
Reachability in Stochastic Timed Games

Patricia Bouyer? and Vojtěch Forejt??

1 LSV, CNRS & ENS Cachan, France
bouyer@lsv.ens-cachan.fr

2 Masaryk University, Brno, Czech Republic
forejt@fi.muni.cz

Abstract. We define stochastic timed games, which extend two-player timed
games with probabilities (following a recent approach by Baier et al), and which
extend in a natural way continuous-time Markov decision processes. We focus on
the reachability problem for these games, and ask whether one of the players has
a strategy to ensure that the probability of reaching a fixed set of states is equal to
(or below, resp. above) a certain number r, whatever the second player does. We
show that the problem is undecidable in general, but that it becomes decidable
if we restrict to single-clock 1 1

2
-player games and ask whether the player can

ensure that the probability of reaching the set is =1 (or >0, =0).

1 Introduction

Timed systems. Timed automata [1] are a well-established formalism for the modelling
and analysis of timed systems. A timed automaton is roughly a finite-state automaton
enriched with clocks and clock constraints. This model has been extensively studied,
and several verification tools have been developed. To represent interactive or open
systems, the model of timed games has been proposed [2], where the system interacts
with its environment, and the aim is to build a controller that will guide the system, so
that it never violates its specification, whatever are the actions of the environment.

Adding probabilities to timed automata. In [4, 3], a purely probabilistic semantics has
been given to timed automata, in which both delays and discrete choices are random-
ized. The initial motivation of the previous works was not to define a model with real-
time and probabilistic features, but rather to propose an alternative semantics to timed
automata, following the long-running implementability and robustness paradigm [12,
17, 9]. The idea is that unlikely behaviours should not interfere with the validity of a
formula in a timed automaton, and the probabilistic semantics has been proposed to
provide a way of measuring the ‘size’ of sets of runs in a timed automaton. In this con-
text, natural model-checking questions have been considered: (i) ‘Does the automaton
almost-surely satisfy a given ω-regular property?’, and (ii) ‘Does the automaton satisfy

? This author was partly supported by the French project DOTS (ANR-06-SETI-003) and by the
European project QUASIMODO (FP7-ICT-STREP- 214755).

?? This author was partly supported by the Czech Science Foundation, Grant No. 102/09/H042
and by the research centre Institute for Theoretical Computer Science (ITI), project
No. 1M0545



a given ω-regular property with probability at least p?’. The first problem is decidable
for single-clock timed automata [3], but it is open for general timed automata. The
second problem is decidable for a subclass of single-clock timed automata [6].

If we consider probabilities no more as a way of providing an alternative semantics
to timed automata but rather as part of the model itself, the purely stochastic model de-
fined in [3] can be viewed as an extension of continuous-time Markov chains (CTMCs
in short), which have been extensively studied, both by mathematicians [11] and by
computer scientists for their role in verification [5, 13].

Stochastic timed games. In real-life systems, pure stochastic models might not be suffi-
cient, and non-determinism and even interaction with an environment might be crucial
features (we might think of communication protocols, where messages can be lost, and
response delays are probabilistic). In the same way continuous-time Markov decision
processes extend CTMCs, we can extend the purely stochastic model of [3] with non-
determinism, and even with interaction.

In this paper, we propose the model of stochastic timed games, which somehow
extend classical timed games with probabilities. In this model, some locations are prob-
abilistic (in some context we could say they represent the nature), and the other lo-
cations belong either to player ♦ or to player �. We call these locations respectively
©-locations, ♦-locations, and�-locations. Following classical terminology in stochas-
tic finite games [8] where the nature is viewed as half a player, those games will be
called 2 1

2 -player timed games, and stochastic timed games with no �-locations will be
called 1 1

2 -player timed games. Finally, the purely stochastic model of [3] can then be
called the 1

2 -player game model (there are no ♦-locations nor �-locations).
We assume a stochastic timed game is given, and we play the game as follows.

At ♦-locations, player ♦ chooses the next move (delay and transitions to be taken),
at �-locations, player � chooses the next move, and at ©-locations, the environment
is purely probabilistic (and the probability laws on delays and transitions are given in
the description of the model). Moves for the two players are given by (deterministic)
strategies, and given two strategies λ♦ (for player ♦) and λ� (for player �), the play of
the game is a probability distribution over the set of runs of the timed automaton. Some
natural questions can then be posed:

Qualitative questions: given r ∈ {0, 1}, is there a strategy for player ♦ such that for
every strategy for player �, the probability (under those strategies) of satisfying
some reachability property is equal to (resp. less than, resp. more than. . . ) r?

