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Abstract

In this paper, we define two relaxed semantics (one based
on probabilities and the other one based on the topologi-
cal notion of largeness) for LTL over infinite runs of timed
automata which rule out unlikely sequences of events. We
prove that these two semantics match in the framework of
single-clock timed automata (and only in that framework),
and prove that the corresponding relaxed model-checking
problems are PSPACE-Complete. Moreover, we prove that
the probabilistic non-Zenoness can be decided for single-
clock timed automata in NLOGSPACE.

1 Introduction

Nowadays timed automata [1] are a well-established for-
malism for the modelling and analysis of timed systems.
Roughly speaking timed automata are finite-state automata
enriched with clocks and clock constraints. This model
has been extensively studied, and several verification tools
have been developed. However, like most models used in
model checking, timed automata are an idealized mathemat-
ical model. In particular it has infinite precision, instanta-
neous events, etc. Recently, more and more research has
been devoted to propose alternative semantics for timed au-
tomata that provide more realistic operational models for
real-time systems. Let us first mention the Almost ASAP se-
mantics introduced in [14] and further studied in [13, 2, 8].
This AASAP semantics somewhat relaxes the constraints
and precision of clocks. However, it induces a very strong
notion of robustness, suitable for really critical systems, but
maybe too strong for less critical systems. Another “ro-
bust semantics”, based on the notion of tube acceptance,
has been proposed in [16, 17]. In this framework, a met-
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ric is put on the set of traces of the timed automaton, and
roughly, a trace is robustly accepted if and only if a tube
around that trace is classically accepted. This language-
focused notion of acceptance is not completely satisfactory
for implementability issues, because it does not take into
account the structure of the automaton, and hence is not re-
lated to the most-likely behaviours of the automaton.

Varacca and Völzer recently proposed in [25] a proba-
bilistic framework for finite-state (time-abstract) systems to
overcome side-effects of modelling. They use probabilities
to define the notion of being fairly correct as having proba-
bility zero to fail, when every non-deterministic choice has
been transformed into a “reasonable” probabilistic choice.
Moreover, in their framework, a system is fairly correct with
respect to some property if and only if the set of traces sat-
isfying that property in the system is topologically large,
which somehow attests the relevance of this notion of fair
correctness.

In the recent paper [4], we used similar concepts as in
[25] and proposed two alternative semantics for reasoning
about the finite runs of timed automata: (i) a probabilistic
semantics which assigns probabilities both on delays and
on discrete choices, and (ii) a topological semantics, fol-
lowing ideas of [16, 17] but rather based on the structure of
the automaton than on its accepted language. For both se-
mantics, we naturally addressed a model-checking problem
for LTL interpreted over finite paths. We proved, by means
of Banach-Mazur games, that both semantics coincide and
that both model-checking problems for LTL specifications
on finite words are PSPACE-Complete.

The purpose of this paper is to develop techniques for an-
alyzing the infinite behaviours of timed automata by means
of a probabilistic almost-sure interpretation of LTL over in-
finite runs (which requires that the given LTL formula ϕ
holds with probability 1) and a topological interpretation
(which requires topological largeness of the set of infinite
runs where ϕ holds). The formal definitions of the almost-
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sure and topological semantics of LTL interpreted over the
infinite runs in a timed automata are rather straightforward
adaptions of the corresponding definitions in the case of fi-
nite runs [4]. However, to establish a link between the two
semantics and to show that the topological semantics of LTL
is reasonable in the sense that it matches the standard mean-
ing of negation, the proof techniques used in [4] are no
longer appropriate. Instead, methods are required that are
specific for infinite runs. To confirm that the topological se-
mantics yields a reasonable interpretation for LTL, we prove
that the underlying topology constitutes a Baire space. For
the case of one-clock timed automata, we will show that
some kind of strong fairness is inherent in the almost-sure
semantics. This observation will be used to prove that the
almost-sure and topological semantics for infinite paths in
one-clock timed automata agree. As the topological seman-
tics only relies on the graph-structure of the given automa-
ton (but not on any quantitative assumption on the resolu-
tion of the nondeterministic choices as it is the case for the
probabilistic setting), this result yields the key to establish a
polynomially space-bounded model checking algorithm for
LTL over infinite words with respect to our non-standard
semantics. In addition, we introduce a notion of probabilis-
tic non-Zenoness, which requires that the set of Zeno runs
have measure 0, and show that it has a simple topological
characterization which can serve as a basis for a nondeter-
ministic logarithmic space-bounded algorithm to checking
probabilistic non-Zenoness. We also show that analogous
results cannot be established for timed automata with two
or more clocks, as then the probabilistic and topological se-
mantics for LTL over infinite words do not agree.

Organisation of the paper. Section 2 summarizes our no-
tations for timed automata, LTL and the relevant topological
concepts. The probabilistic space and the topological space
associated with a timed automaton together with the almost-
sure and topological LTL semantics are defined in Section
3. The relation between the two semantics and the induced
model checking problems are studied in Section 4. Prob-
abilistic Zenoness is considered in Section 5. Most proofs
are omitted in the paper, but they can be found in the corre-
sponding research report [5].

2 Preliminaries

2.1 The timed automaton model

We assume the classical notions of clocks, clock valua-
tions, and guards are familiar to the reader [1]. We denote
by G(X) the set of guards over the finite set of clocks X ,
and AP a finite set of atomic propositions.

