
Temporal logics in Pointer verification
The logic LTLmem

Reasoning about sequences of memory states

R. Brochenin, S. Demri, E. Lozes

LSV, CNRS & ENS Cachan

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Previous works
Some perspectives

Evolution Temporal Logic

Yahav, E., Reps, T., Sagiv, S., Wilhelm, R. : Verifying Temporal
Heap Properties Specified via Evolution Logic. (ESOP 2003)

I Syntax :

φ ::= 0 | 1 | p(v1, .., vn) | � v | � v | φ1 ∨ φ2 | ¬φ | ∃v .φ
| (TCv1, v2 : φ1)(v3, v4) | φ1Uφ2 | Xφ

I Example formula : no memleak will occur

�∀v .� v → ♦� v

Each allocated cell (at some time) will deallocated

I Models = sequences of ”memory states”

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Previous works
Some perspectives

Navigation Temporal Logic

Dino Distefano, Joost-Pieter Katoen, Arend Rendsink
Who is pointing when to whom ? [FSTTCS’04]
Safety and Liveness in Concurrent Pointer Programs [FMCO’05]

I Syntax

α ::= null | x | α ↑
φ ::= α = α | αnew | α α | φ ∧ φ | ¬φ | ∃x .φ | Xφ | φUφ′

I Example formula : list reversal

∀x , y .
(
(v  x ∧ x ↑= y)⇒ ♦�(y ↑= x)

)

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Previous works
Some perspectives

Do runs go too fast ?

What is the relation between two consecutive memory states ?

I Not clear in previous works : some restrictions to have a
flavour of concrete run.

I e.g. : α new in NTL means α is allocated and was not before...
... but many changes are possible

I not even a big step semantics :
two consecutive states are not necessarily related by a finite
run.

I What should be considered ?
Here we will consider :

I arbitrary runs
I concrete runs (from programs)
I in between : runs with constant heap.

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Previous works
Some perspectives

Do runs go too fast ?

What is the relation between two consecutive memory states ?

I Not clear in previous works : some restrictions to have a
flavour of concrete run.

I e.g. : α new in NTL means α is allocated and was not before...
... but many changes are possible

I not even a big step semantics :
two consecutive states are not necessarily related by a finite
run.

I What should be considered ?
Here we will consider :

I arbitrary runs
I concrete runs (from programs)
I in between : runs with constant heap.

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Previous works
Some perspectives

Do runs go too fast ?

What is the relation between two consecutive memory states ?

I Not clear in previous works : some restrictions to have a
flavour of concrete run.

I e.g. : α new in NTL means α is allocated and was not before...
... but many changes are possible

I not even a big step semantics :
two consecutive states are not necessarily related by a finite
run.

I What should be considered ?
Here we will consider :

I arbitrary runs
I concrete runs (from programs)
I in between : runs with constant heap.

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Previous works
Some perspectives

Temporal properties of pointer arithmetic

I Example : block preservation.

�
∧

i=0..n−1

x + i 7→ − ∧ ¬x + n 7→ −

I Example : block scanning.

�Xx = x ∧
( ∨

i=0..n−1

x + i 7→ y Ux + n − 1 7→ y
)

I Limitations : Xx = x + i

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Previous works
Some perspectives

Talking about recursion via LTL

I A language for recursive data structures :

List(x)
µ
= x 7→ {next : null} ∨ ∃y.x 7→ {next : y} ∧ List(y)

I General recursion raises undecidability
⇒ ”LTL style” recursion :

x 7→ {next : Xx} U x 7→ {next : null}

Here, ”only variables are moving”.

I Other formulas

x = null ∧
(

(Xx) 7→ {prev : x; next : X2x} U Xx = null
)

Trees ? (maybe requires CTL ?)

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Previous works
Some perspectives

Talking about recursion via LTL

I A language for recursive data structures :

List(x)
µ
= x 7→ {next : null} ∨ ∃y.x 7→ {next : y} ∧ List(y)

I General recursion raises undecidability
⇒ ”LTL style” recursion :

x 7→ {next : Xx} U x 7→ {next : null}

Here, ”only variables are moving”.

I Other formulas

x = null ∧
(

(Xx) 7→ {prev : x; next : X2x} U Xx = null
)

Trees ? (maybe requires CTL ?)

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Previous works
Some perspectives

Programs as formulas

I Programs without update :
ex : P =
while x <> null do x = x→ next; y = y→ next end

φP =
(
x 7→ {next : Xx} ∧ y 7→ {next : Xy} U x = null

)
More generally : φP for P without update.

I Describing the input/output relation with 7→0 and 7→1

ex : list reversal(
x 7→1 {next = Xx} ∧ (Xx 7→2 {next : x} U x = null

)
More generally : single-pass programs ?

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Definitions
Decidability results for some decision problems

Heaps and models

A memory state is a pair (s,h) of :

I a store : s : Var→ N
I a heap : h : N ⇀fin (Lab ⇀fin N)

Intuition : dom h = allocated addresses.

A model is a sequence (si , hi )i<α, finite or infinite, of memory
states.

A model with constant heap is a sequence (si , h)i<α.

N.B. : Modct ⊂ Mod.

