r′ next
2,0

r′,r′ msg
0,1

r′,r′′

A1

r′ :
➊ ➋ ➌ ➍ ➎

msg
0,1

r,r′ upd
1,2

r′,r′ next
2,0

r′,r′ loc
0,1

r′,r′ upd
1,2

r′,r next2,0
r,r msg

0,1

r,r′ upd
1,2

r′,r′ next
2,0

r′,r′ loc
0,1

r′,r′

Figure 3 Run of Dolev-Klawe-Rodeh algorithm and runs of path automata

Again, 4. is well-defined thanks to condition (2) in Definition 1.
An (R-)run of D is a sequence χ = C0

t1

 C1
t2

 · · · t
k

 Ck where k ≥ 1, C0 is the initial
R-configuration, and tj = (tj1, . . . , tjn) ∈ ∆n for all j ∈ [k]. We call k the length of χ. Note
that χ uniquely determines the underlying ring R.
I Remark. A receive command is always non-blocking even if there is no corresponding send.
As an alternative semantics, one could require that it can only be executed if there has been
a matching send, or vice versa. One could even include tags from a finite alphabet that can
be sent along with pids. All this will not change any of the forthcoming results. J

I Example 4. A run of DDKR from Example 3 on the ring R = (7 : 4, 8, 3, 1, 6, 5, 7) is
depicted in Figure 3 (for the moment, we may ignore the blue and violet lines). A colored
row forms a configuration. The three pids in a cell refer to registers r, r′, r′′, respectively (we
ignore id). Moreover, a non-colored row forms, together with the states above and below, a
transition tuple. When looking at the step from C3 to C4, we have, for example, r′@3� r@4
and r′@3 � r′′@6. Moreover, r′@6 � r@7 and r′@6 � r′′@1 (recall that we are in a
ring). Note that the run conforms to the correctness property formulated in Example 3. In
particular, in the final configuration, all processes store the maximum pid in register r. J

C. Aiswarya, B. Bollig, and P. Gastin 7

3 The Specification Language

In Examples 2 and 3, we informally stated the correctness criterion for the presented
algorithms (e.g., “at the end, all processes store the maximal pid in register r”). Now, we
introduce a formal language to specify correctness properties. It is defined wrt. a given
distributed algorithm D = (S, s0,Reg,∆), which we fix for the rest of this section.

Typically, one requires that a distributed algorithm is correct no matter what the
underlying ring is. Since we will bound the number of rounds, we moreover study a form of
partial correctness. Accordingly, a property is of the form ∀rings∀runs∀mϕ, which has to be
read as “for all rings, all runs, and all processes m, we have ϕ”. The marking m is used to
avoid to “get lost” in a ring when writing the property ϕ. This is like placing a pebble in
the ring that can be retrieved at any time. Actually, ϕ allows us to “navigate” back and
forth (↑ and ↓) in a run, i.e., from one configuration to the previous or next one (similar
to a temporal logic with past operators). By means of ← and →, we may also navigate
horizontally within a configuration, i.e., from one process to a neighboring one.

Essentially, a sequence of configurations is interpreted as a cylinder (cf. Figure 3) that
can be explored using regular expressions π over {ε,←,→, ↑, ↓} (where ε means “stay”). At
a given position/coordinate of the cylinder, we can check local (or positional) properties like
the state taken by a process, or whether we are on the marked process m. Such a property
can be combined with a regular expression π: The formula [π]ϕ says that ϕ holds at every
position that is reachable through a π-path (a path matching π). Dually, 〈π〉ϕ holds if there
is a π-path to some position where ϕ is satisfied. The most interesting construct in our logic
is 〈π〉r ./ 〈π′〉r′, where ./ ∈ {=, 6=, <,≤}, which has been used for reasoning about XML
documents [4, 11]. It says that, from the current position, there are a π-path and a π′-path
that lead to positions y and y′, respectively, such that the pid stored in register r at y and
the pid stored in r′ at y′ satisfy the relation ./.

We will now introduce our logic in full generality. Later, we will restrict the use of <-
and ≤-guards to obtain positive results.

