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Abstract. This paper discusses progress in the verification of security protocols.
Focusing on a small, classic example, it stresses the use of program-like represen-
tations of protocols, and their automatic analysis in symbolic and computational
models.

1 Introduction

As computer security has become a broad, rich field, rigorous models have been devel-
oped for many policies and mechanisms. Sometimes these models have been the subject
of formal proofs, even automated ones. The goal of this paper is to discuss some of the
progress in this direction and some of the problems that remain.

The paper focuses on the study of security protocols, a large, mature, and active
area. It aims to offer an introduction and a partial perspective on this area, rather than
a comprehensive survey. We explain notations, results, and tools informally, through
the description of a basic example: a variant of the classic Wide-mouthed-frog pro-
tocol [25]. For this example, we consider specifications and automated proofs in two
formalisms. We refer the reader to the research literature for presentations of other
formalisms and for precise definitions and theorems, and to a recent tutorial [1] for
additional background.

Current research in this area addresses at least three challenges:

1. the treatment of realistic, practical protocols;
2. the analysis of actual implementation code;
3. extending the analysis to refined models, in particular computational models with

complexity-theoretic hypotheses on cryptographic functions.

With regard to (1), protocol analysis appears to be catching up with protocol devel-
opment. In the last few years there have been increasingly thorough analyses of prac-
tical protocols. While these analyses remain laborious and difficult, the sophistication
and power of the techniques and tools for protocol analysis seem to have grown faster
than the complexity of practical protocols. For instance, in the last dozen years, the



understanding and formal analysis of SSL and its descendant TLS [30] has progressed
considerably while this protocol has neither changed substantially nor been replaced
(e.g., [12, 35, 42, 44]). In this paper we do not discuss (1) further, although we recog-
nize its importance.

Progress on (2) is more recent and still more tentative, but quite encouraging [32,
34]. Moreover, we believe that much further progress is possible using static analyses
and type systems, including ones that are not specific to protocol security. This paper
concerns (2) in that it deals with protocols written in little programming languages,
namely a dialect of the pi calculus [41] and a special-purpose language for writing
cryptographic games. It concerns (2) also in that it relies on tools (ProVerif [15, 16, 18]
and CryptoVerif [17, 21]) that can be applied to protocols written in a general-purpose
programming language such as F] (a dialect of ML) [12, 14, 32].

As for (3), models and the corresponding proofs of security can concern several
different levels of abstraction. For instance, at a high level, they may deal with secure
communication channels as primitive. At a lower level, they may show how these chan-
nels are implemented in terms of cryptographic functions, while treating those as “black
boxes”. An even lower-level model would describe, in detail, how the cryptographic al-
gorithms transform bitstrings. This lower-level model is however not necessarily the
final one: we could also take into account such characteristics as timing and power con-
sumption, which some clever attacks may exploit. In this paper we focus on the relation
between “black-box” cryptography, in which cryptographic operations are symbolic,
and “computational” cryptography, in which these operations are regarded as computa-
tions on bitstrings subject to complexity-theoretic assumptions.

The next section introduces our example informally. Section 3 shows how to code
it in a dialect of the pi calculus and how to treat it with the tool ProVerif, symbolically.
Section 4 gives a computational counterpart to this symbolic analysis via fairly general
soundness results that map symbolic guarantees to computational guarantees (e.g., [7,
26, 40]). As an alternative, Section 5 treats the protocol directly in the computational
model, with the tool CryptoVerif. Section 6 concludes.

2 An Example, Informally: The Wide-mouthed-frog Protocol

The Wide-mouthed-frog (WMF) protocol is a classic, simple method for establishing
a secure channel via an authentication server. Mike Burrows originally invented it in
order to show that two messages suffice for this task, in the 1980s. It became popular as
an example in papers on protocol analysis.

The protocol enables two principalsA andB to establish a shared session keyKAB .
They rely on the help of an authentication serverS with which they share keysKAS

andKBS , respectively. Informally, the protocol goes roughly as follows:

– First, A generates the session keyKAB , and sendsA, {TA, B,KAB}KAS
to S.

HereTA represents a timestamp, and the braces indicate encryption. It is assumed
that clocks are synchronized, and that the encryption not only guarantees secrecy
but protects the message from tampering.

