
Valmem Project – Deliverable 3.3

IMITATOR : A Prototype of Verifier

Étienne André1, Emmanuelle Encrenaz2, Laurent Fribourg1

1 LSV – ENS de Cachan & CNRS, France
2 LIP6 – Université Pierre et Marie Curie & CNRS, France

1 Introduction

We consider in this report systems modeled by timed automata. The timing
bounds involved in the action guards and location invariants of our timed au-
tomata are not constants, but parameters. Those parametric timed automata
allow to model various kinds of timed systems, e.g. communication protocols
or asynchronous circuits. We will also assume that we are given an initial tu-
ple π0 of values for the parameters, which corresponds to values for which the
system is known to behave properly. Our goal is to compute a constraint K0

on the parameters, satisfied by π0, guaranteeing that, under any parameter
valuation satisfying K0, the system behaves in the same manner : for any two
parameter valuations satisfying K0, the behaviors of the timed automata are
(time-abstract) equivalent, i.e., the traces of execution viewed as alternating
sequences of actions and locations are identical.

The application to asynchronous circuits, e.g., the SPSMALL memory, is
natural : we are given a model of the circuit in terms of parametric timed au-
tomata, as well as timing values for the traversal delays guaranteeing a good
(or standard) behavior of the circuit. We consider the system to be fully para-
metric (i.e., the traversal delays are considered to be parameters) and we infer
a constraint on those parameters ensuring that the system will have the same
behavior. We can finally instantiate some of the parameters of the constraint in
order to minimize or maximize some particular delays, e.g., the setup or hold
timings of the input signals.

We shortly present the algorithm InverseMethod in Sect. 2, and then its
implementation IMITATOR in Sect. 3. Afterwards, we present two case studies
in Sect. 4, i.e., a simple latch circuit, and a portion of the SPSMALL memory.
We give some final remarks in Sect. 5.

2 The Algorithm

We use in this section the same formalism as in [1]. We consider a timed system
modeled with (a network of) Parametric Timed Automata (PTA) A. Our goal
is, starting from an instantiation reference of the parameters π0, to compute
a constraint K0 on the parameters, such that, under any valuation π of the

1

ALGORITHM InverseMethod(A, π0)

Input A : PTA
π0 : Valuation of P

Output K0 : Constraint on the parameters
Variables i : Current iteration

S : Current set of symbolic states (S = Post i
A(K))

S′ : Former set of symbolic states
K : Current constraint on the parameters

i := 0 ; K := True ; S := {s0} ; S′ := {s0}
DO

DO UNTIL S is π0-compatible
Select a π0-incompatible state (q, C) of S
Select an inequality J of (∃X : C) such that π0 |= ¬J
S′ := S
K := K ∧ ¬J
S := Post i

A(K)

OD

%% S π0-compatible
S′ := S
S := PostA(K)(S)
i := i+ 1

IF S = S′ %% S π0-compatible and S = Post∗A(K)

THEN RETURN K0 :=
⋂

(q,C)∈S(∃X : C)
FI

OD

Figure 1: Algorithm InverseMethod

parameters such that π |= K0, the behavior of A[π0] and the behavior of A[π]
are the same, i.e., their sets of traces are equal.

We now present the algorithm InverseMethod on Fig. 1. For a more complete
presentation, as well as for correctness proof and termination condition, see [1].
The inner DO loop removes all the π0-incompatible states. The outer DO loop
computes the set of all reachable states, and returns the intersection K0 of all
the constraints on the parameters associated to the states of S. Note that there
are two possible sources of nondeterminism in the algorithm :

• when one selects a π0-incompatible state (q, C) (i.e, π0 6|= ∃X : C), and

• when one selects an inequality J among the conjunction of inequalities
∃X : C, that is “responsible” for this π0-incompatibility (i.e., such that
π0 6|= J , hence π0 |= ¬J).

Note also that π0 |= K0, as the final set of states S is π0-compatible and K0 is⋂
(q,C)∈S(∃X : C).