Quantitative questions: given r ∈ (0, 1), is there a strategy for player ♦ such that for
every strategy for player �, the probability (under those strategies) of satisfying
some reachability property is equal to (resp. no less than, resp. no more than. . . ) r?

On that model, only restricted results have been proven so far, and they only concern the
1
2 -player case: all qualitative questions can be decided (in NLOGSPACE) if we restrict
to single-clock models [3], and under a further restriction on the way probabilities are
assigned to delays, all quantitative questions can be decided [6].

Our contribution. In this paper, we show the two following results:

– For 1 1
2 -player games with a single clock, the qualitative questions ‘equal to 0’ or

‘equal to 1’ can be solved in PTIME, matching the known PTIME-hardness in

2



classical Markov decision processes [16], and the qualitative question ‘larger than
0’ can be solved in NLOGSPACE, matching the NLOGSPACE-hardness of the
reachability in finite graphs;

– For 2 1
2 -player games, the quantitative questions are undecidable. We will make

precise in the core of the paper the classes of models for which this result holds.

2 Definitions

Timed automata. We assume the classical notions of clocks, clock valuations and
guards are familiar to the reader [1]. We write G(X) for the set of diagonal-free guards
over set of clocks X . A timed automaton is a tupleA = (L,X, E, I) such that: (i) L is
a finite set of locations, (ii) X is a finite set of clocks, (iii) E ⊆ L× G(X)× 2X × L
is a finite set of edges, and (iv) I : L → G(X) assigns an invariant to each location.
A state s of such a timed automaton is a pair (`, v) ∈ L× (R+)|X| (where v is a clock
valuation). If s = (`, v) is a state and t ∈ R+, we write s + t for the state (`, v + t).
We say that there is a transition (t, e) from state s = (`, v) to state s′ = (`′, v′), we
then write s

t,e−−→ s′, if e = (`, g, Y, `′) ∈ E is such that (i) v + t |= g, (ii) for every
0 ≤ t′ ≤ t, v + t′ |= I(`), (iii) v′ = [Y ← 0](v + t), and (iv) v′ |= I(`′). A run in
A is a finite or infinite sequence % = s0

t1,e1−−−→ s1
t2,e2−−−→ s2 · · · of states and transitions.

An edge e is enabled in state s whenever there is a state s′ such that s
0,e−−→ s′. Given

s a state of A and e an edge, we define I(s, e) = {t ∈ R+ | s
t,e−−→ s′ for some s′} and

I(s) =
⋃

e∈E I(s, e). The automaton A is non-blocking if for all states s, I(s) 6= ∅.
For the sake of simplicity, we assume that timed automata are non-blocking.

Stochastic timed games. A stochastic timed game is a tuple G = (A, (L♦, L�, L©), w, µ)
where A = (L,X, E, I) is a timed automaton, (L♦, L�, L©) is a partition of L into
the locations controlled by player ♦,� and©, respectively, w is a function that assigns
to each edge leaving a location in L© a positive (integral) weight, and µ is a function
that assigns to each state s ∈ L©× (R+)|X| a measure over I(s), such that for all such
s, µ(s) satisfies the following requirements:

1. µ(s)(I(s)) = 1;
2. We write χ for the Lebesgue measure. If χ(I(s)) > 0, µ(s) is equivalent3 to χ. Fur-

thermore, the choice of the measures should not be too erratic and those measures
should evolve smoothly when moving states. We thus require that for every a < b,
for every s, there is some ε > 0 such that µ(s+ δ)((a− δ, b− δ)) is lower-bounded
by ε on the set {δ ∈ R+ | (a− δ, b− δ) ⊆ I(s+ δ)}. If χ(I(s)) = 0, the set I(s) is
finite, and µ(s) must be equivalent to the uniform distribution over points of I(s).

Note that these conditions are required, see [3], but can be easily satisfied. For instance,
a timed automaton with uniform distributions on bounded sets and with exponential
distributions on unbounded intervals (with a smoothly varying rate, see [10]) satisfies
these conditions. Also note that we impose no requirements on the representation of the
measures. All our results hold regardless of the representation.

3 Measures χ1 and χ2 are equivalent if for all measurable sets A, χ1(A) = 0 ⇔ χ2(A) = 0.

3



In the following, we will say that a timed automaton is equipped with uniform dis-
tributions over delays if for every state s, I(s) is bounded, and µ(s) is the uniform
distribution over I(s). We will say that the automaton is equipped with exponential dis-
tributions over delays whenever, for every s, either I(s) has zero Lebesgue measure,
or I(s) = R+ and for every location `, there is a positive rational number α` such that

µ(s)(I) =
∫

t∈I

α` · e−α`t dt.