I Definition 5. The logic DataPDL(D) is given by the following grammar:

Φ ::= ∀rings∀runs∀mϕ

ϕ,ϕ′ ::= m | s | ¬ϕ | ϕ ∧ ϕ′ | ϕ⇒ ϕ′ | [π]ϕ | 〈π〉r ./ 〈π′〉r′

π, π′ ::= {ϕ}? | d | π + π′ | π · π′ | π∗

where s ∈ S, r, r′ ∈ Reg, ./ ∈ {=, 6=, <,≤}, and d ∈ {ε,←,→, ↑, ↓}. J

We call ϕ a local formula, and π a path formula. We use common abbreviations such as
false = m ∧ ¬m, 〈π〉ϕ = ¬[π]¬ϕ, and ϕ ∨ ϕ′ = ¬(¬ϕ ∧ ¬ϕ′), and we may write ππ′ instead
of π · π′. Implication ⇒ is included explicitly in view of the restriction defined below.

Next, we define the semantics. Consider a run χ = C0
t1

 C1
t2

 · · · t
k

 Ck of D where
Cj = (sj1, . . . , sjn, ρ

j
1, . . . , ρ

j
n), i.e., n is the number of processes in the underlying ring. A local

formula ϕ is interpreted over χ wrt. a marked process m ∈ [n] and a position (i, j) ∈ Pos(χ)
where Pos(χ) = [n] × [k]0. Let us define when χ,m, (i, j) |= ϕ holds. The operators ¬, ∧,
and ⇒ are as usual. Moreover, χ,m, (i, j) |= m if i = m, and χ,m, (i, j) |= s if sji = s.

The other local formulas use path formulas. The semantics of a path formula π is given in
terms of a binary relation [[π]]χ,m ⊆ Pos(χ)× Pos(χ), which we define below. First, we set:

χ,m, (i, j) |= [π]ϕ if ∀(i′, j′) such that ((i, j), (i′, j′)) ∈ [[π]]χ,m, we have χ,m, (i′, j′) |= ϕ

8 An Automata-Theoretic Approach to the Verification of Distributed Algorithms

χ,m, (i, j) |= 〈π〉r ./ 〈π′〉r′ (where ./ ∈ {=, 6=, <,≤}) if ∃(i1, j1), (i2, j2) such that
((i, j), (i1, j1)) ∈ [[π]]χ,m and ((i, j), (i2, j2)) ∈ [[π′]]χ,m and ρj1

i1
(r) ./ ρj2

i2
(r′)

It remains to define [[π]]χ,m for a path formula π. First, a local test and a stay ε

do not “move” at all: [[{ϕ}?]]χ,m = {(x, x) | x ∈ Pos(χ) such that χ,m, x |= ϕ}, and
[[ε]]χ,m = {(x, x) | x ∈ Pos(χ)}. Using →, we move to the right neighbor of a process:
[[→]]χ,m = {((i, j), (i+ 1, j)) | i ∈ [n− 1] and j ∈ [k]0} ∪ {((n, j), (1, j)) | j ∈ [k]0}. We define
[[←]]χ,m accordingly. Moreover, [[↓]]χ,m = {((i, j), (i, j + 1)) | i ∈ [n] and j ∈ [k − 1]0}, and
similarly for [[↑]]χ,m. The regular constructs, +, ·, and ∗ are as expected and refer to the
union, relation composition, and star over binary relations.

Finally, D satisfies the DataPDL formula ∀rings∀runs∀mϕ, written D |= ∀rings∀runs∀mϕ, if,
for all rings R = (n : . . .), all R-runs χ, and all processes m ∈ [n], we have χ,m, (m, 0) |= ϕ.
Thus, ϕ is evaluated at the first configuration, wrt. process m which can be chosen arbitrarily.

Next, we define a restricted logic, DataPDL	(D), for which we later present our main
result. We say that a path formula π is unambiguous if, from a given position, it defines at most
one reference point. Formally, for all rings R = (n : . . .), R-runs χ of D, processes m ∈ [n],
and positions x ∈ Pos(χ), there is at most one x′ ∈ Pos(χ) such that (x, x′) ∈ [[π]]χ,m. For
example, ε, ↓,→, and→∗{m}? are unambiguous, while→∗ and←+→ are not unambiguous.

