
D4.3 Results on a real life case study: Helios 2.0

Véronique Cortier and Steve Kremer

January 16, 2012

The results presented in this report have been obtained by David Bernhard, Véronique

Cortier, Steve Kremer, Olivier Pereira, Mark Ryan, Ben Smyth, and Bogdan Warinschi.

Abstract

Helios 2.0 is an open-source web-based end-to-end verifiable electronic voting system,

suitable for use in low-coercion environments. In this report, we present an attack against

ballot secrecy, a fix and a cryptographic proof of the corrected version of Helios.

1 Introduction

Helios is an open-source web-based electronic voting system. Helios is particularly signifi-
cant due to its real-world deployment: the International Association of Cryptologic Research
used Helios to elect its board members [BVQ10], following a successful trial in a non-binding
poll [HBH10]; the Catholic University of Louvain adopted the system to elect the university
president [AMPQ09]; and Princeton University used Helios to elect the student vice presi-
dent [Pri10].

The scheme is claimed to satisfy ballot secrecy [AMPQ09], but the nature of remote voting
makes the possibility of satisfying stronger privacy properties difficult, and Helios does not
satisfy receipt freeness nor coercion resistance. In addition to ballot secrecy, the system aims
at providing end-to-end verifiability.

This report summarizes the results obtained on the Helios protocol during the AVOTÉ
project.

• First, we have found an attack against ballot secrecy. This attack has been acknowledged
by the authors of Helios and will be corrected in the next releases. We have proposed a
fixed and proved its security in formal models. This result has been presented at CSF
2011 [CS11].

• Second, we have shown ballot secrecy of the fixed version in cryptographic models. These
models offer better security guarantees but the proof are of course more demanding. We
have investigated an abstract voting scheme (of which the revised Helios is an instan-
tiation) built from an arbitrary encryption scheme with certain functional properties.
We prove, generically, that whenever this encryption scheme falls in the class of voting-

friendly schemes that we define, the resulting voting scheme provably satisfies ballot
privacy.

1

We explain how our general result yields cryptographic security guarantees for the revised
version of Helios (albeit from non-standard assumptions).
Furthermore, we show (by giving two distinct constructions) that it is possible to con-
struct voting-friendly encryption, and therefore voting schemes, using only standard
cryptographic tools.
This result has been presented at ESORICS 2011 [BCP+11].

• Third, we have studied end-to-end verifiability of HELIOS, which was one of the main
goals of the protocol. We have shown that the protocol indeed respects individual and
universal verifiability. We also identified a third form of verifiability that we called el-
igibility verifiability: anyone observer can verify that the outcomes consists of votes of
eligible voters (and only one vote for each eligible voter). This property is sometimes in-
cluded in universal verifiability, but most often neglected. We have shown that HELIOS
does not verify this property and hence may be subject to ballot stuffing by election
organizers.
These results have been published at ESORICS 2010 [KRS10].

The three papers are attached to this report.

2 Attack against ballot secrecy

Formal definitions of ballot secrecy have been introduced in the context of the applied pi
calculus by Delaune, Kremer & Ryan [KR05, DKR06, DKR09, DKR10] and Backes, Hrițcu
& Maffei [BHM08]. These privacy definitions consider two voters A, B and two candidates t,
t�. Ballot secrecy is captured by the assertion that an adversary (controlling arbitrary many
dishonest voters) cannot distinguish between a situation in which voter A votes for candidate
t and voter B votes for candidate t�, from another situation in which A votes t� and B votes
t. This can be expressed by the following equivalence.

A(t) | B(t�) ≈l A(t�) | B(t)

These formal definitions of ballot secrecy have been used by their respective authors to analyse
the electronic voting protocols due to: Fujioka, Okamoto & Ohta [FOO92], Okamoto [Oka98],
Lee et al. [LBD+04], and Juels, Catalano & Jakobsson [JCJ02, JCJ05, JCJ10]. It therefore
seems natural to check whether Helios satisfies ballot secrecy as well.

Our analysis of Helios reveals an attack which violates ballot secrecy. The attack exploits
the system’s lack of ballot independence, and works by replaying a voter’s ballot or a variant
of it (without knowing the vote contained within that ballot). Replaying a voter’s ballot
immediately violates ballot secrecy in an election with three voters. For example, consider the
electorate Alice, Bob, and Mallory; if Mallory replays Alice’s ballot, then Mallory can reveal
Alice’s vote by observing the election outcome and checking which candidate obtained at least
two votes. The practicality of this attack has been demonstrated by violating privacy in a
mock election using the current Helios implementation. Furthermore, the vulnerability can be
exploited in more realistic settings and, as an illustrative example, we discuss the feasibility of
the attack in French legislative elections. This case study suggests there is a plausible threat
to ballot secrecy. We have also proposed a variant of the attack which abuses the malleability

2

of ballots to ensure replayed ballots are distinct: this makes identification of replayed ballots
non-trivial (that is, checking for exact duplicates is insufficient).

Nonetheless, we have fixed the Helios protocol by identifying and discarding replayed bal-
lots. We believe this solution is particular well-suited because it maintains Benaloh’s principle
of ballot casting assurance [Ben06, Ben07] and requires a minimal extension to the Helios
code-base. Finally, we have shown that the revised scheme satisfies a formal definition of
ballot secrecy using the applied pi calculus.

3 Computational ballot secrecy of the fixed version

The revised scheme has been proved secure in a symbolic model but its security in the stronger,
computational sense was not yet assessed. We have started by providing a computational

security model for ballot privacy. In a sense, our model generalizes and strengthens the model
of [KR05, DKR06] where an attacker tries to distinguish when two ballots are swapped. Here,
we ask that the adversary cannot detect whether the ballots cast are ballots for votes that
the adversary has chosen or not. In doing so, the adversary is allowed to control arbitrarily
many players and see the result of the election. Our model uses cryptographic games and
thus avoids imposing the more onerous constraints that other definitional styles (in particular
simulability) require from protocols.

Next we turned our attention to the revised version of Helios. Our analysis follows a
somewhat indirect route: instead of directly analysing the scheme as it has been implemented,
we analyze an abstract version of Helios that follows the same basic architecture, but where the
concrete primitives are replaced with more abstract versions. Of course, the version we analyze
implements the suggested weeding of ballots. We present this abstract scheme as a generic
construction of a voting scheme starting from encryption scheme with specific functional and
security properties.

Focusing on this more abstract version brings important benefits. Firstly, we pin-down
more clearly the requirements that the underlying primitives should satisfy. Specifically, we
identify a class of voting-friendly encryption schemes which when plugged in our construction
yield voting schemes with provable ballot privacy. Roughly speaking, such encryption schemes
are IND-CCA2 secure and have what we call a homomorphic embedding (parts of the cipher-
texts can be seen as ciphertexts of a homomorphic encryption scheme). Secondly, our analysis
applies to all voting schemes obtained as instantiations of our generic construction. Although
we analyze and propose constructions which for efficiency reasons resort to random oracles,
our generic approach also invites other (non-random oracle based) instantiations.

Next, we have shown how to construct voting-friendly encryption schemes using standard
cryptographic tools. We discuss two distinct designs. The first construction starts from an
arbitrary (IND-CPA) homomorphic encryption scheme and attaches to its ciphertexts a zero-
knowledge proof of knowledge of the plaintext. We refer to this construction as the Enc+PoK
construction. Despite its intuitive appeal, we currently do not know how to prove that the
above design leads to an IND-CCA2 secure encryption scheme (a proprety demanded by
voting-friendliness). We therefore cannot conclude the security of our generic scheme when
implemented with an arbitrary Enc+PoK scheme. Nevertheless, an investigation into this
construction is important since the instantiation where Enc is the ElGamal scheme and PoK
is obtained using the Fiat-Shamir paradigm applied to a Schnorr-like protocol corresponds
precisely to the encryption scheme currently used in Helios. The security of this specific

3

construction has been analyzed in prior work. Tsiounis and Yung [TY98] and Schnorr and
Jakobsson [SJ00] demonstrate that the scheme is IND-CCA2 secure, but their proofs rely
on highly non-standard assumptions. Nevertheless, in conjunction with the security of our
main construction, one can conclude that the current implementation of Helios satisfies ballot
privacy based on either the assumption in [TY98] or those of [SJ00].

We then take a closer look at the Enc+PoK construction and revisit a technical reason
that prevents an IND-CCA2 security proof, first studied by Shoup and Gennaro [SG98]. Very
roughly, the problem is that the knowledge extractor associated to the proof of knowledge
may fail if used multiple times since its associated security guarantees are only for constant
(or logarithmically many) uses. With this in mind, we note that a security proof is possible if
the proof of knowledge has a so called straight line extractor [Fis05]. This type of extractor
can be reused polynomially many times. In this case, the Enc+PoK construction leads to
a voting-friendly encryption scheme, whenever Enc is an arbitrary IND-CPA homomorphic
encryption scheme.

The second design uses the well-known Naor-Yung transformation [NY90]. We have shown
that if the starting scheme is an arbitrary (IND-CPA) homomorphic encryption scheme then
the result of applying the NY transform is a voting-friendly encryption scheme. Applied gener-
ically, the transform may lead to non-efficient schemes (one of its components is a simulation-
sound zero-knowledge proof of membership [Sah99]). We presented a related construction
(where the proof of membership is replaced by a proof of knowledge) which can be efficiently
instantiated in the random oracle model. Putting all our results together, we propose adopting
an instantiation of Helios where the encryption-friendly scheme is implemented as above. The
computational overhead for this scheme is reasonable (and can be further improved through
specific optimization) and the scheme comes with the formal guarantees offered by our results.

4 Election verifiability in HELIOS

A major difference between traditional paper based and electronic elections is the lack of
transparency of the later. In paper elections it is often possible to observe the whole process
from ballot casting to tallying, and to rely on robustness characteristics of the physical world
(such as the impossibility of altering the markings on a paper ballot sealed inside a locked
ballot box). By comparison, it is not possible to observe the electronic operations performed
on data. Computer systems may alter voting records in a way that cannot be detected by
either voters or election observers. A voting terminal’s software might be infected by malware
which could change the entered vote, or even execute a completely different protocol than the
one expected.

The concept of election or end-to-end verifiability that has emerged in the academic lit-
erature, e.g., [JCJ02, JCJ05, CRS05, Adi08, Par07, Adi06], aims to address this problem. It
should allow voters and election observers to verify, independently of the hardware and soft-
ware running the election, that votes have been recorded, tallied and declared correctly. One
generally distinguishes two aspects of verifiability.

• Individual verifiability: a voter can check that her own ballot is included in the election’s
bulletin board.

• Universal verifiability: anyone can check that the election outcome corresponds to the
ballots published on the bulletin board.

4

We identify another aspect that is sometimes included in universal verifiability.

• Eligibility verifiability: anyone can check that each vote in the election outcome was cast
by a registered voter and there is at most one vote per voter.

We explicitly distinguish eligibility verifiability as a distinct property.
We present a definition of election verifiability which captures the three desirable aspects.

We model voting protocols in the applied pi calculus and formalise verifiability as a triple of
boolean tests ΦIV ,ΦUV ,ΦEV which are required to satisfy several conditions on all possible
executions of the protocol. ΦIV is intended to be checked by the individual voter who in-
stantiates the test with her private information (e.g., her vote and data derived during the
execution of the protocol) and the public information available on the bulletin board. ΦUV

and ΦEV can be checked by any external observer and only rely on public information, i.e.,
the contents of the bulletin board.

The consideration of eligibility verifiability is particularly interesting as it provides an
assurance that the election outcome corresponds to votes legitimately cast and hence provides
a mechanism to detect ballot stuffing. We note that this property has been largely neglected
in previous work and our earlier work [SRKK10] only provided limited scope for.

A further interesting aspect of our work is the clear identification of which parts of the
voting system need to be trusted to achieve verifiability. As it is not reasonable to assume
voting systems behave correctly we only model the parts of the protocol that we need to trust
for the purpose of verifiability; all the remaining parts of the system will be controlled by the
adversarial environment. Ideally, such a process would only model the interaction between
a voter and the voting terminal; that is, the messages input by the voter. In particular, the
voter should not need to trust the election hardware or software. However, achieving absolute
verifiability in this context is difficult and protocols often need to trust some parts of the
voting software or some administrators. Such trust assumptions are motivated by the fact
that parts of a protocol can be audited, or can be executed in a distributed manner amongst
several different election officials. For instance, in Helios 2.0 [Adi08], the ballot construction
can be audited using a cast-or-audit mechanism. Whether trust assumptions are reasonable
depends on the context of the given election, but our work makes them explicit.

Tests ΦIV ,ΦUV and ΦEV are assumed to be verified in a trusted environment (if a test is
checked by malicious software that always evaluates the test to hold, it is useless). However,
the verification of these tests, unlike the election, can be repeated on different machines, using
different software, provided by different stakeholders of the election. Another possibility to
avoid this issue would be to have tests which are human-verifiable as discussed in [Adi06,
Chapter 5].

We have shown that Helios is individual and universal verifiable. For this to be the case it
relies however on some trust assumptions. The parts of the system that are not verifiable are:

• The script that constructs the ballot. Although the voter cannot verify it, the trust in
this script is motivated by the fact that she is able to audit it.

• The trustees. Although the trustees’ behaviour cannot be verified, voters and observers
may want to trust them because trust is distributed among them.

We have also shown that Helios 2.0 does not guarantee eligibility verifiability and is vul-
nerable to ballot stuffing by dishonest administrators.

5

References

[Adi06] Ben Adida. Advances in Cryptographic Voting Systems. PhD thesis, Department
of Electrical Engineering and Computer Science, Massachusetts Institute of Tech-
nology, 2006.

[Adi08] Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX Security’08: 17th

USENIX Security Symposium, pages 335–348. USENIX Association, 2008.

[AMPQ09] Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jacques Quisquater.
Electing a University President Using Open-Audit Voting: Analysis of Real-
World Use of Helios. In EVT/WOTE’09: Electronic Voting Technology Work-

shop/Workshop on Trustworthy Elections. USENIX Association, 2009.

[BCP+11] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and Bogdan
Warinschi. Adapting helios for provable ballot secrecy. In Springer, editor, Pro-

ceedings of the 16th European Symposium on Research in Computer Security (ES-

ORICS’11), volume 6879 of Lecture Notes in Computer Science, 2011.

[Ben06] Josh Benaloh. Simple Verifiable Elections. In EVT’06: Electronic Voting Tech-

nology Workshop. USENIX Association, 2006.

[Ben07] Josh Benaloh. Ballot Casting Assurance via Voter-Initiated Poll Station Auditing.
In EVT’07: Electronic Voting Technology Workshop. USENIX Association, 2007.

[BHM08] Michael Backes, Cătălin Hrițcu, and Matteo Maffei. Automated Verification of
Remote Electronic Voting Protocols in the Applied Pi-calculus. In CSF’08: 21st

Computer Security Foundations Symposium, pages 195–209. IEEE Computer So-
ciety, 2008.

[BVQ10] Josh Benaloh, Serge Vaudenay, and Jean-Jacques Quisquater. Final
Report of IACR Electronic Voting Committee. International Associ-
ation for Cryptologic Research. http://www.iacr.org/elections/eVoting/

finalReportHelios_2010-09-27.html, Sept 2010.

[CRS05] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A Practical Voter-Verifiable
Election Scheme. In ESORICS’05: 10th European Symposium On Research In

Computer Security, volume 3679 of LNCS, pages 118–139. Springer, 2005.

[CS11] Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis of
ballot secrecy. In Proceedings of the 24th IEEE Computer Security Foundations

Symposium (CSF’11). IEEE Computer Society Press, June 2011.

[DKR06] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-Resistance and
Receipt-Freeness in Electronic Voting. In CSFW’06: 19th Computer Security

Foundations Workshop, pages 28–42. IEEE Computer Society, 2006.

[DKR09] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-type
properties of electronic voting protocols. Journal of Computer Security, 17(4):435–
487, July 2009.

6

[DKR10] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying Privacy-Type
Properties of Electronic Voting Protocols: A Taster. In David Chaum, Markus
Jakobsson, Ronald L. Rivest, and Peter Y. A. Ryan, editors, Towards Trustworthy

Elections: New Directions in Electronic Voting, volume 6000 of LNCS, pages 289–
309. Springer, 2010.

[Fis05] M. Fischlin. Communication-efficient non-interactive proofs of knowledge with
online extractors. In Proceedings of the 25th annual international cryptology con-

ference on advances in cryptology (CRYPTO ’05), pages 152–168, 2005.

[FOO92] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A Practical Secret Voting
Scheme for Large Scale Elections. In AUSCRYPT’92: Workshop on the Theory

and Application of Cryptographic Techniques, volume 718 of LNCS, pages 244–251.
Springer, 1992.

[HBH10] Stuart Haber, Josh Benaloh, and Shai Halevi. The Helios e-Voting Demo for the
IACR. International Association for Cryptologic Research. http://www.iacr.

org/elections/eVoting/heliosDemo.pdf, May 2010.

[JCJ02] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Electronic
Elections. Cryptology ePrint Archive, Report 2002/165, 2002.

[JCJ05] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Electronic
Elections. In WPES’05: 4th Workshop on Privacy in the Electronic Society, pages
61–70. ACM Press, 2005. See also http://www.rsa.com/rsalabs/node.asp?id=

2860.

[JCJ10] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Electronic
Elections. In David Chaum, Markus Jakobsson, Ronald L. Rivest, and Peter Y.
A. Ryan, editors, Towards Trustworthy Elections: New Directions in Electronic

Voting, volume 6000 of LNCS, pages 37–63. Springer, 2010.

[KR05] Steve Kremer and Mark D. Ryan. Analysis of an Electronic Voting Protocol in the
Applied Pi Calculus. In ESOP’05: 14th European Symposium on Programming,
volume 3444 of LNCS, pages 186–200. Springer, 2005.

[KRS10] Steve Kremer, Mark D. Ryan, and Ben Smyth. Election verifiability in electronic
voting protocols. In ESORICS’10: 15th European Symposium on Research in

Computer Security, volume 6345 of LNCS, pages 389–404. Springer, 2010.

[LBD+04] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang, and
Seungjae Yoo. Providing Receipt-Freeness in Mixnet-Based Voting Protocols. In
ICISC’03: 6th International Conference on Information Security and Cryptology,
volume 2971 of LNCS, pages 245–258. Springer, 2004.

[NY90] M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In Proceedings of the twenty-second annual ACM symposium

on theory of computing (STOC ’90), 1990.

[Oka98] Tatsuaki Okamoto. Receipt-Free Electronic Voting Schemes for Large Scale Elec-
tions. In SP’97: 5th International Workshop on Security Protocols, volume 1361
of LNCS, pages 25–35. Springer, 1998.

7

[Par07] Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl Ac-
cord. http://www.dagstuhlaccord.org/, 2007.

[Pri10] Princeton University. Princeton election server. https://princeton-helios.

appspot.com/, 2010.

[Sah99] A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In Proceedings of th 40th annual symposium on foundations

of computer science (FOCS ’99), pages 543–553, 1999.

[SG98] V. Shoup and R. Gennaro. Securing threshold cryptosystems agains chosen-
ciphertext attack. In Advances in Cryptology (Eurocrypt ’98), volume 1403 of
LNCS, pages 1–16, 1998.

[SJ00] C.P. Schnorr and M. Jakobsson. Security of signed elgamal encryption. In Pro-

ceedings of the 6th International Conference on the Theory and Application of

Cryptology and Information Security: Advances in Cryptology (ASIACRYPT ’00),
pages 73–89, 2000.

[SRKK10] Ben Smyth, Mark D. Ryan, Steve Kremer, and Mounira Kourjieh. Towards au-
tomatic analysis of election verifiability properties. In ARSPA-WITS’10: Joint

Workshop on Automated Reasoning for Security Protocol Analysis and Issues in

the Theory of Security, volume 6186 of LNCS, pages 165–182. Springer, 2010.

[TY98] Y. Tsiounis and M. Yung. On the security of elgamal-based encryption. In In-

ternational Workshop on Practice and Theory in Public Key Cryptography (PKC

’98), pages 117–134, 1998.

8

Attacking and fixing Helios:

An analysis of ballot secrecy
∗

Véronique Cortier1 and Ben Smyth2

1Loria, CNRS & INRIA Nancy Grand Est, France
2Toshiba Corporation, Kawasaki, Japan

November 10, 2011

Abstract

Helios 2.0 is an open-source web-based end-to-end verifiable electronic
voting system, suitable for use in low-coercion environments. In this arti-
cle, we analyse ballot secrecy and discover a vulnerability which allows an
adversary to compromise the privacy of voters. The vulnerability exploits
the absence of ballot independence in Helios and works by replaying a
voter’s ballot or a variant of it, the replayed ballot influences the election
outcome, introducing information that can be used to violate privacy. We
demonstrated the practicality of the attack by breaking privacy in a mock
election using the current Helios implementation. Moreover, the feasibil-
ity of an attack is considered in the context of French legislative elections
and, based upon our findings, we believe it constitutes a real threat to
ballot secrecy in such settings. We present a fix and show that our so-
lution satisfies a formal definition of ballot secrecy using the applied pi
calculus. In addition, we present attacks against other electronic voting
schemes which do not assure ballot independence; in particular, we show a
similar vulnerability in the protocol by Lee et al. and demonstrate replay
attacks against the schemes by Sako & Kilian and Schoenmakers. Finally,
we argue that no general relationships exist between independence and
privacy properties.

Keywords. Applied Pi Calculus, Attack, Ballot Independence, Ballot
Secrecy, Electronic Voting, Fiat-Shamir Heuristic, Helios, Malleability,
Privacy, Replay.

∗A preliminary version of this article was presented at CSF’11 [26]. Ben Smyth’s work was
partly done at Loria, CNRS & INRIA Nancy Grand Est, France.

1

1 Introduction

Paper-based elections derive security properties from physical characteristics of
the real-world. For example, marking a ballot in the isolation of a polling booth
and depositing the completed ballot into a locked ballot box provides privacy;
the polling booth also ensures that voters cannot be influenced by other votes
and the locked ballot box prevents the announcement of early results, thereby
ensuring fairness; and the transparency of the whole election process from bal-
lot casting to tallying and the impossibility of altering the markings on a paper
ballot sealed inside a locked ballot box gives an assurance of correctness and fa-
cilitates verifiability. Replicating these attributes in a digital setting has proven
to be difficult and, hence, the provision of secure electronic voting systems is an
active research topic.

Informally, privacy for electronic voting systems is characterised by the fol-
lowing requirements [49, 30, 9]:

• Ballot secrecy. A voter’s vote is not revealed to anyone.

• Receipt freeness. A voter cannot gain information which can be used to
prove, to a coercer, how she voted.

• Coercion resistance. A voter cannot collaborate, with a coercer, to gain
information which can be used to prove how she voted.

Verifiability includes three properties [47, 62, 50]:

• Individual verifiability. A voter can check that her own ballot is published
on the election’s bulletin board.

• Universal verifiability. Anyone can check that all the votes in the election
outcome correspond to ballots published on the election’s bulletin board.

• Eligibility verifiability. Anyone can check that each ballot published on
the bulletin board was cast by a registered voter and at most one ballot
is tallied per voter.

Finally, fairness – summarised by the notion that all voters are equal – has
not be thoroughly studied, but nonetheless we believe the following aspects are
desirable:

• Ballot independence. Observing another voter’s interaction with the elec-
tion system does not allow a voter to cast a related vote.

• No early results. A voter cannot change her vote once partial results are
available.

• Pulling out. Once partial results are available a voter cannot abort.

The fairness property prohibits the voting system from influencing a voter’s
vote; more formally, this requires that observation of the voting system (that is,

2

observing interaction between participants) does not leak information that may
affect a voter’s decision. The individual, universal and eligibility verifiability
properties (also called end-to-end verifiability [46, 20, 4, 62, 5]) allow voters and
election observers to verify – independently of the hardware and software run-
ning the election – that votes have been recorded, tallied and declared correctly.
In this article, we analyse ballot secrecy in Helios 2.0 [7].

The Helios protocol. Helios is an open-source web-based electronic voting
system. The scheme is claimed to satisfy ballot secrecy [7], but the nature of
remote voting makes the possibility of satisfying stronger privacy properties dif-
ficult, and Helios does not satisfy receipt freeness nor coercion resistance. In
addition to ballot secrecy, the system provides individual and universal ver-
ifiability (cf. [50, 78] and [75, Chapter 3] for an analysis of verifiability in
Helios). Helios is particularly significant due to its real-world deployment: the
International Association of Cryptologic Research used Helios to elect its board
members [13], following a successful trial in a non-binding poll [45]; the Catholic
University of Louvain adopted the system to elect the university president [7];
and Princeton University used Helios to elect the student vice president [66].

Formal definitions of ballot secrecy have been introduced in the context
of the applied pi calculus by Delaune, Kremer & Ryan [49, 30, 31, 32] and
Backes, Hriţcu & Maffei [9]. These privacy definitions consider two voters A,
B and two candidates t, t�. Ballot secrecy is captured by the assertion that
an adversary (controlling arbitrary many dishonest voters) cannot distinguish
between a situation in which voter A votes for candidate t and voter B votes
for candidate t�, from another situation in which A votes t� and B votes t. This
can be expressed by the following equivalence.

A(t) | B(t�) ≈l A(t�) | B(t)

These formal definitions of ballot secrecy have been used by their respective
authors to analyse the electronic voting protocols due to: Fujioka, Okamoto &
Ohta [42], Okamoto [59], Lee et al. [55], and Juels, Catalano & Jakobsson [46,
47, 48]. It therefore seems natural to check whether Helios satisfies ballot secrecy
as well.

Contribution. Our analysis of Helios reveals an attack which violates ballot
secrecy. The attack exploits the system’s lack of ballot independence, and works
by replaying a voter’s ballot or a variant of it (without knowing the vote con-
tained within that ballot). Replaying a voter’s ballot immediately violates ballot
secrecy in an election with three voters. For example, consider the electorate Al-
ice, Bob, and Mallory; if Mallory replays Alice’s ballot, then Mallory can reveal
Alice’s vote by observing the election outcome and checking which candidate ob-
tained at least two votes. The practicality of this attack has been demonstrated
by violating privacy in a mock election using the current Helios implementation.
Furthermore, the vulnerability can be exploited in more realistic settings and,

3

as an illustrative example, we discuss the feasibility of the attack in French leg-
islative elections. This case study suggests there is a plausible threat to ballot
secrecy. We also propose a variant of the attack which abuses the malleability
of ballots to ensure replayed ballots are distinct: this makes identification of re-
played ballots non-trivial (that is, checking for exact duplicates is insufficient).
Nonetheless, we fix the Helios protocol by identifying and discarding replayed
ballots. We believe this solution is particular well-suited because it maintains
Benaloh’s principle of ballot casting assurance [11, 12] and requires a minimal
extension to the Helios code-base. The revised scheme is shown to satisfy a
formal definition of ballot secrecy using the applied pi calculus.

In addition, we demonstrate that the absence of ballot independence can be
exploited in other electronic voting protocols to violate privacy; in particular, a
similar attack is shown against the protocol by Lee et al. [55] whereby an adver-
sary replays a voter’s ballot or a variant of it, and verbatim replay attacks are
demonstrated against two schemes presented at CRYPTO (namely, the proto-
cols due to Sako & Kilian [70] and Schoenmakers [72]). Finally, we present some
evidence to support the hypothesis that independence does not imply privacy
and vice-versa.