– The serverS can decrypt this message and check its timeliness. It then sends
{TS , A, KAB}KBS

to B, whereTS is also a timestamp.



– Finally, B can decrypt this message, check its timeliness, and obtainKAB .

The principalsA andB trust thatS does not divulgeKAB nor use it for its own pur-
poses. They also trustS in other ways—for instance, to check timestamps properly.
Defining such trust relations precisely has been one of the important goals of work in
this area. Because of this trust,A andB can treatKAB as a shared key. Afterwards,A
andB may exchange messages directly underKAB .

This simple example brings up a number of issues. In particular, we may ask what
exactly is assumed of timestamps? of cryptographic operations? For instance, it is note-
worthy that the protocol relies onA to generate a session key. While this may be ac-
ceptable, it is a non-trivial assumption thatA can invent good shared secrets; in many
other protocols, this important task is left for servers.

Formal analyses of the protocol address these and other questions, with various
degrees of explicitness. While early analyses emphasized clock synchronization and
A’s generation ofKAB , those aspects of the protocol seem to be less central, or at least
more implicit, in later work. This shift should not be too surprising. As Roger Needham
has argued, the assumptions and objectives of security protocols are not uniform, and
they have changed over the years [43]. Our analysis, below, focuses on other questions,
and in particular on the required properties of cryptographic operations.

3 The WMF Protocol in the Pi Calculus

Specifying the WMF protocol or another protocol can be, to some extent, a simple
matter of programming. For each role in the protocol (A, B, or S), one writes code
that models the actions of a principal that plays this role. We need not write code for
the adversary, which we treat as the environment, and over which we typically have a
universal quantification. Similarly, we do not write code for principals that pretend to
play a role but do not actually follow the protocol, since those principals can be regarded
as part of the adversary.

Note that principals and roles are distinct. Indeed, a principal may play multiple
roles, for instance being the initiatorA in one session and the interlocutorB in a con-
current session. A role is basically a program, while a principal is a host that may run
this program, as well as other programs.

The programs can be written in a variety of ways. We have often used process
calculi, and in particular two extensions of the pi calculus: the spi calculus and the
applied pi calculus [5, 6].

– The basic pi calculus offers facilities for communication on named channels, for
parallel composition, and for generating fresh names, which may represent fresh
cryptographic keys. For example,((νk).c〈k〉) | c(x).d〈x〉 is a process that gener-
ates a fresh namek and then sends it on the channelc, in parallel with a process that
receives a message onc, with formal namex, then forwards it ond. In this small
example, one may think ofc andd as public channels on which an attacker may
also communicate, for instance interceptingk. More generally, public channels are
often represented by free names, not bound byν.



– The extensions of the pi calculus include both data structures and symbolic rep-
resentations of cryptographic functions. Tupling, encryption, hashing, signatures,
and many of their variants can be accommodated. For instance, classically,{M}k

may represent the shared-key encryption of the messageM under the keyk.

This approach has been followed in modeling many protocols (e.g., [3, 4, 9, 13, 18, 19,
37, 39]). Techniques from the programming-language literature, such as typing, have
been employed for proofs, sometimes with substantial extensions or variations; special-
purpose techniques have also been developed and exploited, as in the tool ProVerif on
which we rely below (e.g., [2, 10, 23, 24, 28, 33, 36]). Research on related formalisms
includes many similar themes and methods (e.g., [8, 22, 27, 29, 38, 45]).

Over the last decade, this approach to modeling and proving has evolved and ma-
tured considerably. Most noticeably, proof techniques have progressed in their power
and sophistication. Partly because of this progress, the specifics of modeling protocols
has changed as well.

We use the WMF protocol to illustrate this point. The original paper on the spi calcu-
lus [6] contains a description of the WMF protocol (with nonce handshakes rather than
timestamps). Below, we give a new description of this protocol. The two descriptions
differ on many small but often interesting points. In particular, the new description mod-
els probabilistic encryption [31], in which the encryption function has a third parameter
that serves for randomizing ciphertexts:{M}r

k represents the encryption ofM under
k with random componentr. This random component ensures that an attacker can-
not recognize when two different ciphertexts have the same underlying plaintext. The
new description is also crafted so as to be within the realm of application of ProVerif,
CryptoVerif, and the general soundness results that map symbolic guarantees to com-
putational guarantees.