Intuitively, in a stochastic game, locations in L♦ (resp. L�) are controlled by player♦
(resp. player �), whereas locations in L© belong to the environment and behaviours
from those locations are governed by probabilistic laws. Indeed, in these locations, both
delays and discrete moves will be chosen probabilistically: from s, a delay t is chosen
following the probability distribution over delays µ(s); Then, from state s + t an en-
abled edge is selected following a discrete probability distribution that is given in a usual
way with the weight function w: in state s + t, the probability of edge e (if enabled)
is w(e)/ (

∑
e′{w(e′) | e′ enabled in s + t}). This way of probabilizing behaviours in

timed automata has been presented in [4, 3], where all locations were supposed to be
probabilistic. We now formalize the stochastic process that is defined by a stochastic
game, when fixing strategies for the two players.

A strategy for player ♦ (resp. player �) is a function that assigns to every finite
run % = (`0, v0)

t1,e1−−−→ . . .
tn,en−−−→ (`n, vn) with `n ∈ L♦ (resp. `n ∈ L�) a pair

(t, e) ∈ R+ × E such that (`n, vn)
t,e−−→ (`, v) for some (`, v). In order to later be

able to measure probabilities of certain sets of runs, we impose the following additional
measurability condition on the strategy λ: for every finite sequence of edges e1, . . . , en

and every state s, the function κ : (t1, . . . , tn) 7→ (t, e) such that κ(t1, . . . , tn) = (t, e)
iff λ(s

t1,e1−−−→ s1 . . .
tn,en−−−→ sn) = (t, e) is measurable.4

A strategy profile is a pair Λ = (λ♦, λ�) where λ♦ and λ� are strategies for
players ♦ and � respectively. Given a stochastic timed game G, a finite run % end-
ing in a state s0 and a strategy profile Λ = (λ♦, λ�), we define Run(G, %, Λ) (resp.
Runω(G, %, Λ)) to be the set of all finite (resp. infinite) runs generated by λ♦ and λ�

after prefix %, i.e., the set of all runs s0
t1,e1−−−→ s1

t2,e2−−−→ · · · in the underlying automa-
ton satisfying the following condition: if si = (`, v) and ` ∈ L♦ (resp. ` ∈ L�), then
λ♦ (resp. λ�) returns (ti+1, ei+1) when applied to %

t1,e1−−−→ s1
t2,e2−−−→ . . .

ti,ei−−−→ si.
Moreover, given a finite sequence of edges e1, . . . , en, we define the symbolic path
πΛ(%, e1 . . . en) by

πΛ(%, e1 . . . en) = {%′ ∈ Run(G, %, Λ) | %′ = s0
t1,e1−−−→ · · · tn,en−−−→ sn, ti ∈ R+}

When Λ is clear from the context, we simply write π(%, e1 . . . en).
We extend the definitions of [3] to stochastic games, and define, given a strategy

profile Λ = (λ♦, λ�) and a finite run % ending in s = (`, v), a measure PΛ over
the set Run(G, %, Λ). To that aim, we define PΛ on symbolic paths initiated in % by
PΛ(π(%)) = 1 and then inductively as follows:

4 For the purpose of this definition, we define the measurable space on the domain (and
codomain) as a product space of measurable spaces of its components (where for real numbers
and edges we take the σ-algebra generated by intervals and by set of edges, respectively).

4



– If ` ∈ L♦ (resp. ` ∈ L�) and λ♦(%) = (t, e) (resp. λ�(%) = (t, e)), we set

PΛ(π(%, e1 . . . en)) =

(
0 if e1 6= e

PΛ(π(%
t,e−−→ s′, e2 . . . en)) otherwise (where s

t,e−−→ s′)

– If ` ∈ L©, we define

PΛ(π(%, e1 . . . en)) =

Z
t∈I(s,e1)

p(s + t)(e1) · PΛ(π(%
t,e1−−→ st,e1 , e2 . . . en)) dµ(s)(t)

where s
t,e1−−→ st,e1 for every t ∈ I(s, e1).

These integrals are properly defined thanks to the measurability condition we impose
on strategies, and thanks to Fubini’s Theorem [19].