Related work. The attack against Helios that we discover relies upon the
lack of ballot independence (in particular, ballots can be replayed). The con-
cept of independence was introduced by Chor et al. [21] and the possibility
of compromising security properties due to lack of independence has been con-
sidered, for example, by [22, 34, 35, 44]. In the context of electronic voting,
Gennaro [43] demonstrates that the application of the Fiat-Shamir heuristic in
the Sako-Kilian electronic voting protocol [70] violates ballot independence, and
Wikström [83, 84] studies non-malleability for mixnets to achieve ballot inde-
pendence. By comparison, we focus on the violation of ballot secrecy rather
than fairness, and exploit the absence of ballot independence to compromise
privacy. Similar results have been shown against mixnets [65].

Our attack is also reliant on the voter’s ability to cast a ballot as a function
of another voter’s ballot. In particular, the basic form of our attack applies the
identity function, and the variant exploiting malleability performs a permutation
on the ballot’s internal structure. In related work, Benaloh [10] demonstrates
that a simplified version of his voting scheme allows the administrator’s private
key to be recovered by a voter who constructs their ballot as a function of other
voters’ ballots.

Estehghari & Desmedt [39] claim to present an attack which undermines
privacy and end-to-end verifiability in Helios. However, their attack is depen-
dent on compromising a voter’s computer, a vulnerability which is explicitly
acknowledged by the Helios specification [7]: “a specifically targeted virus could
surreptitiously change a user’s vote and mask all of the verifications performed
via the same computer to cover its tracks.” Accordingly, [39] represents an ex-
ploration of known vulnerabilities rather than an attack.

Other studies of Helios have also been conducted. In particular, Langer et

4

al. [52, 53] and Volkamer & Grimm [80] study privacy in Helios. Langer et al.
propose a taxonomy of informal privacy requirements [52, 53, 54] to facilitate
a more fine-grained comparison of electronic voting systems; this framework is
used to analyse Helios and the authors claim ballot secrecy is satisfied if the
adversary only has access to public data [52, 53]. Volkamer & Grimm introduce
the k-resilience metric [80, 79] to calculate the number of honest participants
required for ballot secrecy in particular scenarios; this framework is used to
analyse Helios and the authors claim ballot secrecy is satisfied if the software
developers are honest and the key holders do not collude [80]. Contrary to these
results, we show an attack against privacy. Our work highlights the necessity for
rigorous mathematical analysis techniques for security protocols; in particular,
we believe the erroneous results reported by Langer et al. were due to the use
of informal methods, and the approach by Volkamer & Grimm failed because
only some particular scenarios were considered.

Delaune, Kremer & Ryan [30, 31] have shown that a variant of the Lee et
al. protocol satisfies coercion resistance for two honest voters; but, based upon
our preliminary results [26], Dreier, Lafourcade & Lakhnech [36] demonstrate
an attack against privacy for three voters, when one voter is under the adver-
sary’s control1. Furthermore, using a stronger definition of coercion resistance,
Küsters & Truderung [51] have demonstrated a forced abstention attack; in ad-
dition, Küsters & Truderung propose a variant of the scheme by Lee et al. which
is claimed to satisfy their stronger definition. In this article, we show a new at-
tack against the original Lee et al. protocol and show that the revised scheme
by Küsters & Truderung might not be secure under reasonable assumptions.

A preliminary version of this work [26] appeared at the 24th Computer
Security Foundations Symposium. By comparison, in this article, we provide a
more detailed description of our results, generalise our proof of ballot secrecy
to a setting with arbitrary many candidates, and include complete proofs. In
addition, we show that other electronic voting protocols are vulnerable to our
attack and we discuss the link between ballot independence and privacy.

Structure of this article. Section 2 presents the Helios electronic voting
scheme. (We remark that this is the first cryptographic description of the Helios
protocol in the literature and, hence, is an additional contribution of this article.)
Section 3 describes our attack and some variants, in addition to a study of
its feasibility in the context of French legislative elections. We propose several
solutions for recovering privacy in Section 4 and prove that our adopted solution
formally satisfies ballot secrecy in Section 5. Section 6 demonstrates that the
absence of ballot independence can be similarly exploited in other electronic
voting protocols to violate privacy. Finally, our conclusion appears in Section 7.

1The formal model by Dreier, Lafourcade & Lakhnech includes the voter’s signature on the
signed re-encrypted ciphertext and this is exploited by their attack; by comparison, the model
by Delaune, Kremer & Ryan omits this detail and therefore the attack cannot be witnessed.

5

2 Background: Helios 2.0

We provide a full description of Helios 2.0. This scheme exploits the additive
homomorphic [27, 29, 73] and distributed decryption [63, 19] properties of ElGa-
mal [37]. We will recall these cryptographic details before presenting the Helios
protocol.

2.1 Additive homomorphic ElGamal

Given cryptographic parameters (p, q, g) and a number n ∈ N of trustees, where
p and q are large primes such that q | p − 1 and g is a generator of the multi-
plicative group Z∗

p
of order q, the following operations are defined by ElGamal.

Distributed key generation. Each trustee i ∈ n selects a private key share
xi ∈R Z∗

q
and computes a public key share hi = gxi mod p. The public key is

h = h1 · . . . · hn mod p.

Encryption. Given a message m and a public key h, select a random nonce
r ∈R Z∗

q
and derive the ciphertext (a, b) = (gr mod p, gm · hr mod p).

Re-encryption. Given a ciphertext (a, b) and public key h, select a random
nonce r� ∈R Z∗

q
and derive the re-encrypted ciphertext (a�, b�) = (a·gr� mod p, b·

hr
�
mod p).

Homomorphic addition. Given two ciphertexts (a, b) and (a�, b�), the ho-
momorphic addition of plaintexts is computed by multiplication (a ·a� mod p, b ·
b� mod p).

Distributed decryption. Given a ciphertext (a, b), each trustee i ∈ n com-
putes the partial decryption ki = axi . The plaintext m = log

g
M is recovered

from M = b/(k1 · . . . · kn) mod p.

The computation of a discrete logarithm log
g
M is hard in general. However,

if M is chosen from a restricted domain, then the complexity is reduced; for
example, if M is an integer such that 0 ≤ M ≤ n, then the complexity is O(n)
by linear search or O(

√
n) using the baby-step giant-step algorithm [74] (see

also [56, §3.1]).
For secrecy, each trustee i ∈ n must demonstrate knowledge of a discrete

logarithm log
g
hi, that is, they prove that hi has been correctly constructed;

this prevents, for example, a trustee constructing their public key share hi =
h. For integrity of decryption, each trustee i ∈ n must demonstrate equality
between discrete logarithms log

g
hi and log

a
ki; this prevents, for example, a

trustee constructing the public key share hi = gm+xi and providing the partial
decryption ki = axi . In addition, the voter must demonstrate that a valid vote

6

has been encrypted. These proofs can be achieved using signatures of knowledge
(see Appendix A for details).

2.2 Protocol description

An election is created by naming an election officer, selecting a set of trustees,
and generating a distributed public key pair. The election officer publishes, on
the bulletin board, the public part of the trustees’ key (and proof of correct
construction), the candidate list t̃ = (t1, . . . , t�) ∪ {�} (where � represents a

vote of abstention), and the list of eligible voters �id = (id1, . . . , idn); the officer
also publishes the election fingerprint, that is, the hash of these parameters.
Informally, the steps that participants take during a run of Helios are as follows.

1. The voter launches a browser script that downloads the election parame-
ters and recomputes the election fingerprint. The voter should verify that
the fingerprint corresponds to the value published on the bulletin board.
(This ensures that the script is using the trustees’ public key; in partic-
ular, it helps prevent encrypting a vote with an adversary’s public key.
Such attacks have been discussed in the context of Direct Anonymous At-
testation by Rudolph [67]; although, the vulnerability was discounted, in
the trusted computing setting, by Leung, Chen & Mitchell [57].)

2. The voter inputs her vote v ∈ t̃ to the browser script, which creates a ballot
consisting of her vote encrypted by the trustees’ public key, and a proof
that the ballot represents a permitted vote (this is needed because the
ballots are never decrypted individually, in particular, it prevents multiple
votes being encoded as a single ballot). The ballot is displayed to the voter.

3. The voter can audit the ballot to check if it really represents a vote for her
chosen candidate; if she decides to do this, then the script provides her with
the random data used in the ballot creation. She can then independently
reconstruct her ballot and verify that it is indeed well-formed. The script
provides some practical resistance against vote selling by refusing to cast
audited ballots. See Benaloh [11, 12] for further details on ballot auditing.

4. When the voter has decided to cast her ballot, the script submits it to
the election officer. The election officer authenticates the voter and checks
that she is eligible to vote. The election officer also verifies the proof and
publishes the ballot, appended with the voter’s identity id, on the bulletin
board. (In practice, the election officer also publishes the hash of the
ballot, we omit this detail for brevity.)

5. Individual voters can check that their ballots appear on the bulletin board
and, by verifying the proof, observers are assured that ballots represent
permitted votes.

6. After some predefined deadline, the election officer homomorphically com-
bines the ballots and publishes the encrypted tally on the bulletin board.
Anyone can check that tallying is performed correctly.

7

Figure 1 Ballot construction by the browser script

Input: Cryptographic parameters (p, q, g), public key h, candidate list t̃ = (t1,
. . . , t�) ∪ {�} and vote v.

Output: Encrypted vote (a1, b1), . . . , (a�, b�), signatures of knowledge
(ā1, b̄1, c̄1, s̄1, ā�1, b̄

�
1, c̄

�
1, s̄

�
1), . . . , (ā�, b̄�, c̄�, s̄�, ā

�
�
, b̄�

�
, c̄�

�
, s̄�

�
) and signature of

knowledge (ā, b̄, c̄, s̄, ā�, b̄�, c̄�, s̄�).

1. If v �∈ t̃ then the script terminates.

2. Encode the vote v as a bitstring. For all 1 ≤ i ≤ �, let

mi =

�
1 if v = ti
0 otherwise

3. The bitstring representing the vote is encrypted. For all 1 ≤ i ≤ �, let

(ai, bi) = (gri mod p, gmi · hri mod p)

where ri ∈R Z∗
q
.

4. For all 1 ≤ i ≤ �, let (āi, b̄i, c̄i, s̄i, ā�i, b̄
�
i
, c̄�

i
, s̄�

i
) be a signature of knowledge

demonstrating that the ciphertext (ai, bi) contains either 0 or 1, that is,
each candidate can receive at most one vote.

5. Let (ā, b̄, c̄, s̄, ā�, b̄�, c̄�, s̄�) be a signature of knowledge demonstrating that
the ciphertext (a1 · . . . · a�, b1 · . . . · b�) contains either 0 or 1, that is, at
most one candidate receives one vote.

7. Each of the trustees publishes a partial decryption of the encrypted tally,
together with a signature of knowledge proving the partial decryption’s
correct construction. Anyone can verify these proofs.

8. The election officer decrypts the tally and publishes the result. Anyone
can check this decryption.

Formally, Step 2 is defined in Figure 1. (For simplicity the ballot construc-
tion algorithm in Figure 1 considers a vote v ∈ t̃, this can be generalised [7]
to consider a vote ṽ ⊆ t̃.) Checking voter eligibility (Step 4) is beyond the
scope of Helios and Adida et al. [7] propose the use of existing infrastructure.
The remaining steps follow immediately from the application of cryptographic
primitives (see Section 2.1 for details).

2.3 Software implementation

Helios 3.0 is an extension of Helios 2.0 which adds numerous practical features,
including: integration of authentication with various web-services (for example,

8

Facebook, GMail and Twitter), bulk voter registration using pre-existing elec-
toral rolls, and simplification of administration with multiple trustees. Helios 3.0
has been implemented and is publicly available: http://heliosvoting.org/.

3 Attacking ballot secrecy

Ballot secrecy means a voter’s vote is not revealed to anyone. We show that the
Helios protocol does not satisfy this definition of ballot secrecy, by presenting
an attack which allows an adversary to reveal a voter’s vote. Moreover, we will
show that formal definitions of ballot secrecy [49, 31, 9] are also violated.

Intuitively, an adversary may identify a voter’s ballot on the bulletin board
(using the voter’s id) and recast this ballot by corrupting dishonest voters. The
multiple occurrences of the voter’s ballot will leak information in the tally and
the adversary can exploit this knowledge to violate the voter’s privacy. An
informal description of the attack will now be presented in the case of three
eligible voters and Section 3.3 considers a more realistic setting. (A formal
analysis appears in Section 4.)

3.1 Attack description

Let us consider an election with candidates t1, . . . , t� and three eligible voters
who have identities id1, id2 and id3. Suppose that voters id1 and id2 are honest,
and id3 is a dishonest voter controlled by the adversary. Further assume that the
honest voters have cast their ballots. The bulletin board entries are as follows:

id1, ciph1, spk1, spk�1
id2, ciph2, spk2, spk�2

where for i ∈ {1, 2} we have

ciphi = (ai,1, bi,1), . . . , (ai,�, bi,�)
spki = (āi,1, b̄i,1, c̄i,1, s̄i,1, ā�i,1, b̄

�
i,1, c̄

�
i,1, s̄

�
i,1),

. . . , (āi,�, b̄i,�, c̄i,�, s̄i,�, ā�i,�, b̄
�
i,�
, c̄�

i,�
, s̄�

i,�
)

spk�
i

= (āi, b̄i, c̄i, s̄i, ā�i, b̄
�
i
, c̄�

i
, s̄�

i
)

The value ciphi is the ith voter’s encrypted vote, spki demonstrates that ci-
phertexts (ai,1, bi,1), . . . , (ai,�, bi,�) contain either 0 or 1, and spk�

i
demonstrates

that (ai,1 · . . . · ai,�, bi,1 · . . . · bi,�) contains either 0 or 1.

Exploiting the absence of ballot independence. The adversary observes
the bulletin board and selects ciphk, spkk, spk�k such that idk is the voter whose
privacy will be compromised, where k ∈ {1, 2}. The adversary submits the
ballot ciphk, spkk, spk�k and it immediately follows that the bulletin board is
composed as follows:

9

id1, ciph1, spk1, spk�1
id2, ciph2, spk2, spk�2
id3, ciphk, spkk, spk�k

It is trivial to see that each bulletin board entry represents a permitted vote; that
is, spk1, spk�1, spk2, spk

�
2, spkk, spk

�
k
all contain valid signatures of knowledge.

We have informally shown that Helios does not satisfy ballot independence
(observing another voter’s interaction with the election system allows a voter
to cast the same vote), and this will now be exploited to violate privacy.

Violating privacy. The homomorphic addition of ballots reveals the en-
crypted tally (a1,1 · a2,1 · ak,1, b1,1 · b2,1 · bk,1), . . . , (a1,� · a2,� · ak,�, b1,� · b2,� · bk,�)
and, given the partial decryptions, these ciphertexts can be decrypted to reveal
the number of votes for each candidate. Since there will be at least two votes
for the candidate voter idk voted for, the voter’s vote can be revealed and hence
privacy is not preserved. Moreover, the vote of the remaining honest voter will
also be revealed.

A video demonstrating the attack against the Helios 3.0 implementation has
been produced [76].

3.2 Variants exploiting malleability and key reuse

In the aforementioned attack description, the ballots cast by two voters are
identical which may result in the detection of an attack. For a covert attack,
the adversary may prefer to cast a distinct ballot. This can be achieved by
exploiting the malleability of ballots. In particular, given a valid ballot

(a1, b1), . . . , (a�, b�), (ā1, b̄1, c̄1, s̄1, ā
�
1, b̄

�
1, c̄

�
1, s̄

�
1), . . . ,

(ā�, b̄�, c̄�, s̄�, ā
�
�
, b̄�

�
, c̄�

�
, s̄�

�
), (ā, b̄, c̄, s̄, ā�, b̄�, c̄�, s̄�) (B1)

the following ballots are also valid

(a1, b1), . . . , (a�, b�), (ā1, b̄1, c̄1, s̄1 + q, ā�1, b̄
�
1, c̄

�
1, s̄

�
1 + q), . . . ,

(ā�, b̄�, c̄�, s̄� + q, ā�
�
, b̄�

�
, c̄�

�
, s̄�

�
+ q), (ā, b̄, c̄, s̄+ q, ā�, b̄�, c̄�, s̄� + q) (B2)

(aπ(1), bπ(1)), . . . , (aπ(�), bπ(�)),

(āπ(1), b̄π(1), c̄π(1), s̄π(1), ā
�
π(1), b̄

�
π(1), c̄

�
π(1), s̄

�
π(1)), . . . ,

(āπ(�), b̄π(�), c̄π(�), s̄π(�), ā
�
π(�), b̄

�
π(�), c̄

�
π(�), s̄

�
π(�)),

(ā, b̄, c̄, s̄, ā�, b̄�, c̄�, s̄�) (B3)

where π is an arbitrary permutation over {1, . . . , �}. Ballot B2 adds q to the
response components of Ballot B1, this changes the ballot but not the vote. (It

10

is also possible to modify a subset of the response components.) However, this
might be considered an implementation bug in Helios 3.0, rather than a theo-
retical issue, because the ballots are identical if considered as group elements.
Replaying Ballot B3 has the advantage of casting a theoretical distinct ballot,
since Ballot B3 represents a vote for a different candidate (with the exception of
an abstention vote), and it is possible to compromise ballot secrecy in elections
with three voters without abstention votes; however, more than one (modified)
ballot may be required in elections with abstention votes. This variant of our
attack also demonstrates a further violation of ballot independence in Helios:
observing another voter’s interaction with the election system allows a voter to
cast a different vote (for example, a voter can cast a distinct vote from their
boss). Both variants of the attack are particularly useful when the bulletin board
includes the hash of the ballot (for example, in the Helios 3.0 implementation),
rather than the complete ballot, because the hashes will be distinct.

An adversary may replay ballots in different elections, when the trustees’
public key is reused and the candidate lists for each election are of equal length.
This variant of the attack can be avoided if distinct keys are used for each
election.

The variants of our attack in this section have all been successfully launched
against the Helios 3.0 implementation.

3.3 Generalised attack and French election case study

Our attack demonstrates that the ballot of an arbitrary voter can be replayed
by any other voter. In general, this does not reveal the voter’s vote; but, some
information is leaked, and colluding voters can replay sufficiently many ballots to
leak the voter’s vote. We will now discuss the feasibility of compromising ballot
secrecy in a real-world election, focusing on the cost of an attack in French
legislative elections, where each district elects a representative for the French
National Assembly. Districts have several polling stations and each polling
station individually announces its tally [40]; these tallies are published in local
newspapers. The publication of tallies is typical of French elections at all levels;
for example, from the election of mayor, to the presidential election.

In this (standard) voting configuration, an adversary can violate the ballot
secrecy of a given voter by corrupting voters registered at the same polling
station (for example, a coalition of neighbours or a family). The corrupted
voters replay the ballot of the voter under attack, as previously explained. The
motivation for restricting the selection of corrupted voters to the same polling
station is twofold. Firstly, fewer corrupt voters are required to significantly
influence the tally of an individual polling station (in comparison to influencing
the election outcome). Secondly, it is unlikely to change the district’s elected
representative, because a candidate will receive only a few additional votes in the
district; it follows that coercing voters to sacrifice their vote, for the purposes
of the attack, should be easier. In the remainder of this section, we discuss
how many corrupt voters are required to violate ballot secrecy – by making a
significant change in the tally of a polling station – in an arbitrary district of

11

Party Tally
PS 4120
UMP 3463
FN 1933
Europe Eco. 1921
Front de gauche 880
NPA 697
MODEM 456
Debout la République 431
Alliance école 193
LO 156
Émergence 113
Liste chrétienne 113

Table 1: 2010 legislative election results in Aulnay-sous-Bois [41]

Aulnay-sous-Bois and a rural district in Toul.

3.3.1 Ballot secrecy in Aulnay-sous-Bois

Using historic data and/or polls, it is possible to construct the expected dis-
tribution of votes. For simplicity, let us assume the distribution of votes per
polling station is the average of the 2010 tally (Table 1), and that if the adver-
sary can increase the number of votes for a particular candidate by more than
σ (by replaying a voter’s ballot), then this is sufficient to determine that the
voter voted for that candidate. In addition, suppose that the adversary corrupts
abstaining voters and therefore we do not consider the redistribution of votes.
We remark that corrupting abstaining voters may be a fruitful strategy, since
abstaining voters do not sacrifice their vote by participating in an attack.

Table 2 presents the expected distribution of votes, and includes the number
of voters that an adversary must corrupt to determine if a voter voted for
a particular candidate, for various values of σ. We shall further assume that
participation in the region is consistent with 2010; that is, 291 of the 832 eligible
voters are expected to participate. It follows that 50 voters corresponds to
approximately 6% of the Aulnay-sous-Bois electorate, and 10 voters corresponds
to approximately 1%. Our results therefore demonstrate that the privacy of a
voter can be compromised by corrupting a small number of voters. In particular,
for medium-size parties (in terms of votes received) – including, for example,
FN and Europe Ecologie – it is sufficient to corrupt 19 voters to see the number
of votes increase by 50%. Furthermore, given the low turn-out (541 voters are
expected to abstain), it seems feasible to corrupt abstaining voters, and therefore
an attack can be launched without any voter sacrificing their vote.

12

P
ar
ty

E
xp

ec
te
d
ta
ll
y

σ
=

20
0%

σ
=

15
0%

σ
=

50
%

σ
=

20
%

P
S

81
16

2
12

2
41

17
U
M
P

68
13

6
10

2
34

14
F
N

38
76

57
19

8
E
u
ro
p
e
E
co
.

38
76

57
19

8
F
ro
nt

d
e
ga

u
ch
e

17
34

26
9

4
N
P
A

14
28

21
7

3
M
O
D
E
M

9
18

14
5

2
D
eb

ou
t
la

R
ép

u
b
li
qu

e
8

16
12

4
2

A
ll
ia
n
ce

éc
ol
e

4
8

6
2

1
L
O

3
6

5
2

1
É
m
er
ge
n
ce

2
4

3
1

1
L
is
te

ch
ré
ti
en

n
e

2
4

3
1

1

T
ab

le
2:

N
u
m
b
er

of
d
u
p
li
ca
te

b
al
lo
ts

fo
r
a
si
gn

ifi
ca
nt

ch
an

ge
in

th
e
ta
ll
y

13

Limitations. For such an attack based on a statistical model, we acknowledge
that this model is rather näıve, but believe it is sufficiently indicative to illustrate
the real threat of an attack against privacy. A definitive mathematical analysis
should be considered in the future.

Cases of complete privacy breach. The probabilistic nature of these at-
tacks may introduce sufficient uncertainty to prevent privacy violations, and we
will consider voting configurations where an adversary can definitively learn a
voter’s vote. Observe that if an attacker can corrupt half of the voters at a
polling station, then the vote of an arbitrary voter can be revealed. Moreover,
the cost of this attack can be reduced. In particular, if n dishonest voter’s replay
voter V’s ballot, then it is possible to deduce that V did not vote for any candi-
date that received strictly less than n + 1 votes. This leaks information about
voter V’s chosen candidate and in cases where exactly one candidate received
more than n votes, the voter’s vote can be deduced.

3.3.2 Ballot secrecy in small polling stations

The difficulties of large scale corruption may prohibit our attack in the majority
of polling stations; however, our attack is feasible in small polling stations found
in rural districts. For example, let us consider the 2007 legislative elections in
the district of Toul [38]. This district has 75350 eligible voters registered at
193 polling stations. Accordingly, the average polling station has 390 registered
voters, but the variance is large. Indeed, 33 polling stations have between 50
and 99 voters, 9 polling stations have less then 50 voters, and the smallest two
polling stations have 8, respectively 16, voters. Moreover, the attack is simplified
by non-participating voters. In these small polling stations it is thus sufficient
to corrupt a very small number of voters to reveal a voter’s vote while the final
outcome of the election would not change as it is based on 75350 eligible voters.

4 Solution: Weeding replayed ballots

Our attack exploits the possibility of replaying a voter’s ballot without detection,
and can be attributed to the lack of ballot independence in Helios. This section
sketches some possible solutions to ensure ballot independence.

4.1 Weeding replayed ballots

The ballots replayed in our attacks can all be identified. First, ciphertexts and
signatures of knowledge should have a unique representation as group elements,
for example, by requiring that the response component of signatures of knowl-
edge is in the interval [0, q−1]. Second, a ballot should not contain a ciphertext
that already exists on the bulletin board. The election officer should reject bal-
lots that do not satisfy these conditions. This solution is simple and can easily
be implemented in a future version of Helios.

14

4.2 Binding ballots to voters

The previous approach requires a special mechanism to handle replayed bal-
lots. We now propose a technique that makes such actions futile. In essence,
based upon inspiration from [43, §4.2] and [29], we ensure that proofs asso-
ciated with replayed ballots are considered invalid; that is, we bind the link
between a voter and her ballot. This is achieved by adding the identity of the
voter in the construction of challenges used by signatures of knowledge. More
precisely, for voter id, the sign algorithm (defined in Appendix A) is modified
as follows: on input (a, b), such that a ≡ gr mod p and b ≡ hr · gm mod p,
let challenge cm = H(amin, bmin, . . . , amax, bmax, id)−

�
i∈{min,...,m−1,m+1,...,max} ci

(mod q), where values amin, bmin, . . . , amax, bmax and c1, . . . , cm−1, cm+1, . . . , cm
are defined as before. For correctness, the verification algorithm must also be
modified. In particular, for candidate signatures constructed by voter id, the
verifier should check H(amin, bmin, . . . , amax, bmax, id) ≡

�
min≤i≤max ci (mod q).

In a similar direction, the electronic voting protocol proposed by Juels, Cata-
lano & Jakobsson [47] – which has been implemented by Clarkson, Chong &
Myers [24, 23] as Civitas – requires ballots to be bound to private voter cre-
dentials. This provides eligibility verifiability [50]: anyone can check that each
ballot published on the bulletin board was cast by a registered voter and at most
one ballot is tallied per voter. It is likely that eligibility verifiability enforces
ballot independence, but the provision of eligibility verifiability appears to be
expensive, in particular, Juels, Catalano & Jakobsson and Clarkson, Chong &
Myers assume the existence of an infrastructure for voter credentials.

4.3 Discussion

Our weeding replayed ballots solution is particular attractive because it adheres
to Benaloh’s notion of ballot casting assurance [11, 12] which asserts that the
ballot encryption device (the browser script in this instance) does not know the
voter’s identity. (We remark that neither the original Helios scheme nor our
proposed fix strictly satisfy Benaloh’s notion of ballot casting assurance if a
voter decides to use her own computer.) The ballot casting assurance principle
is important because knowledge of the voter’s identity could be used to infer
the likelihood of auditing and this information can be used to influence the
behaviour of the ballot encryption device; in particular, if a ballot is unlikely
to be audited, then the device may act maliciously, for example, by encrypting
a different vote. By comparison, the binding ballots to voters solution would
necessarily require that the voter’s identity is revealed to the ballot encryption
device. Moreover, for privacy purposes, the election officer may chose to allo-
cate voters with pseudo-identities when casting ballots (rather than associate
ballots with actual voter identities); since these pseudo-identities are unknown
to voters in advance, an additional interaction with the election officer would
be required. (Note that the use of pseudo-identities does not prevent the attack
by breaking the link between ballots and voters, because the link is known by
the election officer.) Finally, extending Helios to provide eligibility verifiability

15

would require a considerable extension to the Helios code-base and, further-
more, finding a suitable solution is an open problem. Accordingly, we adopt the
weeding replayed ballot solution and, in the next section, we show that this is
sufficient to ensure ballot secrecy, in the formal setting.

5 Formal proof of ballot secrecy

We formally prove that weeding duplicate ballots ensures ballot secrecy. We
make use of the applied pi calculus [1, 68], due to its proven suitability for
evaluating security properties of electronic voting protocols (see, for exam-
ple, [31, 9, 50]).