The WMF Protocol in the Pi Calculus.We represent principal names by parameters
like a andb. The role ofA may be executed by any principala, and the role ofB by
any principalb. We writekas andkbs for the respective keys shared with the server.

The code for the role ofA may be given three parameters: an identitya, an iden-
tity b, and a keykas. This code first generates a fresh process idpid. Sincea may run
concurrently several copies of the same program, possibly with the same partner,pid
is useful in distinguishing the different copies. Next, the code generates a new keyk,
calledKAB in the informal description of Section 2. The code then communicates on a
public channelc. It sends a triple that containspid, a, andA. (This message and similar
ones below do not appear in the informal description of the protocol but are helpful for
enabling the application of computational-soundness results.) It also sends a pair that
containsa and the ciphertext{〈c0, b, k〉}r

kas
. Herer is a freshly generated name, and

c0 is a constant that represents the message type. A distinct constantc1 will tag the
message fromS to B. The two tagsc0 andc1, although rudimentary, serve for avoiding
confusion between messages and suffice for the properties that we establish.

PA(a, b, kas)
def= (νpid)(νk).c〈〈pid, a, A〉〉.(νr).c〈

〈
a, {〈c0, b, k〉}r

kas

〉
〉



Note that the messages do not specify destinations. Destinations could be included in
message headers, but an attacker could change them anyway, so they have no value
from the point of view of security.

As a variant, which we adopt, we may wish to quantify over any possible partnerb,
letting the environment (that is, the attacker) chooseb, thus:

PA(a, kas)
def= (νpid)(νk).c〈〈pid, a, A〉〉.

c(x).if π1(x) = pid then let b = π2(x) in (νr).c〈
〈
a, {〈c0, b, k〉}r

kas

〉
〉

else 0

Herea receives a messagex and performs some computations and tests onx. Specif-
ically, a tries to retrieve the first component of a (supposed) pair using the projection
functionπ1, then examines the first component to check that the message is intended
for this instance. If the projection fails, then the equality test fails as well. If the equal-
ity test fails, then the execution stops. (An alternative could be to restart the program
or to wait for another message.) In case of success, on the other hand,b is bound to the
second component (π2(x)) of the message. Otherwise, the execution stops;0 is the null
process.

In this presentation we take some liberties—all the i’s will be dotted for the ProVerif
version of the code, which we describe below. In particular, we omit the axioms for en-
cryption and decryption. We also use a shorthand for pattern matching: we write inputs
of the formc(t) whent is a term that can supposedly be decomposed by the principal
that receives the message. Such matching tests can be desugared to conditionals in a
standard way; variables that occur in the termt are parts of the messages that are not
checked and they are bound with alet construction. With this notation, we can rewrite
PA as follows:

PA(a, kas)
def= (νpid)(νk).c〈〈pid, a, A〉〉.c(〈pid, x〉).(νr).c〈

〈
a, {〈c0, x, k〉}r

kas

〉
〉

Similarly, we specify the processPB :

PB(a, b, kbs,m) def= (νpid).c〈〈pid, b, B〉〉. c(〈pid, x〉).
let 〈c1, a, y〉 = decrypt(x, kbs) in (νr).c〈{m}r

y〉

Herem is an arbitrary message that is supposed to remain secret. According to this
code,b sends the secret only toa. However, we may want to enableb to interact with
any other principal, sending them an appropriate secret, or nothing at all. In order to
model this possibility, we simply show another version of the program in which the
final payload is not sent:

P 1
B(b, kbs)

def= (νpid).c〈〈pid, b, B〉〉.c(〈pid, x〉).let 〈c1, z, y〉 = decrypt(x, kbs) in 0

Finally, we specify the processPS :

PS(a, b, kas, kbs)
def= (νpid).c〈〈pid, S〉〉.c(〈pid, a, x〉).

let 〈c0, b, y〉 = decrypt(x, kas) in (νr).c〈{〈c1, a, y〉}r
kbs
〉



We also consider two variants ofPS in which one of the protocol participantsA andB
is compromised.