Following [3], it is not difficult to see that, given a measurable constraint C of Rn
+,

we can extend this definition to constrained symbolic paths πCΛ(%, e1 . . . en), where

πCΛ(%, e1 . . . en) = {%′ ∈ Run(G, %, Λ) | %′ = s0
t1,e1−−−→ · · · tn,en−−−→ sn and (t1, . . . , tn) |=

C}. We now consider the cylinder generated by a constrained symbolic path: an infinite
run %′′ is in the cylinder generated by πCΛ(%, e1 . . . en), denoted Cyl(πCΛ(%, e1 . . . en)),
if % ∈ Runω(G, %, Λ) and there exists %′ ∈ πCΛ(%, e1 . . . en) which is a prefix of
%′′. We extend PΛ to those cylinders in a natural way: PΛ(Cyl(πCΛ(%, e1 . . . en))) =
PΛ(πCΛ(%, e1 . . . en)), and then in a unique way to the σ-algebra Ω%

Λ generated by those
cylinders. Following [3], we can prove the following correctness lemma.

Lemma 1. Let G be a stochastic timed game. For every strategy profile Λ, for every
finite run %, PΛ is a probability measure over (Runω(G, %, Λ), Ω%

Λ).

Example 2. Consider the following game G:

a

(x<1)

b

(x≤1)

c

(x≤1)

d

e1,x<1

e2,x=0

e3,x≥0

e4,x≤1,x:=0

e5,x<2
e6,x=2

Suppose the game is equipped with uniform distributions over delays and over edges,
and consider a strategy profile Λ = (λ♦, λ�) such that strategy λ♦ assigns (0.5, e1) to
each run % ending in state (a, v) if v ≤ 0.5 and (0, e1) otherwise, and such that strategy

λ� assigns (0, e3) to each run ending in (b, v). If % = (a, 0)
0.5,e1−−−−→ (b, 0.5)

0,e3−−→
(c, 0.5), PΛ(π(%, e4e1e3e4)) = 1

36 . y

The reachability problem. In this paper we study the reachability problem for stochas-
tic games, which is stated as follows. Given a game G, an initial state s, a set of locations
A, a comparison operator∼ ∈ {<,≤,=,≥, >} and a rational number r ∈ [0, 1], decide
whether there is a strategy λ♦ for player ♦, such that for every strategy λ� for player�,
if Λ = (λ♦, λ�), PΛ{% ∈ Run(G, s, Λ) | % visits A} ∼ r. In that case, we say that λ♦

is a winning strategy from s for the reachability objective Reach∼r(A).
A special case is when r ∈ {0, 1}, and the problem is called the qualitative reacha-

bility problem. In all other cases, we speak of the quantitative reachability problem.

5



Example 3. Consider again the stochastic timed game G of Example 2 together with
the qualitative reachability objective Reach=1({d}). Player ♦ has a winning strategy
λ♦ for that objective from state (a, 0), which is defined as follows: λ♦(%) = (0.5, e1)
for all runs % ending in state (a, 0). On the other hand, player ♦ has no winning strategy
from (a, 0) for the quantitative objective Reach<0.9({c}). y

The region automaton abstraction. The well-known region automaton construction is
a finite abstraction of timed automata which can be used for verifying many properties
like ω-regular untimed properties [1]. In this paper, we will only use this abstraction
in the context of single-clock timed automata, where the original abstraction can be
slightly improved [14]. Furthermore, we will still interpret this abstraction as a timed
automaton, as it is done in [3].

Let A be a single-clock timed automaton, and Γ = {0 = γ0 < γ1 < · · · < γp}
be the set of constants that appear in A (plus the constant 0). We define the set RA of
regions in A as the set of intervals of the form [γi; γi] (with 0 ≤ i ≤ p), or (γi−1; γi)
(with 1 ≤ i ≤ p) or (γp; +∞). AssumingA = (L, {x}, E, I), the region automaton of
A is the timed automaton R(A) = (Q, {x}, T, κ) such that Q = L× RA, κ((`, r)) =

I(`), and T ⊆ (Q × RA × E × 2X ×Q) is such that (`, r)
r′′,e,Y−−−−→ (`′, r′) is in T iff

there exists e ∈ E, v ∈ r, τ ∈ R+ such that v + τ ∈ r′′, (`, v)
τ,e−−→ (`′, v′), and v′ ∈ r′.

In the case of single-clock timed automata, the above automaton R(A) has size
polynomial in the size of A (the number of regions is polynomial), and the reachability
problem is indeed NLOGSPACE-complete in single-clock timed automata [14]. In the
following, we will assume w.l.o.g. that timed automata are given in their region automa-
ton form. Hence, to every location of this automaton will be associated a single region
in which the valuation will be when arriving in that location.