I Definition 6. A DataPDL(D) formula is contained in DataPDL	(D) if every subformula
ϕ = 〈π〉r ./ 〈π′〉r′ with ./ ∈ {<,≤} is such that π and π′ are unambiguous. Moreover, ϕ
must not occur (i) in the scope of a negation, (ii) on the left-hand side of an implication
⇒ , or (iii) within a test { }?. Note that guards using = and 6= are still unrestricted. J

I Example 7. Let us formalize, in DataPDL	(D), the correctness criteria for DFranklin and
DDKR that we stated informally in Examples 2 and 3. Consider the following local formulas:

ϕlast = [↓]false ϕmax = [→∗]
(
〈ε〉id ≤ 〈πfound〉r

)
ϕacc = [→∗](passive ∨ found) ϕr=id = 〈πfound〉

(
〈ε〉r = 〈ε〉id

)
ϕfound = 〈πfound→({¬found}?→)∗〉m ϕr=r = ¬

(
〈ε〉r 6= 〈→∗〉r

)
where πfound = ({¬found}?→)∗{found}?. Note that πfound is unambiguous: while going to
the right, it always stops at the nearest process that is in state found. Thus, ϕmax is indeed
a local DataPDL	 formula. Consider the DataPDL	 formula

Φ1 = ∀rings∀runs∀m[↓∗]
(
(ϕlast ∧ ϕacc)⇒ (ϕfound ∧ ϕmax ∧ ϕr=r ∧ ϕr=id)

)
.

It says that, at the end (i.e., in the last configuration) of each accepting run, expressed by
[↓∗]
(
(ϕlast ∧ ϕacc)⇒ · · ·

)
, we have that (i) there is exactly one process i0 that ends in state

found (guaranteed by ϕfound), (ii)register r of i0 contains the maximum over all pids (ϕmax),
(iii)register r of i0 contains the pid of i0 itself (ϕr=id), and (iv) all processes store the same
pid in r (ϕr=r). Thus, DFranklin |= Φ1. On the other hand, we have DDKR 6|= Φ1, because in
DDKR the process that ends in found is not necessarily the process with the maximum pid.
However, we still have DDKR |= Φ2 where

Φ2 = ∀rings∀runs∀m[↓∗]
(
(ϕlast ∧ ϕacc)⇒ (ϕfound ∧ ϕmax ∧ ϕr=r)

)
.

The next example formulates the correctness constraint for a distributed sorting algorithm.
We would like to say that, at the end of an accepting run, the pids stored in registers r are
strictly totally ordered. Suppose ϕacc represents an acceptance condition and ϕleast says that

C. Aiswarya, B. Bollig, and P. Gastin 9

there is exactly one process that terminates in some dedicated state least, similarly to ϕfound
above. Then,

Φ3 = ∀rings∀runs∀m[↓∗]
(
(ϕlast ∧ ϕacc)⇒ (ϕleast ∧ [→∗{¬least}?](〈←〉r < 〈ε〉r))

)
makes sure that, whenever process j is not terminating in least, its left neighbor i stores a
smaller pid in r than j does.

Note that Φ1, Φ2, and Φ3 are indeed DataPDL	 formulas. J

I Example 8. We give a couple of examples to illustrate how the logic can be used to reason
about temporal properties. Consider the specifications: (a) Every process remains active
until it becomes found or passive forever; (b) The value of the register r on any process is
monotonously non-decreasing. These can be expressed by the DataPDL	 formulas below:

Φa = ∀rings∀runs∀m〈({active}?↓)∗〉(found ∨ [↓∗](passive)) .

Φb = ∀rings∀runs∀m[↓∗]([↓]false ∨ (〈ε〉r ≤ 〈↓〉r)) . J

Unsurprisingly, model checking distributed algorithms against DataPDL	 is undecidable:

I Theorem 9. The following problem is undecidable: Given a distributed algorithm D and
Φ ∈ DataPDL	(D), do we have D |= Φ ? (Actually, this even holds for formulas Φ that
express simple state-reachability properties and do not use any guards on pids.)

4 Round-Bounded Model Checking

In situations where model checking is undecidable, a fruitful approach has been to underap-
proximate the behavior of a system. The idea is to introduce a parameter that measures
a characteristic of a run. One then imposes a bound on this parameter and explores all
behaviors up to that bound. In numerous distributed algorithms (cf. Examples 2 and 3),
the number b of rounds needed to conclude is exponentially smaller than the number of
processes, Recall that, in a single round, a message may be forwarded through an arbitrarily
long sequence of processes. Therefore, b seems to be a promising parameter for bounded
model checking of distributed algorithms.