2

Figure 2: A latch circuit

3 The Program IMITATOR

Our algorithm InverseMethod has been implemented under the form of a pro-
gram named IMITATOR (standing for Inverse Method for Inferring Time Ab-
stracT behaviOR). This program, containing about 1500 lines of code, is written
in Python and needed about two man-months. It calls parametric model checker
HyTech [3] in order to compute the Post operation, and makes use of Prolog in
order to check the π0-compatibility. The call to Prolog was decided for simplic-
ity reasons, but it could be easily performed with Python, as this only verifies
that an instantiation models a constraint. The selection of a π0-compatible state
and a π0-incompatible inequality J is done in a random manner. In practice, we
observe a “confluent” behavior of the algorithm : applications of InverseMethod
to the same instance π0 generally lead to the same constraint K0, whatever the
random selections are.

More information, as well as the source code of the case studies presented
here, can be found on the program’s webpage (http://www.lsv.ens-cachan.
fr/∼andre/IMITATOR/).

4 Case Studies

All experiments were run on an Intel Quad Core 3 GHz with 3.2 Gb.

4.1 Example of Latch Circuit

This simple circuit was given by Remy Chevallier (ST-Microelectronics) in order
to test our implementation. This circuit, depicted on Fig. 2, contains 4 gates
and one “latch”. A bad state corresponds to the fact that the value output
signal Q has not changed before the end of the cycle of signal CK .

The system contains 13 parameters. The following instantiation π0 of these
parameters (in ps) were extracted from the circuit description by simulation
computed in project Valmem :

THI = 1000 TLO = 1000 THold = 350 TSetup = 0
δNot1↑ = 219 δNot1↓ = 147 δNot2↑ = 155 δNot2↓ = 163
δXor↑ = 147 δXor↓ = 416 δAnd↑ = 80 δAnd↓ = 155
δLatch↑ = 240

Under this instantiation, the system does not reach the bad state Using our
program IMITATOR, the following constraint K0 is computed in 20 seconds :

3

0 < δAnd↓

∧ δXor↑ = δNot1↓

∧ δAnd↑ + δLatch↑ < THold

∧ δNot1↓ + δNot2↑ < δAnd↑ + δLatch↑

∧ TSetup < TLO

∧ THold < δNot1↓ + δNot2↑ + δXor↓

∧ δAnd↑ < δNot1↓

∧ δNot1↓ + δNot2↑ + δXor↓ + δAnd↓ ≤ THI

Under this constraint, the system has the same behavior as under the in-
stantiation, and therefore guarantees a good behavior of the system. Moreover,
we are interested in minimizing the THold value, provided the system keeps its
good behavior. By instantiating all the parameters in K0 with their value in
π0, except THold , we get the following constraint :

320 < THold < 718

So we can minimize the value of THold to 321, and we guarantee that the system
will have exactly the same behavior as before.

4.2 SPSMALL Memory

We studied a portion of the SPSMALL memory designed and sold by ST-
Microelectronics. This memory is described in [2].

The model was automatically generated by LIP6 from the transistor netlist.
The following instantiation of the parameters was extracted after simulation by
Remy Chevallier (ST-Microelectronics) :

d up q 0 = 21 d dn q 0 = 20 d up net27 = 0
d dn net27 = 0 d up d inta = 22 d dn d inta = 45
d up wela = 0 d dn wela = 22 d up net45a = 5

d dn net45a = 4 d up net13a = 19 d dn net13a = 13
d up net45 = 21 d dn net45 = 22 d up d int = 14
d dn d int = 18 d up en latchd = 28 d dn en latchd = 32

d up en latchwen = 5 d dn en latchwen = 4 d up wen h = 11
d dn wen h = 8 d up d h = 95 d dn d h = 66

THI = 45 TLO = 65 Tsetupd = 108
Tsetupwen = 48

Under this instantiation, the system has a good behavior. We then get the
following constraint K0 :