5.1 Applied pi calculus

We first recall the applied pi calculus setting [1]. We assume an infinite set
of names a, b, c, . . . , k, . . . ,m, n, . . . , s, . . ., an infinite set of variables x, y, z, . . .,
and a signature Σ consisting of a finite set of function symbols, each with an
associated arity. We use metavariables u,w to range over both names and
variables. Terms L,M,N, T, U, V are built by applying function symbols to
names, variables, and other terms. We write {M/x} for the substitution that
replaces the variable x with the term M . Arbitrarily large substitutions can be
written as {M1/x1, . . . ,Ml/xl} and the letters σ and τ range over substitutions.
We write Nσ for the result of applying σ to the free variables of term N . A
term is ground when it does not contain variables.

The signature Σ is equipped with an equational theory E, that is, a set of
equations of the form M = N , where the terms M,N are defined over the
signature Σ. We define equality modulo the equational theory, written =E , as
the smallest equivalence relation on terms that contains E and is closed under
application of function symbols, substitution of terms for variables and bijective
renaming of names. We write M =E N when the equation M = N is in the
theory E, and keep the signature implicit. When E is clear from its usage, we
may abbreviate M =E N as M = N . The negation of M =E N is denoted
M �=E N (and similarly abbreviated M �= N).

Processes and extended processes are defined in the usual way (Figure 2). We
write ν ũ for the (possibly empty) series of pairwise-distinct binders ν u1. · · · .ν ul.
The active substitution {M/x} can replace the variable x for the term M in ev-
ery process it comes into contact with and this behaviour can be controlled
by restriction, in particular, the process ν x.({M/x} | P) corresponds exactly
to let x = M in P . Arbitrarily large active substitutions can be obtained by
parallel composition and we occasionally abbreviate {M1/x1} | . . . | {Ml/xl} as
{M1/x1, . . . ,Ml/xl} or {M̃/x̃}. We also use σ and τ to range over active substi-
tutions, and write Nσ for the result of applying σ to the free variables of N .
Extended processes must have at most one active substitution for each variable
and there is exactly one when the variable is under restriction. The only minor
change compared to [1] is that conditional branches now depend on formulae

16

Figure 2 Syntax for processes

P,Q,R ::= (plain) processes
0 null process
P | Q parallel composition
!P replication
ν n.P name restriction
if φ then P else Q conditional
u(x).P message input
u�M�.P message output

A,B,C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

φ,ψ ::= M = N | M �= N | φ ∧ ψ. If M and N are ground, we define [[M = N]]
to be true if M =E N and false otherwise. The semantics of [[]] is then extended
to formulae in the standard way.

The scope of names and variables are delimited by binders u(x) and ν u. The
set of bound names is written bn(A) and the set of bound variables is written
bv(A); similarly we define the set of free names fn(A) and free variables fv(A).
Occasionally, we write fn(M) (and fv(M) respectively) for the set of names (and
respectively variables) which appear in term M . An extended process is closed
when every variable x is either bound or defined by an active substitution.

We define a context C[] to be an extended process with a hole. We ob-
tain C[A] as the result of filling C[]’s hole with the extended process A. An
evaluation context is a context whose hole is not in the scope of a replication,
a conditional, an input, or an output. A context C[] closes A when C[A] is
closed.

A frame, denoted ϕ or ψ, is an extended process built from the null process
0 and active substitutions {M/x}, which are composed by parallel composition
and restriction. The domain dom(ϕ) of a frame ϕ is the set of variables that ϕ
exports, that is, the set of variables x for which ϕ contains an active substitution
{M/x} such that x is not under restriction. Every extended process A can be
mapped to a frame ϕ(A) by replacing every plain process in A with 0.

5.1.1 Operational semantics

The operational semantics are defined by three relations: structural equiva-
lence (≡), internal reduction (−→), and labelled reduction (

α−→). These relations
satisfy the rules in Figure 3 and are defined such that: structural equivalence
is the smallest equivalence relation on extended processes that is closed by α-

17

Figure 3 Semantics for processes

Par-0 A ≡ A | 0
Par-A A | (B | C) ≡ (A | B) | C
Par-C A | B ≡ B | A
Repl !P ≡ P | !P

New-0 ν n.0 ≡ 0
New-C ν u.ν w.A ≡ ν w.ν u.A
New-Par A | ν u.B ≡ ν u.(A | B)

where u �∈ fv(A) ∪ fn(A)

Alias ν x.{M/x} ≡ 0
Subst {M/x} | A ≡ {M/x} | A{M/x}
Rewrite {M/x} ≡ {N/x}

where M =E N

Comm c�x�.P | c(x).Q −→ P | Q
Then if φ then P else Q −→ P if [[φ]] = true

Else if φ then P else Q −→ Q otherwise

In c(x).P
c(M)−−−→ P{M/x}

Out-Atom c�u�.P c�u�−−−→ P

Open-Atom
A

c�u�−−−→ A� u �= c

ν u.A
ν u.c�u�−−−−−→ A�

Scope
A

α−→ A� u does not occur in α

ν u.A
α−→ ν u.A�

Par
A

α−→ A� bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A� | B

Struct
A ≡ B B

α−→ B� B� ≡ A�

A
α−→ A�

conversion of both bound names and bound variables, and closed under ap-
plication of evaluation contexts; internal reduction is the smallest relation on
extended processes closed under structural equivalence and application of eval-
uation contexts; and for labelled reductions α is a label of the form c(M), c�u�,
or ν u.c�u� such that u is either a channel name or a variable of base type.

18

5.1.2 Equivalence

The definition of observational equivalence [1] quantifies over all contexts which
makes proofs difficult, therefore we adopt labelled bisimilarity in this article.
Labelled bisimilarity relies on an equivalence relation between frames, called
static equivalence.

Definition 1 (Static equivalence). Two closed frames ϕ and ψ are statically
equivalent, denoted ϕ ≈s ψ, if dom(ϕ) = dom(ψ) and there exists a set of names
ñ and substitutions σ, τ such that ϕ ≡ ν ñ.σ and ψ ≡ ν ñ.τ and for all terms
M,N such that ñ∩(fn(M)∪fn(N)) = ∅, we have Mσ =E Nσ holds if and only if
Mτ =E Nτ holds. Two closed extended processes A,B are statically equivalent,
written A ≈s B, if their frames are statically equivalent; that is, ϕ(A) ≈s ϕ(B).

The relation ≈s is called static equivalence because it only examines the current
state of the processes, and not the processes’ dynamic behaviour. The following
definition of labelled bisimilarity captures the dynamic part.

Definition 2 (Labelled bisimilarity). Labelled bisimilarity (≈l) is the largest
symmetric relation R on closed extended processes such that A R B implies:

1. A ≈s B;

2. if A −→ A�, then B −→∗ B� and A� R B� for some B�;

3. if A
α−→ A� such that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then

B −→∗ α−→−→∗ B� and A� R B� for some B�.

Definitions of observational equivalence and labelled bisimilarity have been shown
to coincide [58].

5.2 Modelling Helios in applied pi

We start by constructing a suitable signature Σ to capture the cryptographic
primitives used by Helios and define an equational theory E to capture the
relationship between these primitives.

5.2.1 Signature

We adopt the following signature.

Σ = {ok, zero, one,⊥, fst, snd, pair, ∗,+, ◦, partial, checkspk, penc, spk, dec}

Functions ok, zero, one, ⊥ are constants; fst, snd are unary functions; dec, pair,
partial, ∗, +, ◦ are binary functions; checkspk, penc are ternary functions; and
spk is a function of arity four. We adopt infix notation for ∗, +, and ◦.

The term penc(T,N,M) denotes the encryption of plaintext M , using ran-
dom nonceN and key T . The term U∗U � denotes the homomorphic combination
of ciphertexts U and U �, the corresponding operation on plaintexts is written

19

M + M � and N ◦ N � on nonces. The partial decryption of ciphertext U using
key L is denoted partial(L,U). The term spk(T,N,M,U) represents a signa-
ture of knowledge that proves U is a ciphertext under the public key T on the
plaintext M using nonce N and such that M is either the constant zero or one.
We introduce tuples using pairings and, for convenience, we occasionally ab-
breviated pair(M1, pair(. . . , pair(Mn,⊥))) as (M1, . . . ,Mn), and fst(sndi−1(M))
is denoted πi(M), where i ∈ N. We use the equational theory E that asserts
functions +, ∗, ◦ are commutative and associative, and includes the equations:

fst(pair(x, y)) = x (E1)

snd(pair(x, y)) = y (E2)

zero+ one = one (E3)

zero+ zero = zero (E4)

dec(xsk, penc(pk(xsk), xrand, xplain)) = xplain (E5)

dec(partial(xsk, ciph), ciph) = xplain (E6)

where ciph = penc(pk(xsk), xrand, xplain)

penc(xpk, yrand, yplain) ∗ penc(xpk, zrand, zplain) (E7)

= penc(xpk, yrand ◦ zrand, yplain + zplain)

checkspk(xpk, ball, spk(xpk, xrand, zero, ball))=ok (E8)

where ball = penc(xpk, xrand, zero)

checkspk(xpk, ball, spk(xpk, xrand, one, ball))=ok (E9)

where ball = penc(xpk, xrand, one)

Equation E6 allows plaintext M to be recovered from ciphertext penc(pk(L), N,
M) given partial decryption partial(L, penc(pk(L), N,M)), when the partial de-
cryption is constructed using the private key L. Equation E7 represents the
homomorphic combination of ciphertexts. The Equations E8 and E9 allow
the verification of signatures of knowledge spk(T,N,M, penc(T,N,M)), when
M ∈ {zero, one}. The remaining equations are standard.

Example 1. Given randomness N,N �, plaintexts (M,M �) ∈ {(zero, zero), (zero,
one), (one, zero)}, and public key T , one can construct a signature of knowledge
L = spk(T,N ◦N �,M+M �, penc(T,N,M)∗penc(T,N �,M �)). Then checkspk ap-
plied to the public key T , the homomorphically combined ciphertexts penc(T,N,
M) ∗ penc(T,N �,M �), and the signature L is equal to ok using Equations E3,
E7, E8, and E9

5.2.2 Helios process specification

In the applied pi calculus, it is sufficient to model the parts of the voting system
which need to be trusted for ballot secrecy; all the remaining parts of the system
are controlled by the adversarial environment. Accordingly, we assume the

20

existence of at least two honest voters A, B; since this avoids the scenario where
ballot secrecy of an individual voter is compromised by collusion amongst all
the remaining voters. In addition, the following trust assumptions are required.

• At least one trustee is honest

• The election officer runs the bulletin board honestly:

– Voters A, B have authentic channels with the bulletin board

– Signatures of knowledge are checked for dishonest voters*

– Replays of honest ballots (that is, those cast by A or B) are rejected*
– The tally is correctly computed*

– The trustees have an authentic channel with the bulletin board

• The browser script is trusted and has the correct public key of the election

(Assumptions marked with * could be performed by an honest trustee, rather
than the bulletin board.) Although neither voters nor observers can verify that
there exists an honest trustee, an assurance of trust is provided by distribution.
The necessity to trust the election officer to run the bulletin board is less de-
sirable and work-in-progress [64] aims to weaken this assumption; moreover, to
further distribute trust assumptions, the trustees could also check signatures
and tallying. Finally, trust in the browser script can be obtained by using
software written by a reputable source or writing your own code.

The trusted components are modelled by the administration process Aφ

�,n

and voting process V� defined in Figure 4. For generality, the voting process V�

is parametrised by the number of candidates �. Similarly, the administration
process Aφ

�,n
is parametrised by the number of candidates �, the number of voters

n, and a formula φ; the formula φ defines the checks performed by the bulletin
board before accepting a ballot. We will consider several variants of Helios
(including the original Helios 2.0 protocol and our fixed scheme) by considering
suitable formula that we call Helios process specifications.

Definition 3 (Helios process specification). A formula φ�,n̄ is a Helios process
specification, if fv(φ�,n̄) ⊆ {y1, . . . , yn̄, yballot, zpk}.

The voting process V� contains free variables xvote
1 , . . . , xvote

�
to represent the

voter’s vote (which is expected to be encoded using constants zero and one) and
the free variable xauth represents the channel shared by the voter and the bul-
letin board. The definition of the process V� corresponds to the description of
the browser script (Figure 1). The administration process Aφ

�,n
is parametrised

by the number of candidates �, the number of voters n, and a Helios process
specification φ. The restricted name skT models the tallier’s secret key and the
public part pk(skT) is included in the process’s frame. The restricted names a1
and a2 model authentic channels between the two honest voters and the bulletin
board, and the channel name d captures the authentic channel with the honest

21

Figure 4 Helios process specification
Let � be some number of candidates, n ≥ 2 be some number of voters, and φ
be a Helios process specification. The administration process Aφ

�,n
and voting

process V� are defined below.

V� = ν r1 .
let ciph1 = penc(zpk, r1, xvote

1) in
let spk1 = spk(zpk, r1, xvote

1 , ciph1)) in
...
ν r� .
let ciph� = penc(zpk, r�, xvote

�
) in

let spk� = spk(zpk, r�, xvote
�

, ciph�)) in
let r̂ = r1 ◦ · · · ◦ r� in

let �ciph = ciph1 ∗ · · · ∗ ciph� in
let �vote = xvote

1 + · · ·+ xvote
�

in

let �spk = spk(zpk, r̂, �vote, �ciph) in
xauth�(ciph1, . . . , ciph�, spk1, . . . , spk�, �spk)�

Aφ

�,n
= ν skT , a1, a2, d . (| BBφ

�,n
| T� | {pk(skT)/zpk})

BBφ

�,n
= a1(y1) . c�y1� . a2(y2) . c�y2� .

a3(y3) . if φ�,2{y3/yballot} then
· · · an(yn) . if φ�,n−1{yn/yballot} then
let tally1 = π1(y1) ∗ · · · ∗ π1(yn) in
· · · let tally� = π�(y1) ∗ · · · ∗ π�(yn) in
d�(tally1, . . . , tally�)� .
d(ypartial) .
c�ypartial� .
c�(dec(π1(ypartial), tally), . . . , dec(π�(ypartial), tally�))�

T� = d(ytally) .
d�(partial(skT ,π1(ytally)), . . . , partial(skT ,π�(ytally)))�

trustee. To ensure the adversary has access to messages sent on private chan-
nels, communication is relayed on the public channel c. The sub-process BBφ

�,n

represents the bulletin board and T� represents the tallier. The bulletin board
accepts ballots from each voter and checks they are valid using the Helios process
specification φ (this predicate will be discussed in more detail below). Once all
ballots have been submitted, the bulletin board homomorphically combines the
ciphertexts and sends the encrypted tallies to the tallier for decryption. (The
necessity for all voters to participate is included for simplicity, in particular,
our bulletin board does not weed ballots containing invalid proofs.) The tallier

22

receives the homomorphic combinations of ballots ytally and derives a partial
decryption for each candidate; these partial decryptions are sent to the bulletin
board and the election result is published.

The voting process V� is parameterised by a substitution σ, where variables
xvote
1 , . . . , xvote

�
∈ dom(σ); these variables must be parameterised to encode a vote

for at most one candidate, that is, there exists at most one integer i ∈ {1, . . . , �}
such that Σ � xvote

i
σ = one. Formally, we define valid parameterisations using

the notion of candidate substitutions.

Definition 4 (Candidate substitution). Given some number of candidates �
and a substitution σ, we say σ is a candidate substitution if

Σ � (xvote
1 + · · ·+ xvote

�
)σ = zero ∨ Σ � (xvote

1 + · · ·+ xvote
�

)σ = one

It follows immediately that bitstrings m1, . . . ,m� generated during Step 2 of
Figure 1 can be modelled as candidate substitutions.

The application of our model is demonstrated in the following example.

Example 2. Let � be some number of candidates, n ≥ 2 be some number
of voters, and φ be a Helios process specification. An election with voters A
and B who select candidate substitutions σ and τ , and such that the other
n − 2 voters are controlled by the adversary, can be modelled by the process
Aφ

�,n
[V�{a1/xauth}σ | V�{a2/xauth}τ].

Ballot validity. In Helios 2.0, the election officer considers a ballot to be valid
if the signature proofs of knowledge hold. Accordingly, we can model the Helios

administration by the process Aφ
orig

�,n
where the Helios process specification φorig,

parameterised by the number of candidates �, is defined as follows.

φorig
�

� checkspk(zpk,π1(yballot) ∗ · · · ∗ π�(yballot),π2·�+1(yballot)) = ok ∧
checkspk(zpk,π1(yballot),π�+1(yballot)) = ok ∧ . . . ∧

checkspk(zpk,π�(yballot),π2·�(yballot)) = ok

We have shown that these checks are insufficient to ensure ballot secrecy (Sec-
tion 3). Our weeding replayed ballots solution, proposed in Section 4.1, ad-
ditionally requires that the ciphertexts inside the ballot do not appear on the
bulletin board. This revised scheme can be modelled using the Helios process
specification φsol, parameterised by the number of candidates � and number of
ballots already on the bulletin board n̄, defined as follows.

φsol
�,n̄

� φorig
�

∧ π2·�+2(yballot) = ⊥ ∧
�

i,j∈{1,...,�},
k∈{1,...,n̄}

πi(yk) �= πj(yballot)

We can also model a näıve solution that would consist in weeding only identical
ballots by considering the Helios process specification φident, parameterised by

23

the number of candidates � and number of ballots already on the bulletin board
n̄, defined below.

φident
�,n̄

� φorig
�

∧ π6(yballot) = ⊥ ∧
�

k∈{1,...,n̄}

yballot �= yk

We have already shown that removing exact duplicates is insufficient because
it would fail to detect variants of our attack whereby the contents of a ballot
are permuted. In the next section, we formally show that Helios 2.0 (modelled
using φorig) and the näıve solution (modelled using φident) do not satisfy ballot
secrecy, and that our proposed solution (modelled using φsol) does satisfy ballot
secrecy.

5.3 Formal analysis: Ballot secrecy

Based upon [49, 30, 31], and as previous discussed (see related work in Section 1),
we formalise ballot secrecy for two voters A and B with the assertion that an
adversary cannot distinguish between a situation in which voter A votes for
candidate t and voter B votes for candidate t�, from another situation in which
A votes t� and B votes t. Formally, this is captured by Definition 5.

Definition 5 (Ballot secrecy). Given a Helios process specification φ, we say
ballot secrecy is satisfied if for all integers � ∈ N∗ and n ≥ 2, and for all
candidates substitutions σ and τ , we have

Aφ

�,n
[V�{a1/xauth}σ | V�{a2/xauth}τ] ≈l A

φ

�,n
[V�{a1/xauth}τ | V�{a2/xauth}σ]

The ballot secrecy definition proposed by Delaune, Kremer & Ryan considered
a vote to be an arbitrary name, whereas a vote in our setting must be a series of
the constant symbols zero and one, such that their combination by application
of the function + is also a constant zero and one; it follows that Definition 5 is
a straightforward variant of the original.

The Helios 2.0 protocol does not satisfy our privacy definition (Lemma 1)
and näıve ballot weeding solutions are also insufficient (Lemma 2).

Lemma 1. The Helios process specification φorig does not satisfy ballot secrecy.

Intuitively, the proof of Lemma 1 is due to the environment’s ability to replay
A’s ballot, therefore introducing an observable difference: the result will include
two instances of A’s vote. Formally, this follows immediately from the proof
Lemma 2.

Lemma 2. The Helios process specification φident does not satisfy ballot secrecy.

Proof. Consider � = 2, n = 3, σ = {zero/xvote
1

, one/xvote
2

} and τ = {one/xvote
1

,
zero/xvote

2
}. We consider a sequence of transitions where the two voters output

their ballots and then the adversary chooses its ballots to be a permutation of the
first voter’s ballot. Namely, if the first voter’s ballot is (ciph, ciph�, spk, spk�,�spk)
then the adversary outputs (ciph�, ciph, spk�, spk,�spk). Formally, this corre-
sponds to the following transitions

24

Aφ

�,n
[V�{a1/xauth}σ | V�{a2/xauth}τ]

−→ ν x.c�x�−−−−−→−→ ν y.c�y�−−−−−→ c((π2(x),π1(x),π4(x),π3(x),π5(x)))−−−−−−−−−−−−−−−−−−−−−−→−→∗ ν z.c�z�−−−−−→ ν ñ.τ1

for some names ñ and substitution τ1, such that:

dec(π1(z),π1(x) ∗ π1(y) ∗ π2(x))τ1 =E one+ one

This labeled transition has to matched by

Aφ

�,n
[V�{a1/xauth}τ | V�{a2/xauth}σ]

−→ ν x.c�x�−−−−−→−→ ν y.c�y�−−−−−→ c((π2(x),π1(x),π4(x),π3(x),π5(x)))−−−−−−−−−−−−−−−−−−−−−−→−→∗ ν z.c�z�−−−−−→ ν ñ.τ2

for some names ñ and substitution τ2, such that:

dec(π1(z),π1(x) ∗ π1(y) ∗ π2(x))τ2 =E one

It follows immediately that ν ñ.τ1 �≈s ν ñ.τ2 and, hence, φident does not satisfy
ballot secrecy.

In contrast, removing duplicates up to permutation ensures ballot secrecy.

Theorem 1. The Helios process specification φsol satisfies ballot secrecy.

ProVerif is an automatic tool that can check equivalence in the applied pi cal-
culus [16]. Although ProVerif has been successfully used to prove ballot secrecy
(for example, in the Fujioka, Okamoto & Ohta protocol [33]), it cannot prove
Theorem 1, at the time of writing, for two main reasons. Firstly, ProVerif cannot
prove equivalences under the homomorphic equation (Equation E7). Secondly,
our theorem states ballot secrecy for any number n of participants and ProVerif
cannot handle parametrised processes (see Paiola & Blanchet [61, 60] for some
initial progress in this direction). We proceed by constructing a relation that re-
lates Aφ

�,n
[V�{a1/xauth}σ | V�{a2/xauth}τ] and Aφ

�,n
[V�{a1/xauth}τ | V�{a2/xauth}σ],

and all their successors, such that it satisfies the three properties of Definition 2.
In particular, the two final frames (containing the result of the election) should
be statically equivalent.

Definition 6 (Valid ballot). A term T is said to be a valid ballot in an election
with � candidates if [[φsol

�,0{T/yballot}]] = true.

By definition, the bulletin board accepts only valid ballots. A key step to proving
static equivalence is to show that any valid ballot submitted to the bulletin board
by the environment is “equivalent” to a term of the form (penc(zpk, N1,M1), . . . ,
penc(zpk, N�,M�), S1, . . . , S�+1), where {M1/xvote

1
, . . . ,M�/xvote

�
} is a candidate

substitution. This allows us to deduce that the election outcome produced by
Aφ

�,n
[V�{a1/xauth}σ | V�{a2/xauth}τ] is exactly the same as in Aφ

�,n
[V�{a1/xauth}τ |

V�{a2/xauth}σ]. We can then conclude the proof of Theorem 1 by showing that
the partial decryptions and the encrypted ballots of honest voters do not leak
any extra information to the adversary. The full proof appears in Appendix B.

25

5.4 Limitations

The limitations of our model, which we introduced to simplify the presentation
and proof, are detailed below; we believe a full security proof should follow us-
ing similar reasoning. We make use of a (standard) definition of ballot secrecy
which is limited to elections with two honest voters [49, 30, 31]. In addition, the
definition of ballot secrecy does not consider parallel composition of protocol
executions and we therefore recommend using distinct keys for each election
(although we believe it should be sufficient to include an election identifier –
for example, the election fingerprint – in the challenge hashes included within
signatures of knowledge, similar to the methodology in Section 4.2). The ad-
ministrative process Aφ

�,n
enforces an ordering on voters (namely, the voter using

private channel a1 must vote first, followed by the voter using private channel
a2, and then any remaining voters – controlled by the adversarial environment
– can vote); this limitation could be overcome by parameterising Aφ

�,n
with the

channel names to restrict and by a minor unification of the bulletin process
BBφ

�,n
, however, this generalisation is of limited interest and would come at

the cost of over-complicating the proof. In addition, the administrative pro-
cess Aφ

�,n
does not permit revoting. The signature and equational theory do

not capture low-level technical details surrounding the correct construction of
public keys; in particular, we do not use signatures of knowledge to verify cor-
rect key construction. We also omit signatures of knowledge that demonstrate
correct construction of partial decryptions. Finally, we offer the usual caveat
to formal analysis and acknowledge that our result does not imply the absence
of real-world attacks (see, for example, [69, 2, 3, 81, 82]). It may, therefore,
be possible to modify the ballot in a way that would not be captured by our
analysis. (In particular, it is important to notice that the scheme used for sig-
natures of knowledge is not provably non-malleable.) We partly overcome these
limitations in our complimentary work [15] by presenting a variant of Helios
that is provably secure in a cryptographic setting.

6 Attacks against other schemes

This section demonstrates that the absence of ballot independence can be ex-
ploited in other electronic voting protocols to violate privacy. In particular, we
demonstrate replay attacks against schemes by Sako & Kilian [70] and Schoen-
makers [72], both of which were presented at CRYPTO, and we show that the
malleable cryptographic scheme adopted by Lee et al. [55] can be exploited to
launch attacks. In addition, perhaps contrary to intuition, we will argue that
no general relationships exist between independence and privacy properties.

6.1 Exploiting replays in the protocol by Sako & Kilian

The Sako & Kilian [70] electronic voting scheme capitalises upon advances in
cryptography to improve the Banaloh & Yung protocol [14]. The scheme is
interesting because it was one of the first electronic voting protocols to adopt the

26

Fiat-Shamir heuristic to derive non-interactive proofs (this evolution was key for
the development of end-to-end verifiable electronic voting systems). However,
we will show that the application of the Fiat-Shamir heuristic compromises
ballot secrecy. In particular, the interactive nature of zero-knowledge proofs
guarantees ballot independence; whereas, non-interactive proofs, derived using
the Fiat-Shamir heuristic, do not assure independence. This can be exploited
by a replay attack to violate ballot secrecy.

6.1.1 Protocol description

The scheme is based upon a pair of partially compatible homomorphic encryption
functions, that is, a pair of functions f1, f2 over Zq, where q is prime, such that
for all i, j ∈ {1, 2} the following properties are satisfied:

• fi(x+ y) = fi(x) · fi(y), where x, y ∈ Zq

• Distributions (fi(x), fj(y)) and (fi(x), fj(x)) are computationally indis-
tinguishable, where x and y are chosen uniformly in Zq.

The voting protocol is defined for m ∈ N voters as follows.

Setup. Talliers T and T � publish public keys k and k� for a public key en-
cryption scheme E (which need not be homomorphic).

Voting. Given vote vi ∈ {−1, 1}, the voter generates nonces xi, x�
i
∈ Zq such

that vi = xi + x�
i
and constructs her ballot as follows:

Yi = f1(xi)
Y �
i

= f2(x�
i
)

Zi = E(k, xi)
Z �
i

= E(k�, x�
i
)

In addition, the voter is required to prove xi + x�
i
∈ {1,−1} in zero-knowledge.

However, to avoid an interactive proof, the Fiat-Shamir heuristic is applied to
derive a signature of knowledge σi. (For brevity we omit the construction of σi,
see [70, Figure 1] for details.)

Tallying. Given ballots Y1, Y �
1 , Z1, Z �

1,σ1, . . . , Yn, Y �
n
, Zn, Z �

n
,σn, tallier T de-

crypts each Zi to recover x̂i and checks Yi = f1(x̂i), similarly, tallier T � decrypts
Z �
i
to recover x̂�

i
and checks Y �

i
= f1(x̂�

i
); the talliers also check the signature

of knowledge σi. The talliers publish V =
�

m

i=1 x̂i and V � =
�

m

i=1 x̂
�
i
, and the

result is T = V + V �, which can be verified by checking f1(V) =
�

m

i=1 Yi and
f2(V �) =

�
m

i=1 Y
�
i
.