For a distributed algorithm D, a formula Φ = ∀rings∀runs∀mϕ ∈ DataPDL(D), and b ≥ 1,
we write D |=b Φ if, for all rings R = (n : . . .), all R-runs χ of length k ≤ b, and all processes
m ∈ [n], we have χ,m, (m, 0) |= ϕ. We now present our main result:

I Theorem 10. The following problem is PSpace-complete: Given a distributed algorithm
D, Φ ∈ DataPDL	(D), and a natural number b ≥ 1 (encoded in unary), do we have D |=b Φ ?

The lower-bound can be obtained by a reduction from the intersection-emptiness problem
for a list of finite automata. Before we prove the upper bound, let us discuss the result in
more detail. We will first compare it with “naïve” approaches to solve related questions.
Consider the problem to determine whether a distributed algorithm satisfies its specification
for all rings up to size n and all runs up to length b. This problem is in coNP: We guess a
ring (i.e., essentially, a permutation of pids) and a run, and we check, using [16], whether the
run does not satisfy the formula. Next, suppose only b is given and the question is whether,
for all rings up to size 2b and all runs up to length b, the property holds. Then, the above
procedure gives us a coNExpTime algorithm.

Thus, our result is interesting complexity-wise, but it offers some other advantages. First,
it actually checks correctness (up to round number b) for all rings. This is essential when

10 An Automata-Theoretic Approach to the Verification of Distributed Algorithms

verifying distributed protocols against safety properties. Second, it reduces to a satisfiability
check in the well-studied propositional dynamic logic with loop and converse (LCPDL) [13]
on tables of bounded height. In Theorem 11 we show that this satifiability problem can be
solved in PSpace by a reduction to an emptiness check of alternating two-way automata
(A2As) [21] over words. The “naïve” approaches, on the other hand, do not seem to give
rise to viable algorithms. Finally, our approach is uniform in the following sense: We will
construct, in polynomial time, an LCPDL formula that describes precisely the symbolic
abstractions of runs (over arbitrary rings) that violate (or satisfy) a given formula. Our
construction is independent of the parameter b. The satisfiability check then requires a bound
on the number of rounds (or on the number of processes), which can be adjusted gradually
without changing the automaton.

Proof Outline for Upper Bound of Theorem 10. Let D be the given distributed algorithm
and Φ ∈ DataPDL	(D). We will reduce model checking to the satisfiability problem for
LCPDL [13]. While DataPDL	 is interpreted over runs, containing pids from an infinite
alphabet, the new logic will reason about symbolic abstractions over a finite alphabet. A
symbolic abstraction of a run only keeps the transitions and discards pids. Thus, it can be
seen as a table whose entries are transitions (cf. Figure 3).

First, we translate D into an LCPDL formula. Essentially, it checks that guards are
not used in a contradictory way. To compare D with Φ, the latter is translated into an
LCPDL formula, too. However, there is a subtle point here. For simplicity, let us write
r < r′ instead of 〈ε〉r < 〈ε〉r′. Satisfaction of a formula r < r′ can only be guaranteed in
a symbolic execution if the flow of pids provides evidence that r < r′ really holds. More
concretely, the (hypothetic) formula (r < r′) ∨ (r = r′) ∨ (r′ < r) is a tautology, but it may
not be possible to prove r < r′ or r′ < r on the basis of a symbolic run. This is the reason
why DataPDL	 restricts <- and ≤-tests. It is then indeed enough to reason about symbolic
runs (cf. Lemma 13 below). We leave open whether one can deal with full DataPDL.

Overall, we reduce model checking to satisfiability of the conjunction of two LCPDL
formulas of polynomial size: the formula representing the algorithm, and the negation of
the formula representing the specification. Satisfiability of LCPDL over symbolic runs (of
bounded height) can be checked in PSpace as stated in Theorem 11. Our approach is, thus,
automata theoretic in spirit, though the power of alternation is used differently than in [20],
which translates LTL formulas into automata.

Next, we present the logic LCPDL over symbolic runs. Then, we translate D as well as its
DataPDL	 specification into LCPDL. For the remainder of this section, we fix a distributed
algorithm D = (S, s0,Reg,∆).

PDL with Loop and Converse (LCPDL). As mentioned before, a symbolic abstraction of
a run of D is a table, whose entries are transitions from the finite alphabet ∆. A table is
a triple T = (n, k, λ) where n, k ≥ 1 and λ : Pos(T) → ∆ labels each position/coordinate
from Pos(T) = [n]× [k]0 with a transition. Thus, we may consider that T has n columns
and k + 1 rows. In the following, we will write T [i, j] for λ(i, j), and T [i] for the i-th column
of T , i.e., T [i] = T [i, 0] · · ·T [i, k] ∈ ∆+. Let ∆++ denote the set of all tables.

