

Projet ANR VALMEM

Délivrable: D1.3

Titre: Conception flow applied on an industrial development

Auteurs: R. Chevallier

Version: 0.1

Date: 22 November 2007

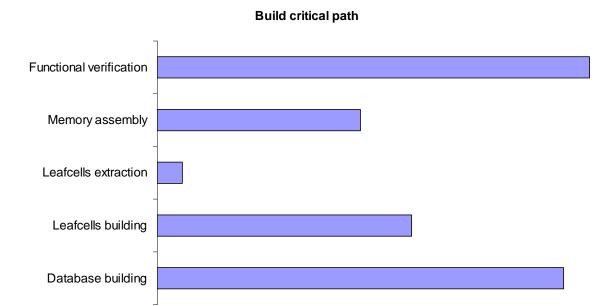
Conception flow applied on an industrial development

Author	date	Release	Comment
Remy Chevallier	22 November 2007	0.1	First release
Remy Chevallier	14 December 2007	1	Improve full cut section

1.Introduction

The aim of this document is to have an overview of the time spent by the design teams on each main task during the development of a eSRAM compiler.

For confidential reasons, the timescale is not provided in this document.

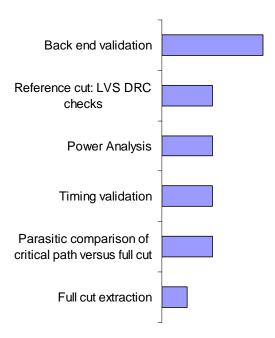

In order to have a deep description of the main tasks, please refers to the delivery 'D1.1: State of Art in eSRAM design and validation flow'.

2. Main design steps

2.1. Build critical path

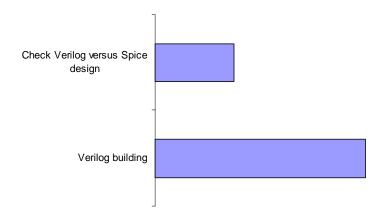
The main steps are the following:

- Database building: Develop the schematic and layout database for the eSRAM compiler
- <u>Leafcells building:</u> Define, design and verify the leafcells. They are the elementary bricks for the eSRAM design
- <u>Leafcells extraction:</u> Generate the spice netlist with the layout parasitic network
- Memory assembly: Define the strategy and develop the program which generate the eSRAM layout
- <u>Functional verification:</u> Simulate each design marginality and check that the design follow the specification



3. Full cut verification

- <u>Parasitic comparison of critical path versus full cut:</u> Check that the critical path is modeling correctly the complete eSRAM at the parasitic (R, C) point of view.
- Reference cut: LVS DRC checks: Tune and verify the layout generation flow on the reference cut of the compiler
- Full cut extraction: generate the spice netlist of the full cut with the parasitic.
- <u>Back end validation</u>: check the back end rules (DRC and LVS) on the layout for all the possible input of the compiler (i.e.: number of bit, of word, multiplex factor, speed, redundancy...)
- <u>Timing validation:</u> verify that the full cut timings are consistent with the critical path timings.
- Power Analysis: Verify the power integrity of the compiler



4.HDL model design

- <u>Verilog building</u>: specify, design and verify the eSRAM modeling according to the specification.
- <u>Check Verilog versus Spice design:</u> check that the behavior of the Spice netlist is compliant with the behavior of the Verilog models.

5. Conclusion

According to this study, the design team spends:

- 1/3 part of its time in building the database
- 1/3 part of its time is used to simulate the design and proves that the specifications will be verified in all cases.
- 1/3 part of its time is split between the remaining tasks: HDL model building, layout verification.

According to this schedules, it makes sense to improve the functional verification (transistor based simulation) in order to speed-up the development time and improve the coverage of the functional verification.