P 1
S(a, b, kbs)

def= (νpid).c〈〈pid, S〉〉.c(〈pid, k〉).c(〈pid, z, x〉).if z 6= a ∧ z 6= b then
let 〈c0, b, y〉 = decrypt(x, k) in (νr).c〈{〈c1, z, y〉}r

kbs
〉

P 2
S(a, b, kas)

def= (νpid).c〈〈pid, S〉〉.c(〈pid, k〉).c(〈pid, a, x〉).
let 〈c0, z, y〉 = decrypt(x, kas) in
if z 6= a ∧ z 6= b then (νr).c〈{〈c1, a, y〉}r

k〉

We represent a corrupted principal by lettingS get its key from the environment. The
case in which bothA andB are compromised is less interesting, because in that caseS
can be simulated by the environment entirely. (Similarly, we do not specify corrupted
versions ofPA or PB , because they can be simulated by the environment.)

We assemble these definitions, lettinga, b, and the server run any number of copies
of their respective programs (for simplicity with a single parameterm):

P (m) def= (νkas)(νkbs).((!PA(a, kas)) | (!PA(b, kbs)) |
(!PB(a, b, kbs,m)) | (!PB(b, a, kas,m)) | (!PB(a, a, kas,m)) | (!PB(b, b, kbs,m)) |
(!P 1

B(b, kbs)) | (!P 1
B(a, kas)) |

(!PS(a, b, kas, kbs)) | (!PS(b, a, kbs, kas)) |
(!PS(a, a, kas, kas)) | (!PS(b, b, kbs, kbs)) |
(!P 1

S(a, b, kbs)) | (!P 1
S(b, a, kas)) | (!P 2

S(a, b, kas)) | (!P 2
S(b, a, kbs)))

Here ! is the replication operator, so!P behaves like an unbounded number of copies
of P in parallel; formally,!P ≡ P |!P . The nameskas andkbs are bound. This binding
manifests an important feature of the process calculus: such a construction hides the
names, which are not visible outside their scope. The processP therefore expresses
that kas and kbs are not a priori known outside, unless they are leaked on a public
channel.

The process calculus and ProVerif also allow more compact and more convenient
representations ofP , as well as many variants and elaborations. We rely on the def-
initions above partly because we wish to match the conditions of the computational-
soundness results. For instance, we avoid the use of functions that link keys to principal
names (which are common in ProVerif models, but which appear to be computationally
unsound), and also the use of private channels (which may be permitted by ongoing
work on computational soundness). As research in this area progresses further, we an-
ticipate that those results will be increasingly flexible and general.

The WMF protocol has several standard security properties. In particular, it pre-
serves the secrecy of the payloadm. Formally, this secrecy can be expressed as an
observational equivalence:P (m) ∼ P (m′), for all m andm′. It holds even in the case
wherem andm′ are not atomic names, and it precludes even the leaking of partial in-
formation aboutm andm′. For these reasons, this property is sometimes called “strong
secrecy”.



As we show below, ProVerif offers one particularly effective method for establishing
such security properties. There are others, sometimes relying in part on techniques from
the pi calculus (as in [6], for instance).

The WMF Protocol in ProVerif.The WMF protocol can be programmed much as above
in the input language of ProVerif. In this language, the encryption{m}r

k is written
encrypt(m, k, r). Encryption and decryption are declared in ProVerif by:

fun encrypt/3.
reduc decrypt(encrypt(x , y , r), y) = x .

which introduces a function symbolencrypt of arity 3 and a function symboldecrypt
defined by a rewrite ruledecrypt(encrypt(x , y , r), y) → x , which means that decryp-
tion of a ciphertext with the correct key yields the plaintext. Furthermore, we add a
function symbolkeyeq that allows the adversary to test equality between keys of two
ciphertexts:

reduc keyeq(encrypt(x , y , r), encrypt(x ′, y , r ′)) = true.

This function symbol models that the encryption scheme is not key-concealing (so the
computational-soundness result of Section 4 can be applied without assuming that en-
cryption is key-concealing).