Formulas ψ ∈ LCPDL(D) are interpreted over tables. Their syntax is given as follows:

ψ,ψ′ ::= t | s | goto s | fwd | left!r | right!r | left?r | right?r | r < r′ | r = r′ | r := r′ |
¬ψ | ψ ∧ ψ′ | 〈π〉ψ | loop(π)

π, π′ ::= {ψ}? | d | π + π′ | π · π′ | π∗ | π−1 | A

C. Aiswarya, B. Bollig, and P. Gastin 11

where t ∈ ∆, s ∈ S, r, r′ ∈ Reg, d ∈ {ε,→, ↓}, and A is a path automaton1: a non-
deterministic finite automaton whose transitions are labeled with path formulas π. Again, ψ
is called a local formula. We use common abbreviations for disjunction, implication, true,
and false, and we let π+ = π · π∗, [π]ψ = ¬〈π〉¬ψ, 〈π〉 = 〈π〉true, ← =→−1, and ↑ = ↓−1.

The semantics of LCPDL is very similar to that of DataPDL. A local formula ψ is
interpreted over a table T ∈ ∆++ and a position x ∈ Pos(T). When it is satisfied, we write
T, x |= ψ. Moreover, a path formula π determines a binary relation [[π]]T ⊆ Pos(T)×Pos(T),
relating those positions that are connected by a path matching π.

We consider only the most important cases: We have T, (i, j) |= t if T [i, j] = t. For a
state, command, guard, or update γ, let T, (i, j) |= γ if γ ∈ T [i, j]. Loop and converse are
as expected: T, x |= loop(π) if (x, x) ∈ [[π]]T , and [[π−1]]T = {(y, x) | (x, y) ∈ [[π]]T }. The
semantics of→ (and←) is slightly different than in DataPDL, since we are not allowed to go
beyond the last and first column. Thus, [[→]]T = {((i, j), (i+ 1, j)) | i ∈ [n− 1] and j ∈ [k]0}.
However, we can simulate the “roundabout” of a ring and set ↪→ =→+{¬〈→〉}?←∗{¬〈←〉}?
as well as ←↩ = ↪→−1. By symmetry, the first column of a table will play the role of a marked
process in a ring (later, m will be translated to ¬〈←〉).

Finally, the semantics of path automata is given by [[A]]T = {(x, y) | there is π1 · · ·π` ∈
L(A) with (x, y) ∈ [[π1 · · ·π`]]T } where L(A) contains a sequence π1 · · ·π` of path formulas if
A admits a path q0

π1−→ q1
π2−→ · · · π`−→ q` from its initial state q0 to a final state q`.

A formula ψ ∈ LCPDL(D) defines the language L(ψ) = {T ∈ ∆++ | T, (1, 0) |= ψ}. For
b ≥ 1, we denote by Lb(ψ) the set of tables (n, k, λ) ∈ L(ψ) such that k ≤ b. The bounded
height satisfiability problem for LCPDL asks the following: Given a distributed algorithm D,
a formula ψ ∈ LCPDL(D), and b ≥ 1 (encoded in unary), do we have Lb(ψ) = ∅ ? Note that
the input D is only needed to determine the signature of the logic.

I Theorem 11. The bounded height satisfiability problem for LCPDL is PSpace-complete.

Proof sketch. We can restrict to tables of height k = b (rather than k ≤ b), since checking
satisfiability for every height separately does not change the space complexity. We reduce
the problem to words: A table T = (n, k, λ) is considered as the word T [1] · · ·T [n] ∈ ∆+.
Thus, the columns are written horizontally rather than vertically. When translating an
LCPDL formula over tables into an LCPDL formula over words, going to the left or right
involves some modulo counting: ← is translated to ←k+1, and → is translated to →k+1. We
then follow the construction of [13] to obtain, in polynomial time, an alternating two-way
automaton (A2A) of polynomial size corresponding to the LCPDL formula (since formulas
from LCPDL have bounded intersection width). Though [13] uses an exponential sized
alphabet (subsets of propositions), our alphabet is the (linear-sized) set of transitions ∆,
ensuring that the transition relation has only polynomial size. We allow automata as path
expressions, but it is straightforward to integrate them into the construction of the A2A.
Finally, satisfiability checking amounts to emptiness checking of the A2A. Emptiness checking
of A2A over words can be done in PSpace (cf. [18, 19]). J

From Distributed Algorithms to LCPDL. Without loss of generality, we assume that ∆
contains t = 〈s: skip ; skip ; skip ; skip ;goto s0〉 where s 6= s0 does not occur in any other
transition.