27

6.1.2 Attacking ballot secrecy

We show that the voting protocol by Sako & Kilian does not satisfy ballot se-
crecy, by presenting a replay attack which allows an adversary to reveal a voter’s
vote. Intuitively, an adversary may observe the ballot posted by a particular
voter and recast this ballot by corrupting dishonest voters. The multiple occur-
rences of the voter’s ballot will leak information in the tally and the adversary
can exploit this knowledge to violate the voter’s privacy. An informal descrip-
tion of the attack will now be presented in the case of three eligible voters.

Let us consider an election with three eligible voters who have identities id1,
id2 and id3. Suppose that voters id1, id2 are honest and id3 is a dishonest voter
controlled by the adversary. Further assume that the adversary has observed
the ballot

Yk, Y
�
k
, Zk, Z

�
k
,σk

being cast by the voter whose privacy will be compromised.

Exploiting the absence of ballot independence. As shown by Gennaro
[43], an adversary can replay the ballot Yk, Y �

k
, Zk, Z �

k
,σk, thereby violating bal-

lot independence. (The violation of ballot independence is due to the adversary’s
ability to cast the same vote as the honest voter.) Since the ballot was con-
structed by an honest voter, it is trivial to see that it will be considered valid
by the talliers. We will now show how the lack of ballot independence can be
exploited to violate privacy.

Violating privacy. The bulletin board will be constructed as follows

Y1, Y
�
1 , Z1, Z

�
1,σ1, Y2, Y

�
2 , Z2, Z

�
2,σ2, Yk, Y

�
k
, Zk, Z

�
k
,σk, V, V

�

where k ∈ {1, 2}, V = x1 + x2 + xk and V � = x�
1 + x�

2 + x�
k
. It follows from

the protocol description that vi = xi + x�
i
, where i ∈ {1, 2, k}, and the result

T = V +V � = v1+v2+vk. Since there will be at least two votes for the candidate
voter idk voted for, the voter’s vote can be revealed: if T ≥ 2, then vk = 1;
otherwise vk = −1. It follows that the voter’s privacy has been compromised;
moreover, the vote of the remaining honest voter is T − 2 · vk.

6.1.3 Independence and the Fiat-Shamir heuristic

The interactive nature of zero-knowledge proofs guarantee independence; by
comparison, non-interactive proofs, derived using the Fiat-Shamir heuristic, do
not assure independence. As a consequence, application of the Fiat-Shamir
heuristic may compromise the security of cryptographic protocols and we have
shown how application of the heuristic erodes privacy in the electronic voting
scheme by Sako & Kilian. This demonstrates that the use of the Fiat-Shamir
heuristic requires some care and highlights the necessity for thorough security
analysis.

28

6.1.4 Generalising replay attacks

The replay attack against the voting protocol by Sako & Kilian can be gen-
eralised to other schemes where an adversary can observe a ballot cast by a
particular voter and replay this ballot verbatim. In particular, the voting pro-
tocol by Schoenmakers [72] fits this description.

Exploiting replays in the protocol by Schoenmakers. The electronic
voting protocol by Schoenmakers [72] is based upon [28, 29]. The scheme ex-
plicitly aims to provide efficient small-scale elections (for example, boardroom
elections) and, given that our attack is particularly well suited to small-scale
elections, we find it interesting to study the possibility of violating ballot secrecy
in this setting. Ballot independence is not provided [72, §5] and we exploit pri-
vacy using a replay attack. The attack description is straightforward and follows
immediately from our discussion; accordingly, we omit the details and refer the
interested reader to our technical report [77, §3].

6.1.5 Possible solutions: Weeding duplicate ballots

Our verbatim replay attacks against the voting protocols by Sako & Kilian
and Schoenmakers exploit the possibility of replaying a voter’s ballot without
detection. We believe it should be sufficient for the election officer to reject any
duplicate ballots to ensure ballot secrecy, alternatively, the binding ballots to
voters solution (Section 4.2) may also be suitable, although proving the security
of these solutions remains an open problem.

6.2 Exploiting malleability in the protocol by Lee et al.

The Lee et al. [55] electronic voting scheme adopts an offline tamper-resistant
hardware device to ensure receipt freeness; more precisely, the hardware device
takes an ElGamal encrypted vote as input and outputs a re-encrypted cipher-
text, this prevents a voter proving how she voted by reconstruction as she does
not know the nonce introduced for re-encryption. In addition, the hardware
device provides a Designated Verifier Proof of re-encryption, thereby allowing
the voter to verify that the device behaved correctly. The device is assumed
to be offline and, hence, communication between the voter and the device is
assumed to be untappable.

6.2.1 Background: Multiplicative homomorphic ElGamal

The scheme uses multiplicative homomorphic ElGamal, rather than the addi-
tive variant presented in Section 2.1. The operations for key generation, ho-
momorphic combination and re-encryption are standard; albeit, the result of
homomorphic combination is the multiplication of plaintexts, rather than the
addition of plaintexts. We recall the operations for encryption and decryption
below.

29

Encryption. Given a message m and a public key h, select a random nonce
r ∈R Z∗

q
and derive the ciphertext (a, b) = (gr mod p, m · hr mod p).

Distributed decryption. Given a ciphertext (a, b), each trustee i ∈ n com-
putes the partial decryption ki = axi . The plaintext m = b/(k1 · . . . · kn) mod p.

The application of these primitives to derive the scheme by Lee et al. will be
discussed in the next section.

6.2.2 Protocol description

An election is created by naming an election officer, selecting a set of mixers,
and choosing a set of trustees. The trustees generate a distributed public key
pair and the election officer publishes the public key on the bulletin board. (For
robustness, threshold ElGamal may be used; we omit these details for brevity.)
The election officer also publishes the candidate list, the public keys of eligible
voters, and the public keys of the tamper-resistant hardware devices. Informally,
the steps that the participants take during an election are as follows.

1. The voter constructs an ElGamal ciphertext (a, b) containing her vote v
and sends the ciphertext to her tamper-resistant hardware device.

2. The hardware device re-encrypts the voter’s ciphertext to produce (a�, b�)
and computes a Designated Verifier Proof of re-encryption τ . The device
also derives a signature σ on the re-encryption. The hardware device
returns (a�, b�),σ, τ to the voter.

3. If the signature and proof are valid, then the voter generates a signature
σ� on the message σ using her private key. The voter submits her ballot
(a�, b�),σ,σ� to the bulletin board.

4. Individual voters can check that their ballots appear on the bulletin board
and can be assured that the ciphertext (a�, b�) contains their vote v by
verifying the Designated Verifier Proof τ .

5. Voters and observers can check that ballots were cast by registered voters
by verifying signatures σ�, and are assured that each voter cast at most
one ballot by checking that no voter signed two values. In addition, voters
and observers should verify signatures σ for receipt freeness.

6. After some predefined deadline, valid ballots (that is, ballots associated
with valid signatures σ and σ�) are submitted to the mixers. Anyone can
check that mixing is performed correctly.

7. Each of the trustees publishes a partial decryption for every ciphertext
output by the mix. Anyone can verify these proofs.

8. The election officer decrypts each ciphertext and publishes the election
result. Anyone can check these decryptions.

30

See Lee et al. [55] for further details.

6.2.3 Attacking ballot secrecy

We show that the voting protocol by Lee et al. [55] does not satisfy ballot
secrecy by recalling the replay attack by Dreier, Lafourcade & Lakhnech [36]
that exploits malleability to reveal a voter’s vote. Intuitively, an adversary may
identify a voter’s encrypted vote on the bulletin board, since it is signed by
the voter. This ciphertext can be submitted to a tamper-resistant hardware
device (possibly after re-encryption) and the device will return (â, b̂), σ̂, τ̂ ; the
ballot (â, b̂), σ̂, σ̂� can then be submitted by the adversary to the bulletin board,
where σ̂� is a signature on σ̂ constructed by a registered voter under the adver-
sary’s control. As explained in Section 6.1.2, the multiple occurrences of the
voter’s ballot will leak information in the tally and the adversary can exploit
this knowledge to violate the voter’s privacy.

Variant exploiting homomorphic encryption. The adversary can exploit
the homomorphic properties of ElGamal to avoid casting the same vote as an
honest voter. In this variant, suppose the adversary wants to recover the vote
from ballot (a�

k
, b�

k
),σk,σ�

k
, the adversary derives the ciphertext (c, d) = (a�

k
, b�

k
)·

(c�, d�), where (c�, d�) is an ElGamal ciphertext containing some message m. The
adversary submits the ciphertext (c, d) to a tamper-resistant hardware device
and the device will return (ĉ, d̂), σ̂, τ̂ ; the ballot (ĉ, d̂), σ̂, σ̂� can be submitted by
the adversary to the bulletin board, where σ̂� is a signature on σ̂ constructed by a
registered voter. The output of the mix will include the adversaries re-encrypted
ciphertext and the election officer will publish m ·v on the bulletin board, where
ciphertext (a�

k
, b�

k
) includes the vote v. This variant of the attack is particularly

interesting because the replayed ballots are undetectable; in particular, weeding
duplicate ballots would clearly not be sufficient to ensure privacy.

6.2.4 Privacy in the variant by Küsters & Truderung

Independently, the scheme by Lee et al. is vulnerable to a forced abstention
attack [51, §6.2], whereby the voter votes for a candidate not included on the
candidate list. This can be trivially witnessed since casting a vote for some
random nonce will result in a unique occurrence of that nonce being published on
the bulletin board by the election officer. Accordingly, Küsters & Truderung [51,
§6.3] propose a variant of the protocol by Lee et al. which they claim satisfies
coercion resistance. In the revised scheme the voter must prove to her tamper-
resistant hardware device that her ciphertext contains a valid vote. However,
our attack is still valid under one of the following assumptions: 1) there exists
a tamper-resistant hardware device which does not check the proof that the
voter’s ciphertext is correctly formed; 2) there exists a signing key which has
been extracted from a hardware device; or 3) the election officer publishes the
public part of a signing key where the private part is known to the adversary.
The attack follows immediately from our original description under assumption

31

Figure 5 Helios administrator that preserves independence but not privacy

Given the number of voters n ≥ 2 the administration process Aφ
sol

n
is defined

below, where process T is presented in Figure 4.

Aφ
sol

n
= ν skT , a1, a2, d . (| BB

φ
sol

n
| !T | {pk(skT)/zpk})

BB
φ
sol

n
= a1(y1) . c�y1� . a2(y2) . c�y2� .

a3(y3) . if φsol{y3/yballot} then
· · · an(yn) . if φsol{yn/yballot} then
d�(π1(y1),π2(y1))� . d(z1) . c�z1� .
· · · . d�(π1(yn),π2(yn))� . d(zn) . c�zn�

1 and, under assumptions 2 or 3, the adversary signs the encrypted ciphertext
without using the tamper-resistant hardware device.

6.3 Independence and privacy are unrelated properties

Intuitively, these attacks may be suggestive of a general relationship between
independence and privacy properties, however, we shall now present examples
that suggest independence does not imply privacy and vice-versa.

A protocol with independence but no privacy. Consider a variant of
the fixed Helios voting scheme in which each of the trustees publish a partial
decryption of individual ciphertexts (rather than a partial decryption of the ho-
momorphically combined ciphertexts, that is, the encrypted tally). Intuitively,
this variant preserves ballot independence but does not satisfy ballot secrecy,
since the partial decryptions allow votes to be recovered from ballots and the
link between a voter and her ballot is known. Formally, this variant is captured
by modelling the Helios administrator process as Aφ

sol

n
, defined in Figure 5. The

violation of ballot secrecy can be witnessed since

Aφ
sol

2 [V {a1/xauth}σ | V {a2/xauth}τ] �≈l A
φ
sol

2 [V {a1/xauth}τ | V {a2/xauth}σ]

where σ = {zero/xvote
1

, one/xvote
2

} and τ = {one/xvote
1

, zero/xvote
2

}. Similarly, a further
variant of the fixed Helios scheme in which each of the trustees publishes their
private key at the end of the voting phase, rather than a partial decryption of
the encrypted tally, also satisfies independence but not ballot secrecy.

A protocol with privacy but no independence. Consider a voting scheme
in which each voter broadcasts their vote on an anonymous communication
channel. Formally, the voter is modelled by the process P = c�xvote�, where
variable xvote is parametrised by the voter’s vote. For ballot secrecy it is sufficient
to show P{M/xvote} | P{N/xvote} ≈l P{N/xvote} | P{M/xvote} for all ground

32

terms M and N ; this result trivially holds by structural equivalence and hence
the scheme satisfies ballot secrecy. However, independence is intuitively violated
in this setting, because an adversary may observe the voting system and replay
a previously cast vote, that is, an adversary can cast the same vote as another
voter (without knowing which voter). In addition, it follows that early results
are available in this scheme.

We also expect some published electronic voting schemes based upon blind
signatures to satisfy ballot secrecy but not independence; in particular, a more
realistic example of a protocol that satisfies this property is the protocol by
Fujioka, Okamoto & Ohta [42] under the assumption that duplicates are not
rejected. Indeed, independence can be violated by a verbatim replay of the
signed committed vote.

We believe the existence of a weaker property: privacy and authenticated
ballots implies independence, where the term authenticated ballot means the
link between an arbitrary ballot and associated voter is known. Informally, this
can be witnessed as follows: suppose a system satisfies privacy and authenti-
cated ballots but not independence, it follows that an adversary can identify a
voter’s ballot and, since there is no independence, replay that ballot; privacy
is then violated, as we have shown in this article, hence deriving a contradiction.

In this article, we cannot make any definitive mathematical statements about
the relationship between independence and privacy properties, because indepen-
dence has not been formally defined; however, we hope these examples provide
some insight into the relationships we expect.

7 Conclusion and further discussion

This article identifies a vulnerability in the Helios 2.0 electronic voting protocol
which can be used to violate ballot secrecy. Critics may argue that an attack
is unrealistic due its high cost; indeed, in some cases, the attack may change
the outcome of an election (that is, the votes introduced for the purposes of
violating privacy may swing the result), and large scale privacy invasions would
be expensive in terms of the required number of dishonest voters. However, if
the views of these critics are to be entertained, then we must revise the standard
definitions of ballot secrecy in the literature (for example, [49, 30, 9]) because
Helios cannot satisfy them. Furthermore, we believe all voters should be consid-
ered equally and, hence, the preservation of ballot secrecy should be universal.
But, for elections using Helios, our case study demonstrates the contrary: in
French legislative elections a coalition of voters can gain some information about
a voter’s vote in an arbitrary polling station and, moreover, if the number of
voters registered at a particular polling station is small (for example, in a rural
setting), then a voter’s privacy can be violated by a few dishonest voters. It
follows that privacy of individual voters can be compromised by a few dishonest
voters and, accordingly, we believe our attack is significant. To address the prob-
lem, we have introduced a variant of the Helios protocol which has been shown

33

to satisfy definitions of ballot secrecy in the applied pi calculus and in our com-
plimentary work [15] we present a security proof in the cryptographic setting.
The vulnerability in Helios has been acknowledged by Adida & Pereira [6, 8] and
they have scheduled a fix for future Helios releases. We have also shown that
the absence of ballot independence can be similarly exploited in other electronic
voting protocols to violate privacy; in particular, we demonstrate verbatim re-
play attacks against the schemes by Sako & Kilian [70] and Schoenmakers [72],
and we show that the malleable cryptographic scheme adopted by Lee et al. [55]
can be exploited to replay a voter’s ballot or a variant of it, thereby violating
ballot secrecy. In addition, we argue that independence does not imply privacy
and vice-versa. Finally, all of the vulnerabilities in this article have been ac-
knowledged by the protocol authors, with the exception of Schoenmakers; in
particular, Adida & Pereira have acknowledged the vulnerability in Helios [6, 8]
and they have scheduled a fix for future Helios releases.

Acknowledgements

We are grateful to Ben Adida and Olivier Pereira for their constructive com-
ments, and hope this research will enhance future Helios releases. Discussion
with Mark D. Ryan helped clarify the presentation of this article and Ben Adida
informed us that Douglas Wikström is the contemporaneous discoverer of the
Helios attack. David Bernhard gave useful feedback on the variants of our attack
against Helios and Christian Cachin highlighted Josh Benaloh’s related work.
The research leading to these results was performed as part of the ProSecure
project which is funded by the European Research Council under the Euro-
pean Unions Seventh Framework Programme (FP7/2007-2013) / ERC grant
agreement n◦ 258865, and the ANR-07-SeSur-002 AVOTÉ project.

A Signatures of knowledge

Helios is reliant on signatures of knowledge to ensure secrecy and integrity of
the ElGamal scheme, and to ensure voters encrypt valid votes. This appendix
presents suitable cryptographic primitives. Let H denote a hash function. In
Helios, H is defined to be SHA-256.

A.1 Knowledge of discrete logs

Given the aforementioned cryptographic parameters (p, q, g), a signature of
knowledge demonstrating knowledge of a discrete logarithm h = log

g
gx can

be derived, and verified, as defined by [18, 17, 71].

Sign. Given x, select a random nonce w ∈R Z∗
q
. Compute witness g� =

gw mod p, challenge c = H(g�) mod q and response s = w + c · x mod q.

34

Verify. Given h and signature g�, s, check gs ≡ g� · hc (mod p), where c =
H(g�) mod q.
A valid proof asserts knowledge of x such that x = log

g
h; that is, h ≡ gx mod p.

A.2 Equality between discrete logs

Given the aforementioned cryptographic parameters (p, q, g), a signature of
knowledge demonstrating equality between discrete logarithms log

f
fx and log

g

gx can be derived, and verified, as defined by [63, 19].

Sign. Given f, g, x, select a random nonce w ∈R Z∗
q
. Compute witnesses

f � = fw mod p and g� = gw mod p, challenge c = H(f �, g�) mod q and response
s = w + c · x mod q.

Verify. Given f, g, h, k and signature f �, g�, s, check fs ≡ f � · hc (mod p) and
gs ≡ g� · kc (mod p), where c = H(f �, g�) mod q.
A valid proof asserts log

f
h = log

g
k; that is, there exists x, such that h ≡

fx mod p and k ≡ gx mod p. This signature of knowledge scheme can be ex-
tended to a disjunctive proof of equality between discrete logs (see below).

For our purposes, given a ciphertext (a, b), each trustee would derive a sig-
nature on g, a, xi, where xi is the trustee’s private key share. The ith trustee’s
signature g�

i
, a�

i
, ci, si would be verified with respect to g, a, hi, ki, where hi is the

trustee’s share of the public key and ki is the trustee’s partial decryption; that
is, the proof asserts log

g
hi = log

a
ki, as required for integrity of decryption.

A.3 Disjunctive proof of equality between discrete logs

Given the aforementioned cryptographic parameters (p, q, g), a signature of
knowledge demonstrating that a ciphertext (a, b) contains either 0 or 1 (without
revealing which), can be constructed by proving that either log

g
a = log

h
b or

log
g
a = log

h
b/gm; that is, a signature of knowledge demonstrating a disjunct

proof of equality between discrete logarithms [27, 73]. Observe for a valid ci-
phertext (a, b) that a ≡ gr mod p and b ≡ hr · gm mod p for some nonce r ∈ Z∗

q
;

hence the former disjunct log
g
gr = log

h
hr · gm is satisfied when m = 0, and

the latter log
g
gr = log

h
(hr · gm)/gm when m = 1.

This technique is generalised by [7] to allow a signature of knowledge demon-
strating that a ciphertext (a, b) contains message m, where m ∈ {min, . . . ,max}
for some system parameters min,max ∈ N. Formally, a signature of knowledge
demonstrating a disjunct proof of equality between discrete logarithms can be
derived, and verified, as follows [7, 27, 73].

Sign. Given ciphertext (a, b) such that a ≡ gr mod p and b ≡ hr · gm mod p
for some nonce r ∈ Z∗

q
, where plaintext m ∈ {min, . . . ,max}. For all i ∈

{min, . . . ,m−1,m+1, . . . ,max}, compute challenge ci ∈R Z∗
q
, response si ∈R Z∗

q

and witnesses ai = gsi/aci mod p and bi = hsi/(b/gi)ci mod p. Select a random

35

nonce w ∈R Z∗
q
. Compute witnesses am = gw mod p and bm = hw mod p, chal-

lenge cm = H(amin, bmin, . . . , amax, bmax) −
�

i∈{min,...,m−1,m+1,...,max} ci (mod q)
and response sm = w + r · cm mod q.

Verify. Given (a, b) and (amin, bmin, cmin, smin, . . . , amax, bmax, cmax, smax), for each
min ≤ i ≤ max check gsi ≡ ai · aci (mod p) and hsi ≡ bi · (b/gi)ci (mod p). Fi-
nally, check H(amin, bmin, . . . , amax, bmax) ≡

�
min≤i≤max ci (mod q).

A valid proof asserts that (a, b) is a ciphertext containing the message m such
that m ∈ {min, . . . ,max}.

B Proof of Theorem 1

B.1 Preliminaries

Before commencing our proof, let us first introduce some useful lemmas for the
applied pi calculus.

Lemma 3. Given frames ϕ,ψ, ground term M and variable x �∈ dom(ϕ) ∪
dom(ψ), we have ϕ ≈s ψ iff ϕ | {M/x} ≈s ψ | {M/x}.

Lemma 4. Given frames ϕ, ψ, terms M , N , and a variable x �∈ dom(ϕ) ∪
dom(ψ), such that ϕ = ν m̃.σ and ψ = ν ñ.τ for some names m̃, ñ and substi-
tutions σ, τ , we have ν m̃.(σ | {M/x}) ≈s ν ñ.(τ | {N/x}) implies ϕ ≈s ψ.

The proofs of these lemmas are straightforward.
The following lemma shows when static equivalence implies the same branch-

ing behaviour for conditionals.

Lemma 5. Given extended processes A ≡ C[if M = N then P else Q] and B ≡
C �[if M = N then P � else Q�] such that A ≈s B, (bn(C) ∪ bn(C �)) ∩ (fn(M) ∪
fn(N)) = ∅, fv(M)∪ fv(N) ⊆ dom(C) and fv(M)∪ fv(N) ⊆ dom(C �), for some
closing evaluation context C,C �, terms M,N and processes P, P �, Q,Q�, then
A −→ C[P] iff B −→ C �[P �] and A −→ C[Q] iff B −→ C �[Q�].

Proof. Suppose A ≡ C[if M = N then P else Q] and B ≡ C �[if M = N then P �

else Q�] such that A ≈s B, (bn(C) ∪ bn(C �)) ∩ (fn(M) ∪ fn(N)) = ∅, fv(M) ∪
fv(N) ⊆ dom(C) and fv(M)∪fv(N) ⊆ dom(C �), for some closing evaluation con-
text C,C �, terms M,N and processes P, P �, Q,Q�. Further suppose ϕ(C[if M =
N then P else Q]) = ν m̃.σ and ϕ(C �[if M = N then P � else Q�]) = ν ñ.τ , for
some names m̃ and ñ. By Lemma 6 we have ν m̃.σ ≈s ν ñ.τ , because static
equivalence is closed under structural equivalence. Moreover, by the definition
of static equivalence, for all terms U, V such that (m̃∪ ñ)∩ (fn(U)∪ fn(V)) = ∅,
we have Uσ =E V σ iff Uτ =E V τ .

Let us first show A −→ C[P] iff B −→ C �[P �]. For the ⇒ implication, suppose
A −→ C[P]. Since fv(M)∪fv(N) ⊆ dom(C), it must be the case thatMσ =E Nσ.
We have m̃∪ ñ ⊆ bn(C)∪ bn(C �) by definition of the function ϕ, and we derive
(m̃∪ñ)∩(fn(M)∪fn(N)) = ∅ because (bn(C)∪bn(C �))∩(fn(M)∪fn(N)) = ∅; it

36

follows that Mσ =E Nσ is a special case of Uσ =E V σ. We derive Mτ =E Nτ
from the implication (Uσ =E V σ) ⇒ (Uτ =E V τ). It trivially follows that
B ≡ C �[if Mτ = Mτ then P � else Q�], and by closure of internal reduction
under structural equivalence we derive B −→ C �[P �]. The ⇐ implications follows
by symmetry.

We will now show A −→ C[Q] iff B −→ C �[Q�]. For the ⇒ implication, suppose
A −→ C[Q]. It must be the case that Mσ �=E Nσ and, as before, we derive
Mτ �=E Nτ . It trivially follows that B ≡ C �[if Mτ = Nτ then P � else Q�],
and since fv(M) ∪ fv(N) ⊆ dom(C �) we are assured that terms Mτ, Nτ are
ground; by closure of internal reduction under structural equivalence we derive
B −→ C �[Q�]. The ⇐ implications follows by symmetry.

This result can naturally be extended to formula. Given φ, let us denote the
set of free names, respectively variables, in φ as fn(φ), respectively fv(φ).

Corollary 1. Given extended processes A ≡ C[if φ then P else Q] and B ≡
C �[if φ then P � else Q�] such that A ≈s B, (bn(C) ∪ bn(C �)) ∩ fn(φ) = ∅,
fv(φ) ⊆ dom(C) and fv(φ) ⊆ dom(C �), for some closing evaluation context
C,C �, formulae φ and processes P, P �, Q,Q�, then A −→ C[P] iff B −→ C �[P �]
and A −→ C[Q] iff B −→ C �[Q�].

We conclude this subsection with a useful result stated by Abadi & Four-
net [1].

Lemma 6. Static equivalence is closed by structural equivalence.

B.2 Notations and Definitions

For the remainder of this article, let � be some number of candidates, n ≥ 2 be
some number of voters, and σ and σ� be candidate substitutions.

B.2.1 Notations

We introduce the following notations for all 1 ≤ i ≤ n and 1 ≤ j ≤ �:

tally
j

= πj(y1) ∗ · · · ∗ πj(yn)

partial
j

= partial(skT , tallyj)

resultj = dec(partial
j
, tally

j
)

ciph
i,j

= penc(zpk, ri,j , x
vote
i,j

)

spk
i,j

= spk(zpk, ri,j , x
vote
i,j

, ciph
i,j
)

�spk
i

= spk(zpk, ri,1 ◦ · · · ◦ ri,�, xvote
i,1 + · · ·+ xvote

i,�
, ciph

i,1 ∗ · · · ∗ ciphi,�
)

ballot i = (ciph
i,1, . . . , ciph

�
i,�
, spk

i,1, . . . , spk
�
1,�,�spk i

)

τL = {M/xvote
1,i

| for all 1 ≤ i ≤ � such that{M/xvote
i

} ∈ σ}
∪ {N/xvote

2,i
| for all 1 ≤ i ≤ � such that {N/xvote

i
} ∈ σ�}

τR = {N/xvote
1,i

| for all 1 ≤ i ≤ � such that{N/xvote
i

} ∈ σ�}
∪ {M/xvote

2,i
| for all 1 ≤ i ≤ � such that {M/xvote

i
} ∈ σ}

37

B.2.2 Definitions

Given N3, . . . , Nk terms such that fv(Nj) ⊆ {zpk, y1, . . . , yj−1}, we define

σ
Ñk

= {ballot1/y1, ballot2/y2,Nj/yj | j ∈ {3, . . . , k}}

Given an integer k ∈ N+ and a term N , we define Nk (resp. k.N) to be
N ◦ · · · ◦N (resp. N + · · ·+N) where N is replicated k times.