A timed automaton is a tuple A = (L,X, E, I,L) such
that: (i) L is a finite set of locations, (ii) X is a finite set

of clocks, (iii) E ⊆ L × G(X) × 2X × L is a finite set
of edges, (iv) I : L → G(X) assigns an invariant to each
location, and (v) L : L→ 2AP is a labelling function.

The semantics of a timed automaton A is a timed tran-
sition system whose states are pairs (`, ν) ∈ L × R|X|

+

with ν |= I(`), and whose transitions are of the form
(`, ν)

τ,e−−→ (`′, ν′) if there exists an edge e = (`, g, Y, `′)
such that for every 0 ≤ τ ′ ≤ τ , ν + τ ′ |= I(`), ν + τ |= g,
ν′ = [Y ← 0](ν + t), and ν′ |= I(`′). A finite (resp.
infinite) run % of A is a finite (resp. infinite) sequence of
transitions, i.e., % = s0

τ1,e1−−−→ s1
τ2,e2−−−→ s2 . . . We write

Runsf (A, s0) (resp. Runs(A, s0)) for the set of finite runs
(resp. infinite runs) of A from state s0. If s is a state of A
and (ei)1≤i≤n is a finite sequence of edges of A, if C is a
constraint over n variables (ti)1≤i≤n, the (symbolic) path
starting from s, determined by (ei)1≤i≤n, and constrained
by C, is the following set of runs:

πC(s, e1 . . . en) = {% = s
τ1,e1−−−→ s1 . . .

τn,en−−−→ sn |
% ∈ Runsf (A, s) and (τi)1≤i≤n |= C} .

If C is equivalent to ‘true’, we simply write π(s, e1 . . . en).
Let πC = πC(s, e1 . . . en) be a finite symbolic path, we de-
fine the cylinder generated by πC as

Cyl(πC) = {% ∈ Runs(A, s) | ∃%′ ∈ Runsf (A, s),
finite prefix of %, s.t. %′ ∈ πC} .

In the following, we will also use infinite symbolic paths
defined, given s a state ofA and (ei)i≥1 an infinite sequence
of edges, as:

π(s, e1 . . .) = {% = s
τ1,e1−−−→ s1 . . . | % ∈ Runs(A, s)} .

If % ∈ Runs(A, s), we write π% for the unique symbolic
path containing %. Given s a state ofA and e an edge, we de-
fine I(s, e) = {τ ∈ R+ | s

τ,e−−→ s′} and I(s) =
S

e I(s, e).
The automaton A is non-blocking if, for every state s,
I(s) 6= ∅.

2.2 The region automaton abstraction

The well-known region automaton construction is a finite
abstraction of timed automata which can be used for verify-
ing many properties like ω-regular untimed properties [1].
For lack of space, we do not redefine the region equivalence
relation, and we write RA for the set of (clock) regions of
automatonA. Here we use a slight modification of the orig-
inal construction, which is still a timed automaton, and just
serves to simplify the further technical developments.

If A = (L,X, E, I,L) be a timed automaton then the
region automaton of A is the timed automaton R(A) =
(Q,X, T, κ, λ) such that Q = L×RA and:
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• κ((`, r)) = I(`), and λ((`, r)) = L(`) for all (`, r) ∈
L×RA;

• T ⊆ (Q × cell(RA) × E × 2X × Q), and

(`, r)
cell(r′′),e,Y−−−−−−−→ (`′, r′) is in T iff there exists e =

`
g,Y−−→ `′ in E s.t. there exist ν ∈ r, τ ∈ R+ with

(`, ν)
τ,e−−→ (`′, ν′), ν + τ ∈ r′′ and ν′ ∈ r′ (cell(r′′) is

the smallest guard containing r′′).

We recover the usual region automaton of [1] by labelling
the transitions with ‘e’ instead of ‘cell(r′′), e, Y ’, and by
interpreting R(A) as a finite automaton. The above timed
interpretation satisfies strong timed bisimulation proper-
ties that we do not detail here. To every finite path
π((`, ν), e1 . . . en) in A corresponds a finite set of paths
π(((`, [ν]), ν), f1 . . . fn) in R(A), each one corresponding
to a choice in the regions that are crossed. If % is a run inA,
we denote ι(%) its unique image in R(A). Note that if A is
non-blocking, then so is R(A).

In the rest of the paper we assume that timed automata
are non-blocking, even though general timed automata
could also be handled (but at a technical extra cost).

2.3 The logic LTL

We consider the linear-time temporal logic LTL [21] de-
fined inductively as:

LTL 3 ϕ ::= p | ϕ ∨ ϕ | ϕ ∧ ϕ | ¬ϕ | ϕ U ϕ | X ϕ

where p ∈ AP is an atomic proposition. We use classical
shorthands like tt def= p ∨ ¬p, ff def= p ∧ ¬p, F ϕ

def= ttU ϕ,
and G ϕ

def= ¬F (¬ϕ). We assume the reader is familiar with
the semantics of LTL, that we interpret here on infinite runs
of a timed automaton.