3 Qualitative reachability in single-clock 11
2

-player games

In this section we restrict to single-clock 1 1
2 -player games, i.e., stochastic games with a

single clock, and with no locations for player �. Furthermore, we focus on the qualita-
tive reachability problems.

Optimal strategies may not exist. Indeed, it may be the case that for every ε > 0,
there is a strategy achieving the (reachability) objective with probability at least 1 − ε
(resp. at most ε), while there is no strategy achieving the objective with probability 1
(resp. 0). In this case, we speak about ε-optimal strategies. For instance, consider the
following game, where we assume uniform distributions over delays.

a

(x<1)

b

(x≤2) c

d

x<1,e1
x≥1,e2

x<1,e3

x=2,e4

x=2,e5

Assuming that the objective is to reach location c (resp. d) from (a, 0), one can check
that by taking the edge e1 close enough to time 1, the probability of reaching c (resp. d)

6



can be arbitrary close to 1 (resp. 0), while there is no strategy that could ensure reaching
c (resp. d) with probability 1 (resp. 0).

In this paper we will ask whether there are strategies that precisely achieve a qualita-
tive objective (like equal to 1, or equal to 0), and we leave for future work the interesting
but difficult question whether we can approximate arbitrarily these objectives or not.

Decidability of the existence of optimal strategies. We now turn to one of the two
main theorems of this paper, whose proof will be developed.

Theorem 4. Given a single-clock 1 1
2 -player timed game G, s = (`, 0) a state of G, and

A a set of locations of G, we can decide in PTIME whether there is a strategy achieving
the objective Reach=1(A) (or Reach=0(A)). We can decide in NLOGSPACE whether
there is a strategy achieving the objective Reach>0(A). These complexity upper bounds
are furthermore optimal.

For the rest of the section, we assume that G is a single-clock 1 1
2 -player timed

game with the underlying automaton being a region automaton. We also fix a set A of
locations. Computing winning states for the objectives Reach=0(A) and Reach>0(A)
can be performed using a simple fixpoint algorihm (in fact, the problem can be reduced
to the similar problem for discrete-time Markov decision processes [18]). 5

Proposition 5. We can compute in PTIME (resp. NLOGSPACE) the set of states from
which player ♦ has a strategy to achieve the objective Reach=0(A) (resp. Reach>0(A).
Furthermore, this set of states is closed by region (i.e., if (`, v) is winning, then for every
v′ in the same region as v, (`, v′) is winning).

The case of the objective Reach=1(A) requires more involved developments, but a
proposition identical to the previous one can however be stated.

Proposition 6. We can compute in PTIME the set of states from which player ♦ has a
strategy to achieve the objective Reach=1(A). Furthermore, this set of states is closed
by region.

The restriction to single-clock games yields the following important property: re-
setting the unique clock somehow resets the history of the game, the target state is then
uniquely determined by the target location. Hence, we will first focus on games where
the clock is never reset, and then decompose the global game w.r.t. the resetting transi-
tions and solve the different non-resetting parts separately and glue everything together.

We first focus on games without any resets, and consider a more complex objective:
given two sets of locations A and B such that B ⊆ A, we say that the strategy λ achieves
the objective ExtReach(A,B) if it achieves both Reach=1(A) and Reach>0(B). We
can prove (using another fixpoint algorithm):

5 All propositions in this section make use of the fact that we can remove w.l.o.g. certain “neg-
ligible” edges from the game effectively. An edge e of G is said to be negligible if it starts
from some ©-location ` and if it is constrained by some punctual constraint, whereas there is
another edge leaving ` labelled with a non-punctual constraint.

7



Lemma 7. We assume that the clock is never reset in G. Let A and B ⊆ A be two sets
of locations of G. We can compute in PTIME the set of states from which player ♦ has
a strategy to achieve the objective ExtReach(A,B). Furthermore, this set of states is
closed by region.

Now we show how we can use Lemma 7 to solve the games for the objective
Reach=1(A). This lemma heavily relies on the specific properties of single-clock timed
automata that we have mentioned earlier. Somehow to solve the objective Reach=1(A),
we will enforce moving from one resetting transition to another one, always progressing
towards A. This is formalized as follows.