We associate to the equational theory E a rewriting system RE by orienting
the Equations E1,E2 and E5 to E9 from left to right. We denote by E� the
equational theory that asserts functions +, ∗, ◦ are commutative and associative
in addition to Equations E3 and E4. RE modulo E� forms a convergent rewriting
system (modulo E�). We denote by u →E v (or often simply u → v) if u modulo
E� can be rewritten to v modulo E�, using RE . We denote by u ↓ a normal
form of u modulo E�.

We will say that a term M is free w.r.t. a set of names ñ if it does not contain
any name of ñ. We simply say that a term is free when the set of names is clear
from the context (typically free w.r.t. to the restricted names of a frame).

B.3 Some useful lemmas

We prove some useful results about our definitions and notations. We first show
that ballots accepted by the bulletin board must have a particular form due to
the checks performed by φsol

�,n̄
.

Lemma 7. Let � be a number of candidates, n̄ ≥ 2 be an integer, and M be term
free w.r.t. r1,1, . . . , r1,�, r2,1, . . . , r2,� and such that fv(M) ⊆ {zpk, y1, y2}. Let
substitution τ ∈ {τL, τR} and substitution σ = {pk(skT)/zpk, ballot1/y1, ballot2/y2}.
If [[φsol

�,n̄
{M/yballot}στ]] = true, then there exists a term

M � = (penc(zpk, N1,M1), . . . , penc(zpk, N�,M�), S1, . . . , S�+1)

for some terms M1, . . . ,M�, N1, . . . , N�, S1, . . . , S�+1 such that Mστ =E M �στ ,
M � is free w.r.t. r1,1, . . . , r1,�, r2,1, . . . , r2,�, fv(M �) ⊆ {zpk, y1, y2}, and {M1/xvote

1
,

. . . ,M�/xvote
�

} is a candidate substitution.

Proof. Let M , τ and σ be defined as in the Lemma, and suppose [[φsol
�,n̄

{M/yballot}
στ]] = true. We say that a term N is a minimal recipe if it is minimal (in
size) among the terms N � such that Nστ =E N �στ . It is easy to check by
induction on the size of N that, whenever N = f(N1, . . . , Nk) with f ∈ {dec,πj |
1 ≤ j ≤ �} then either N = πj(x) for some j and variable x or (Nστ) ↓ =
f((N1στ) ↓, . . . , (Nkστ) ↓) (*).

W.l.o.g. suppose M � is a minimal recipe such that Mστ =E M �στ and M �

is free w.r.t. r1,1, . . . , r1,�, r2,1, . . . , r2,�. Further suppose w.l.o.g. that M � is in
normal form. We know [[φsol

�,n̄
{M �/yballot}στ]] = true. Thus it must be the case

that M �στ is of the form (U1, . . . , U�, V1, . . . , V�,W), where for 1 ≤ j ≤ � we
have Uj = penc(pk(skT), Rj , Cj), Cj ∈ {zero, one} and {C1/xvote

1
, . . . ,C�/xvote

�
} is

38

a candidate substitution. Due to the disequality tests in φsol
�,n̄

, it must be the case
that M � is of the form (T1, . . . , T�, S1, . . . , S�, Z) and Tj �∈ {πk(yi) | 1 ≤ k ≤ �}.
We have Tjστ = penc(Aj , Bj , Cj). Assume first that Tj = πk(T �

j
). Due to (*),

we must have T �
j
variable, which is excluded by the fact that Tj �∈ {πk(yi) | 1 ≤

k ≤ �}. Thus, due to the equational theory and (*), it must be the case that
Tj = penc(Kj , Nj ,Mj) ∗

�
1≤k≤�

πk(y1)αk ∗ πk(y2)βk where each component
is optional and αi ∈ N. By convention αi = 0 or βi = 0 means that the
component is skipped. Assume that one of the αi or βi is not null. Then
Rj = r ◦ R�

j
with r ∈ {r1,1, . . . , r1,�, r2,1, . . . , r2,�}. Due to the tests in φsol

�,n̄
, we

know Vj = spk(pk(skT), Rj , Cj , V �
j
).

Let us show that Vj cannot be a signature of knowledge that appears in
either ballot1τL or ballot2τL. Assume (by contradiction) that Vj is a signature
of knowledge that appears in either ballot1τL or ballot2τL. Due to weeding,
we cannot have Vj = spk

i,k
. Indeed, due to the equational theory, this would

imply that Uj is equal to a previsouly received cyphertext, which is excluded by

weeding. Thus we must have Vj = �spk
i
for some i ∈ {1, 2}. Then Rj = ri,1 ◦

· · ·◦ri,�. In that case, let us have a look at W . We know W = spk(pk(skT), R1 ◦
· · · ◦ R�, C1 + · · · + C�, U1 ∗ · · · ∗ U�). Thus W cannot be one of the signatures
of knowledge that appear in ballot1τL or ballot2τL (the depth of R1 ◦ · · · ◦ R�

is too big). Therefore (and due to the equational theory and minimality of Z),
we must have Z = spk(Z1, Z2, Z3, Z4). Since ri,1 ◦ · · · ◦ ri,� is not deducible, we
cannot have Z2στ =E ri,1 ◦ · · · ◦ ri,� ◦R1 ◦Rj−1 ◦Rj+1 ◦R�, contradiction.

We must have Sj = spk(S1
j
, S2

j
, S3

j
, S4

j
), since Vj cannot be one of the sig-

natures of proof of knowledge that appear in ballot1τL or ballot2τL, and due
to the equational theory. Since r is not deducible, we cannot have S2

j
στ =E

r ◦ R�
j
, contradiction. We therefore deduce that Tj = penc(Kj , Nj ,Mj). More-

over, Kjστ =E pk(skT) implies Kj = zpk and Mjστ =E zero or one implies
Mj ∈ {zero, one} due to the equational theory. Due to the validity check, we
also deduce that {M1/xvote

1
, . . . ,M�/xvote

�
} is a candidate subsitution.

Lemma 8. Let φ1 = ν skT , d, r1,1, . . . , r1,�, r2,1, . . . , r2,� . ({ballot1/x1} |
{ballot2/x2} | {pk(skT)/zpk}). We have φ1τL ≈s φ1τR.

Proof. First, we decompose φ1 and consider φ = ν ñ.θ, where ñ = {skT , d, r1,1,
. . . , r1,�, r2,1, . . . , r2,�} and θ = {pk(skT)/zpk} |

�
{ciphi,j/xciphi,j

} | {spk i,j/xspki,j
} |

{�spk i/x �spki
}
��� i ∈ {1, 2}∧ 1 ≤ j ≤ �

�
. It follows immediately that φ1τL ≈s φ1τR

if and only if φτL ≈s φτR.
Secondly, witness that the adversary can arbitrarily combine ciphertexts

from the frame – namely, ciphertexts ciph1,1, ciph2,1, . . . , ciph1,�, ciph2,� – with
ciphertexts in the frame or freshly constructed ciphertexts, we enrich the frame
φ with any such combination of ciphertexts. Formally, for any αj ,βj ∈ N and
terms P,R we define Cα1,...,α�,β1,...,β�,α4,P,R as follows:

penc(pk(skT), R ◦�1≤j≤�r
αj

1,j ◦ r
βj

2,j , P +
�

1≤j≤�

αj .x
vote
1,j + βj .x

vote
2,j)

39

We define the extended frame φe below.

φe = ν ñ.(θ | {Cα1,α2,α3,α4,P,R/xα1,α2,α3,α4,P,R | α1,α2,α3,α4 ∈ N and terms

P,R s.t. (fn(P) ∪ fn(R)) ∩ ñ = ∅, fv(P,R) ⊆ dom(φe) with no cycle})

Note that φe is infinite. By Lemma 4, it is sufficient to show φeτL ≈s φeτR. We
introduce the following two claims.

Claim 1. Let M be a term such that fv(M) ∩ (fv(φe) \ dom(φe)) = ∅ and
fn(M) ∩ ñ = ∅. If Mφeτ → U for some τ ∈ {τR, τL}, then there exists N such
that U =E� Nφeτ and Mφeτ � → Nφeτ � for any τ � ∈ {τR, τL}.
Claim 2. Let M,N be two terms such that (fv(M) ∪ fv(N)) ∩ (fv(φe) \
dom(φe)) = ∅ and fn(M,N) ∩ ñ = ∅. If Mφeτ =E� Nφeτ for some τ ∈
{τR, τL}, then Mφe =E� Nφe.

The above claims allow the construction of our proof. Let M,N be two
terms such that fn(M,N) ∩ ñ = ∅ and MφeσÑk

τL =E NφeσÑk
τL. We assume

(possibly by renaming) that (fv(M) ∪ fv(N)) ∩ (fv(φe)\dom(φe)) = ∅. We have
MφeτL =E NφeτL. Thus (MφeτL) ↓ =E� (NφeτL) ↓. Applying repeatedly
Claim 1, we deduce that there exists M � such that (MφeτL) ↓ = M �φeτL and
MφeτR →∗ M �φeτR. Similarly, there exists N � such that (NφeτL) ↓ = N �φeτL
and NφeτR →∗ N �φeτR. From M �φeτL =E� N �φeτL and Claim 2, we deduce
M �φe =E� N �φe. Therefore M �φeτR =E� N �φeτR and thus MφeτR =E NφeτR,
that is MφeσÑk

τR =E NφeσÑk
τR.

Proof of Claim 1: This result is proved by inspection of the rewrite rules,
using the fact that the decryption key skT is not deducible. More precisely,
assume that Mφeτ → U for some τ ∈ {τR, τL}. It means that there exists a
rewriting rule l → r ∈ RE and a position p such that Mφeτ |p =E� lθ for some
θ. p cannot occur below M since φeτ is in normal form. If M |p = lθ� for some
θ� then we conclude that we can rewrite M as expected. The only interesting
case is thus when M |p is not an instance of l but Mφeτ |p is. By inspection
of the rules, l → r can only correspond to one of the three equations E5, E6
or E7. The case of Equations E5 or E6 is ruled out by the fact that skT is not
deducible from φeτ . The last case is when the rule corresponding to Equation E7
is applied. Then it must be the case that M |p = x ∗ y with x, y variables of
dom(φe). By construction of φe, we have that (x ∗ y)φe → zφe (applying the
rule corresponding to Equation E7), thus the result.

Proof of Claim 2: Assume by contradiction that there exist M,N two terms
such that Mφeτ =E� Nφeτ for some τ ∈ {τR, τL} and Mφe �=E� Nφe. Consider
M,N two minimal terms that satisfy this property. By case inspection, it must
be the case that M and N are both variables. Thus we have xφeτ =E� yφeτ
and xφe �=E� yφe with x, y ∈ dom(φe), x �= y. The head symbol of xφeτ must
be penc. Then by construction of φe, τ does not change the randomness used
in penc and the randomness uniquely determines the variable, which implies
x = y, contradiction.

40

We now demonstrate that tallying valid ballots yields the same result in
both worlds.

Lemma 9. Let �, be a number of candidates. Let N3, . . . , Nk be terms, free
w.r.t. skT , d, r1,1, . . . , r1,�, r2,1, . . . , r2,�. Let θ

Ñk
= {Nk/yk | k ∈ {3, . . . , n}}

such that NiθÑk
στ is a valid ballot for any τ ∈ {τL, τR}. Let σ = {pk(skT)/zpk,

ballot1/y1, ballot2/y2}. Then

result i θÑk
στL =E result i θÑk

στR

and both resultj θ
Ñk

στL and resultj θ
Ñk

στR are terms built from constants one
and zero by application of the function symbol +.

Proof. We first define N �
i
= NiθÑk

. By Lemma 7, we know that πj(N �
i
στL) =E

penc(zpk, U i

j
, V i

j
)στL for some free terms U i

j
, V i

j
. By Lemma 8, we know that

φ1τL ≈s φ1τR thus we can deduce πj(N �
i
στR) =E penc(zpk, U i

j
, V i

j
)στR. The

equational theory ensure that penc(K,U, V) =E penc(K �, U �, V �) implies K =E

K �, U =E U �, and V =E V �. Thus we deduce V i

j
στL =E V i

j
στR. Therefore,

we get that resultj θ
Ñk

στL =E xvote
1,j τL + xvote

2,j τL + +(V 3
j
+ · · · + V k

j
)στL =E

xvote
1,j τR + xvote

2,j τR ++(V 3
j
+ · · ·+ V k

j
)στR =E resultj θ

Ñk
στR.

Moreover, V i

j
στ ∈ {one, zero} is ensured by the fact that NiθÑk

στ is a valid
ballot. Therefore we deduce that both resultj θ

Ñk
στL and resultj θ

Ñk
στR are

terms built from constants one and zero by application of the function symbol +.

We finally show that the encrypted ballots of honest voters and the partial
decryptions do not leak any information to the adversary.

Lemma 10. Let φ6 = ν skT , d, r1,1, . . . , r1,�, r2,1, . . . , r2,� . ({ballot1/x1} |
{ballot2/x2} | {pk(skT)/zpk} | {partialj/xpartial

j
| 1 ≤ j ≤ �}). We have φ6σÑk

τL ≈s

φ6σÑk
τR.

The proof is very similar to the proof of Lemma 8

Proof. First, we decompose φ6 and consider φ = ν ñ.θ where ñ = {skT , d, r1,1,
. . . , r1,�, r2,1, . . . , r2,�} and θ = {pk(skT)/zpk} |

�
{partialj/xpartialj

} | {ciphi,j/xciphi,j
}

| {spk i,j/xspki,j
} | {�spk i/x �spki

}
��� i ∈ {1, 2} ∧ 1 ≤ j ≤ �

�
. It follows immediately

that φ6τL ≈s φ6τR if and only if φτL ≈s φτR.
Secondly, witness that the adversary can arbitrarily combine ciphertexts

from the frame – namely, ciphertexts ciph1,1, ciph2,1, . . . , ciph1,�, ciph2,� – with
ciphertexts in the frame or freshly constructed ciphertexts, we enrich the frame
φ with any such combination of ciphertexts. Formally, for any αj ,βj ∈ N and
terms P,R we define Cα1,...,α�,β1,...,β�,α4,P,R as follows:

penc(pk(skT), R ◦�1≤j≤�r
αj

1,j ◦ r
βj

2,j , P +
�

1≤j≤�

αj .x
vote
1,j + βj .x

vote
2,j)

41

We define the extended frame φe below.

φe = ν ñ.(θ | {Cα1,α2,α3,α4,P,R/xα1,α2,α3,α4,P,R | α1,α2,α3,α4 ∈ N and terms

P,R s.t. (fn(P) ∪ fn(R)) ∩ ñ = ∅, fv(P,R) ⊆ dom(φe) with no cycle})

Note that φe is infinite. By Lemma 4, it is sufficient to show φeτL ≈s φeτR. Let
φ�
e
= φeσÑk

. We introduce the following two claims.

Claim 3. Let M be a term such that fv(M) ∩ (fv(φ�
e
) \ dom(φ�

e
)) = ∅ and

fn(M) ∩ ñ = ∅. If Mφ�
e
τ → U for some τ ∈ {τR, τL} then there exists N such

that U =E� Nφ�
e
τ and Mφ�

e
τ � → Nφ�

e
τ � for any τ � ∈ {τR, τL}.

Claim 4. Let M,N be two terms such that (fv(M) ∪ fv(N)) ∩ (fv(φ�
e
) \

dom(φ�
e
)) = ∅ and fn(M,N) ∩ ñ = ∅. If Mφ�

e
τ =E� Nφ�

e
τ for some τ ∈ {τR, τL}

then Mφ�
e
=E� Nφ�

e
.

The above claims allow the construction of our proof. Let M,N be two
terms such that fn(M,N) ∩ ñ = ∅ and Mφ�

e
σ
Ñk

τL =E Nφ�
e
σ
Ñk

τL. We assume
(possibly by renaming) that (fv(M) ∪ fv(N)) ∩ (fv(φ�

e
)\dom(φ�

e
)) = ∅. We have

Mφ�
e
τL =E Nφ�

e
τL. Thus (Mφ�

e
τL) ↓ =E� (Nφ�

e
τL) ↓. Applying repeatedly

Claim 3, we deduce that there exists M � such that (Mφ�
e
τL) ↓ = M �φ�

e
τL and

Mφ�
e
τR →∗ M �φ�

e
τR. Similarly, there exists N � such that (Nφ�

e
τL) ↓ = N �φ�

e
τL

and Nφ�
e
τR →∗ N �φ�

e
τR. From M �φ�

e
τL =E� N �φ�

e
τL and Claim 4, we deduce

M �φ�
e
=E� N �φ�

e
. Therefore M �φ�

e
τR =E� N �φ�

e
τR and thus Mφ�

e
τR =E Nφ�

e
τR,

that is Mφ�
e
σ
Ñk

τR =E Nφ�
e
σ
Ñk

τR.

Proof of Claim 3: This result is proved by inspection of the rewrite rules,
using the fact that the decryption key skT is not deducible. More precisely,
assume that Mφ�

e
τ → U for some τ ∈ {τR, τL}. It means that there exists a

rewriting rule l → r ∈ RE and a position p such that Mφ�
e
τ |p =E� lθ for some

θ. p cannot occur below M since φ�
e
τ is in normal form. If M |p = lθ� for some

θ� then we conclude that we can rewrite M as expected. The only interesting
case is thus when M |p is not an instance of l but Mφ�

e
τ |p is. By inspection of

the rules, l → r can only correspond to one of the three equations E5, E6 or E7.
The case of Equations E5 is ruled out by the fact that skT is not deducible
from φ�

e
τ . For Equation E6, it must be the case that Mφ�

e
|p = resultjσÑk

.
Using Lemma 9, we deduce that Mφ�

e
|pτ → R modulo E� where R is a sum

of ones and zero. Therefore Mφ�
e
τ → M [R]pφ�

e
τ . The last case is when the

rule corresponding to Equation E7 is applied. Then it must be the case that
M |p = x ∗ y with x, y variables of dom(φ�

e
). By construction of φ�

e
, we have

that (x ∗ y)φ�
e
→ zφ�

e
(applying the rule corresponding to Equation E7), thus

the result.

Proof of Claim 4: Assume by contradiction that there exist M,N two terms
such that Mφ�

e
τ =E� Nφ�

e
τ for some τ ∈ {τR, τL} and Mφ�

e
�=E� Nφ�

e
. Consider

M,N two minimal terms that satisfy this property. By case inspection, it must
be the case that M and N are both variables. Thus we have xφ�

e
τ =E� yφ�

e
τ

and xφ�
e
�=E� yφ�

e
with x, y ∈ dom(φ�

e
), x �= y. The head symbol of xφ�

e
τ

42

Figure 6 Partial evolutions of the Helios process specification
We introduce some partial evolutions of the Helios process specification:

A1 = ν skT , a2, d, r1,1, . . . , r1,�, y1 . (| {ballot1/y1} | {pk(skT)/zpk})
A2 = A1[| {ballot1/x1}]
A3 = ν skT , d, r1,1, . . . , r1,�, r2,1, . . . , r2,�, y1, y2 . (|

{ballot1/y1} | {ballot2/y2} | {ballot1/x1} | {pk(skT)/zpk})
A4 = A3[| {ballot2/x2}]
A5 = A4[ν ypartial.(| {partials/ypartial}]
A6 = A5[| {partials/xpartial})]
A7 = A6[{results/xresult}]

BB1
n

= c�y1� . BB2
n

BB2
n

= a2(y2) . BB3
n

BB3
n

= c�y2� . BB
�

3,n

BB
�

j,n
= aj(yj) . if φsol

�,j−1{yj/yballot} then
· · · an(yn) . if φsol

�,n−1{yn/yballot} then
BB4

n

BB
��

j,n
= if φsol

�,j−1{yj/yballot} then
aj+1(yj+1) . if φsol

�,j
{yj+1/yballot} then

· · · an(yn) . if φsol
�,n−1{yn/yballot} then

BB4
n

BB4
n

= d�(tally1, . . . , tally�)� . BB5
n

BB5
n

= d(ypartial) . BB6
n

BB6
n

= c�ypartial� . BB7
n

BB7
n

= c�(dec(π1(ypartial), tally�), . . . , dec(π�(ypartial), tally�))�

T 1
�

= d�partials�

where partials = (partial(skT , tally1), . . . , partial(skT , tally�)) and results =
(dec(partial(skT , tally1), tally1), . . . , dec(partial(skT , tally�), tally�)).

must be penc or partial. Assume first that the head symbol of xφ�
e
τ is penc.

Then by construction of φ�
e
, τ does not change the randomness used in penc

and the randomness uniquely determines the variable, which implies x = y,
contradiction. Assume now that the head symbol of xφ�

e
τ is partial. Then it must

be the case that tally
j1
σ
Ñk

τ =E� tally
j2
σ
Ñk

τ while tally
j1
σ
Ñk

�=E� tally
j2
σ
Ñk

.
This would require xciphi,j1

τ = x�
ciphi�,j2

τ for some i, i�, which is excluded due

to the randomness.

B.4 Proof of Theorem 1

We introduce some partial evolutions of the Helios process specification in Fig-
ure 6 and define a relationR between processes in Figure 7. We clearly have that

43

Figure 7 Definition of the relation R
Consider the smallest relation R which is closed under structural equivalence
and includes the following pairs of extended processes, where for all 3 ≤ j ≤ n,
terms M , terms N1, . . . , Nj , substitutions σ = {Nk/yk | k ∈ {3, . . . , n}} and dis-
tinct variables xpartial, xresult, x1, x2 such that NjστL and NjστR are valid ballot,
fv(M)∪

�
3≤i≤j

fv(Ni) ⊆ dom(A4) and (fn(M)∪
�

3≤i≤j
fn(Ni))∩ bn(A4) = ∅.

Aφ
sol

�,n
[V {a1/xauth}σ | V {a2/xauth}σ�], Aφ

sol

�,n
[V {a1/xauth}σ� | V {a2/xauth}σ] (R1)

A1[V {a2/xauth}σ� | BB1
n
| T�]τL, A1[V {a2/xauth}σ | BB1

n
| T�]τR (R2)

A2[V {a2/xauth}σ� | BB2
n
| T�]τL, A2[V {a2/xauth}σ | BB2

n
| T�]τR (R3)

A3[BB3
n
| T�]τL, A3[BB3

n
| T�]τR (R4)

A4[BB
�

j,n
{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T�]τL,

A4[BB
�

j,n
{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T�]τR (R5)

A4[BB
��

j,n
{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T�]τL,

A4[BB
��

j,n
{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T�]τR (R6)

A4[0 | T�]τL, A4[0 | T�]τR (R7)

A4[BB4
n
τ | T�]τL, A4[BB4

n
τ | T�]τR (R8)

A4[BB5
n
| T 1

�
]ττL, A4[BB5

n
| T 1

�
]ττR (R9)

A5[BB6
n
]ττL, A5[BB6

n
]ττR (R10)

A6[BB7
n
]ττL, A6[BB7

n
]ττR (R11)

A7ττL, A7ττR (R12)

Aφ

�,n
[V {a1/xauth}σ | V {a2/xauth}σ�] R Aφ

�,n
[V {a1/xauth}σ� | V {a2/xauth}σ]. We now

wish to show that R ∪ R−1 satisfies the three properties of Definition 2. By
symmetry we focus on R. Overwriting the definition, we may say that a term
N is a valid ballot if both NστL and NστR are valid ballots, where σ is defined

44

Figure 7.

Static equivalence. We must show for all extended processes A and B, where
A R B, that A ≈s B. By Lemma 4, it is sufficient to show A7ττL ≈s A7ττR
for any N3, . . . , Nn valid ballots. Let φ7 = ν skT , d, r1,1, . . . , r1,�, r2,1, . . . , r2,� .
({ballot1/x1} | {ballot2/x2} | {pk(skT)/zpk} | {(partial1, . . . , partialn)/xpartial} |
{(result1, . . . , resultn)/xresult}). We have to show φ7σN3,...,NnτL ≈s φ7σN3,...,NnτR.
By Lemma 9, we deduce that (result1, . . . , result�)σN3,...,NnτL = (result1, . . . ,
result�)σN3,...,NnτR and is equal to a constant (always deducible) term. Thus by
Lemma 3, it is sufficient to show that φ6σN3,...,NnτL ≈s φ6σN3,...,NnτR, where
φ6 as defined in Lemma 10. We conclude by Lemma 10.

Internal reductions. We must show for all extended processes A and B,
where A R B, that if A −→ A� for some A�, then B −→∗ B� and A� R B�

for some B�. We observe that if A ≡ A1[V {a2/xauth}σ� | BB1
n

| T�]τL and
B ≡ A1[V {a2/xauth}σ | BB1

n
| T�]τR – that is, A R B by (R2) – then there is no

extended process A� such that A −→ A�; similarly, for (R4), (R5), (R7), (R10),
(R11) and (R12). We proceed by case analysis on the remaining cases.

(R1) We haveA ≡ Aφ
sol

�,n
[V {a1/xauth}σ | V {a2/xauth}σ�] andB ≡ Aφ

sol

�,n
[V {a1/xauth}σ�

| V {a2/xauth}σ]. If A −→ A�, then it must be the case that A ≡ C[a1�y1�.0 |
a1(y1).BB1

n
]τL and A� ≡ C[0 | BB1

n
]τL, where C[] = A1[ν a1.(| V

{a2/xauth}σ� | T�)]. It follows from B ≡ C �[a1�y1�.0 | a1(y1).BB1
n
]τR,

that B −→ B�, where C �[] = A1[ν a1.(| V {a2/xauth}σ | T�)] and B� =
A1[V {a2/xauth}σ | BB1

n
| T�]τR. Since A1[V {a2/xauth}σ� | BB1

n
| T�]τL R

B� and A� ≡ A1[V {a2/xauth}σ� | BB1
n
| T�]τL, we derive A� R B� by the

closure of R under structural equivalence.

(R3) This case is similar to (R1). We have A ≡ A2[V {a2/xauth}σ� | BB2
n
| T�]τL

and B ≡ A2[V {a2/xauth}σ | BB2
n
| T�]τR. If A −→ A�, then it must be the

case that A ≡ C[a2�y2�.0 | a2(y2).BB3
n
]τL and A� ≡ C[0 | BB3

n
]τL, where

C[] = A3[ν a2.(| T�)]. It follows from B ≡ C[a2�y2�.0 | a2(y2).BB3
n
]τR,

that B −→ B�, where B� = A3[BB3
n
| T�]τR. Since A3[BB3

n
| T�]τL R B�

and A� ≡ A3[BB3
n
| T�]τL, we derive A� R B� by the closure of R under

structural equivalence.

(R6) We have A ≡ A4[BB
��

j,n
{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T�]τL and

B ≡ A4[BB
��

j,n
{Nk/yk | k ∈ {3, . . . , j − 1}}{M/yj} | T�]τR for some integer

j ∈ {3, . . . , n}, valid ballots N3, . . . , Nj−1 and term M such that fv(M) ∪�
3≤i≤j−1 fv(Ni) ⊆ dom(A4) and (fn(M)∪

�
3≤i≤j−1 fn(Ni))∩bn(A4) = ∅.

If A −→ A�, then it must be the case that A ≡ C[if φsol
�,j−1{M/yballot,

ballot1/y1, ballot2/y2,N3/y3, . . . ,Nj−1/yj−1} then P else 0]τL, where C[] =

A4[| T�]. Furthermore, if j < n, then P = BB
�

j+1,n{Nk/yk | j > 3 ∧ k ∈
{3, . . . , j − 1}}{M/yj}; otherwise P = BB4

n
{Nk/yk | j > 3 ∧ k ∈ {3, . . . ,

45

j−1}}{M/yj}. We also have B ≡ C[if φsol
�,j−1{M/yballot, ballot1/y1, ballot2/y2,

N3/y3, . . . ,Nj−1/yj−1} then P else 0]τR.