2.4 Largeness, meagerness and the
Banach-Mazur game

We assume the reader is familiar with basic notions of
topology (see e.g. [19]). However, we recall the more elab-
orate notions of meagerness and largeness. If (A, T ) is a
topological space, a set B ⊆ A is nowhere dense if the in-
terior of the closure of B is empty. A set is meager if it is a
countable union of nowhere dense sets, and a set is large if
its complement is meager. For example, when considering
R with the classical topology, any single point is a nowhere
dense set, hence Q is meager and R \Q is large. These no-
tions of meagerness and largeness have very nice characteri-
zations in terms of Banach-Mazur games. A Banach-Mazur
game is based on a topological space (A, T ) equipped with
a family B of subsets of A such that: (1) ∀B ∈ B, B̊ 6= ∅
and (2) ∀O ∈ T s.t. O 6= ∅, ∃B ∈ B, B ⊆ O. Given

C ⊆ A, players alternate their moves choosing decreasing
elements in B, and build an infinite sequence B1 ⊇ B2 ⊇
B3 · · · . Player 1 wins the play if

T∞
i=1 Bi ∩ C 6= ∅, oth-

erwise Player 2 wins. The relation between Banach-Mazur
games and meagerness is given in the following theorem.

Theorem 1 (Banach-Mazur [20]). Player 2 has a winning
strategy in the Banach-Mazur game with target set C if and
only if C is meager.

3 Probabilistic and Topological Semantics
for Timed Automata

In [4], we defined two relaxed semantics for LTL over
finite runs of timed automata: the almost-sure semantics,
based on probabilities, and the large semantics, based on the
topological notion of largeness. In this section, we extend,
in a natural way these semantics to infinite runs of timed
automata.

3.1 A probabilistic semantics for LTL

LetA be a timed automaton. As in [4], we assume prob-
ability distributions are given from every state s of A both
over delays and over enabled moves. For every state s of
A, the probability measure µs over delays in R+ (equipped
with the standard Borel σ-algebra) must satisfy several re-
quirements. A first series, is denoted (?) in the sequel:

• µs(I(s)) = µs(R+) = 1,1

• Denoting λ the Lebesgue measure, if λ(I(s)) > 0, µs

is equivalent2 to λ on I(s); Otherwise, µs is equivalent
on I(s) to the uniform distribution over points of I(s).

This last condition denotes some kind of fairness w.r.t. en-
abled transitions, in that we cannot disallow one transition
by putting a probability 0 to delays enabling that transition.

For technical reasons, we also ask for additional require-
ments (denoted (†) in the sequel):

• (s, a, b) 7→ µs

�
{d | s + d ∈ [a, b]}

�
is continuous on

{(s, a, b) | ∃e s.t. [a, b] ⊆ I(s, e)};

• If s′ = s + t for some t ≥ 0, and 0 /∈ I(s + t′, e) for
every 0 ≤ t′ ≤ t, then µs(I(s, e)) ≤ µs′(I(s′, e));

• There is 0 < λ0 < 1 s.t. for every state s with I(s)
unbounded, µs([0, 1/2]) ≤ λ0.

1Note that this is possible, as we assume A is non-blocking, hence
I(s) 6= ∅ for every state s ofA.

2Two measures ν and ν′ are equivalent whenever for each measurable
set A, ν(A) = 0 ⇔ ν′(A) = 0.
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Remark 2. The three last requirements are technical and
needed to deal with infinite behaviours, but they are nat-
ural and easily satisfiable. For instance, a timed automa-
ton equipped with uniform (resp. exponential) distribu-
tions on bounded (resp. unbounded) intervals satisfy these
conditions. If we assume exponential distributions on un-
bounded intervals, the very last requirement corresponds to
the bounded transition rate condition in [15], required to
have reasonable and realistic behaviours.

For every state s of A, we also assume a probabil-
ity distribution ps over edges, such that for every edge
e, ps(e) > 0 iff e is enabled in s. As it is classically
done for resolving non-determinism [24], we assume that
ps is given by weights on transitions: we associate with
each edge e a weight w(e) > 0, and for every state s,
for every edge e, ps(e) = 0 if e is not enabled in s, and
ps(e) = w(e)/(

P
e′ enabled in s w(e′)) otherwise. As a con-

sequence, if s and s′ are region equivalent, then for every
edge e, ps(e) = ps′(e). We then define a measure over
finite symbolic paths from state s as

PA(π(s, e1 . . . en)) =Z
t∈I(s,e1)

ps+t(e1) PA(π(st, e2 . . . en)) dµs(t)

where s
t−→ (s + t) e1−→ st, and we initialize with

PA(π(s)) = 1.3 The formula for PA relies on the fact that
the probability of taking transition e1 at time t coincides
with the probability of waiting t time units and then choos-
ing e1 among the enabled transitions, i.e., ps+t(e1)dµs(t).
Note that, time passage and actions are independent events.

The value PA(π(s, e1 . . . en)) is the result of n succes-
sive one-dimensional integrals, but it can also be viewed as
the result of an n-dimensional integral. Hence, we can eas-
ily extend the above definition to finite constrained paths
πC(s, e1 . . . en) when C is Borel-measurable. This exten-
sion to constrained paths will allow to express (and thus
later measure) various and rather complex sets of paths, for
instance Zeno behaviours (see Section 5). The measure PA
can then be defined on cylinders, letting PA(Cyl(π)) =
PA(π) if π is a finite (constrained) symbolic path. Finally
we extend PA in a standard and unique way to the σ-algebra
generated by these cylinders, that we note Ωs

A.