1 We use automata in addition to regular expressions since using states makes it easier to describe a
language. It is also important for the complexity since an automaton may be exponentially smaller
than a regular expression.

12 An Automata-Theoretic Approach to the Verification of Distributed Algorithms

loc0,1
r,r′ =

{
{
∧

r̄∈Reg¬〈(msg0,1
r̄,r)−1〉}? if r = r′

{false}? if r 6= r′
upd1,2

r,r′ =

{
{
∧

r̄ 6=r
¬(r := r̄)}? if r = r′

{r′ := r}? if r 6= r′

msg0,1
r,r′ =

(
{right!r}? · (↪→ ·{fwd}?)∗· ↪→ ·{left?r′}?

+ {left!r}? · (←↩ ·{fwd}?)∗· ←↩ ·{right?r′}?

)
next2,0

r,r′ =

{
↓ if r = r′

{false}? if r 6= r′

Figure 4 Path formulas to trace back transmission of pids

Let R = (n : p1, . . . , pn) be a ring and χ = C0
t1

 C1
t2

 · · · t
k

 Ck be an R-run of
D, where tj = (tj1, . . . , tjn) ∈ ∆n for all j ∈ [k]. From χ, we extract the symbolic run
Tχ = (n, k, λ) ∈ ∆++ given by its columns Tχ[i] = t t1i · · · tki . The purpose of the dummy
transition t at the beginning of a column is to match the number of configurations in a run.

We will construct, in polynomial time, a formula ψD ∈ LCPDL(D) such that L(ψD) =
{Tχ | χ is a run of D}. In particular, ψD will verify that (i) there are no cyclic dependencies
that arise from <-guards, and (ii) registers in equality guards can be traced back to the same
origin. In that case, the symbolic run is consistent and corresponds to a “real” run of D.

The main ingredients of ψD are some path formulas that describe the transmission of
pids in a symbolic run. They are depicted in Figure 4. For θ ∈ {loc,msg, upd,next} and
h ∈ {0, 1, 2}, the meaning of (x, y) ∈ [[θh,h

′

r,r′]]T is that the pid stored in r at stage h of
position/transition x has been propagated to register r′ at stage h′ of y. Here, h = 0 means
“after sending”, h = 1 “after receiving”, and h = 2 “after register update”. The interpretation
of “propagated” depends on θ. Formula loc0,1

r,r′ says that the value of register r is not affected
by reception. Similarly, upd1,2

r,r′ takes care of updates. Formula next2,0
r,r′ allows us to switch to

the next transition of a process, preserving the value of r(= r′). The most interesting case
is msg0,1

r,r′ , which describes paths across several processes. It relates the sending of r and
a corresponding receive in r′, which requires that all intermediate transitions are forward
transitions. All path formulas are illustrated in Figure 3.

Since pids can be transmitted along several transitions and messages, the formulas θh,h
′

r,r′

will be composed by path automata. For h ∈ {1, 2} and r ∈ Reg, we define a path automaton
Ah

r that, in Tχ, connects some positions (i, 0) and (i′, j′) iff, in χ, register r stores pi at
stage h of position (i′, j′). Its set of states is ι ∪ ({0, 1, 2} × Reg). For all r ∈ Reg, there is a
transition from the initial state ι to (0, r) with transition label {¬〈↑〉}?. Thus, the automaton
starts at the top row and non-deterministically chooses some register r. From state (h, r), it
can read any transition label θh,h

′

r,r′ and move to (h′, r′). The only final state is (h, r). Figure 3
describes (partial) runs of A1

r′ and A1
r′′ , which allow us to identify the origin of r′ and r′′

when applying the guard r′ < r′′.
Now, consistency of equality guards can indeed be verified by an LCPDL formula. It says

that, whenever an equality check r = r′ occurs in the symbolic run, then the pids stored in
r and r′ have a common origin. This can be conveniently expressed in terms of loop and
converse. Note that guards are checked at stage h = 1 of the corresponding transition:

ψ= = [(→+ ↓)∗]
∧
r,r′∈Reg

(
r = r′ ⇒ loop((A1

r)−1 · A1
r′)
)
.