At the level of processes, the input language of ProVerif is an ASCII syntax for the
applied pi calculus. For example, the processPA(a, kas) is coded:

let processAa =
new pid ; out(c, (pid , a,A)); in(c, (= pid , xb));
new Kab; new r ; out(c, (a, encrypt((c0, xb,Kab),Kas, r))).

The language usesnew for ν, out(c,m) for c〈m〉, andin(c,m) for c(m). The syntax
of patterns is made more explicit, by adding an equality sign (as in= pid , for exam-
ple) when making a comparison with a known value. Other minor departures from the
definition ofPA(a, kas) above are changes in the identifiers.

The other processes that represent the WMF protocol are coded in a similar way in
ProVerif. We therefore omit their ProVerif versions.

ProVerif can establish the security property claimed above, using the technique de-
scribed in [16]. The proof is fully automatic. For a large class of protocols in which
messages are tagged, ProVerif is guaranteed to terminate [20]; our example does not
quite fit in this class (in particular, because of the use of inequality tests), but ProVerif
does terminate nonetheless. ProVerif can similarly establish security properties of many
more complex protocols.

4 Computational Soundness

While formal analysis of protocols has traditionally provided only formal results, like
those stated in Section 3, the exact status of those results can be unclear. Do they entail
any actual guarantees, or is formal analysis valuable only as a means of identifying
assumptions, explaining protocols, and sometimes finding mistakes?



One approach to addressing such questions is to try to map the formal results to
a more concrete model via a general theorem. Such a theorem should enable us to
leverage high-level notations, proof techniques, and proof tools for obtaining guarantees
for large families of protocols. In this section we discuss this approach and how it
applies to the WMF protocol.

In the more concrete model, cryptographic operations work on bitstrings, not ex-
pressions, and are subject to standard complexity-theoretic assumptions. Names are
interpreted as bitstrings—more precisely, ensembles of probability distributions on bit-
strings, parameterized by a security parameterη. This interpretation is extended to a
mapping from symbolic expressions to bitstrings. The adversary may perform any com-
putation on bitstrings, and not only the basic expected cryptographic operations; the
adversary is however constrained to run in (probabilistic) polynomial time with respect
to η.

Computational-soundness theorems translate symbolic guarantees to computational
guarantees. In particular, a recent computational-soundness theorem [26], on which we
rely, roughly says that the symbolic equivalence of two processes implies their compu-
tational indistinguishability. In other words, the distinguishing capabilities of a compu-
tational attacker are not stronger than the distinguishing capabilities of the symbolic at-
tacker, whose range of operations is much more limited. Of course, these theorems also
indicate assumptions, in particular hypotheses on cryptographic operations. Unexpected
but necessary hypotheses sometimes surface when one proves soundness theorems.

Assumptions.Specifically, the theorem of [26] requires some assumptions on the en-
cryption scheme:

– IND-CPA security (the standard semantic guarantee for secrecy [31], also called
“type-3 security” [7]), and

– INT-CTXT security (an authentication guarantee [11]).

It also requires that:

– the attacker can create a key only using the key-generation algorithm;
– there are no encryption cycles: there is an ordering< on private keys such that, if

k < k′, thenk may appear in the plaintext of a ciphertext encrypted underk′, but
not the converse;

– finally, it is possible to compute a symbolic representation of any bitstring—this is
a “parsing assumption”.

The assumptions are far from trivial: IND-CPA is standard, but INT-CTXT is strong,
and the inability to create keys without following the key-generation algorithms is quite
unusual. These three properties are however necessary for the soundness theorem: if one
of these three hypotheses fails, we can find protocols that appear secure symbolically
but that are not secure computationally, under some encryption schemes. In fact, under
some encryption schemes that do not satisfy INT-CTXT, there are computational attacks
on the WMF protocol in particular.

Encryption cycles have attracted a great deal of attention in recent years, in part
because of computational-soundness theorems, but they are of independent interest.
Their exact status remains a well-known open question.

The parsing assumption is probably not necessary, but eases the proofs.



Application to WMF. SinceP (m) ∼ P (m′) has been proved using ProVerif, we
should get some computational indistinguishability guarantee, thanks to the theorem
of [26] discussed above. That theorem pertains to a symbolic equivalence relation∼s

that distinguishes slightly more processes than∼ and ProVerif. For instance,∼s dis-
tinguishes two symbolic messages whose computational interpretations have distinct
lengths, while∼ may not.