Proposition 3. LetA be a timed automaton. For every state
s, PA is a probability measure over (Runs(A, s),Ωs

A).

Example 4. Consider the timed automaton A depicted on
Fig. 1, and assume for all states both uniform distributions
over delays and discrete moves. If s0 = (`0, 0) is the initial

3In [4] the definition was slightly different since we wanted the measure
of all finite paths to be 1. We therefore used a normalisation factor 1/2 so
that the measure of all paths of length i were 1/2i+1.

state, then PA(Cyl(π(s0, e1e1))) = PA(π(s0, e1e1)) =
1/4 and PA(π(s0, e1

ω)) = 0.

We have seen in [4] how to transfer probabilities from
A to R(A), and proved the correctness of the transforma-
tion. Under the same hypotheses (for every state s in A,
µAs = µ

R(A)
ι(s) , and for every t ∈ R+ pAs+t = p

R(A)
ι(s)+t) this

correctness still holds in our case by definition of the prob-
ability measure (first on finite paths, then on cylinders, and
finally on any measurable set of infinite runs).

Lemma 5. Assume measures in A and in R(A) are related
as above. Then, for every set S of runs in A we have:
S ∈ Ωs

A iff ι(S) ∈ Ωι(s)
R(A), and in this case PA(S) =

PR(A)(ι(S)).

We can therefore lift results proved on R(A) to A. In
the sequel, we write A = R(A) when we consider a region
automaton rather than a general timed automaton.

Given an infinite symbolic path π and an LTL formula
ϕ, either all concretizations of π (i.e., concrete runs % ∈ π)
satisfy ϕ, or they all do not satisfy ϕ. Hence, the set {% ∈
Runs(A, s0) | % |= ϕ} is measurable (in Ωs0

A ), as it is an ω-
regular property [26]. In the sequel, we write PA(s0 |= ϕ)
for PA{% ∈ Runs(A, s0) | % |= ϕ}.
Definition 6. Let ϕ be an LTL formula and A a timed au-
tomaton. We say that A almost-surely satisfies ϕ from s0,
and we then writeA, s0 |≈P ϕ, whenever PA(s0 |= ϕ) = 1.
The almost-sure model-checking problem asks, given A, ϕ
and s0, whether A, s0 |≈P ϕ.

Example 7. Consider the timed automaton A of Fig. 1
again with both uniform distributions over delays and dis-
crete moves in all states and initial state s0 = (`0, 0). Then,
A, s0 |≈P F (p1 ∧ G (p1 ⇒ F p2)). Indeed, in state (`0, ν)
with 0 ≤ ν ≤ 1, the probability of firing e2 (after some de-
lay) is always 1/2 (guards of e1 and e2 are the same, there
is thus a uniform distribution over both edges), thus the lo-
cation `1 is reached with probability 1. In `1, the transition
e3 will unlikely happen, because its guard x = 1 is much
too “small” compared to the guard x ≥ 3 of the transition
e4. The same phenomenon arises in location `2 between
the transitions e5 and e6. In conclusion, the runs of the
timed automaton A (from s0) are almost surely following
sequences of transitions of the form e1

∗e2(e4e5)ω. Hence,
with probability 1, the formula F (p1 ∧ G (p1 ⇒ F p2))
is satisfied. Note that the previous formula is not sat-
isfied with the classical LTL semantics. Indeed several
counter-examples to the satisfaction of the formula can be
found: ‘staying in `0 forever’, ‘reaching `3’, etc... All
these counter-examples are unlikely and vanish thanks to
our probabilistic semantics.

Although the values PA(s0 |= ϕ) depend on the chosen
weights ps(e) and measures µs, we will see that for one-
clock timed automata the almost-sure satisfaction relation is
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`0

x≤1

`1

{p1}

`2

x≤2

{p2}

`3

{p1}e2, x≤1

e3, x=1

e4, x≥3, x:=0

e5, x≤2

e6, x=0
e1, x≤1 e7, x≤1

Fig. 1. A running example

not affected by the choice of the weights and distributions.
This will be crucial for the decidability of the almost-sure
model checking problem. The way to establish this result is
to prove the equivalence of the almost-sure semantics with
a topological semantics, which is defined on the basis of the
so-called dimension of symbolic paths.

3.2 A topological semantics for LTL

In [4], we introduced a notion of dimension for finite
constrained symbolic paths. Intuitively, a path is of defined
dimension if it corresponds to a polyhedron of maximal di-
mension (in the space induced by the automaton). Formally,
let πC = πC(s, e1 . . . en) be a constrained path of a timed
automaton A. We define its associated polyhedron as fol-
lows:

Pol(πC) = {(τi)1≤i≤n ∈ (R+)n |

s
τ1,e1−−−→ s1 · · ·

τn,en−−−→ sn ∈ πC(s, e1 . . . en)} .

For each 0 ≤ i ≤ n, we write Ci for the constraint induced
by the projection of Pol(πC) over the i first coordinates,
with the convention that C0 is true. We say that the dimen-
sion of πC is undefined, denoted dimA(πC) = ⊥, whenever
there exists some index 1 ≤ i ≤ n with

dim
�
Pol
�
πCi

(s, e1 . . . ei)
��

<

dim
�
∪e Pol

�
πCi−1(s, e1 . . . ei−1e)

��
.