The next path formula connects the first coordinate of a process i with the first coordinate
of another process i′ if some guard forces the pid of i to be smaller than that of i′:

π< =
(∑

r,r′∈Reg A1
r · {r < r′}? · (A1

r′)−1
)+

.

C. Aiswarya, B. Bollig, and P. Gastin 13

m̃ = ¬〈←〉 s̃ = goto s for all s ∈ S

¬̃ϕ = ¬ϕ̃ ϕ̃1 ∧ ϕ2 = ϕ̃1 ∧ ϕ̃2 ˜ϕ1 ⇒ ϕ2 = ϕ̃1 ⇒ ϕ̃2 [̃π]ϕ = [π̃]ϕ̃
˜〈π〉r < 〈π′〉r′ = loop(π̃ · (A2

r)−1 · π< · A2
r′ · (π̃′)−1)

˜〈π〉r ≤ 〈π′〉r′ = loop(π̃ · (A2
r)−1 · (π< + ε) · A2

r′ · (π̃′)−1)
˜〈π〉r = 〈π′〉r′ = loop(π̃ · (A2

r)−1 · A2
r′ · (π̃′)−1)

˜〈π〉r 6= 〈π′〉r′ = loop(π̃ · (A2
r)−1 · (←+ +→+) · A2

r′ · (π̃′)−1)
π̃ is inductively obtained from π by replacing tests {ϕ}? by {ϕ̃}?,

→ by ↪→, and ← by ←↩

Figure 5 From DataPDL	 to LCPDL

π̃ π̃′

(π̃′)−1

A2

r A2

r′

(A2

r)−1

π<

Figure 6 ˜〈π〉r < 〈π′〉r′

Note that, here, we use the (strict) transitive closure. Consistency of <-guards now reduces
to saying that there is no π<-loop: ψ< = ¬〈→∗〉loop(π<).

Finally, we can easily write an LCPDL formula ψcol that checks whether every column
T [i] ∈ ∆+ (ignoring t) is a valid transition sequence of D. Finally, let ψD = ψ= ∧ ψ< ∧ ψcol.

I Lemma 12. We have L(ψD) = {Tχ | χ is a run of D}.

From DataPDL	 to LCPDL. Next, we inductively translate every local DataPDL	(D)
formula ϕ into an LCPDL(D) formula ϕ̃. The translation is given in Figure 5. As mentioned
before, the first column in a table plays the role of a marked process so that m̃ = ¬〈←〉. The
standard formulas are translated as expected. Now, consider ˜〈π〉r < 〈π′〉r′ (the remaining
cases are similar). To “prove” 〈π〉r < 〈π′〉r′ at a given position in a symbolic run, we require
that there are a π̃-path and a π̃′-path to coordinates x and x′, respectively, whose registers r
and r′ satisfy r < r′. To guarantee the latter, the pids stored in r and r′ have to go back to
coordinates that are connected by a π<-path. Again, using converse, this can be expressed
as a loop (cf. Figure 6). Note that, hereby, A2

r and A2
r′ refer to stage h = 2, which reflects

the fact that DataPDL speaks about configurations (determined after updates).

I Lemma 13. Let T ∈ {Tχ | χ is a run of D} and ϕ be a local DataPDL	(D) formula. We
have T, (1, 0) |= ϕ̃ ⇐⇒

(
χ, 1, (1, 0) |= ϕ for all runs χ of D such that Tχ = T

)
.

Using Lemmas 12 and 13, we can now prove Lemma 14 below. Together with Theorem 11,
the upper bound of Theorem 10 follows.

I Lemma 14. Let D be a distributed algorithm, Φ = ∀rings∀runs∀mϕ ∈ DataPDL	(D), and
b ≥ 1. We have (a) D |= Φ ⇐⇒ L(ψD ∧ ¬ϕ̃) = ∅, and (b) D |=b Φ ⇐⇒ Lb(ψD ∧ ¬ϕ̃) = ∅.

5 Conclusion

In this paper, we provided a conceptually new approach to the verification of distributed
algorithms that is robust against small changes of the model.