This discrepancy illustrates that further work is needed for establishing a perfect
match between models. Moreover, the soundness theorems remain hard to establish
and they do not yet cover all useful cryptographic primitives, nor all sensible styles for
writing protocol code.

The discrepancy might be resolved by refining∼ by introducing functions that,
given a ciphertext, reveal the length, structure, or other properties of the underlying
plaintext. Such functions could also be incorporated in ProVerif analyses.

For our specific example, more simply, we may require that encryption conceal
the length of payloads, and we can weaken∼s accordingly. This approach is accept-
able for the WMF protocol since its messages can be assumed to have a constant
length. In this case,∼ and∼s coincide, so the ProVerif verification actually estab-
lishesP (m) ∼s P (m′). Moreover, we have proved manually the absence of encryption
cycles so, for implementations that satisfy the other assumptions of the computational-
soundness theorem, we obtain the desired computational indistinguishability guarantee.

5 The WMF Protocol in CryptoVerif

In this section, we study the WMF protocol using CryptoVerif. In contrast to the ap-
proach of Section 4, CryptoVerif works directly in the computational model, and pro-
vides proofs by sequences of games, like those constructed manually by cryptographers.
In these proofs, one starts from an initial game that represents the protocol under study.
This game is then transformed either by relying on security assumptions on crypto-
graphic primitives or by syntactic transformations. These transformations are such that
the difference of probability of success of an attack in consecutive games is negligible.
The final game is such that the desired security property is obvious from the form of the
game. One can then conclude that the security property also holds in the initial game.

The WMF Protocol in CryptoVerif.In order to automate this technique, the games are
formalized in a process calculus, as we illustrate on the WMF protocol. Throughout this
section, we refer toa andb as honest principals, and we focus on them in writing code.
The adversary can play the role of dishonest principals.

The following processPA models the role ofA:

PA = !N c2(xA : host , xB : host); if xA = a ∨ xA = b then
let KAs = (if xA = a then Kas else Kbs) in
new rKab : keyseed ; let Kab : key = kgen(rKab) in
new r : seed ; c3〈xA, encrypt(concat(c0, xB ,Kab),KAs, r)〉

The processPA starts with a replication bounded byN , which is assumed to be poly-
nomial in the security parameter: at mostN copies ofA can be run. Two host names



are then received on channelc2: xA is the name of the host playing the role ofA, xB is
the name of its interlocutor;xA is required to equala or b. ThenKAs is defined as the
key of xA. The protocol proper starts at this point:PA chooses a fresh keyKab to be
shared betweenxA andxB by generating a random seedrKab (new rKab : keyseed )
and applying the key-generation algorithmkgen. Next,PA forms the first message, and
sends it on channelc3. The functionconcat builds the plaintext to be encrypted by con-
catenating its arguments (a tag, a host name, and a key). After the output onc3, control
returns to the adversary.

Variables are typed. These types simply represent sets of bitstrings, and have no
security meaning. They are still necessary in the computational model, in particular
when generating random numbers: the random numbers can be drawn from various sets
(keys, random seeds, nonces, . . . ).

The messages are each sent or received on a distinct channelcj . Furthermore, the
replication!N implicitly defines an indexi ∈ [1, N ], and the channel namescj are in
fact abbreviations forcj [i], so that a distinct channel is used in each copy of the process.
Thus, the adversary knows exactly to which process it is talking. Using distinct channel
names and replication indices replaces the process identifiers (pid ) of the model of
Section 3.