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Definitions
Decidability results for some decision problems

The programming language

Syntax

instr ::= x := y | skip

| x := y→ l | x→ l := y (record programs)
| x := cons(l1 : x1, .., lk : xk) | free x, l

| x := y[i ] | x[i ] := y (array programs)
| x = malloc(i)|free x, i

Semantic

[[P]](s0, h0) = set of models representing executions

N.B : If P has no destructive update, [[P]](s0, h0) ⊂ Modct .

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Definitions
Decidability results for some decision problems

The logic

I Expressions
e ::= x | null | Xe

I Atomic formulae

P ::= e = e ′ | x + i 7→ {l : e}

I State formulae

A ::= P
| A ∗ B | A →∗B | emp (spatial fragment)
| A ∧ B | A → A | > | ⊥ (classical fragment)

I Temporal formulae

Φ ::= A | XΦ | ΦUΦ′ | Φ ∧ Φ′ | ¬Φ

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Definitions
Decidability results for some decision problems

Semantics

s, h |=SL e = e′ iff [[e]]s = [[e′]]s , with [[x]]s = s(x) and [[null]]s = nil .
s, h |=SL x + i 7→ {l : e} iff dom(h) = {s(x) + i} and h(s(x) + i) = [[e]]s
s, h |=SL emp iff dom(h) = ∅
s, h |=SL A1 ∗ A2 iff ∃ h1, h2 s.t.h = h1 ∗ h2

and ∀k ∈ {1, 2}, s, hk |=SL Ak

s, h |=SL A′ →∗A iff ∀h′, if h⊥h′ and s, h′ |=SL A′

then s, h ∗ h′ |=SL A.
s, h |=SL A1 ∧ A2 iff ∀k ∈ {1, 2}. s, h |=SL Ak

s, h |=SL A′ → A iff s, h |=SL A′ implies s, h |=SL A
s, h |=SL ⊥ never

ρ, i |= XΦ iff i < |ρ|andρ, i + 1 |= Φ.
ρ, i |= ΦUΦ′ iff ∃j ≥ i , j ≤ |ρ|, ρ, j |= Φ′,

and ∀k, i ≤ k < j , ρ, k |= Φ.

ρ, i |= A iff s, h |=SL A[Xix← 〈x, i〉],
where : h = hi and s(〈x, k〉) = si+k(x).

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Definitions
Decidability results for some decision problems

The problems we considered

I Satisfiability (SAT, resp. SATct) : given Φ of LTLmem, is there
ρ ∈ Mod (resp. ρ ∈ Modct) such that ρ |= Φ?

I Model checking (MC, resp. MCct)) : given Φ of LTLmem, a
program p ∈ P (resp. p ∈ Pct), and a memory state (s0, h0),
do P, (s0, h0) |= Φ holds ?

I Program checking (PC, resp. PCct) : given Φ of LTLmem and a
program p ∈ P (resp. p ∈ Pct), is there a memory state
(s0, h0) such that P, (s, h) |= Φ holds ?

May express : Memory violation safety, memory leak safety,...

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Definitions
Decidability results for some decision problems

Some interesting fragments

I Classical fragment

A ::= e = e ′ | x + i 7→ {l : e}
| A ∧ B | A → A | > | ⊥

I Record fragment

A ::= e = e ′ | x 7→ {l : e}
| A ∗ B | A →∗B | emp
| A ∧ B | A → A | > | ⊥

I Array fragment

A ::= e = e ′ | x + i 7→ e
| A ∗ B | A →∗B | emp
| A ∧ B | A → A | > | ⊥

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Definitions
Decidability results for some decision problems

Some interesting fragments

I Classical fragment

A ::= e = e ′ | x + i 7→ {l : e}
| A ∧ B | A → A | > | ⊥

I Record fragment

A ::= e = e ′ | x 7→ {l : e}
| A ∗ B | A →∗B | emp
| A ∧ B | A → A | > | ⊥

I Array fragment

A ::= e = e ′ | x + i 7→ e
| A ∗ B | A →∗B | emp
| A ∧ B | A → A | > | ⊥

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Definitions
Decidability results for some decision problems

Some interesting fragments

I Classical fragment

A ::= e = e ′ | x + i 7→ {l : e}
| A ∧ B | A → A | > | ⊥

I Record fragment

A ::= e = e ′ | x 7→ {l : e}
| A ∗ B | A →∗B | emp
| A ∧ B | A → A | > | ⊥

I Array fragment

A ::= e = e ′ | x + i 7→ e
| A ∗ B | A →∗B | emp
| A ∧ B | A → A | > | ⊥

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states



Temporal logics in Pointer verification
The logic LTLmem

Definitions
Decidability results for some decision problems

Decidability results

Classical fragment Record fragment Array fragment

SAT [PSPACE] [PSPACE] LTL(N)
SATct contains PCct

PC contains Minsky termination [BFN04]
PCct contains reachability without update [IB06]
MC contains Minsky termination [BFN04]

MCct
reduction to

[SAT]
reduction to

[SAT] ? ? ?

R. Brochenin, S. Demri, E. Lozes Reasoning about sequences of memory states


	Temporal logics in Pointer verification
	Previous works
	Some perspectives

	The logic LTLmem
	Definitions
	Decidability results for some decision problems