Otherwise we say that the dimension of πC is defined, de-
noted dimA(πC) = >.

The notion of dimension naturally extends to infinite
symbolic paths: If π = π(s, e1e2 . . .) is an infinite sym-
bolic path, its dimension is

dimA(π) = lim
n→∞

dimA(π(s, e1 . . . en)).

Example 8. On the automaton A of Fig. 1
with s0 = (`0, 0), dimA(π(s0, e1

ω)) = > and
dimA(π(s0, e1(e2e3)

ω)) = ⊥.

In the context of finite paths, a symbolic path has prob-
ability 0 iff it has an undefined dimension. In the context
of infinite paths, this is no more true as infinite paths with
defined dimension can have probability 0, like π(s0, e

ω
1 )

in the automaton of Fig. 1. However, writing PA(s |=
dim undef) for PA{% ∈ Runs(A, s) | dimA(%) = ⊥},
the following holds:

Lemma 9. If A is a timed automaton, for every state s in
A, PA(s |= dim undef) = 0.

Let A be a timed automaton, and s be a state of A.
Let T s

A be the topology over the set of runs of A start-
ing in s defined with the following basic opens sets: ei-
ther the set Runs(A, s), or the cylinders Cyl(πC) where
πC = πC(s, e1e2 . . . en) is a finite constrained symbolic
path ofA such that: (i) dim(πC) = >, (ii) C is convex (and
Borel-measurable), and (iii) Pol(πC) is open in Pol(π) for
the classical topology on Rn.

We first prove that our topological space is a Baire
space:4 indeed, in non Baire spaces, the notions of largeness
and meagerness do not always make sense. For instance, in
Q with the classical topology, which is not a Baire space,
every set is both meager and large. Hence negation would
have little meaning in our topological satisfaction. In Baire
spaces, however, if a set is large its complement is not.

Proposition 10. Let A be a timed automaton. For every
state s of A, the topological space (Runs(A, s), T s

A) is a
Baire space.

Let us just mention that the proof of Proposition 10 (see
the research report) heavily relies on the Banach-Mazur
game but is not a consequence of the same result for finite
runs [4].

Definition 11. Let ϕ be an LTL formula and A a timed
automaton. We say that A largely satisfies ϕ from s0, and
we write A, s0 |≈T ϕ, if {% ∈ Runs(A, s0) | % |= ϕ}
is topologically large. The large model-checking problem
asks, given A, ϕ and s0, whether A, s0 |≈T ϕ.

Example 12. On the timed automaton A of Fig. 1 with ini-
tial state s0 = (`0, 0), A, s0 |≈T F (p1 ∧G (p1 ⇒ F p2)).

Although the topological spaces given by A and R(A)
are not homeomorphic, the topologies in A and in R(A)
somehow match, as stated by the next proposition. This
allows to lift result from R(A) to A.

4Recall that a topological space (A, T ) is a Baire space if every non-
empty open set in T is not meager (see [19, p.295]).
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Proposition 13. Let A be a timed automaton, and
s a state of A. Let S ⊆ Runs(A, s). Then,
S is large in (Runs(A, s), T s

A) iff ι(S) is large in
(Runs(R(A), ι(s)), T ι(s)

R(A)).

4 The Two Semantics Match

We now prove that our two relaxed semantics match in
the case of one-clock timed automata, and provide a decid-
ability algorithm for the almost-sure (or equivalently large)
LTL model-checking problem. It is however not a straight-
forward consequence of the same result for finite runs [4].
It is indeed rather involved and requires the development
of techniques mixing classical probabilistic techniques and
strong properties of one-clock timed automata. Note that
these techniques only apply in the one-clock framework!

We first recall a construction made in [4] to decide the
almost-sure model checking of LTL interpreted over finite
paths. Any edge e in R(A) is colored in red if µs(I(s, e)) =
0, and in blue otherwise. Then, a finite path in R(A) has an
undefined dimension iff it crosses a red edge. Hence, having
a defined (or undefined) dimension for a path can be speci-
fied locally in R(A). We say that a blue (resp. red) edge has
a defined (resp. undefined) dimension. We call Gb(A) the
restriction of R(A) to edges with defined dimension.

4.1 A notion of fairness

In the case of finite paths, if A satisfies an LTL property
ϕ almost-surely, only paths of undefined dimension may not
satisfy ϕ. Unfortunately, this is in general wrong for infinite
paths. Indeed, on the timed automaton A of Fig. 1, when
starting from s = (`0, 0), location `1 is clearly reached
with probability 1. However the infinite path π(s, e0

ω) has
defined dimension although it never reaches `1. This kind
of behaviours forces us to restrict our study to fair infinite
paths, which is rather natural since probabilities and strong
fairness are closely related in finite-state systems [22, 23, 7].