Lemma 8. If `in is a location of G, the following two statements are equivalent:

1. There is a strategy λ from (`in , 0) that achieves the objective Reach=1(A).
2. Writing L0 for the set of locations which are targets of resetting transitions (w.l.o.g.

we assume `in ∈ L0 and A ⊆ L0), there is a set R ⊆ L0 × 2L0 × L0 such that:
(a) There is (`in , S, k) ∈ R for some S ⊆ L0 and k ∈ S;
(b) Whenever ` ∈ S \ A for some (`′, S, k) ∈ R, then (`, S′, k′) ∈ R for some

S′ ⊆ L0 and k′ ∈ S′;
(c) For each (`, S, k) ∈ R, there is a strategy that achieves ExtReach(S, {k}) from

(`, 0) without resetting the clock (except for the last move to S);
(d) For each (`, S, k) ∈ R, there is a sequence k1k2 . . . kn such that k1 = `,

kn ∈ A, and for every 1 ≤ i < n, there exist Si+1 ⊆ L0 and ki+1 ∈ Si+1

such that (ki, Si+1, ki+1) ∈ R.

Moreover, the set R has polynomial size and can be computed in polynomial time.

We define some vocabulary before turning to the proof. If such an above relation R
exists, we write LR = {` ∈ L0 | ∃S ⊆ L0 and k ∈ S s.t. (`, S, k) ∈ R}. For every
` ∈ LR, we call the distance to A from ` the smallest integer n such that there is a
chain leading to A, as in condition 2d. For every ` ∈ LR, the distance to A is a natural
number. Furthermore, for every ` ∈ LR, there is (`, S, k) ∈ R such that the distance to
A from k is (strictly) smaller than the distance to A from `.

Proof (sketch). We only justify the implication 2. ⇒ 1., which gives a good intuition
for the construction. We start by fixing some (`, S, k) ∈ R for every ` ∈ LR such that
the distance to A from k is (strictly) smaller than the distance to A from `. Let λ` be
a (fixed) strategy that achieves the objective ExtReach(S, {k}) from state (`, 0). From
these strategies we construct a strategy λ that achieves Reach=1(A) from (`in , 0) as
follows.

We let % = s0
t1,e1−−−→ s1

t2,e2−−−→ · · · tn−1,en−1−−−−−−→ sn be a finite run in G, and set %′ as
the longest suffix of % which does not reset the clock. %′ starts in some state si = (`i, 0).
If `i ∈ LR, we define λ(%) as λ`i,Si,ki(%

′), and otherwise we define it in an arbitrary
manner (but the set of runs for which we will need to define the strategy in an arbitrary
manner has probability 0). The intuitive meaning of the definition is depicted in the
following picture.

8



strategy λ

`,0 k1,0 k2,0

`2,0

··· kn,0 ∈A

λ` λk1 λkn−1

λ`2
S1

proba 1

proba ε`,S1,k1>0

S2
proba 1

proba εk1,S2,k2>0

Sn

proba 1

proba εkn−1,Sn,kn>0

It can be proven using standard tools of probability theory that λ achieves the objective.
Indeed, if ` ∈ LR and (`, S, k) has been selected, from state (`, 0), runs generated by
λ almost-surely resets the clock, reaching states (`′, 0) with `′ ∈ S, and with positive
probability, say ε`,S,k > 0, reach state (k, 0). Furthermore, the distance to A from k
is smaller than that from `. Now, due to condition 2d, the probability to reach A from
(`, 0) is at least the positive product ε`,S1,k1 · εk1,S2,k2 · · · εkn−1,Sn,kn . Hence, there
exists ε > 0 such that the probability to reach A from any (`, 0) (such that there is some
(`, S, k) ∈ R) is at least ε. We can now conclude, by saying that from any (`, 0) with
` ∈ LR, the probability to reach {(`′, 0) | `′ ∈ LR} is 1. Hence, with probability 1 we
reach A under strategy λ. y

4 Quantitative reachability in 21
2

-player games

In this section we present the second main theorem of this paper.

Theorem 9. Given a 2 1
2 -player timed game G, s = (`, 0) a state of G, and A a set

of locations of G, we cannot decide whether there is a winning strategy from s for
achieving the objective Reach∼ 1

2
(A) (for ∼ ∈ {<,≤,=,≥, >}). This result holds for

games with three clocks.

We will prove this theorem by reduction from the halting problem for two-counter ma-
chines. The reduction has been inspired by recent developments in weighted timed sys-
tems [7]. A two-counter machineM is a finite set of labeled instructions 1:inst1, . . . ,
n−1:instn−1, n:stop where each insti is of the form “cj := cj + 1; goto k” or “if cj = 0
then goto k; else cj := cj − 1; goto `”. Here, j ∈ {1, 2} and k, ` ∈ {1, . . . , n}). A

configuration ofM is a triple [insti, d1, d2] where insti is the instruction to be executed
and d1, d2 ∈ N are the current values of the counters c1 and c2. A computational step
 between configurations is defined in the expected way. A computation is a (finite
or infinite) sequence α1, α2, . . . where α1 = [inst1, 0, 0] and for all i, αi  αi+1. A
halting computation is a finite computation that ends in the instruction stop. The halt-
ing problem asks, given a two counter machine, whether there is a halting computation.
This problem is known to be undecidable [15].