The following processPB represents the role ofB:

PB = !N c8(xB : host); if xB = a ∨ xB = b then
let KBs = (if xB = a then Kas else Kbs) in c9〈〉;
c10(x : bitstring); let injbot(concat(= c1, xA, kab)) = decrypt(x ,KBs) in
if xA = a ∨ xA = b then
new r : seed ; c11〈encrypt(pad(mpayload), kab, r)〉

Similarly toPA, the processPB is replicated, and expects as first message its own iden-
tity xB ; xB is required to equala or b andKBs is its key. Then a message (normally
from the server) is received on channelc10, andPB decrypts this message. The decryp-
tion can succeed or fail. When it succeeds, it returns a normal bitstring; when it fails,
it returns⊥. The functioninjbot is the natural injection from bitstrings to bitstrings
union⊥, so that wheninjbot(y) = decrypt(x ,KBs), the decryption succeeded and its
value isy. Next, when the interlocutorxA of xB is honest, the processPB encrypts the
payloadmpayload under the shared keykab and sends the ciphertext on channelc11.
(The functionpad is only a type conversion function, which converts payloads to plain-
texts; it leaves the bitstrings unchanged.)

The processPK is a key-registration process:

PK = !N2c12(h : host , k : key);
let Khs : key = if h = a then Kas else if h = b then Kbs else k

All variables defined under replications in CryptoVerif are implicitly arrays indexed by
the replication index. So, here,PK stands for:

PK = !i≤N2c12[i](h[i] : host , k [i] : key);
let Khs[i] : key = if h[i] = a then Kas else if h[i] = b then Kbs else k [i]

In order to register a keyk1 for hosth1, the adversary sends a pair(h1, k1) on channel
c12[i] for somei. The host nameh1 is stored inh[i] while the keyk1 is stored inKhs[i],



except whenh1 is a orb; in this case, the keyKas orKbs respectively is stored instead,
so that the only keys that can be registered fora andb areKas andKbs respectively.
In order to retrieve the key for hosth′, one can then look for an indexu′ such that
h[u′] = h′; the key forh′ is Khs[u′]. This is done by the constructfind u ′ ≤ N2

suchthat defined(Khs[u ′], h[u ′]) ∧ h ′ = h[u ′] then . . .Khs[u′] . . . used below.
The role of the server is specified by the processPS :

PS = !N c6(xA : host , x : bitstring);
find uA ≤ N2 suchthat defined(Khs[uA], h[uA]) ∧ xA = h[uA] then
let KAs = Khs[uA] in
let injbot(concat(= c0, xB , kab)) = decrypt(x ,KAs) in
find uB ≤ N2 suchthat defined(Khs[uB ], h[uB ]) ∧ xB = h[uB ] then
let KBs = Khs[uB ] in
new r : seed ; c7〈encrypt(concat(c1, xA, kab),KBs, r)〉

The first message of the protocol is received on channelc6. The variableKAs is set to
the key ofxA. Then the server decrypts the message withKAs, setsKBs to the key of
xB , and finally outputs the second message of the protocol on channelc7.

The following processP receives two payloadsm0 andm1 , chooses a bitswitch,
and sets the payloadmpayload to be encrypted byPB to eitherm0 or m1 depending
on the value ofswitch. (We will show that the adversary cannot distinguishswitch
from a fresh random bit, so it cannot distinguish whether the encrypted payload ism0
or m1 .) Next,P generates the keysKas andKbs for a andb respectively, using the
key-generation algorithmkgen; then it launches processes for the various roles of the
protocol and for key registration:

P = c13(m0 : payload ,m1 : payload);
new switch : bool ; let mpayload : payload = test(switch,m0 ,m1 ) in
new rKas : keyseed ; let Kas : key = kgen(rKas) in
new rKbs : keyseed ; let Kbs : key = kgen(rKbs) in c14〈〉; (PA | PB | PS | PK)

Heretest is defined bytest(true,m0 ,m1 ) = m0 andtest(false,m0 ,m1 ) = m1 .

Assumptions.In addition to these processes, the CryptoVerif model also specifies sev-
eral hypotheses:

– The encryption scheme is IND-CPA and INT-CTXT.
– The functionconcat returns bitstrings of constant length. Moreover,concat is in-

jective, and it is possible to computex, y, z from concat(x, y, z) in polynomial
time.

– All payloads have the same length.

We do not assume that the attacker can create a key only using the key-generation al-
gorithm. This contrasts with the assumptions of Section 4, which apply to a large class
of protocols, including protocols for which there would be computational attacks with-
out this assumption. Neither do we assume the absence of encryption cycles; however,
the success of the game transformation sequence shows that there is a key hierarchy.
Finally, we do not have any parsing assumption.