Let A = R(A) be a timed automaton. An infinite re-
gion path q0

e1−→ q1
e2−→ q2 . . . in A is fair iff for every

edge e with defined dimension, if e is enabled in infinitely
many qi with i ∈ N, then ei = e for infinitely many i ∈ N.
Note that region paths and symbolic paths are closely re-
lated, as we assume A = R(A): to any non-empty sym-
bolic path π(s, e1e2 . . .), we associate a unique region path
q0

e1−→ q1
e2−→ q2 . . . with s ∈ q0. Hence, we say that

a symbolic path π(s, e1e2 . . .) is fair whenever its corre-
sponding region path is fair. Finally, we say that an infinite
run % is fair whenever π% is fair. Obviously, the set of fair
infinite runs from s is Ωs

A-measurable, as fairness is an ω-
regular property over infinite paths. Writing PA(s |= fair)
for PA{% ∈ Runs(A, s) | % is fair}, we get the following
property:

Lemma 14. If A is a one-clock timed automaton, for every
state s in A, PA(s |= fair) = 1.

The proof of this lemma is involved, we just briefly sketch
the main steps of the proof.

(i) We first prove that any edge with defined dimension is
almost-surely taken infinitely often within a compact
set (for the value of the unique clock), provided it is
enabled infinitely often within that compact set.

(ii) Then, restricting to runs with infinitely many resets,
those paths will pass infinitely often in a given config-
uration (because we only have one clock, hence reset-
ting the clock and going to location q means entering
the configuration (q, 0)). We can then apply the pre-
vious result, and get that any sequence of edges with
defined dimension will be taken infinitely often with
probability 1.

(iii) Concerning the runs ending up in the unbounded re-
gion (with no more resets of the clock), we prove that
the distributions over edges correspond ultimately to
a finite Markov chain, and hence that these runs are
fair with probability 1.

(iv) Finally, restricting to runs ending up in a bounded re-
gion (with no more resets of the clock), only edges
labelled with that precise region as a constraint can
be enabled, and it will ultimately behave like a finite
Markov chain, hence leading to the fairness property
with probability 1.

We shortly argue why this lemma requires the restric-
tion to single-clock timed automata. As pointed out in [10],
timed automata admit various time converging behaviours,
and some of these behaviours, not occurring in one-clock
timed automata, can lead to “big” sets of unfair execu-
tions. Inspired by an example of [10], we design a two-
clock timed automaton A (see Fig. 2) which does not sat-
isfy Lemma 14. Let us describe the evolution of the clock y
along an infinite path % ofA. We denote by νn the valuation
of the clock y when % enters location `0 for the n-th time.
One can easily check that (i) νn < 1 and (ii) νn < νn+1,
for n ∈ N. Due to (i) all fair infinite paths have to visit
both the top loop and the bottom loop infinitely often; while
(ii) implies that the probability of taking the top loop de-
creases. More precisely, when A is equipped with uniform
distributions, one can show that the probability to run for-
ever through the cycle `0 `3 `4 `0 is positive and therefore
PA((`0, 0, 0) |= fair) < 1.

4.2 Relating probabilities and fair sym-
bolic paths

We now come to one of the main results of this paper:
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`0

{p}

`1
`2

y<1

`3

{p}
`4 {p}

y<1

e1, y<1
e2, y=1

y:=0

e0, x>1

x:=0

e3, 1<y<2
e4, y=2

y:=0

e5, x>2

x:=0

Fig. 2. A two-clock example with non negligi-
ble set of unfair runs

Theorem 15. (Relating probabilities and fair symbolic
paths) Let A be a one-clock (non-blocking) timed automa-
ton such thatA = R(A), and ϕ be an LTL formula. If s is a
state ofA, then PA(s |= ϕ) > 0 iff there exists a fair infinite
symbolic path π = π(s, e1e2 . . .) such that dimA(π) = >,
and π |= ϕ.

Sketch of the proof. The left-to-right implication is an im-
mediate consequence of Lemmas 9 and 14, as PA(s |=
ϕ) = PA(s |= ϕ∧ fair∧¬dim undef). We quickly explain
the right-to-left implication in the case of a prefix-indepdent
location-based ω-regular property. The details of the com-
plete proof and its extension to LTL properties can be found
in the research report [5]. The fair infinite symbolic path
π (with defined dimension) mentioned in the theorem ulti-
mately ends up in a bottom strongly connected component
(BSCC in short) of Gb(A). Any prefix πpref of π ending
in this BSCC has defined dimension, and it is easy to get
that the probability of all fair infinite runs % in Cyl(πpref)
with dim(π%) = > is equal to the probability of Cyl(πpref),
hence is positive. All such fair infinite runs moreover satisfy
the ω-regular property, hence the result.

4.3 Relating probabilities and large sets of
runs

We can now state the second main result of this paper,
relating the almost-sure and the large semantics for LTL. In
particular, this result shows that the almost-sure semantics
does not depend on the concrete choice of the weights ps(e)
and the measures µs.

Theorem 16. (Equivalence of the almost-sure and large
semantics) Let A be a one-clock (non-blocking) timed au-
tomaton, and ϕ an LTL formula. Let s be a state ofA. Then,
A, s |≈P ϕ⇔ A, s |≈T ϕ.

Sketch of the proof. Thanks to Lemma 5, Corollary 13 and
Theorem 15, it is sufficient to prove that, in R(A), the two

following properties are equivalent: (1) the set JϕKfair of
fair infinite runs satisfying ϕ is large and (2) every fair in-
finite symbolic path π such that dimA(π) = > satisfies ϕ.
Indeed, using Banach-Mazur games, one can show that the
set of fair runs is large, hence (1) is equivalent to “the set of
paths satisfying ϕ is large”.