LetM be a two-counter machine. We construct a timed game G with three clocks
and uniform distributions over delays, and a set of (black) locations A such that player

9



♦ has a strategy to reach A with probability 1
2 iffM has a halting computation. In G,

player ♦ will simulate a computation of M and the values of both counters will be
represented as the value of one clock. More precisely, if the values of the two counters
are p1 and p2 respectively, the correct representation will be 1

2p1 ·3p2 . At the same time,
player � will be allowed to check that the representation is correct and “faithful” (i.e.
that if an instruction ofM is simulated, then the value of the counter is changed appro-
priately). Due to the lack of space, we are unable to provide the whole construction here,
we only give a brief insight by defining some gadgets that we use in the construction.

Note that in the gadgets, the letters x and y are clock variables. Later on, we will
build up a game by instantiating the clock variables with real clocks. In all the gadgets,
unless specified, the weight of each edge is 1 (so that when two edges are concur-
rently enabled, they are equally probable). From all states, the set of possible delays
is bounded, hence we assume uniform distribution over delays everywhere. Finally, v0

denotes the valuation assigning x0 (resp. y0, 0) to x (resp. y, u).

First, we define gadgets check succ1(x, y) and check succ2(x, y). These gadgets
are used for testing whether the values of clocks x and y are of the form α and α

2 for
some α ∈ [0, 1] (in the case of check succ1(x, y)), or α and α

3 for some α ∈ [0, 1] (in the
case of check succ2(x, y)). We will later use these gadgets to check that an increment
or a decrement of the counters has been faithfully made. The gadget check succ1(x, y)
has only probabilistic locations and has the following structure:

a

(u=0)
b

(u=0)

c

(u≤1)

d

e

(u≤1)

f

u=0

x<1

x≥1

y>1
y≤1

We claim that in gadget check succ1(x, y), the probability of reaching the black
locations from (a, v0) is 1

2 iff x0 = 2y0, because the probability of reaching one of the
black locations is 1

2 (1− y0) + 1
4x0. The gadget check succ2(x, y) can be created from

check succ1(x, y) by changing the weights of the edges.
Next, we define gadgets check zero1(x, y) and check zero2(x, y) that are used for

testing that the value stored in clock x is 1
3p for some p ≥ 0 in the case of check zero1(x, y),

or 1
2p for some p ≥ 0 in the case of check zero2(x, y). These gadgets will later be used

to check that the value of the first or second counter is zero. The gadget check zero1(x, y)
has the following structure:

a

(x≤1)

b

(x,u≤1)

c

(u=0)

d (u=0)

e

x=1,u=0

u=0 u>0

y:=0

x=1,x:=0

u=1

u:=0
check zero1(y,x)

check succ2(x,y)

10



We claim that in the gadget check zero1(x, y), player ♦ has a strategy from (a, v0) for
reaching the black locations with probability 1

2 iff there is some integer p ≥ 0 such
that x0 = 1

3p . The idea is that the value x0 is of the required form iff it is possible to
iteratively multiply its value by 2 until we eventually reach the value 1 (in which case
we can take the edge down to d from a). The fact that we multiply by 2 is ensured by
the gadget check succ2(x, y). The gadget check zero2(x, y) can be defined similarly
and the precise definition is omitted here.

Finally for each instruction insti we create a gadget gi(x, y), that will simulate the
instruction, with the encoding of the counters given earlier. For instance, if insti is of
the form ‘cj := cj + 1; goto k’, then gi(x, y) is of the form:

a

(x,u≤1)

b

(u≤1)

c

(u=0)
u=0

x=1,x:=0

y:=0 u=1

u:=0
gk(y,x)

check succj(x,y)

Player ♦ chooses at which time the transition from a to b is taken, and it should be
such that the value of y when entering c is properly linked with the value of x so that
the incrementation of counter cj has been simulated. The gadget for a decrementation
follows similar ideas, but is a bit more technical, that is why we omit it here.

Remark 10. The above reduction is for a reachability objective of the form Reach= 1
2
(A).

However, we can twist the construction and have the reachability objective Reach∼ 1
2
(A)

(for any ∼ ∈ {<,≤,≥, >}). Also, the construction can be twisted to get the following
further undecidability results:

1. The value 1
2 in the previous construction was arbitrary, and the construction could

be modified so that it would work for any rational number r ∈ (0, 1).
2. Instead of assuming uniform distributions over delays, one can assume unbounded

intervals and exponential distributions over delays: it only requires one extra clock
in the reduction.