Actually, we made some assumptions that simplify the presentation, but are not crucial
to the approach and results. For example, we assumed that an algorithm is synchronous,
i.e., there is a global clock that, at every clock tick, triggers a round, in which every process
participates. This can be relaxed to handle communication via (bounded) channels. Second,
messages are pids, but they could contain message contents from a finite alphabet as well.
Though the restriction to the class of rings is crucial for the complexity of our algorithm,
the logical framework we developed is largely independent of concrete (ring) architectures.

14 An Automata-Theoretic Approach to the Verification of Distributed Algorithms

Essentially, we could choose any class of architectures for which LCPDL is decidable, for
instance trees.

We leave open whether round-bounded model checking can deal with full DataPDL, or
with properties of the form ∀rings∃run∀mϕ, which are branching-time in spirit.

References
1 C. Aiswarya, B. Bollig and P. Gastin. An Automata-Theoretic Approach to the Verification

of Distributed Algorithms. CoRR, abs/1504.06534. 2015.
2 R. Alur and P. Černý. Streaming transducers for algorithmic verification of single-pass

list-processing programs. In POPL’11, pages 599–610. ACM, 2011.
3 B. Aminof, S. Jacobs, A. Khalimov, and S. Rubin. Parameterized model checking of token-

passing systems. In VMCAI’14, volume 8318 of LNCS, pages 262–281, 2014.
4 M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. Two-variable logic on data

trees and XML reasoning. J. ACM, 56(3), 2009.
5 B. Bollig, A. Cyriac, P. Gastin, and K. Narayan Kumar. Model checking languages of data

words. In FoSSaCS’12, volume 7213 of LNCS, pages 391–405. Springer, 2012.
6 M. Chaouch-Saad, B. Charron-Bost, and S. Merz. A reduction theorem for the verification

of round-based distributed algorithms. In RP’09, volume 5797 of LNCS, pages 93–106.
Springer, 2009.

7 D. Dolev, M. M. Klawe, and M. Rodeh. An O(n log n) unidirectional distributed algorithm
for extrema finding in a circle. J. Algorithms, 3(3):245–260, 1982.

8 E. A. Emerson and V. Kahlon. Parameterized Model Checking of Ring-Based Message
Passing Systems. In CSL’05, volume 3210 of LNCS, pages 325-339. Springer, 2004.

9 E. A. Emerson and K. S. Namjoshi. On reasoning about rings. Int. J. Found. Comput.
Sci., 14(4):527–550, 2003.

10 J. Esparza. Keeping a crowd safe: On the complexity of parameterized verification. In
STACS’14, volume 25 of LIPIcs, pages 1–10, 2014.

11 D. Figueira and L. Segoufin. Bottom-up automata on data trees and vertical XPath. In
STACS’11, volume 9 of LIPIcs, pages 93–104, 2011.

12 R. Franklin. On an improved algorithm for decentralized extrema finding in circular con-
figurations of processors. Commun. ACM, 25(5):336–337, 1982.

13 S. Göller, M. Lohrey, and C. Lutz. PDL with intersection and converse: satisfiability and
infinite-state model checking. J. Symb. Log., 74(1):279–314, 2009.

14 I. Konnov, H. Veith, and J. Widder. Who is afraid of model checking distributed algorithms?
In CAV’12 Workshop (EC)2. 2012.

15 I. Konnov, H. Veith, and J. Widder. On the completeness of bounded model checking
for threshold-based distributed algorithms: Reachability. In CONCUR’14, volume 8704 of
LNCS, pages 125–140. Springer, 2014.

16 M. Lange. Model checking propositional dynamic logic with all extras. J. Applied Logic,
4(1):39–49, 2006.

17 N. A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers Inc., 1996.
18 R. Mennicke. Propositional Dynamic Logic with Converse and Repeat for Message-Passing

Systems. LMCS 9(2:12) 2013.
19 O. Serre. Parity Games Played on Transition Graphs of One-Counter Processes. In

FOSSACS’06, LNCS, pages 337–351. Springer, 2006.
20 M. Y. Vardi. An automata-theoretic approach to linear temporal logic. In Logics for

Concurrency, volume 1043 of LNCS, pages 238–266. Springer, 1996.
21 M. Y. Vardi. Reasoning about the past with two-way automata. In ICALP’98, LNCS,

pages 628–641. Springer, 1998.

	Introduction
	Distributed Algorithms
	The Specification Language
	Round-Bounded Model Checking
	Conclusion