We first prove that (2) implies (1). We prove that JϕKc
fair

(the complement of JϕKfair) is meager using Banach-Mazur
games. We define B, the family we play with, as the set
of all basic open sets. A winning strategy for Player 2 (to
avoid JϕKc

fair) is the following. After Player 1’s first move
Cyl(α0), Player 2 chooses Cyl(α1) such that α0 is a strict
prefix of α1, and α1 ends up in a BSCC B of Gb(A). Then,
whatever Player 1 chooses, Player 2 can ensure that all pos-
sible edges with defined dimension of the BSCC B are vis-
ited infinitely often. Under that strategy, the outcome is ei-
ther empty (in case constraints defining (αi)i≥0 tend to the
empty set), or included in an infinite symbolic path, which
is fair, has defined dimension (because all chosen cylinders
have defined dimension), and hence satisfies ϕ by hypoth-
esis. Hence, its intersection with JϕKc

fair is empty, which
yields the expected result.

We now prove that (1) implies (2) (or more precisely its
contrapositive). We assume that there exists a fair infinite
path π such that dim(π) = > and π 6|= ϕ, and show that the
set JϕKfair is not large. This fair infinite path π ends up in
a BSCC of Gb(A). Let π′ be the shortest prefix of π which
ends in this BSCC. Then, as ϕ is location-based, every fair
infinite path with prefix π′ (i.e., in Cyl(π′)) will not satisfy
ϕ. Hence JϕKc

fair is non-meager (because (Runs(A, s), T s
A)

is a Baire space) and JϕKfair is not large.

Remark 17. Theorems 15 and 16 do not hold for general
timed automata. Indeed for the two-clock example A of
Fig. 2, with s0 = (`0, 0, 0): (1) P(s0 |= G p) > 0 but
there is no fair path satisfying G p, and (2) A, s0 |≈T F¬p
but A, s0 6|≈P F¬p.

4.4 Decidability of the model-checking
problems

Gathering the results of this section, and using an “op-
timized version” of one-dimensional regions [18] as well
as the tricky automata-based approach of [11] for the LTL
probabilistic verification problem, we get the following re-
sults for the two model-checking problems:

Corollary 18. (Decidability of the model-checking prob-
lems) The almost-sure and large model-checking prob-
lems for one-clock timed automata are (i) NLOGSPACE-
Complete for prefix-independent location-based ω-regular
properties, and (ii) PSPACE-Complete for LTL properties.

Example 19. If we come back to the running example (see
Fig. 1), the algorithm to decide the almost-sure model-
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checking constructs a subgraph of R(A) (which is depicted
below) in which all transitions with ‘small’ guards have
been removed (it corresponds to Gb(A)). The correctness
of our algorithm then says that the original timed automa-
ton satisfies almost-surely a property iff this automaton, in-
terpreted as a finite Markov chain (with any distribution
over edges) satisfies the property. Hence, in this example,
it is easy to see that the Markov chain below satisfies the
property F (p1 ∧ G (p1 ⇒ F p2)) with probability 1, hence
the original timed automaton satisfies the above property
almost-surely.

`0,{0}

`0,(0,1) `1,(0,1)

{p1}

`1,(1,2)

{p1}

`2,{0} {p2}

e1

e1 e2

e2

e4

e5

e 5

e4

5 A Note on Zeno Behaviours

In timed automata, and more generally in continuous-
time models, some runs are Zeno.5 These behaviours are
problematic since they most of the time have no physi-
cal interpretation. As argued in [15], some fairness con-
straints are often put on executions, enforcing non-Zeno be-
haviours, but in probabilistic systems, probabilities are sup-
posed to replace fairness assumptions, and it is actually the
case in continuous-time Markov chains in which Zeno runs
have probability 0 [6].

In our framework, it is hopeless to get a similar result
because some timed automata are inherently Zeno. For in-
stance, all runs are Zeno in the automaton consisting of a
single location with a non-resetting loop guarded by x ≤ 1.
However, we show that we can decide whether the probabil-
ity of the set of Zeno runs in a (one-clock) timed automaton
is 0. We also give a nice characterization of the one-clock
timed automata for which Zeno behaviours are negligible.
This class is natural, since it corresponds to those automata
which have no ‘inherently Zeno components’ (reachable
with a positive probability). Finally, we will see that the
so-defined class encompasses classical definitions of non-
Zeno timed automata.

We write PA(s |= Zeno) for the probabil-
ity of the set of Zeno runs in A from s. This
set is measurable (in Ωs

A), as it can be written
as
S

M∈N
T

n∈N
S

e1,··· ,en
Cyl(πCn,M

(s, e1 . . . en)) where
Cn,M is the constraint

P
1≤i≤n τi ≤ M .

5A run % = s0
τ1·e1−−−−→ s1

τ2·e2−−−−→ · · · of a timed automaton is Zeno ifP∞
i=1

τi < ∞.

Theorem 20. (Checking probabilistic non-Zenoness)
Given a single-clock (non-blocking) timed automaton A
and a state s of A, one can decide in NLOGSPACE
whether PA(s |= Zeno) = 0.