5 Conclusion

In this paper, we have defined stochastic timed games, an extension of two-player timed
games with stochastic aspects. This 2 1

2 -player model can also be viewed as an extension
of continuous-time Markov decision processes, and also of the purely stochastic model
proposed in [3]. On that model, we have considered the qualitative and quantitative
reachability problems, and have proven that the qualitative reachability problem can be
decided in single-clock 1 1

2 -player model, whereas the quantitative reachability problem
is undecidable in the (multi-clock) 2 1

2 -player model. This leaves a wide range of open
problems. Another challenge is the computation of approximate almost-surely winning
strategies (that is for every ε > 0, a strategy for player ♦ which ensures the reachability
objective with probability larger than 1 − ε). Finally, more involved objectives (like
ω-regular or parity objectives) should be explored in the context of 1 1

2 -player timed
games.

11



References

1. R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

2. E. Asarin, O. Maler, A. Pnueli, and J. Sifakis. Controller synthesis for timed automata. In
Proc. IFAC Symposium on System Structure and Control, pages 469–474. Elsevier Science,
1998.

3. C. Baier, N. Bertrand, P. Bouyer, T. Brihaye, and M. Größer. Almost-sure model checking
of infinite paths in one-clock timed automata. In Proc. 23rd Annual Symposium on Logic in
Computer Science (LICS’08), pages 217–226. IEEE Computer Society Press, 2008.

4. C. Baier, N. Bertrand, P. Bouyer, Th. Brihaye, and M. Größer. Probabilistic and topological
semantics for timed automata. In Proc. 27th Conference on Foundations of Software Tech-
nology and Theoretical Computer Science (FSTTCS’07), volume 4855 of Lecture Notes in
Computer Science, pages 179–191. Springer, 2007.

5. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Transactions on Software Engineering, 29(7):524–
541, 2003.

6. N. Bertrand, P. Bouyer, Th. Brihaye, and N. Markey. Quantitative model-checking of one-
clock timed automata under probabilistic semantics. In Proc. 5th International Conference
on Quantitative Evaluation of Systems (QEST’08). IEEE Computer Society Press, 2008.

7. P. Bouyer, Th. Brihaye, and N. Markey. Improved undecidability results on weighted timed
automata. Information Processing Letters, 98(5):188–194, 2006.

8. K. Chatterjee, M. Jurdziński, and Th. A. Henzinger. Simple stochastic parity games. In Proc.
17th International Workshop on Computer Science Logic (CSL’03), volume 2803 of Lecture
Notes in Computer Science, pages 100–113. Springer, 2003.

9. M. De Wulf, L. Doyen, N. Markey, and J.-F. Raskin. Robust safety of timed automata.
Formal Methods in System Design, 2008. To appear.

10. J. Desharnais and P. Panangaden. Continuous stochastic logic characterizes bisimulation of
continuous-time Markov processes. Journal of Logic and Algebraic Programming, 56:99–
115, 2003.

11. W. Feller. An Introduction to Probability Theory and Its Applications. John Wiley & Sons,
1968.

12. V. Gupta, Th. A. Henzinger, and R. Jagadeesan. Robust timed automata. In Proc. Inter-
national Workshop on Hybrid and Real-Time Systems (HART’97), volume 1201 of Lecture
Notes in Computer Science, pages 331–345. Springer, 1997.

13. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A tool for model-checking
Markov chains. International Journal on Software Tools for Technology Transfer, 4:153–
172, 2003.

14. F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata with one or
two clocks. In Proc. 15th International Conference on Concurrency Theory (CONCUR’04),
volume 3170 of Lecture Notes in Computer Science, pages 387–401. Springer, 2004.

15. M. Minsky. Computation: Finite and Infinite Machines. Prentice Hall International, 1967.
16. C. H. Papadimitriou and J. N. Tsitsiklis. On stochastic scheduling with in-tree precedence

constraints. SIAM Journal on Computing, 16(1):1–6, 1987.
17. A. Puri. Dynamical properties of timed automata. In Proc. 5th International Symposium on

Formal Techniques in Real-Time and Fault-Tolerant Systems (FTRTFT’98), volume 1486 of
Lecture Notes in Computer Science, pages 210–227. Springer, 1998.

18. M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley and Sons, 1994.

19. W. Rudin. Real and Complex Analysis. McGraw-Hill, 1966.

12