∧ TLO < d dn d inta + d dn d int + d up en latchd
∧ d up en latchwen ≥ 0
∧ d up d inta + d up d int + d up d h < d dn en latchd + Tsetupd
∧ d dn wela + d dn net13a < THI
∧ d dn en latchd < d dn wela + d dn net13a
∧ d dn wen h + TLO < d up en latchd + Tsetupwen
∧ TLO < d up net13a + Tsetupwen
∧ d up wela ≥ 0
∧ d up wela + d up net13a + Tsetupwen < d dn wen h + TLO
∧ d up wela + d dn net45a + d dn net45 + d dn wen h + Tsetupd < d up d h + Tsetupwen
∧ d up q 0 + d up net27 + d dn wela + d dn net13a < d up net13a + THI
∧ d up en latchwen + Tsetupwen < TLO
∧ d up en latchwen + THI < d up q 0 + d up net27 + d dn wela + d dn net13a
∧ d up d h < Tsetupd
∧ d dn en latchwen ≥ 0
∧ d dn net13a + Tsetupd < d up d inta + d up d int + d up d h

∧ TLO ≤ Tsetupd
∧ d up en latchd < d dn net45a + d dn net45 + d up en latchwen
∧ d dn en latchwen < d dn net13a
∧ d dn wen h + TLO < d up net45a + d up net45 + d up en latchwen + Tsetupwen
∧ Tsetupd < THI + TLO
∧ d up d inta + d up d int + d up en latchd < TLO
∧ d dn net45a + d dn net45 + d up en latchwen < d up d inta + d up d int + d up en latchd
∧ d up net45a + d up net45 + d up en latchwen < TLO

4

Example # of loc. per |X| |P | # of |Post∗| |K0| CPU
PTA PTA iter. time

Latch 7 [2; 5] 7 15 11 18 8 20 s
SPSMALL [2] 10 [3, 8] 10 22 31 31 23 1h18

Figure 3: Case studies using IMITATOR

Under this constraint, the system has the same behavior as under the in-
stantiation, and therefore guarantees a good behavior of the system. Moreover,
we are interested in minimizing the values of Tsetupwen and Tsetupd , provided the
system keeps its good behavior. By instantiating all the parameters in K0 with
their value in π0, except Tsetupwen and Tsetupd , we get the following constraint :

46 < Tsetupwen < 54
∧ 99 < Tsetupd < 110
∧ Tsetupd < Tsetupwen + 61

Which allows us to minimize Tsetupwen and Tsetupd to 47 and 100 respectively.
And we guarantee that the system will have exactly the same behavior as before.
Note that, by behavior, we mean a sequence of internal events. We could have
other behaviors which still do not reach the bad state. Thus, we could apply
again IMITATOR on the values Tsetupwen = 46 and Tsetupd = 99, after having
checked that the bad state of the system is not reached, and minimizing again
their values, until the bad state is reached.

5 Conclusion

We give on Fig. 3 the summary of our experiments. We give from left to right
the name of the example with a reference, the number of PTA, the lower and
upper bounds on the number of locations per PTA, the number of clocks, the
number of parameters, the number of iterations of the algorithm, the number
of states in Post∗, the number of inequalities in K0, and the computation time
on an Intel Quad Core 3 GHz with 3.2 Gb.

Note that the computation time of several examples could be reduced, by
using a library for computing operations on polyhedra. rather than HyTech.
Presently, it is indeed not possible in the current tool to consider circuits mod-
eled by more than 10 PTA, which is a strong limit to the scalability of our
method. We are now working on how to remove this constraint. Possible options
are the composition of several subsystems of 10 PTA, or the implementation of
another tool using a library for computing operations on polyhedra.

References

[1] É. André, T. Chatain, E. Encrenaz, and L. Fribourg. An inverse method
for parametric timed automata. In RP’08, Electronic Notes in Theoretical
Computer Science, Liverpool, UK, 2008. Elsevier Science Publishers.

[2] R. Chevallier, E. Encrenaz-Tiphène, L. Fribourg, and W. Xu. Verification
of the generic architecture of a memory circuit using parametric timed au-
tomata. In FORMATS ’06, volume 4202 of LNCS, Paris, France, 2006.
Springer.

5

[3] T. A. Henzinger, P. Ho, and H. Wong-Toi. A user guide to HyTech. In
TACAS, pages 41–71, 1995.

6