Sketch of the proof. We first prove that the probability of
the set of Zeno runs agrees with the probability of the set
of runs with finitely many resets and ending in a bounded
region. To decide whether such runs have positive mea-
sure, we show that it is sufficient to check whether there
exists in Gb(A) a reachable ’Zeno BSCC’ (i.e. a bounded
BSCC with no reset edges). Reachability in a graph being
in NLOGSPACE, the complexity follows.

In Section 4, we gave a topological characterization of
the probability of sets of runs defined by an LTL formula.
Although Zeno runs cannot be defined in LTL, we obtain a
similar result.

Theorem 21. (Topological characterization of proba-
bilistic non-Zenoness) LetA be a one-clock (non-blocking)
timed automaton and s a state of A. Then, PA(s |=
Zeno) = 0 iff the set of Zeno runs starting in s is meager.

Sketch of proof. The proof is based on Banach-Mazur
games after remembering the equivalence between almost-
surely non Zeno and no Zeno BSCC in Gb(A) that was es-
tablished in the proof of Theorem 20.

Relation with classical non-Zenoness assumptions. The
proof of Theorem 20 gives a characterization of automata
for which the probability of Zeno runs is 0: they are those
timed automata A in which there are no Zeno BSCCs in
Gb(A). In the literature, several assumptions can be found,
to handle Zeno runs. We pick two such assumptions, and
show that our framework gives probability zero to Zeno
runs under those restrictions.

In [3], the authors consider strongly non-Zeno automata:
any cycle in the transition graph contains at the same time
(1) a reset transition x := 0 and (2) a transition enabled only
if x ≥ 1, for some clock x. This condition removes all Zeno
runs. As a consequence, for any strongly non-Zeno timed
automaton (with n clocks) A, PA(s |= Zeno) = 0. In [1],
Alur and Dill want to decide the existence of non-Zeno ac-
cepted behaviours. They prove it is equivalent to having, in
the region automaton, a reachable SCC (strongly connected
component) satisfying the following progress condition: the
SCC is either not bounded or with a reset of a clock. This
condition is weaker than the strong non-Zenoness of [3] but
is stronger than our condition on Zeno BSCC in Gb(A). Be-
low, we give a simple example to illustrate these claims,
other examples can be found in the research report [5]. The
automaton below, denote A1, is not strongly non-Zeno and
does not satisfy the progress condition, however it satisfies
PA1(s |= Zeno) = 0. Let us notice thatA1 does not satisfy
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the progress condition since its region automaton contains
a bounded SCC without resetting edges (which is not a bot-
tom SCC).

`0 `1

x ≤ 1 x ≥ 1

x ≥ 1

6 Conclusion

The goal of this paper was to present non-standard se-
mantics for LTL interpreted over timed automaton that rule
out “unlikely” events, but do not affect the decidability and
complexity of the model checking problem. Our proofs do
not use any specific feature of LTL, and also apply to the full
class of ω-regular properties. We introduced a probabilistic
almost-sure semantics that relies on some mild stochastic
assumptions about the delays and the resolution of the non-
deterministic choices, and a topological semantics based on
the notion of largeness. For one-clock timed automata we
proved the equivalence of the two semantics. The topolog-
ical characterization of the almost-sure semantics has sev-
eral important consequences: first, it shows that the precise
choice of the measures used in the definition of the almost-
sure semantics are irrelevant and second, as the topology is
defined by the local conditions (using the notion of dimen-
sion), it yields a graph-based model-checking algorithm.

Although the formal definitions of the probabilistic and
topological semantics reuse concepts of [4], where similar
questions have been studied when interpreting LTL over fi-
nite words, the results for LTL over infinite words presented
in this paper cannot be viewed as consequences of [4].
This becomes clear from the observation that the almost-
sure and topological semantics for LTL over infinite words
do not agree for timed automata with two or more clocks,
while the approach of [4] does not impose any restrictions
on the number of clocks. In fact, our proof for the topo-
logical dimension-based characterization of the almost-sure
semantics LTL over infinite words in one-clock timed au-
tomata relies on a combination of techniques for the analy-
sis of probabilistic systems with properties that are specific
for timed automata with a single clock. Moreover, for one-
clock timed automata, we obtain a nice characterization of
timed automata having non-Zeno behaviours with probabil-
ity one, and show that it can be decided in NLOGSPACE
if an automaton has this property.

In some cases, the interpretation we give to transitions
with singular guards might not correspond to what we want
to model: for instance, in the automaton below, the tran-
sition e1 might correspond to a deadline, and it could be

unrealistic to consider it as unlikely to happen (somehow,
if transition e2 has not been taken within the first time unit,
then transition e1 will be taken at the end of the invariant).
We could easily adapt our semantics to put a non-zero prob-
ability to that transition, and technics developed in this pa-
per could easily be extended to that case.

`0 `1

`2

x ≤ 1, e0

x = 1, e1

x ≤ 1, e2

As future works, we obviously plan to study the gen-
eral case of n-clock timed automata. We will also look at
timed games and see how probabilities can help simplify the
techniques (used for instance in [12, 9]) for handling Zeno
behaviours.

Acknowledgment: We are grateful to Nicolas Markey for
insightful discussions about complexity classes.
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