Analysis.With the model presented above, CryptoVerif is not able to complete the proof
of the desired properties. Manual inspection of the games computed by CryptoVerif
shows that, inPA, it fails to distinguish automatically the cases in which the keyKab is
generated for an honest interlocutora or b from the cases in which it is generated for a
dishonest interlocutor. The code can easily be modified to make this distinction from the
start, simply by adding the test “if xB = b ∨ xB = a then” just before the generation
of rKab and duplicating the rest of the processPA. With this modification, the proof
of secrecy ofswitch succeeds automatically. That is, the adversary cannot distinguish
switch from a fresh random bit, so it cannot tell whether the encrypted payload ism0
or m1 .

Additionally, CryptoVerif can also show secrecy properties of the key exchanged
betweenA andB, after removal of the payload message. (We do not present the cor-
responding process for brevity.) More precisely, CryptoVerif shows that the keysKab
chosen byPA whenxA andxB are honest principals are secret, that is, indistinguishable
from fresh independent random keys. However, CryptoVerif cannot show the secrecy
of the keyskab received byPB whenxA andxB are honest principals. This failure is
not due to a limitation of CryptoVerif, but to an attack: by replaying messages in the
protocol, the adversary can force several sessions ofB to use the same keykab. Hence,
those keyskab may not be independent. CryptoVerif still establishes what we call “one-
session secrecy”, that is, that each keykab (for xA andxB honest) is indistinguishable
from a fresh random key.

The Sequence of Games (Summary).In order to establish the secrecy ofswitch, Cryp-
toVerif successively reduces the original game to simpler games, using the security
assumptions. In a first step, it performs syntactic transformations to make explicit all
usages of the keyKbs and to replace it with its valuekgen(rKbs). The obtained game
is then transformed using the INT-CTXT assumption: CryptoVerif replaces every de-
cryption of a messageM underKbs with a look-up that searches forM among all
ciphertexts built by encryption underKbs. If the ciphertextM is found, the look-up re-
turns the corresponding plaintext; otherwise, decryption fails and the look-up returns⊥.
If the attacker wins the game before this transformation, then either it wins the new
game or, at some point, it has been able to forge an encryption underKbs. In the latter
case, it would break INT-CTXT. Then, CryptoVerif replaces any plaintextM that is
encrypted underKbs with Z(M), a bitstring of the same length asM but consisting
only of zeroes. This time, if the attacker wins the game before this transformation, then
either it wins the new game or it wins an IND-CPA game.

CryptoVerif performs similar transformations for the keyKas.
At this stage, the keyKab no longer occurs as a plaintext. CryptoVerif now ap-

plies the same transformations as above, for this key, and finally replaces all payloads
mpayload encrypted underKab with the same plaintextZ(mpayload). The final game
is trivial: it cannot be won by an attacker.

6 Conclusion

Model refinements such as those that we discuss in this paper, while numerous and
varied, should not be fundamentally surprising. After all, reasoning about software



and hardware correctness often employs similar refinements. Furthermore, in any area,
models and the corresponding proofs may be incomplete and inaccurate.

Security, however, is different in at least one important respect: an adversary may
be doing its best to undermine the validity of the models. This specificity increases
the importance of understanding refinements, and the interest of the corresponding the-
ory. Within this domain, we believe that the transition from symbolic to computational
models is particularly worthwhile. It can serve for strengthening the foundations of for-
mal analysis, for enabling proofs, and also for indicating implicit hypotheses and subtle
flaws.

It remains open to debate whether computational results should be obtained di-
rectly, with a tool such as CryptoVerif, or indirectly from symbolic proofs via sound-
ness theorems. Soundness theorems often require more hypotheses: there are situations
in which a computational proof can be obtained using CryptoVerif, while the hypothe-
ses of soundness theorems are not met. However, when the hypotheses are satisfied, a
symbolic proof suffices, and is generally easier to obtain, often automatically.

At present, both avenues still present challenges. ProVerif, CryptoVerif, and the
soundness theorems all still have important limitations. These imply, for instance, that
one should be careful in writing protocol specifications—not all equivalent formula-
tions are equally easy to handle. Despite these limitations, as this paper illustrates, the
progress to date is substantial.
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