Let σR = {ballot1τR/x1, ballot2τR/x2, pk(skT)/zpk}, we have ballot1τR is syn-
tactically equal to x1σR and ballot2τR is syntactically equal to x2σR, it fol-
lows thatB ≡ C[if φsol

�,j−1{M/yballot, x1σR/y1, x2σR/y2,N3/y3, . . . ,Nj−1/yj−1}
then P else 0]τR and, moreover, since ϕ(C[0]τR) = ν skT , d, r1,1, . . . , r1,�,
r2,1, . . . , r2,�, y1, y2.σR we haveB ≡ C[if φsol

�,j−1{M/yballot, x1/y1, x2/y2,N3/y3,
. . . ,Nj−1/yj−1} then P else 0]τR. We proceed by case analysis on the
structure of A�:

– If A� ≡ C[P]τL, then by closure of internal reduction under struc-
tural equivalence we have C[if φsol

�,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,
Nj−1/yj−1} then P else 0]τL −→ C[P]τL because ballot1τL is syntac-
tically equal to x1σL, ballot2τL is syntactically equal to x2σL and
ϕ(C[0]τL) = ν skT , d, r1,1, . . . , r1,�, r2,1, . . . , r2,�, y1, y2.σL, where σL =
{ballot1τL/x1, ballot2τL/x2, pk(skT)/zpk}.
Assume A and B satisfy the preconditions of Corollary 1, it follows
that B −→ B� = A4[P | T�]τR. We now prove our assumption. Since
A R B, it follows by Condition 1 of Definition 2 that A ≈s B. Let
φ = φsol

�,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1}. By inspec-

tion of φsol
�,j−1, we have fn(φ) = fn(M) ∪

�
3≤i≤j−1 fn(Ni) and since

bn(C) = bn(A4) it follows that bn(C) ∩ fn(φ) = ∅; we also have
fv(φ) = {x1, x2, zpk}∪ fv(M)∪

�
3≤i≤j−1 fv(Ni) and since dom(C) =

{x1, x2, zpk} it follows that fv(φ) ⊂ dom(C). We have shown that the
preconditions of Corollary 1 are satisfied, hence B −→ B� = A4[P |
T�]τR. It remains to show A� R B�.

We know [[φsol
�,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1}σL]] =

true and [[φsol
�,j−1{M/yballot, x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1}σR]] =

true; it follows, for τ ∈ {τL, τR}, that [[φsol
�,j−1{M/yballot}{pk(skT)/zpk,

ballot1/y1, ballot2/y2,N3/y3, . . . ,Nj−1/yj−1}τ]] = true and we know that
M is a valid ballot. We continue by case analysis on the structure of
P :

1. If P = BB
�

j+1,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}}{M/yj},
then we have j < n. Let j� = j + 1 and Nj = M , observe P =
BB

�

j�,n{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j}} and A4[BB
�

j�,n{Nk/yk |
j > 3 ∧ k ∈ {3, . . . , j}} | T�]τL R B�. The result A� R B� follows
by closure of R under structural equivalence.

2. If P = BB4
n
{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}}{M/yj}, then it

must be the case that j = n. Let Nj = M and hence P = BB4
n
τ .

Since A4[BB4
n
τ | T�]τL R B� and A� ≡ A4[BB4

n
τ | T�]τL, we

derive A� R B� by the closure of R under structural equivalence.

– A� ≡ C[0]τL, then similarly to above we have C[if φsol
�,j−1{M/yballot,

x1/y1, x2/y2,N3/y3, . . . ,Nj−1/yj−1} then P else 0]τL −→ C[0]τL and it
follows by Corollary 1 that B −→ B� = C[0]τR. Since A4[0 | T�] R B�

46

and A� ≡ A4[0 | T�], we derive A� R B� by the closure of R under
structural equivalence.

(R8) We have A ≡ A4[BB4
n
τ | T�]τL and B ≡ A4[BB4

n
τ | T�]τR, where BB4

n
=

d�(tally1, . . . , tally�)� . BB5
n
and T� = d(ytally) . d�(partial(skT ,π1(ytally)),

. . . , partial(skT ,π�(ytally)))�. If A −→ A�, then it must be the case that
A� ≡ A4[BB5

n
| T 1

�
]ττL. It follows immediately that B −→ B�, where

B� = A4[BB5
n
| T 1

�
]ττR. We derive A� R B� by the closure of R under

structural equivalence.

(R9) We have A ≡ A4[BB5
n
| T 1

�
]ττL and B ≡ A4[BB5

n
| T 1

�
]ττR. If A −→ A�,

then it must be the case that A ≡ A5[d�ypartial�.0 | d(ypartial).BB6
n
}]ττL

and A� ≡ A5[0 | BB6
n
]ττL. It follows from B ≡ A5[d(ypartial).BB6

n
|

d�ypartial�.0]ττR that B −→ B�, where B� = A5[BB6
n
]ττR. We derive A� R

B� by the closure of R under structural equivalence.

Labelled reductions. We must show for all extended processes A and B,
where A R B, that if A

α−→ A� such that fv(α) ⊆ dom(A) and bn(α)∩ fn(B) = ∅,
then B −→∗ α−→−→∗ B� and A� R B� for some B�. We observe cases (R1), (R3),
(R6), (R7), (R8), (R9) and (R12) cannot be reduced by labelled reductions and
proceed by case analysis on the remaining cases.

(R2) We have A ≡ A1[V {a2/xauth}σ� | BB1
n
| T�]τL and B ≡ A1[V {a2/xauth}σ |

BB1
n
| T�]τR. If A

α−→ A� such that fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅,
then it must be the case that A ≡ A1[V {a2/xauth}σ� | c�y1�.BB2

n
| T�]τL

and A� ≡ A2[V {a2/xauth}σ� | BB2
n

| T�]τL for some variable x1 where
α = ν x1.c�x1� and x1 �= zpk. It follows from B ≡ A1[V {a2/xauth}σ |
c�y1�.BB2

n
| T�]τR, that B

α−→ B� where B� = A2[V {a2/xauth}σ | BB2
n
|

T�]τR. We have A2[V {a2/xauth}σ� | BB2
n
| T�]τL R B� and by closure of R

under structural equivalence A� R B�.

(R4) We have A ≡ A3[BB3
n
| T�]τL and B ≡ A3[BB3

n
| T�]τR. If A

α−→ A� such
that fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then it must be the case
that A ≡ A3[c�y2�.BB

�

3,n | T�]τL and A� ≡ A4[BB
�

3,n | T�]τL for some
variable x2, where α = ν x2.c�x2� and x2 �∈ {x1, zpk}. It follows from

B ≡ A3[c�y2�.BB
�

3,n | T�]τR, that B
α−→ B�, where B� = A4[BB

�

3,n | T�]τR.

Since A4[BB
�

3,n | T�]τL = A4[BB
�

j,n
{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} |

T�]τL and A4[BB
�

3,n | T�]τR = A4[BB
�

j,n
{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j −

1}} | T�]τR when j = 3, we have A4[BB
�

3,n | T�]τL R B� and derive
A� R B� by closure of R under structural equivalence A� R B�.

(R5) We have A ≡ A4[BB
�

j,n
{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T�]τL and

B ≡ A4[BB
�

j,n
{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T�]τR for some in-

teger j ∈ {3, . . . , n} and terms N3, . . . , Nj−1, where
�

3≤i≤j−1 fv(Ni) ⊆
dom(A4) and bn(A4) ∩

�
3≤i≤j−1 fn(Ni) = ∅. If A

α−→ A� such that
fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then it must be the case that

47

A ≡ A4[aj(yj).BB
��

j,n
{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}} | T�]τL and A� ≡

A4[BB
��

j,n
{Nk/yk | j > 3 ∧ k ∈ {3, . . . , j − 1}}{M/yj} | T�]τL, where α =

c(M) for some term M . It follows from B ≡ A4[aj(yj).BB
��

j,n
{Nk/yk | j >

3∧k ∈ {3, . . . , j−1}} | T�]τR, that B
α−→ B�, where B� = A4[BB

��

j,n
{Nk/yk |

j > 3∧ k ∈ {3, . . . , j − 1}}{M/yj} | T�]τR. We have A4[BB
��

j,n
{Nk/yk | k ∈

{3, . . . , j − 1}}{M/yj} | T�]τL R B�, and derive A� R B� by closure of R
under structural equivalence.

(R10) We have A ≡ A5[BB6
n
]ττL and B ≡ A5[BB6

n
]ττR. If A

α−→ A� such that
fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then it must be the case that
A� ≡ A6[BB7

n
]ττL for some variable xpartial, where α = ν xpartial.c�xpartial�

and xpartial �∈ {x1, x2, zpk}. It follows immediately that B
α−→ B�, where

B� = A6[BB7
n
]ττR. We have A6[BB7

n
]ττL R B� and by closure of R under

structural equivalence A� R B�.

(R11) This case is similar to (R10). We have A ≡ A6[BB7
n
]ττL and B ≡

A6[BB7
n
]ττR. If A

α−→ A� such that fv(α) ⊆ dom(A) and bn(α)∩fn(B) = ∅,
then it must be the case that A� ≡ A7ττL for some variable xresult, where
α = ν xresult.c�xresult� and xresult �∈ {x1, x2, xpartial, zpk}. It follows immedi-

ately that B
α−→ B�, where B� = A7ττR. We have A7ττL R B� and by

closure of R under structural equivalence A� R B�.

References

[1] Mart́ın Abadi and Cédric Fournet. Mobile values, new names, and secure
communication. In POPL’01: 28th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 104–115. ACM Press, 2001.

[2] Mart́ın Abadi and Phillip Rogaway. Reconciling Two Views of Cryptog-
raphy (The Computational Soundness of Formal Encryption). In IFIP
TCS’00: 1st International Conference on Theoretical Computer Science,
volume 1872 of LNCS, pages 3–22. Springer, 2000.

[3] Mart́ın Abadi and Phillip Rogaway. Reconciling Two Views of Cryptog-
raphy (The Computational Soundness of Formal Encryption). Journal of
Cryptology, 15(2):103–127, 2002.

[4] Ben Adida. Advances in Cryptographic Voting Systems. PhD thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts
Institute of Technology, 2006.

[5] Ben Adida. Helios: Web-based Open-Audit Voting. In USENIX Secu-
rity’08: 17th USENIX Security Symposium, pages 335–348. USENIX As-
sociation, 2008.

[6] Ben Adida. Attacks and Defenses. Helios documentation, http://

documentation.heliosvoting.org/attacks-and-defenses, 2010.

48

[7] Ben Adida, Olivier de Marneffe, Olivier Pereira, and Jean-Jacques
Quisquater. Electing a University President Using Open-Audit Voting:
Analysis of Real-World Use of Helios. In EVT/WOTE’09: Electronic Vot-
ing Technology Workshop/Workshop on Trustworthy Elections. USENIX
Association, 2009.

[8] Ben Adida and Olivier Pereira. Private email communication, November
2010.

[9] Michael Backes, Cătălin Hriţcu, and Matteo Maffei. Automated Verifica-
tion of Remote Electronic Voting Protocols in the Applied Pi-calculus. In
CSF’08: 21st Computer Security Foundations Symposium, pages 195–209.
IEEE Computer Society, 2008.

[10] Josh Benaloh. Verifiable Secret-Ballot Elections. PhD thesis, Department
of Computer Science, Yale University, 1996.

[11] Josh Benaloh. Simple Verifiable Elections. In EVT’06: Electronic Voting
Technology Workshop. USENIX Association, 2006.

[12] Josh Benaloh. Ballot Casting Assurance via Voter-Initiated Poll Station
Auditing. In EVT’07: Electronic Voting Technology Workshop. USENIX
Association, 2007.

[13] Josh Benaloh, Serge Vaudenay, and Jean-Jacques Quisquater. Final Re-
port of IACR Electronic Voting Committee. International Association
for Cryptologic Research. http://www.iacr.org/elections/eVoting/

finalReportHelios_2010-09-27.html, Sept 2010.

[14] Josh Benaloh and Moti Yung. Distributing the Power of a Government to
Enhance the Privacy of Voters. In PODC’86: 5th Principles of Distributed
Computing Symposium, pages 52–62. ACM Press, 1986.

[15] David Bernhard, Véronique Cortier, Olivier Pereira, Ben Smyth, and
Bogdan Warinschi. Adapting Helios for provable ballot secrecy. In ES-
ORICS’11: 16th European Symposium on Research in Computer Security,
LNCS. Springer, 2011. To appear.

[16] Bruno Blanchet, Mart́ın Abadi, and Cédric Fournet. Automated verifica-
tion of selected equivalences for security protocols. Journal of Logic and
Algebraic Programming, 75(1):3–51, February–March 2008.

[17] David Chaum, Jan-Hendrik Evertse, and Jeroen van de Graaf. An Im-
proved Protocol for Demonstrating Possession of Discrete Logarithms and
Some Generalizations. In EUROCRYPT’87: 4th International Conference
on the Theory and Applications of Cryptographic Techniques, volume 304
of LNCS, pages 127–141. Springer, 1988.

49

[18] David Chaum, Jan-Hendrik Evertse, Jeroen van de Graaf, and René Per-
alta. Demonstrating Possession of a Discrete Logarithm Without Revealing
It. In CRYPTO’86: 6th International Cryptology Conference, volume 263
of LNCS, pages 200–212. Springer, 1987.

[19] David Chaum and Torben P. Pedersen. Wallet Databases with Observers.
In CRYPTO’92: 12th International Cryptology Conference, volume 740 of
LNCS, pages 89–105. Springer, 1993.

[20] David Chaum, Peter Y. A. Ryan, and Steve Schneider. A Practical Voter-
Verifiable Election Scheme. In ESORICS’05: 10th European Symposium
On Research In Computer Security, volume 3679 of LNCS, pages 118–139.
Springer, 2005.

[21] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. Veri-
fiable Secret Sharing and Achieving Simultaneity in the Presence of Faults.
In FOCS’85: 26th Foundations of Computer Science Symposium, pages
383–395. IEEE Computer Society, 1985.

[22] Benny Chor and Michael O. Rabin. Achieving Independence in Logarithmic
Number of Rounds. In PODC’87: 6th Principles of Distributed Computing
Symposium, pages 260–268. ACM Press, 1987.

[23] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas:
Toward a Secure Voting System. Technical Report 2007-2081, Cornell Uni-
versity, May 2007. Revised March 2008.

[24] Michael R. Clarkson, Stephen Chong, and Andrew C. Myers. Civitas:
Toward a Secure Voting System. In S&P’08: 29th Security and Privacy
Symposium, pages 354–368. IEEE Computer Society, 2008.

[25] Véronique Cortier and Ben Smyth. Attacking and fixing helios: An analysis
of ballot secrecy. Cryptology ePrint Archive, Report 2010/625, 2010.

[26] Véronique Cortier and Ben Smyth. Attacking and fixing Helios: An anal-
ysis of ballot secrecy. In CSF’11: 24th Computer Security Foundations
Symposium, pages 297–311. IEEE Computer Society, 2011.

[27] Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of Par-
tial Knowledge and Simplified Design of Witness Hiding Protocols. In
CRYPTO’94: 14th International Cryptology Conference, volume 839 of
LNCS, pages 174–187. Springer, 1994.

[28] Ronald Cramer, Matthew K. Franklin, Berry Schoenmakers, and Moti
Yung. Multi-Autority Secret-Ballot Elections with Linear Work. In EURO-
CRYPT’96: 15th International Conference on the Theory and Applications
of Cryptographic Techniques, volume 1070 of LNCS, pages 72–83. Springer,
1996.

50

[29] Ronald Cramer, Rosario Gennaro, and Berry Schoenmakers. A Secure
and Optimally Efficient Multi-Authority Election Scheme. In EURO-
CRYPT’97: 16th International Conference on the Theory and Applica-
tions of Cryptographic Techniques, volume 1233 of LNCS, pages 103–118.
Springer, 1997.

[30] Stéphanie Delaune, Steve Kremer, and Mark Ryan. Coercion-Resistance
and Receipt-Freeness in Electronic Voting. In CSFW’06: 19th Computer
Security Foundations Workshop, pages 28–42. IEEE Computer Society,
2006.

[31] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying privacy-
type properties of electronic voting protocols. Journal of Computer Secu-
rity, 17(4):435–487, July 2009.

[32] Stéphanie Delaune, Steve Kremer, and Mark D. Ryan. Verifying Privacy-
Type Properties of Electronic Voting Protocols: A Taster. In David Chaum,
Markus Jakobsson, Ronald L. Rivest, and Peter Y. A. Ryan, editors, To-
wards Trustworthy Elections: New Directions in Electronic Voting, volume
6000 of LNCS, pages 289–309. Springer, 2010.

[33] Stéphanie Delaune, Mark D. Ryan, and Ben Smyth. Automatic verification
of privacy properties in the applied pi-calculus. In IFIPTM’08: 2nd Joint
iTrust and PST Conferences on Privacy, Trust Management and Security,
volume 263 of International Federation for Information Processing (IFIP),
pages 263–278. Springer, 2008.

[34] Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryptogra-
phy. In STOC’91: 23rd Theory of computing Symposium, pages 542–552.
ACM Press, 1991.

[35] Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable Cryptogra-
phy. Journal on Computing, 30(2):391–437, 2000.

[36] Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech. Vote-
Independence: A Powerful Privacy Notion for Voting Protocols. In FPS’11:
4th Workshop on Foundations & Practice of Security, LNCS. Springer,
2011. To appear.

[37] Taher ElGamal. A public key cryptosystem and a signature scheme
based on discrete logarithms. IEEE Transactions on Information Theory,
31(4):469–472, 1985.

[38] Est Républicain. June, 18th 2007. Meurthe-et-Moselle edition (Daily
French Newspaper).

[39] Saghar Estehghari and Yvo Desmedt. Exploiting the Client Vulnerabil-
ities in Internet E-voting Systems: Hacking Helios 2.0 as an Example.
In EVT/WOTE’10: Electronic Voting Technology Workshop/Workshop on
Trustworthy Elections. USENIX Association, 2010.

51

[40] Article L65 of the French electoral code. http://www.legifrance.gouv.

fr/.

[41] Résultat par bureau du premier tour des élections régionales, 2010.
http://www.monaulnay.com/wp-content/uploads/2010/03/resultat_

regionale_par_bureau.pdf.

[42] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo Ohta. A Practical Secret
Voting Scheme for Large Scale Elections. In AUSCRYPT’92: Workshop
on the Theory and Application of Cryptographic Techniques, volume 718 of
LNCS, pages 244–251. Springer, 1992.

[43] Rosario Gennaro. Achieving independence efficiently and securely. In
PODC’95: 14th Principles of Distributed Computing Symposium, pages
130–136. ACM Press, 1995.

[44] Rosario Gennaro. A Protocol to Achieve Independence in Constant Rounds.
IEEE Transactions on Parallel and Distributed Systems, 11(7):636–647,
2000.

[45] Stuart Haber, Josh Benaloh, and Shai Halevi. The Helios e-Voting Demo
for the IACR. International Association for Cryptologic Research. http:
//www.iacr.org/elections/eVoting/heliosDemo.pdf, May 2010.

[46] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Elec-
tronic Elections. Cryptology ePrint Archive, Report 2002/165, 2002.

[47] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Elec-
tronic Elections. In WPES’05: 4th Workshop on Privacy in the Electronic
Society, pages 61–70. ACM Press, 2005. See also http://www.rsa.com/

rsalabs/node.asp?id=2860.

[48] Ari Juels, Dario Catalano, and Markus Jakobsson. Coercion-Resistant Elec-
tronic Elections. In David Chaum, Markus Jakobsson, Ronald L. Rivest,
and Peter Y. A. Ryan, editors, Towards Trustworthy Elections: New Direc-
tions in Electronic Voting, volume 6000 of LNCS, pages 37–63. Springer,
2010.

[49] Steve Kremer and Mark D. Ryan. Analysis of an Electronic Voting Protocol
in the Applied Pi Calculus. In ESOP’05: 14th European Symposium on
Programming, volume 3444 of LNCS, pages 186–200. Springer, 2005.

[50] Steve Kremer, Mark D. Ryan, and Ben Smyth. Election verifiability in
electronic voting protocols. In ESORICS’10: 15th European Symposium
on Research in Computer Security, volume 6345 of LNCS, pages 389–404.
Springer, 2010.

[51] Ralf Küsters and Tomasz Truderung. An Epistemic Approach to Coercion-
Resistance for Electronic Voting Protocols. In S&P’09: 30th IEEE Sym-
posium on Security and Privacy, pages 251–266. IEEE Computer Society,
2009.

52

[52] Lucie Langer. Privacy and Verifiability in Electronic Voting. PhD thesis,
Fachbereich Informatik, Technischen Universität Darmstadt, 2010.

[53] Lucie Langer, Axel Schmidt, Johannes Buchmann, and Melanie Volkamer.
A Taxonomy Refining the Security Requirements for Electronic Voting:
Analyzing Helios as a Proof of Concept. In ARES’10: 5th International
Conference on Availability, Reliability and Security, pages 475–480. IEEE
Computer Society, 2010.

[54] Lucie Langer, Axel Schmidt, Johannes Buchmann, Melanie Volkamer, and
Alexander Stolfik. Towards a Framework on the Security Requirements for
Electronic Voting Protocols. In Re-Vote’09: First International Workshop
on Requirements Engineering for E-Voting Systems, pages 61–68. IEEE
Computer Society, 2010.

[55] Byoungcheon Lee, Colin Boyd, Ed Dawson, Kwangjo Kim, Jeongmo Yang,
and Seungjae Yoo. Providing Receipt-Freeness in Mixnet-Based Voting
Protocols. In ICISC’03: 6th International Conference on Information Se-
curity and Cryptology, volume 2971 of LNCS, pages 245–258. Springer,
2004.

[56] Arjen K. Lenstra and Hendrik W. Lenstra Jr. Algorithms in Number The-
ory. In Jan van Leeuwen, editor, Handbook of Theoretical Computer Sci-
ence, Volume A: Algorithms and Complexity, chapter 12, pages 673–716.
MIT Press, 1990.

[57] Adrian Leung, Liqun Chen, and Chris J. Mitchell. On a Possible Privacy
Flaw in Direct Anonymous Attestation (DAA). In Trust’08: 1st Interna-
tional Conference on Trusted Computing and Trust in Information Tech-
nologies, number 4968 in LNCS, pages 179–190. Springer, 2008.

[58] Jia Liu. A Proof of Coincidence of Labeled Bisimilarity and Observa-
tional Equivalence in Applied Pi Calculus. http://lcs.ios.ac.cn/~jliu/
papers/LiuJia0608.pdf, 2011.

[59] Tatsuaki Okamoto. Receipt-Free Electronic Voting Schemes for Large Scale
Elections. In SP’97: 5th International Workshop on Security Protocols,
volume 1361 of LNCS, pages 25–35. Springer, 1998.

[60] Miriam Paiola. Extending ProVerif’s Resolution Algorithm for Verifying
Group Protocols. Master’s thesis, Faculty of Mathematical, Physical and
Natural Science, University of Padova, 2010.

[61] Miriam Paiola and Bruno Blanchet. Automatic Verification of Group Pro-
tocols with Unbounded Numbers of Participants and Sessions. Unpublished
draft, 2011.

[62] Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl
Accord, 2007. http://www.dagstuhlaccord.org/.

53

[63] Torben P. Pedersen. A Threshold Cryptosystem without a Trusted Party.
In EUROCRYPT’91: 10th International Conference on the Theory and
Applications of Cryptographic Techniques, number 547 in LNCS, pages 522–
526. Springer, 1991.

[64] Olivier Pereira, Ben Adida, and Olivier de Marneffe. Bring-
ing open audit elections into practice: Real world uses of he-
lios. Swiss e-voting workshop, https://www.e-voting-cc.ch/

images/sevot10/slides/helios_20100906.pdf. See also http:

//www.uclouvain.be/crypto/electionmonitor/, 2010.

[65] Birgit Pfitzmann. Breaking Efficient Anonymous Channel. In EURO-
CRYPT’94: 11th International Conference on the Theory and Applica-
tions of Cryptographic Techniques, volume 950 of LNCS, pages 332–340.
Springer, 1994.

[66] Princeton University. Princeton Election Server, 2010. https://

princeton-helios.appspot.com/.

[67] Carsten Rudolph. Covert Identity Information in Direct Anonymous Attes-
tation (DAA). In SEC’07: 22nd International Information Security Con-
ference, volume 232 of International Federation for Information Processing
(IFIP), pages 443–448. Springer, 2007.

[68] Mark D. Ryan and Ben Smyth. Applied pi calculus. In Véronique Cortier
and Steve Kremer, editors, Formal Models and Techniques for Analyzing
Security Protocols, chapter 6. IOS Press, 2011.

[69] Peter Y. A. Ryan and Steve A. Schneider. An Attack on a Recursive Au-
thentication Protocol. A Cautionary Tale. Information Processing Letters,
65(1):7–10, 1998.

[70] Kazue Sako and Joe Kilian. Secure Voting Using Partially Compatible Ho-
momorphisms. In CRYPTO’94: 14th International Cryptology Conference,
volume 839 of LNCS, pages 411–424. Springer, 1994.

[71] Claus-Peter Schnorr. Efficient Identification and Signatures for Smart
Cards. In CRYPTO’89: 9th International Cryptology Conference, volume
435 of LNCS, pages 239–252. Springer, 1990.

[72] Berry Schoenmakers. A simple publicly verifiable secret sharing scheme and
its application to electronic voting. In CRYPTO’99: 19th International
Cryptology Conference, volume 1666 of LNCS, pages 148–164. Springer,
1999.

[73] Berry Schoenmakers. Voting Schemes. In Mikhail J. Atallah and Marina
Blanton, editors, Algorithms and Theory of Computation Handbook, Second
Edition, Volume 2: Special Topics and Techniques, chapter 15. CRC Press,
2009.

54

[74] Daniel Shanks. Class number, a theory of factorization and genera. In
Number Theory Institute, volume 20 of Symposia in Pure Mathematics,
pages 415–440. American Mathematical Society, 1971.

[75] Ben Smyth. Formal verification of cryptographic protocols with automated
reasoning. PhD thesis, School of Computer Science, University of Birming-
ham, 2011.

[76] Ben Smyth and Véronique Cortier. Attacking ballot secrecy in Helios.
YouTube video, linked from http://www.bensmyth.com/publications/

10-attacking-helios/, 2010.

[77] Ben Smyth and Véronique Cortier. Replay attacks that violate privacy in
electronic voting schemes. Technical Report RR-7643, INRIA, June 2011.
http://hal.inria.fr/inria-00599182/.

[78] Ben Smyth, Mark D. Ryan, Steve Kremer, and Mounira Kourjieh. Towards
automatic analysis of election verifiability properties. In ARSPA-WITS’10:
Joint Workshop on Automated Reasoning for Security Protocol Analysis
and Issues in the Theory of Security, volume 6186 of LNCS, pages 165–
182. Springer, 2010.

[79] Melanie Volkamer. Evaluation of Electronic Voting: Requirements and
Evaluation Procedures to Support Responsible Election Authorities, vol-
ume 30 of Lecture Notes in Business Information Processing. Springer,
2009.

[80] Melanie Volkamer and Rüdiger Grimm. Determine the Resilience of Evalu-
ated Internet Voting Systems. In Re-Vote’09: First International Workshop
on Requirements Engineering for E-Voting Systems, pages 47–54. IEEE
Computer Society, 2010.

[81] Bogdan Warinschi. A Computational Analysis of the Needham-Schröeder-
(Lowe) Protocol. In CSFW’03: 16th Computer Security Foundations Work-
shop, pages 248–262. IEEE Computer Society, 2003.

