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Previous works
Some perspectives

Evolution Temporal Logic

Yahav, E., Reps, T., Sagiv, S., Wilhelm, R. : Verifying Temporal
Heap Properties Specified via Evolution Logic. (ESOP 2003)

I Syntax :

φ ::= 0 | 1 | p(v1, .., vn) | � v | � v | φ1 ∨ φ2 | ¬φ | ∃v .φ
| (TCv1, v2 : φ1)(v3, v4) | φ1Uφ2 | Xφ

I Example formula : no memleak will occur

�∀v .� v → ♦� v

Each allocated cell (at some time) will deallocated

I Models = sequences of ”memory states”
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Navigation Temporal Logic

Dino Distefano, Joost-Pieter Katoen, Arend Rendsink
Who is pointing when to whom ? [FSTTCS’04]
Safety and Liveness in Concurrent Pointer Programs [FMCO’05]

I Syntax

α ::= null | x | α ↑
φ ::= α = α | αnew | α α | φ ∧ φ | ¬φ | ∃x .φ | Xφ | φUφ′

I Example formula : list reversal

∀x , y .
(
(v  x ∧ x ↑= y)⇒ ♦�(y ↑= x)

)
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Do runs go too fast ?

What is the relation between two consecutive memory states ?

I Not clear in previous works : some restrictions to have a
flavour of concrete run.

I e.g. : α new in NTL means α is allocated and was not before...
... but many changes are possible

I not even a big step semantics :
two consecutive states are not necessarily related by a finite
run.

I What should be considered ?
Here we will consider :

I arbitrary runs
I concrete runs (from programs)
I in between : runs with constant heap.
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Temporal properties of pointer arithmetic

I Example : block preservation.

�
∧

i=0..n−1

x + i 7→ − ∧ ¬x + n 7→ −

I Example : block scanning.

�Xx = x ∧
( ∨

i=0..n−1

x + i 7→ y Ux + n − 1 7→ y
)

I Limitations : Xx = x + i
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Talking about recursion via LTL

I A language for recursive data structures :

List(x)
µ
= x 7→ {next : null} ∨ ∃y.x 7→ {next : y} ∧ List(y)

I General recursion raises undecidability
⇒ ”LTL style” recursion :

x 7→ {next : Xx} U x 7→ {next : null}

Here, ”only variables are moving”.

I Other formulas

x = null ∧
(

(Xx) 7→ {prev : x; next : X2x} U Xx = null
)

Trees ? (maybe requires CTL ?)
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Programs as formulas

I Programs without update :
ex : P =
while x <> null do x = x→ next; y = y→ next end

φP =
(
x 7→ {next : Xx} ∧ y 7→ {next : Xy} U x = null

)
More generally : φP for P without update.

I Describing the input/output relation with 7→0 and 7→1

ex : list reversal(
x 7→1 {next = Xx} ∧ (Xx 7→2 {next : x} U x = null

)
More generally : single-pass programs ?
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Heaps and models

A memory state is a pair (s,h) of :

I a store : s : Var→ N
I a heap : h : N ⇀fin (Lab ⇀fin N)

Intuition : dom h = allocated addresses.

A model is a sequence (si , hi )i<α, finite or infinite, of memory
states.

A model with constant heap is a sequence (si , h)i<α.

N.B. : Modct ⊂ Mod.
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The programming language

Syntax

instr ::= x := y | skip

| x := y→ l | x→ l := y (record programs)
| x := cons(l1 : x1, .., lk : xk) | free x, l

| x := y[i ] | x[i ] := y (array programs)
| x = malloc(i)|free x, i

Semantic

[[P]](s0, h0) = set of models representing executions

N.B : If P has no destructive update, [[P]](s0, h0) ⊂ Modct .
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The logic

I Expressions
e ::= x | null | Xe

I Atomic formulae

P ::= e = e ′ | x + i 7→ {l : e}

I State formulae

A ::= P
| A ∗ B | A →∗B | emp (spatial fragment)
| A ∧ B | A → A | > | ⊥ (classical fragment)

I Temporal formulae

Φ ::= A | XΦ | ΦUΦ′ | Φ ∧ Φ′ | ¬Φ
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Semantics

s, h |=SL e = e′ iff [[e]]s = [[e′]]s , with [[x]]s = s(x) and [[null]]s = nil .
s, h |=SL x + i 7→ {l : e} iff dom(h) = {s(x) + i} and h(s(x) + i) = [[e]]s
s, h |=SL emp iff dom(h) = ∅
s, h |=SL A1 ∗ A2 iff ∃ h1, h2 s.t.h = h1 ∗ h2

and ∀k ∈ {1, 2}, s, hk |=SL Ak

s, h |=SL A′ →∗A iff ∀h′, if h⊥h′ and s, h′ |=SL A′

then s, h ∗ h′ |=SL A.
s, h |=SL A1 ∧ A2 iff ∀k ∈ {1, 2}. s, h |=SL Ak

s, h |=SL A′ → A iff s, h |=SL A′ implies s, h |=SL A
s, h |=SL ⊥ never

ρ, i |= XΦ iff i < |ρ|andρ, i + 1 |= Φ.
ρ, i |= ΦUΦ′ iff ∃j ≥ i , j ≤ |ρ|, ρ, j |= Φ′,

and ∀k, i ≤ k < j , ρ, k |= Φ.

ρ, i |= A iff s, h |=SL A[Xix← 〈x, i〉],
where : h = hi and s(〈x, k〉) = si+k(x).
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The problems we considered

I Satisfiability (SAT, resp. SATct) : given Φ of LTLmem, is there
ρ ∈ Mod (resp. ρ ∈ Modct) such that ρ |= Φ?

I Model checking (MC, resp. MCct)) : given Φ of LTLmem, a
program p ∈ P (resp. p ∈ Pct), and a memory state (s0, h0),
do P, (s0, h0) |= Φ holds ?

I Program checking (PC, resp. PCct) : given Φ of LTLmem and a
program p ∈ P (resp. p ∈ Pct), is there a memory state
(s0, h0) such that P, (s, h) |= Φ holds ?

May express : Memory violation safety, memory leak safety,...
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Some interesting fragments

I Classical fragment

A ::= e = e ′ | x + i 7→ {l : e}
| A ∧ B | A → A | > | ⊥

I Record fragment

A ::= e = e ′ | x 7→ {l : e}
| A ∗ B | A →∗B | emp
| A ∧ B | A → A | > | ⊥

I Array fragment

A ::= e = e ′ | x + i 7→ e
| A ∗ B | A →∗B | emp
| A ∧ B | A → A | > | ⊥
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Decidability results

Classical fragment Record fragment Array fragment

SAT [PSPACE] [PSPACE] LTL(N)
SATct contains PCct

PC contains Minsky termination [BFN04]
PCct contains reachability without update [IB06]
MC contains Minsky termination [BFN04]

MCct
reduction to

[SAT]
reduction to

[SAT] ? ? ?
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