[82] Bogdan Warinschi. A computational analysis of the Needham-Schroeder-
(Lowe) protocol. Journal of Computer Security, 13(3):565–591, 2005.

[83] Douglas Wikström. Simplified Submission of Inputs to Protocols. Cryptol-
ogy ePrint Archive, Report 2006/259, 2006.

[84] Douglas Wikström. Simplified Submission of Inputs to Protocols. In
SCN’08: 6th International Conference on Security and Cryptography for
Networks, volume 5229 of LNCS, pages 293–308. Springer, 2008.

55

Adapting Helios for provable ballot privacy

David Bernhard1, Véronique Cortier2, Olivier Pereira3,
Ben Smyth2, Bogdan Warinschi1

1 University of Bristol, England
2 LORIA - CNRS, France

3 Université Catholique de Louvain, Belgium

Abstract. Recent results show that the current implementation of He-
lios, a practical e-voting protocol, does not ensure independence of the
cast votes, and demonstrate the impact of this lack of independence on
vote privacy. Some simple fixes seem to be available and security of the
revised scheme has been studied with respect to symbolic models.
In this paper we study the security of Helios using computational models.
Our first contribution is a model for the property known as ballot privacy
that generalizes and extends several existing ones.
Using this model, we investigate an abstract voting scheme (of which
the revised Helios is an instantiation) built from an arbitrary encryp-
tion scheme with certain functional properties. We prove, generically,
that whenever this encryption scheme falls in the class of voting-friendly
schemes that we define, the resulting voting scheme provably satisfies
ballot privacy.
We explain how our general result yields cryptographic security guaran-
tees for the revised version of Helios (albeit from non-standard assump-
tions).
Furthermore, we show (by giving two distinct constructions) that it is
possible to construct voting-friendly encryption, and therefore voting
schemes, using only standard cryptographic tools. We detail an instan-
tiation based on ElGamal encryption and Fiat-Shamir non-interactive
zero-knowledge proofs that closely resembles Helios and which provably
satisfies ballot privacy.

1 Introduction

Electronic voting protocols have the potential to offer efficient and sound tallying
with the added convenience of remote voting. It is therefore not surprising that
their use has started to gain ground in practice: USA, Norway and Estonia are
examples of countries where e-voting protocols have been, at the very least,
trialled in elections on a national scale.

Due to the sensitive nature of elections, security of e-voting protocols is
crucial and has been investigated extensively. Among the security properties
that have been identified for e-voting, perhaps the most desirable one is that
users’ votes should remain confidential. Three levels of confidentiality have been
identified. These are (in increasing strength) the following.

– Ballot privacy: A voter’s vote is not revealed to anyone.
– Receipt–freeness: A voter cannot obtain information which can prove to a

coercer how she voted.
– Coercion resistance: Even a voter who collaborates with a coercer cannot

obtain information that proves how she voted.

Other important properties that are desirable include ballot independence [12]
(the ballots cast do not depend on each other) and end-to-end verifiability [23, 28,
38] (it is possible to verify that the election process has been followed honestly).

This paper is motivated by recent developments regarding the security of
the Helios voting scheme [45]. Starting from version 2.0 [35], Helios has been
using a variant of a classical protocol by Cramer et al. [14] incorporating tweaks
proposed by Benaloh [29], and has been used in real-world elections, for example
by the International Association for Cryptographic Research (IACR) to elect
its 2010 board [36], by Princeton University to elect the undergraduate student
government [46] and to elect the president of the Université Catholique de Lou-
vain [35]. Helios aims to achieve only ballot privacy and explicitly discards the
stronger confidentiality notions (which it does not satisfy) in favor of efficiency.
It turns out that the current implementation of Helios does not enforce ballot
independence (contrary to the original protocol of Cramer et al. [14]) and, as
a result, Cortier and Smyth [37, 42] have exhibited several attacks against the
ballot privacy property of Helios. (The property is called “ballot secrecy” in
Cortier and Smyth’s papers.) The attacks range from simple ballot copying to
subtle reuse of parts of existing ballots, however they can all be detected (and
prevented) by public algorithms. A revised scheme has been proved secure in
a symbolic model but its security in the stronger, computational sense has not
been assessed.

Contributions. We start by providing a computational security model for ballot
privacy (Section 2). In a sense, our model generalizes and strengthens the model
of [24, 26] where an attacker tries to distinguish when two ballots are swapped.
Here, we ask that the adversary cannot detect whether the ballots cast are
ballots for votes that the adversary has chosen or not. In doing so, the adversary
is allowed to control arbitrarily many players and see the result of the election.
Our model uses cryptographic games and thus avoids imposing the more onerous
constraints that other definitional styles (in particular simulability) require from
protocols.

Next we turn our attention to the revised version of Helios. Our analysis
follows a somewhat indirect route: instead of directly analysing the scheme as
it has been implemented, we analyze an abstract version of Helios that follows
the same basic architecture, but where the concrete primitives are replaced with
more abstract versions. Of course, the version we analyze implements the sug-
gested weeding of ballots. We present this abstract scheme as a generic construc-
tion of a voting scheme starting from encryption scheme with specific functional
and security properties (Section 3).

Focusing on this more abstract version brings important benefits. Firstly, we
pin-down more clearly the requirements that the underlying primitives should

satisfy. Specifically, we identify a class of voting-friendly encryption schemes
which when plugged in our construction yield voting schemes with provable
ballot privacy. Roughly speaking, such encryption schemes are IND-CCA2 secure
and have what we call a homomorphic embedding (parts of the ciphertexts can
be seen as ciphertexts of a homomorphic encryption scheme). Secondly, our
analysis applies to all voting schemes obtained as instantiations of our generic
construction. Although we analyze and propose constructions which for efficiency
reasons resort to random oracles, our generic approach also invites other (non-
random oracle based) instantiations.

Next, we show how to construct voting-friendly encryption schemes using
standard cryptographic tools (Section 4). We discuss two distinct designs. The
first construction starts from an arbitrary (IND-CPA) homomorphic encryption
scheme and attaches to its ciphertexts a zero-knowledge proof of knowledge of the
plaintext. We refer to this construction as the Enc+PoK construction. Despite
its intuitive appeal, we currently do not know how to prove that the above
design leads to an IND-CCA2 secure encryption scheme (a proprety demanded
by voting-friendliness). We therefore cannot conclude the security of our generic
scheme when implemented with an arbitrary Enc+PoK scheme. Nevertheless,
an investigation into this construction is important since the instantiation where
Enc is the ElGamal scheme and PoK is obtained using the Fiat-Shamir paradigm
applied to a Schnorr-like protocol corresponds precisely to the encryption scheme
currently used in Helios. The security of this specific construction has been
analyzed in prior work. Tsiounis and Yung [17] and Schnorr and Jakobsson [19]
demonstrate that the scheme is IND-CCA2 secure, but their proofs rely on highly
non-standard assumptions. Nevertheless, in conjunction with the security of our
main construction, one can conclude that the current implementation of Helios
satisfies ballot privacy based on either the assumption in [17] or those of [19].

We then take a closer look at the Enc+PoK construction and revisit a tech-
nical reason that prevents an IND-CCA2 security proof, first studied by Shoup
and Gennaro [16]. Very roughly, the problem is that the knowledge extractor
associated to the proof of knowledge may fail if used multiple times since its
associated security guarantees are only for constant (or logarithmically many)
uses. With this in mind, we note that a security proof is possible if the proof
of knowledge has a so called straight line extractor [22]. This type of extractor
can be reused polynomially many times. In this case, the Enc+PoK construc-
tion leads to a voting-friendly encryption scheme, whenever Enc is an arbitrary
IND-CPA homomorphic encryption scheme.

The second design uses the well-known Naor-Yung transformation [7]. We
show that if the starting scheme is an arbitrary (IND-CPA) homomorphic en-
cryption scheme then the result of applying the NY transform is a voting-friendly
encryption scheme. Applied generically, the transform may lead to non-efficient
schemes (one of its components is a simulation-sound zero-knowledge proof of
membership [18]). We present a related construction (where the proof of mem-
bership is replaced by a proof of knowledge) which can be efficiently instantiated
in the random oracle model. In the final section of the paper (Section 5) we pro-

pose adopting an instantiation of Helios where the encryption-friendly scheme
is implemented as above. The computational overhead for this scheme is rea-
sonable (and can be further improved through specific optimization) and the
scheme comes with the formal guarantees offered by the results of this paper.

Related work. Chevallier-Mames et al. [27] present an unconditional definition
of ballot privacy but Helios cannot be expected to satisfy this definition due
to its reliance on computational assumptions. Chevallier-Mames additionally
show that their definition of unconditional ballot privacy is incompatible with
universal verifiability; however, ballot privacy and universal verifiability have
been shown to coexist under weaker assumptions, for example as witnessed by
Juels, Catalano & Jakobsson [23]. Computational definitions of ballot privacy
have been considered by Benaloh et al. [2, 4, 5]. These definitions however do
not come with a general characterization of the properties that an encryption
scheme should satisfy in order to ensure that they are satisfied (the corresponding
security notions did not exist at that time either). Wikström [34] considered the
general problem of secure submission of inputs with applications to mixnet-based
voting protocols. His definitions and constructions are the most closely related
to ours, and will be discussed below. Other definitions for voting systems have
been proposed in terms of UC realization of ideal voting functionalities, starting
with Groth [21], which capture privacy as part of the functionality behavior.

In addition, receipt-freeness has been considered by Benaloh & Tuinstra [11]
and Moran & Naor [25] and coercion resistance has been studied by Juels, Cata-
lano & Jakobsson [23], Küsters, Truderung & Vogt [40] and Unruh & Müller-
Quade [39]. These definitions can be used to show ballot privacy because it is
believed to be a weaker condition [11, 26]; however, they are too strong for pro-
tocols which only provide ballot privacy and in particular, they cannot be used
to analyse ballot privacy in Helios. Ballot privacy has also been formalized in the
symbolic model (for example, [26, 33]) but the symbolic model suffers a serious
weakness: In general, a correct security proof does not imply the security of the
protocol. Cortier & Smyth [37, 42] present an attack against ballot privacy in He-
lios and propose a variant of Helios which aims to prevent the attack by weeding
ballots. Their solution has been shown to satisfy ballot privacy in the symbolic
model but Cortier & Smyth acknowledge that a thorough cryptographic analysis
of the solution is necessary.

2 Ballot privacy

Notation Throughout this paper, we use the following notation. Assignment and
input/output of algorithms are both denoted by a left-facing arrow ←. Picking a

value x uniformly at random from a set S is denoted by x
R← S. The expression

C
+← c appends c to the list C, () on its own is an empty list. We use “C” style

returns in algorithms, i.e. “Return a = b” to mean return 1 if a = b, otherwise 0.
A function f is called negligible if for any polynomial P , there exists η0 such
that ∀η ≥ η0, f(η) ≤ 1

P (η) .

2.1 Voting Schemes

In this section we fix a general syntax for the class of voting schemes that we
treat in this paper. In particular, our syntax encompasses several variations of
the Helios protocol.

We consider schemes for votes in a non-empty set V, and we assume ⊥ to be
a special symbol not in V that indicates that the voter has abstained. The result
of an election is then an arbitrary function ρ that takes a list of votes as input
and returns the election result. Elections are stateful, so the algorithms that we
define next use such a state. Since often, and in particular in the case of Helios,
this state is a bulletin board, in the definition below we write BB for this state
(and even refer to it as a bulletin board).

Definition 1 (Voting scheme). Algorithms (Setup,Vote,ProcessBallot,Tally)
define a voting scheme as follows.

Setup The setup algorithm takes a security parameter 1λ as input and returns secret
information x, public information y, and initializes the state BB. We write
(x, y,BB) ← Setup(1λ) for this process. We assume the public information
is available to all subsequent algorithms.

Vote The voting algorithm takes a vote v ∈ V as input and produces as output a
ballot b (that encodes the vote). We write b ← Vote(v) for this process.

ProcessBallot The ballot processing algorithm takes a candidate ballot b and a bulletin board
BB, checks the ballot for correctness (e.g. that it is well formed, it is not a
duplicate, etc.) and returns a result (accept/reject) and the new state of the
bulletin board. We write (a,BB) ← ProcessBallot(BB, b) for this process.
Here a is either accept or reject.

Tally The tallying algorithm takes the secret information x and the bulletin board
BB and produces the election result.

For correctness of the scheme, we demand two conditions: 1) ballot tallying
corresponds to evaluating the function ρ on the underlying votes; and 2) correctly
constructed votes will be accepted by the ballot processing algorithm. Both con-
ditions should hold with overwhelming probability and can be captured by the
experiment described in Figure 1. In this experiment, an adversary repeatedly
submits votes v1, v2, . . . ∈ V and each vote is used to construct a ballot which
is then processed. The game outputs 1 (the adversary wins) if the ProcessBallot
algorithm rejects some ballot or the result of the election does not correspond
to the votes cast. The voting scheme is correct if the algorithm outputs 1 with
at most negligible probability.

2.2 Security Model

Informally, ballot privacy is satisfied if an adversary in control of arbitrarily
many voters cannot learn anything about the votes of the remaining, honest
voters beyond what can be inferred from the election result. The adversary can
read the (public) bulletin board and the communication channels between the

Expcorr
Π (A)

(x, y,BB) ← Setup
V = ()
repeat

(a, v) ← A
b ← Vote(v)
(r,BB) ← ProcessBallot(BB, b)

V
+← v

until a = stop or r = reject
if r =“reject” or Tally(x,BB) �= ρ(V) then return 1 else return 0

Fig. 1. Experiment for defining the correctness of a voting scheme.

honest parties and the bulletin board (in other words, we assume them to be
authentic but not secret). Ballot privacy requires that the adversary is unable
to distinguish between real ballots and fake ballots, where ballots are replaced
by ballots for some fixed vote ε chosen by the adversary.

Formally, we consider an adversary that can issue two types of queries, vote
and ballot, to an oracle O. The oracle maintains two bulletin boards initialized
via the setup algorithm: BB is visible to the adversary and BB� always contains
ballots for the real votes. A vote query causes a ballot for the given vote to be
placed on the hidden BB�. In the real world, the same ballot is placed on BB; in
the fake one a ballot for ε is placed on BB instead. A ballot query always causes
the submitted ballot to be processed on both boards. This process is defined
formally in Figure 2. The experiment on the right of Figure 2 is used to define
ballot privacy. The selection of β corresponds to the real world (β = 0) or the
fake world (β = 1). Throughout the experiment the adversary has access to BB,
but tallying is done using BB�.

Definition 2 (Ballot Privacy). We define the advantage of adversary A in
defeating ballot privacy for voting scheme Π by:

AdvBS

Π
(A) = Pr[ExpBS

Π
(A) = 1]− 1

2

and say that Π ensures ballot privacy if for any efficient adversary its advantage
is negligible.

We make a few remarks regarding the security model that we propose. Firstly,
we use cryptographic games rather than a simulation based definition. The for-
mer offer well-accepted levels of security, are more flexible, and allow for more
efficient implementations. Second, we model directly the more relaxed notion
of vote privacy and not stronger notions like receipt-freeness or coercion resis-
tance [26]. While stronger notions are certainly desirable, they are more dif-
ficult to achieve leading to rather inefficient protocols. Indeed, Helios deliber-
ately trades these stronger notions for efficiency. Finally, we emphasize that our
computational definition does not mirror existing security definitions in more

vote(v)
b� ← Vote(v)
if β = 0 then b ← b�

else b ← Vote(ε)
(r,BB) ← ProcessBallot(b, BB)
(r�, BB�) ← ProcessBallot(b�, BB�)
return (r,BB, b)

ballot(b)
(r,BB) ← ProcessBallot(b, BB)
if r = accept then

(r�, BB�) ← ProcessBallot(b, BB�)
return (r,BB)

ExpBS
Π (A)

(x, y,BB) ← Setup(1λ)
BB� ← BB
(ε, st) ← A(y)
β ← {0, 1}
st ← AO(st)
result ← Tally(x,BB�)
β̂ ← A(st, result)
return β = β̂

Fig. 2. The algorithms on the left explain how the oracle processes adversary’s queries.
The experiment on the right is used to define ballot privacy.

abstract models, e.g. [24]. It turns out that the direct extension of that defini-
tion to computational models seems strictly weaker than the definition that we
provide. We comment more on this point later in the paper.

3 A generic construction of voting schemes with ballot

privacy

In this section we present a generic construction of a voting scheme starting
from any encryption scheme with certain properties. We first fix this class of
encryption schemes (which we call voting-friendly), then give our construction
and prove its security.

3.1 Voting-Friendly Encryption

In a nutshell, a voting-friendly encryption scheme is a “(threshold) checkable
provable IND-CCA2 secure public key encryption scheme with key derivation
and a homomorphic embedding”. These rather convoluted looking requirements
are in fact not too onerous. We explain informally each of the requirements in
turn and give formal definitions. For simplicity, the presentation in this section is
for the non-threshold case, that is decryption is carried out using a single key by
a single party, as opposed to implementing decryption via an interactive process
where several parties share the keys.

Non-Interactive Zero Knowledge Proof Systems. Here we recall some basic no-
tions regarding non-interactive zero-knowledge proof systems [6]. Given language
LR defined by NP relation R we write (w, x) ∈ R if w is the witness that x ∈ LR.
A proof system for LR is given by a pair of algorithms (Prover,Verifier) called

prover and verifier, respectively. We distinguish between proof systems in the
common reference string model (in this situation, an additional algorithm Setup
produces a common reference string accessible to both the prover and the ver-
ifier) and the random oracle model (where the setup is not required, but all
algorithms in the system have access to a random oracle). In a standard execu-
tion of the proof system, the prover and the verifier both have an element x ∈ LR

as input and in addition, the prover has as input a witness w that x ∈ LR (i.e.
R(w, x) = 1). The prover sends a single message π to the verifier who outputs
the decision to accept/reject. We call π a proof for the statement x ∈ LR. Typ-
ical requirements for such proof systems are that they should be sound (if the
input x is not in LR then the verifier rejects π with overwhelming probability)
and complete (if x is in the language then the verifier accepts π with probability
1). We write π ← Prover for the process of producing proof π when the state-
ment x and the witness w are clear from the context. A non-interactive proof
system is zero-knowledge if there exists a simulator Sim that is able to produce
transcripts indistinguishable from those of a normal execution of the protocol.
The simulator may use a trapdoor in the common reference string model, or can
program the random oracle in the random oracle model. We occasionally write
(Prover,Verifier) : R to indicate that the proof system is for the language LR.

We assume the reader is familiar with public key encryption and its associated
security notions. We write (Gen,Enc,Dec) for the key generation, encryption, and
decryption algorithms of a public key encryption scheme.

Homomorphic encryption. We also briefly recall the notion of homomorphic
encryption. An encryption scheme is homomorphic if the plaintext space is a
group and there exists an algorithm Add that takes two ciphertexts for messages
m0 andm1 and produces a ciphertext form0◦m1 (where ◦ is the group operation
on plaintexts).

Embeddable Encryption. A crucial property for the encryption schemes that are
the focus of this section is that they have a homomorphic embedding. Informally,
this property means that it is possible to identify part(s) of the ciphertexts as
forming a ciphertext for some other encryption scheme, and this second encryp-
tion scheme is homomorphic. The ElGamal+PoK construction sketched in the
previous section is an example of an encryption scheme with an homomorphic
embedding. Indeed the e component of a ciphertext (e,π) is a ciphertext for
an homomorphic encryption scheme (ElGamal). The next definition makes this
discussion more precise.

Definition 3 (Homomorphic Embedding). We say that the homomorphic
encryption scheme Π = (EGen,EEnc,EDec,EAdd) is embedded in encryption
scheme Π � = (Gen,Enc,Dec), or alternatively that encryption scheme Π � has Π
as a homomorphic embedding if there are algorithms ExtractKey,Extract such
that for all m, pk, sk, c

EGen() = ExtractKey(Gen())

EEnc(m,ExtractKey(pk)) = Extract(Enc(m, pk))

Dec(c, sk) = EDec(Extract(c), sk)

Essentially, the ExtractKey algorithm maps keys (or key pairs) for the “larger”
scheme to keys for the embedded one, and the Extract algorithm extracts the
ciphertext for the embedded scheme out of ciphertext for the larger one, while
performing validity verifications at the same time.

The Extract algorithm must, by definition, produce a ciphertext that decrypts
to the same value as the input that it is given; in particular it must produce a
“ciphertext” that decrypts to ⊥ if and only if its input does. However, the Extract
algorithm does not take any secret keys as input. This implies that anyone can
check whether a ciphertext is valid (in the sense that it decrypts to something
other than ⊥) without knowing the secret key. This property forms the basis for
combining homomorphic and IND-CCA2 secure encryption in our construction.

We note that an IND-CCA2 secure cryptosystem with homomorphic embed-
ding is actually very close to a submission secure augmented (SSA) cryptosystem
as defined by Wikström [34]. Some important differences appear, though. The
most important one is that SSA cryptosystems do not require public verifiability
of the ciphertexts: it might be necessary to publish a private key augmentation
to be able to perform ciphertext validity checks. While this feature enables ef-
ficient solutions that are secure in the standard model, it is however often not
desirable in practice: it is quite useful to be able to dismiss invalid votes as soon
as they are submitted (and to resolve potential conflicts at that time) rather
than needing to wait for some partial key to be revealed. Besides, in order to
mitigate this inconvenience, SSA cryptosystems allow multiple independent aug-
mentations, which enables updating an augmentation and revealing the previous
one in order to be able to check the validity of previously submitted ciphertexts.
Our requirement of immediate public verifiability property makes this feature
unnecessary for our purpose.

We also note that in concurrent work, Persiano [44] and Smart [41] define
similar embedding concepts.

S2P Key Derivation. This property simply requires that if a key pair is produced
by the key generation algorithm of an encryption scheme then it is possible to
compute the public key from the secret key. This property will allow us to use
proofs of knowledge of the secret key corresponding to the public key.

Definition 4 (S2P Key Derivation). An encryption scheme has the S2P key
derivation property if there is an algorithm DeriveKey such that (x, y) ← Gen
implies y = DeriveKey(x).

Provable Encryption. In our generic construction voters need to certify that
various encryptions in the ballots that they produce satisfy some desirable prop-
erties (e.g. that a ciphertext encrypts 0 or 1, and not something else), and such
certification can be done via zero-knowledge proofs of knowledge. Since all of the

statements that we are interested in are NP statements, the existence of appro-
priate proof systems follows from general results [9]. Here, we make more precise
the statements for which we demand the existence of such proof systems and
introduce some useful notation for the proof systems associated to the various
languages that we define.

In particular, it should be possible to prove knowledge of the secret key cor-
responding to the public key, knowledge of the plaintext underlying a ciphertext,
as well as proving that a certain plaintext has been obtained by decrypting with
the key associated to the public key. To avoid complex nomenclature, we call a
scheme for which this is possible a scheme with provable encryption.

Definition 5 (Provable Encryption). An encryption scheme (Gen,Enc,Dec)
is provable if it has the S2P key derivation property and the following non-
interactive zero-knowledge proof systems exist:

1. (ProveGen,VerifyGen): R1(x, y) := y
?
= DeriveKey(x)

2. (ProveEnc,VerifyEnc): R2((m, r), c) := c
?
= Enc(m; r)

3. (ProveDec,VerifyDec): R3(x, (c, y, d)) := y
?
= DeriveKey(x) ∧ d

?
= Dec(x, c)

The above definition is for standard encryption schemes. For the case when
the encryption scheme that we need is embedded, we demand in addition the
existence of proof systems for the following two properties. The first requires that
one can prove a statement that involves plaintexts underlying several ciphertexts,
and secondly, one should be able to prove that the keys for the embedded schemes
in use have been correctly obtained from the keys of the embedding one. This
latter condition is a simple adaptation of provability as defined above.

Definition 6 (Provable Embedding). An encryption scheme (Gen,Enc,Dec)
for message space M with embedded scheme (EGen,EEnc,EDec) has embedded
provability for M � ⊆ MN (for some N ∈ N) if the following zero-knowledge
proof-systems exist:

1. (ProveGen,VerifyGen): R4(x, y) := y
?
= DeriveKey(x)

2. (ProveEnc,VerifyEnc):R5((m1,m2, . . . ,mN , r1, r2, . . . , rN), (c1, c2, . . . , cN)) :=

N�

i=1

ci
?
= Enc(mi; ri) ∧ (m1, . . . ,mN) ∈ M �

3. (ProveEDec,VerifyEDec): R6(x, (y, d, c)) :=

y
?
= DeriveKey(x) ∧ (x�, y�) ← ExtractKey(x, y) ∧ d

?
= EDec(x�, c)

In the last relation, the second conjunct is not a boolean condition, but simply
indicates that the keypair (x�, y�) is derived from (x, y) using the ExtractKey
algorithm.

The following definition states all the properties that we require from an
encryption scheme in order to be able to implement our generic voting scheme.

Definition 7 (Voting-Friendly Encryption). A voting-friendly encryption
scheme for vote space V is a public-key scheme for message space M with V ⊆
MN such that it is IND-CCA2 secure and has S2P key derivation, an embedded
homomorphic scheme and embedded provability for V.

Note that voting-friendly encryption requires security guarantees of both the
encryption scheme and the contained proof systems.

3.2 Our Generic Construction

In this section we describe a voting scheme based on an arbitrary voting-friendly
encryption scheme. The design idea is similar to that of Helios.

The scheme handles elections with multiple candidates. In an election with
three candidates a vote is a triple (a, b, c) such that a, b, c ∈ {0, 1} and a+b+c =
1. A ballot is then simply formed by individually encrypting each component of
the list with an IND-CCA scheme that has an homomorphic embedding, and
proving in zero-knowledge that the individual plaintexts in a ballot satisfy the
desired relation. To prevent an adversary from casting a vote somehow related
to that of an honest voter, we ensure that each ballot cast does not contain
any ciphertexts that are duplicates of ones in the ballots already on the bulletin
board. This condition is checked while processing ballots.

More formally, denote the set of ciphertexts contained in a ballot b by
Cipher(b) and the set of all ciphertexts on the bulletin board BB by Cipher(BB),
that is Cipher(BB) =

�
b�∈BB

Cipher(b�). When submitting a ballot b, we check
that Cipher(b) ∩ Cipher(BB) = ∅.

Definition 8 (Abstract Voting Scheme). Let Π be a voting-friendly encryp-
tion scheme. The abstract voting scheme V (Π) is the construction consisting of
algorithms 1–4.

In our construction, V is the set of voters, Z is a party representing “the
public” (elements sent to Z are published) which also functions as a trusted
party for generating the initial setup parameters and T is the trustee of the
election (that receives the decryption keys).

If M is the message space of the voting-friendly encryption scheme we con-
sider the space of votes to be V ⊆ MN for some N ∈ N.

We consider result functions of the form ρ : V∗ → M∗ where V∗ := ∪i∈N0Vi

(this allows us to tally an arbitrary number of votes) and each component of
the range of ρ can be described by a sum of the form ρk =

�
i∈N ai,k · vi for

constants ai,k ∈ N. This covers the class of result functions that can be com-
puted homomorphically, including normal and weighted sums of votes but also
the special case of revealing all the votes and allows us to exploit the homo-
morphism in the tallying operation: The same operation can be performed on
homomorphic ciphertexts using the EAdd algorithm, for which we write ⊕ i.e.
a ⊕ b := EAdd(a, b). Furthermore, we can define scalar multiplication ⊗ on the
ciphertexts i.e. 2⊗ a := EAdd(a, a).

Algorithm 1 Setup(1λ)
Z :

params ← Setup(1λ). These parameters are implicitly available to all further algo-
rithms.
BB ← ()

T :

(x, y) ← Gen(1λ)
πGen ← ProveGen(x, y)
Z ← (y,πGen)

Z :

VerifyGen(y,πGen)
?
= 1 or abort with failure.

Algorithm 2 Vote((v1, v2, . . . , vN))

∀j ∈ {1, 2, . . . , N}
cj ← Enc(y, vj)
πb
j ← ProveEnc(y, vj , cj)

bj ← (cj ,π
b
j)

output b

Algorithm 3 ProcessBallot(b, BB)

if VerifyEnc(b) = 0 then return (“reject”, BB) end if
for all c ∈ Cipher(b) do

if Extract(c) = ⊥ then return (“reject”, BB) end if
if Cipher(b) ∩ Cipher(BB) �= ∅ then return (“reject”, BB) end if

end for
BB

+← b
return (“accept”, BB)

Algorithm 4 Tally(BB)

for all cj ∈ BB (j ∈ V) do e�j ← Extract(cj) end for
for all k do

e��k ←
L

j∈V
(aj,k ⊗ e�j) {I.e. use EAdd to compute ciphertexts for the results.}

rk ← EDec(x, e��k)
πDec
k ← ProveEDec(x, e��k , rk)

end for
Z ← (rk,π

Dec
k)k

Algorithm 5 Verification

Z performs the following, aborting if any of the checks (denoted by
?
=) fail. The ordering

on V is a slight abuse of notation; it represents the order the ballots were received in.
If successful, the result of the election is r.

VerifyGen(y,πGen)
?
= 1

for all j ∈ V do
(cj ,π

b
j) ← bj

VerifyEnc(bj)
?
= 1

(cj /∈ (cj�)j�∈V,j�<j)
?
= 1

e�j ← Extract(cj)

e�j
?

�= ⊥
end for
e� ← EAdd(ρ, (e�j)j∈V)

VerifyEDec(r,πDec, e�)
?
= 1

We also provide a public verification algorithm as Algorithm 5 although we
do not define this property formally.

We only prove ballot privacy of our construction formally; correctness follows
from the correctness of the voting-friendly encryption scheme. The following
theorem states that ballot privacy relies entirely on the security of the underlying
voting-friendly scheme.

Theorem 1. Let Π be a voting-friendly encryption scheme. Then V (Π) has
ballot privacy.

To prove the theorem we proceed in two steps. First, we strip the voting scheme
of the unnecessary details that concern verifiability, resulting in a scheme that we
call “mini-voting”. We prove that ballot privacy for this latter scheme only relies
on the IND-CCA2 security of the encryption scheme employed (which highlights
IND-CCA2 security as the crucial property needed from the underlying building
block). We then explain how to adapt the proof to show the security of V (Π).

The full proof can be found in the full version of this paper.

4 Constructions for voting–friendly schemes

In the previous section we gave a generic construction of a voting scheme with
ballot privacy starting from an arbitrary voting-friendly encryption scheme. In
this section we show that such schemes can be easily constructed using standard
cryptographic tools in both the standard and the random oracle models. We
discuss three different possibilities.

Encrypt + PoK. This construction does not lead immediately to a voting-
friendly scheme but its security is highly relevant to that of Helios, and the
design idea forms the basis of a construction that we discuss later.

Under this paradigm, one attempts to construct an IND-CCA2 scheme start-
ing from an IND-CPA scheme and adding to the ciphertext a non-interactive
proof of knowledge of the underlying plaintext. Intuitively, this ensures that an
adversary cannot make use of a decryption oracle (since he must know the un-
derlying plaintext of any ciphertext) hence the security of the scheme only relies
on IND-CPA security. Unfortunately, this intuition fails to lend itself to a rigor-
ous proof, and currently the question whether Enc+PoK yields an IND-CCA2
scheme is widely open. A detailed treatment of the problem first appeared in
[16].

Yet, the question is important for the security of Helios: the current im-
plementation is essentially an instantiation of our generic construction with
an Enc+PoK encryption scheme. More precisely the encryption scheme Enc
is ElGamal, and the proof of knowledge is obtained by applying the Fiat-Shamir
transform to a Schnorr proof. Per the above discussion, no general results imply
that the resulting ElGamal+PoK scheme is IND-CCA2 secure (a requirement for
voting-friendliness) and our generic result does not apply. However, if one is pre-
pared to accept less standard assumptions, two existing results come in handy.
The security of the particular construction that employs ElGamal encryption
and Fiat-Shamir zero-knowledge proofs of knowledge has been investigated by
Tsiounis & Yung [17] and Schnorr & Jakobsson [19]. Both works support the
conjecture that the construction is IND-CCA2 but neither result is fully satisfac-
tory. Tsiounis & Yung make a knowledge assumption that essentially sidesteps
a crucial part in the security proof, whereas the proof of Schnorr & Jakobs-
son assumes both generic groups [13] and random oracles [10]. Nevertheless,
since using either assumption we can show that ElGamal+PoK construction is a
voting-friendly scheme, we conclude that Helios satisfies ballot privacy under the
same assumptions. Unfortunately, the security of the construction under stan-
dard assumptions is a long-standing open question. This observation motivates
the search for alternative constructions of voting-friendly schemes.

Straight-line Extractors. To motivate the construction that we discuss now, it is
instructive to explain why a proof that Enc+PoK is IND-CCA2 fails. In such a
proof, when reducing the security of the scheme to that of the underlying prim-
itive, a challenger would need to answer the decryption queries of the adversary.
Since the underlying encryption scheme is only IND-CPA secure, the only pos-
sibility is to use the proof of knowledge to extract the plaintext underlying the
queried ciphertexts. Unfortunately here the proof gets stuck. Current definitions
and constructions for proofs of knowledge only consider single statements and
the knowledge extractor works for polylogarithmically many proofs but it may
break down (run in exponential time [19]) for polynomially many. Since the IND-
CCA2 adversary is polynomially bounded answering all of its decryption queries
may thus not be feasible.

A construction that gets around this problem employs a zero-knowledge
proof of knowledge with a straight-line extractor. Such extractors do not need
to rewind the prover and in this case the Enc+PoK construction yields an IND-
CCA2 encryption scheme. This notion of extraction and a variation of the Fiat-

Shamir transform that turns a sigma-protocol into a non-interactive proof of
knowledge with a straight-line extractor in the random oracle model has recently
been proposed by Fischlin [22]. As above, starting with a homomorphic encryp-
tion scheme would yield a voting friendly encryption scheme. Unfortunately the
construction in that paper is not suffficiently efficient to yield a practical en-
cryption scheme.

The Naor-Yung Transformation. This transformation starts from any IND-CPA
secure encryption scheme. An encryption of message m is simply two distinct
encryptions c1 and c2 ofm under the original scheme, together with a simulation-
sound zero-knowledge proof π that c1 and c2 encrypt the same message with an
extra property that we call unique applicability. Formally, we have the following
definition.

Definition 9 (Naor-Yung Transformation). Let E = (EGen,EEnc,EDec) be
a public-key encryption system. Let P = (Prove,Verify, Sim) be a non-interactive
zero-knowledge proof scheme for proving (in Camenisch’s notation [15])

PoK{(m, r1, r2) : c1 = Enc(y1,m; r1) ∧ c2 = Enc(y2,m; r2)}
with uniquely applicable proofs. Assume the input to Prove is given in the form
(m, y1, y2, r1, r2, c1, c2).

The Naor-Yung transformation [7] NY (E,P) of the encryption system is the
public-key cryptosystem defined in Algorithm 6.

Algorithm 6 Naor-Yung Transformation
Gen

(x1, y1) ← EGen
(x2, y2) ← EGen
return ((x1, x2), (y1, y2))

Enc((y1, y2),m; (r1, r2))

c1 ← Enc(y1,m; r1)
c2 ← Enc(y2,m; r2)
π ← Prove(m, y1, y2, r1, r2, c1, c2)
return (c1, c2,π)

Dec(c1, c2,π)

if Verify(c1, c2,π) = 1 then return EDec(x1, c2) else return ⊥ end if

Sahai [18] showed that the above transformation yields an IND-CCA2 en-
cryption scheme if the starting scheme is IND-CPA and the proof system is
simulation-sound and has uniquely applicable proofs (essentially each proof can
only be used to prove one statement).

Theorem 2 (Sahai[18]). If the zero-knowledge proof system P has uniquely
applicable proofs then the Naor-Yung transformation NY (E,P) of an IND-CPA
secure scheme E gives IND-CCA2 security.

It turns out that if the starting encryption scheme is homomorphic, then the
resulting construction is a voting-friendly encryption scheme. Indeed, the result-
ing scheme has a homomorphic embeding (given either the first or the second
component of the ciphertext) and it is checkable (the checking algorithm only
needs to verify the validity of π). As explained earlier, the required proof-systems
for provability of the embeding exist, from general results. One can therefore ob-
tain voting schemes with provable ballot privacy in the standard model starting
from any homomorphic encryption scheme that is IND-CPA secure in the stan-
dard model.

In general, the above construction may not be very efficient (the simulation-
sound zero-knowledge proof and associated required proof-systems may be rather
heavy). In the random oracle model one can implement the above idea efficiently
by replacing the simulation-sound zero-knowledge proof (of membership) with a
zero-knowledge proof of knowledge of the message that underlies the two cipher-
texts. Interestingly, one may regard the NY transform as providing the under-
lying encryption scheme with a straight-line extractor (so our previous results
already apply).

The following theorem is a variation of the basic Naor-Yung transform applied
to our setting.

Theorem 3. If E is an IND-CPA secure homomorphic encryption scheme with
S2P key derivation and P is a zero-knowledge proof of knowledge system with
uniquely applicable proofs, then NY (E,P) is a voting friendly encryption scheme.

5 Application to the Helios protocol

We propose an enhanced version of Helios 3.0 which is an instantiation of our
generic voting scheme with a voting-friendly encryption scheme obtained from
ElGamal encryption [1] via the NY transform [7]. The required proof of knowl-
edge is obtained via the Fiat-Shamir transform [3] applied to generalized Schnorr
proofs. In this scheme duplicate ballots would be rejected as defined in the Pro-
cessBallot procedure (Algorithm 3). We can further improve the efficiency by
reusing some components as described by [20].

Thanks to Theorems 1 and 3, we deduce that the enhanced version of Helios
3.0 (provably) preserves ballot privacy. The modification of Helios we propose
does not change the architecture nor the trust assumption of Helios and can be
easily implemented. The computational overhead is reasonable (both the length
of the messages and the time of computation would at most double and some
optimizations can be foreseen). In exchange, we get the formal guarantee that
Helios does preserve ballot privacy, a very crucial property in the context of
electronic voting. For concreteness, we prove the details of the construction, as
well as a proof of security in the full version of this paper.

We emphasize that our results go beyond proving ballot privacy of a partic-
ular e-voting protocol. We have identified IND-CCA2 as a sufficient condition
for constructing voting schemes satisfying our notion of ballot privacy and have

given an abstract construction of a Helios-type voting scheme from IND-CPA
secure homomorphic threshold encryption and non-interactive zero-knowledge
proofs of knowledge. Our construction is independent of any hardness assump-
tions or security models (in particular, the random oracle model). We have for-
malized the concept of embeddable encryption and showed how to construct
IND-CCA2 secure encryption with homomorphic embedding, despite the known
impossibility of homomorphic IND-CCA2 secure encryption.

As further work, we plan to extend the definitions and proofs for threshold
encryption scheme in order to have a fully complete proof for Helios. We are
confident that our proof techniques will apply in a straightforward way. We also
wish to investigate the possibility of defining ballot privacy in a more general
way, e.g. allowing the current voting algorithm to be replaced by a protocol.
Indeed, it could the case that casting a vote or tallying the vote require more
than one step.

Acknowledgements We are very grateful to Ben Adida for helpful discussions on
how to enhance ballot privacy in Helios.

This work was partially supported by the European Commission through the
ICT Programme under Contract ICT- 2007-216676 ECRYPT II, by the Interuni-
versity Attraction Pole P6/26 BCRYPT, and by the European Research Council
under the European Unions Seventh Framework Programme (FP7/2007-2013) /
ERC grant agreement number 258865 (ProSecure project). Olivier Pereira is a
Research Associate of the Belgian Funds for Scientific Research (F.R.S.-FNRS).

References

1. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In: IEEE transactions on information theory, pages 469–472, Volume
31, 1985.

2. J. (Benaloh) Cohen and M. Fischer. A Robust and Verifiable Cryptographically
Secure Election Scheme. In: Proceedings of the 26th Symposium on Foundations
of Computer Science, pages 372–382, 1985.

3. A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification
and signature problems. In: Proceedings on advances in cryptology (CRYPTO
’86), pages 186–194, 1986.

4. J. Benaloh and M. Yung. Distributing the Power of a Government to Enhance
the Privacy of Voters In: Proceedings of the 5th Symposium on Principles of
Distributed Computing, pages 52–62, 1986.

5. J. Benaloh. Verifiable Secret-Ballot Elections. Yale University Department of
Computer Science Technical Report number 561, 1987.

6. M.Blum, P. Feldman and S. Micali. Non-interactive zero-knowledge and its ap-
plications. In: 20th STOC, pages 103–112, 1988.

7. M. Naor and M. Yung. Public-key cryptosystems provably secure against chosen
ciphertext attacks. In: Proceedings of the twenty-second annual ACM symposium
on theory of computing (STOC ’90), pages 42–437, 1990.

8. C. Schnorr. Efficient signature generation for smart cards. In: Journal of cryp-
tology, Volume 4, pages 161–174, 1991.

9. I. Damg̊ard. Non-interactive circuit based proofs and non-interactive perfect
zero-knowledge with preprocessing. In Eurocrypt, volume 658 of LNCS, pages
341–355, 1992.

10. M. Bellare and P. Rogaway. Random Oracles are Practical: A Paradigm for
Designing Efficient Protocols. In: Proceedings of the 1st ACM conference on
Computer and communications security (CCS ’93), pages 62–73, 1993.

11. J. Benaloh and D. Tuinstra. Receipt-Free Secret-Ballot Elections. In: Proceedings
of the 26th ACM Symposium on Theory of Computing, pages 544–553, 1994.

12. R. Gennaro. Achieving independence efficiently and securely. In: Proceedings
of the 14th Principles of Distributed Computing Symposium (PODC’95), pages
130–136, 1995.

13. V. Shoup. Lower Bounds for Discrete Logarithms and Related Problems. In:
Advances in Cryptology (EUROCRYPT ’97), pages 256–266, 1997.

14. R. Cramer, R. Gennaro and B. Schoenmakers. A Secure and Optimally Efficient
Multi-Authority Election Scheme. In: Advances in Cryptology (EUROCRYPT
’97), pages 103–118, 1997.

15. J. Camenisch and M. Stadler. Efficient group signature schemes for large groups.
In: Proceedings of the 17th annual international cryptology conference on ad-
vances in cryptology (CRYPTO ’97), pages 410–424, 1997.

16. V. Shoup and R. Gennaro. Securing Threshold Cryptosystems Agains Chosen-
Ciphertext Attack. In: Advances in Cryptology (Eurocrypt ’98), LNCS 1403,
pages 1–16, 1998.

17. Y. Tsiounis and M. Yung. On the security of ElGamal-based encryption. In:
International Workshop on Practice and Theory in Public Key Cryptography
(PKC ’98), pages 117–134, 1998.

18. A. Sahai. Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: Proceedings of th 40th annual symposium on foundations
of computer science (FOCS ’99), pages 543–553, 1999.

19. C.P. Schnorr and M. Jakobsson. Security of Signed ElGamal Encryption. In:
Proceedings of the 6th International Conference on the Theory and Application
of Cryptology and Information Security: Advances in Cryptology (ASIACRYPT
’00), pages 73–89, 2000.

20. M. Bellare, A. Boldyreva and J. Staddon. Multi-recipient encryption schemes:
Security notions and randomness re-use. Full version, http://cseweb.ucsd.
edu/∼mihir/papers/bbs.html. Preliminary version in: Public key cryptography
(PKC 2003), Lecture notes in computer science, Vol. 2567, 2003.

21. J. Groth. Evaluating Security of Voting Schemes in the Universal Composability
Framework. Applied Cryptography and Network Security, ACNS 2004, pages
46–60, 2004.

22. M. Fischlin. Communication-Efficient Non-Interactive Proofs of Knowledge with
Online Extractors. In: Proceedings of the 25th annual international cryptology
conference on advances in cryptology (CRYPTO ’05), pages 152–168, 2005.

23. A. Juels, D. Catalano and M. Jakobsson. Coercion-Resistant Electronic Elec-
tions. In: Proceedings of the 4th Workshop on Privacy in the Electronic Society
(WPES’05), pages 61–70, 2005.

24. S. Kremer and M. D. Ryan. Analysis of an Electronic Voting Protocol in the
Applied Pi Calculus. In: 14th European Symposium on Programming (ESOP
’05), pages 186–200, 2005.

25. T. Moran and M. Naor. Receipt-Free Universally-Verifiable Voting with Ever-
lasting Privacy. In: Proceedings of the 26th International Cryptology Conference
(CRYPTO’06), pages 373–392, 2006.

26. S. Delaune, S. Kremer and M. D. Ryan. Coercion-Resistance and Receipt-
Freeness in Electronic Voting. 19th Computer Security Foundations Workshop
(CSFW ’06), pages 28–42, 2006.

27. B. Chevallier-Mames, P. Fouque, D. Pointcheval, J. Stern and J. Traoré. On Some
Incompatible Properties of Voting Schemes. In: Proceedings of the Workshop on
Trustworthy Elections (WOTE’06), 2006.

28. Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl
Accord. http://www.dagstuhlaccord.org/, 2007.

29. J. Benaloh. Ballot Casting Assurance via Voter-Initiated Poll Station Auditing.
In: Proceedings of the Second Usenix/ACCURATE Electronic Voting Technology
Workshop, 2007.

30. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure
against adaptive chosen ciphertext attack. In: Proceedings of the 18th Annual
International Cryptology Conference on Advances in Cryptology (CRYPTO ’98),
pages 13–25, 2008.

31. M. R. Clarkson, S. Chong and A. C. Myers, Civitas: Toward a Secure Voting
System. In: Proceedings of the 29th Security and Privacy Symposium (S&P’08),
pages 354–368, 2008.

32. B. Adida. Helios: Web-based open-audit voting. In: 17th USENIX security
symposium, pages 335–348, 2008. http://www.usenix.org/events/sec08/tech/
full papers/adida/adida.pdf

33. M. Backes, C. Hriţcu and M. Maffei. Automated Verification of Remote Electronic
Voting Protocols in the Applied Pi-calculus. In: Proceedings of the 21st IEEE
Computer Security Foundations Symposium (CSF’08), pages 195–209, 2008.

34. D. Wikström. Simplified Submission of Inputs to Protocols. In: Security and
Cryptography for Networks, 6th International Conference, SCN 2008, pages 293–
308, 2008.

35. B. Adida, O. de Marneffe, O. Pereira and J.-J. Quisquater. Electing a univer-
sity president using open-audit voting: Analysis of real-world use of Helios. In:
Proceedings of the 2009 conference on Electronic voting technology/workshop on
trustworthy elections.

36. International association for cryptologic research. Election page at http://www.
iacr.org/elections/2010

37. V. Cortier and B. Smyth. Attacking and fixing Helios: An analysis of bal-
lot secrecy. Website with description and video at http://www.bensmyth.
com/publications/10-attacking-helios/ Cryptology ePrint Archive, Report
2010/625.

38. S. Kremer, M. D. Ryan and B. Smyth. Election verifiability in electronic voting
protocols. In: Proceedings of the 15th European Symposium on Research in
Computer Security (ESORICS’10), pages 389–404, 2010.

39. D. Unruh and J. Müller-Quade. Universally Composable Incoercibility. In: Pro-
ceedings of the 30th International Cryptology Conference (CRYPTO’10), pages
411–428, 2010.

40. R. Küsters, T. Truderung and A. Vogt. A Game-Based Definition of Coercion-
Resistance and its Applications. In: Proceedings of the 23rd IEEE Computer
Security Foundations Symposium (CSF’10), pages 122–136, 2010.

41. J. Loftus, A. May, N.P. Smart and F. Vercauteren. On CCA-Secure Fully Homo-
morphic Encryption http://eprint.iacr.org/2010/560

42. V. Cortier and B. Smyth. Attacking and fixing Helios: An analysis of ballot
secrecy. To appear in: Proceedings of the 24th Computer Security Foundations
Symposium (CSF ’11), 2011.

43. R. Küsters, T. Truderung and A. Vogt. Verifiability, Privacy, and Coercion-
Resistance: New Insights from a Case Study. Preprint, to appear at the 32nd
Security and Privacy Symposium (S&P’11).

44. G. Persiano. About the Existence of Trapdoors in Cryptosystems. “Work in
Progress”, Available at http://libeccio.dia.unisa.it/Papers/Trapdoor/.

45. Helios voting. Website: http://heliosvoting.org
46. Helios Headquarters, Princeton University Undergraduate Student Gov-

ernment. http://usg.princeton.edu/officers/elections-center/
helios-headquarters.html

A Details of our construction

We give a detailed description of our proposed construction of a provably secure
extension of Helios.

A.1 Choice of groups

Let λ be a security parameter. Pick primes p, q such that p − 1 = kq for some
k ∈ Z and q ≈ λ . Pick an element g ∈ (Z∗

p
,×) of order q. This defines a cyclic

group of prime order q which we will call G. The group operation is integer
multiplication with reduction mod p.

Occasionally we need the group (Zq,+) directly. In this group the operation
is integer addition with reduction mod q. Although these groups are isomorphic,
for security we rely on the fact that we have a homomorphism Zq → G and the
conjecture that it is hard to find one in the opposite direction.

The choice of these groups and parameters can be done as in existing Helios
implementations. We summarize these groups in the following table.

Group Order Op. Modulus Neutral Generator
G q × p 1 g
Zq q + q 0 1

A.2 Key generation

An election is created by a number of trustees who each hold a share of the
decryption/tallying key. To create an election for s trustees, each trustee Ti
picks two secrets x(i,0), x(i,1)

R← Zq where i ← 1 . . . s. Each trustee then computes
two values y(i,b) = gx(i,b) mod p for b ∈ {0, 1} and publishes these values. The
election public key is the pair

�
y0 =

s�

i=1

y(i,0), y1 =
s�

i=1

y(i,1)

�

A trustee must also prove knowledge of his secrets with a proof of knowledge
of a discrete logarithm. Although the proof of correct decryption of the election
result will also include a proof of knowledge of the trustees’ secret keys, voters
must be able to verify that the election public keys are well-formed before they
use them to encrypt their votes. The proof can be done as follows by trustee Ti
and repeated for both j = 0 and j = 1. It is a straightforward Schnorr proof:

1. αj

R← Zq.
2. βj ← gαj mod p.
3. γj ← H(βj).
4. δj ← αj + γj · x(i,j) mod q.

The proof is the tuple (β0, δ0,β1, δ1) and can be checked by ensuring βj ∈
G, δj ∈ Zq and gδj = βj · yγj

(i,j) mod p for j ∈ {0, 1}.

A.3 Creating a ballot

A ballot encodes a number of votes. The election parameters describe

– The number nV of votes each voter must cast.
– For each vote i in 1 . . . nV , a range (mini,maxi) that the vote must lie in.
– A range (minV ,maxV) that the sum of all votes must lie in.

To create a ballot for votes v1 . . . vnV satisfying these conditions, a voter
performs the following algorithm. In the interest of readability, we split the
algorithm into several distinct procedures as is good practice in programming
and give comments and pre/postconditions for each.

create-ballot This is the main algorithm that takes a list of votes and creates a
ballot.
Input: Number of votes nV , votes v1 . . . vnV , ranges (mini,maxi)

nV
i=1, range (minV ,maxV),

public key (y0, y1).
Preconditions: nV ≥ 1, for all i ∈ 1 . . . nV we have mini ≤ maxi, minV ≤�

nV

i=1 mini ≤
�

nV

i=1 maxi ≤ maxV .
Output: Valid ballot for v1 . . . vnV .

1. For i ← 1 . . . nV :

(a) ri
R← Zq.

(b) ei ← encrypt-vote(y0, y1, vi, ri).
(c) πi,NY ← create-NY-proof(y0, y1, ri, ei).
(d) πi,R ← create-range-proof(y0, y1, ri, vi, ei,mini,maxi).

2. πV ← create-sum-proof(y0, y1, (ei, ri, vi)
nV
i=1,minV ,maxV).

3. Return the ballot
((ei,πi,NY ,πi,R)

nV
i=1,πV)

encrypt-vote This procedure creates a 3-element ElGamal encryption of a vote.
Input: Vote v, randomness r, public keys y0, y1.
Preconditions: None.
Output: Encrypted vote e = (a, b, c).

Compute
(a ← gr, b ← gvyr0, c ← gvyr1) mod p

and return e ← (a, b, c).

create-NY-proof This procedure takes an encrypted vote e and the underlying
randomness r and produces a proof that both encryptions are for the same
message under the same randomness.
Input: Public keys y0, y1, randomness r, encrypted vote e.
Preconditions: e is a valid encryption of a vote with randomness r under public
keys y0, y1.
Output: Non-interactive zero-knowledge proof π.

1. α1,α2
R← Zq.

2. (β1 ← gα2 , β2 ← gα1yα2
0 , β3 ← gα1yα2

1) mod p.
3. γ ← H(β1�β2�β3).
4. δ1 ← α1 + γ ·m mod q, δ2 ← α2 + γ · r mod q.
5. Return π ← (β1,β2,β3, δ1, δ2).

create-range-proof This procedure produces a zero-knowledge proof that a vote
lies in a given range. Note that we only consider the first public key which is
sufficient as the zero-knowledge proof of equality guarantees that the second
encryption will be in the same range.
Input: Public keys y0, y1, encrypted vote e, vote v, randomness r, range of valid
votes (min,max).
Preconditions: e is the encryption of v under public keys y0, y1 and randomness
r and v ∈ [min,max] .
Output: Zero-knowledge proof π.

1. Parse e as (a, b, c).
2. For j ← [min,max] \ {v}, create a simulated proof:

(a) γj , δj
R← Zq.

(b) ∆j,1 ← gδj mod p, ∆j,2 ← y
δj

0 mod p.
(c) βj,1 ← ∆j,1 − γi · a mod p, βj,2 ← ∆j,2 − γi · (b/gj) mod p.

3. αv

R← Zq.
4. βv,0 ← gαv mod p, βv,1 ← yαv

0 mod p.
5. γ ← H(βmin,1�βmin,2�βmin+1,1�βmin+1,2� . . . �βmax,1�βmax,2).
6. γv ← γ −

�max
j=min,j �=v

γj mod q.
7. δv ← αv + γv · r.
8. Return (βj,1,βj,2, γj , δj)max

j=min.

create-sum-proof This procedure produces a zero-knowledge proof that the sum
of all votes (v1, . . . , vnV) underlying a single ballot lies in the range [minV ,maxV].
This is done by homomorphically adding all votes and then producing a range
proof on the sum. Sum proofs, like range proofs, need only be done on one of
the two encryption.
Input: Public keys y0, y1, encrypted votes, underlying randomness and plain
votes (ei, ri, vi)

nV
i=1, range (minV ,maxV).

Preconditions: Valid encrypted votes for given public keys, plain votes and ran-
domness; sum of all plain votes lies in range [minV ,maxV].
Output: Zero-knowledge proof π.

1. Parse each encrypted vote as (ai, bi, ci).
2. (a, b) ← (

�
nV

i=1 ai mod p,
�

nV

i=1 bi mod p).
3. (r, v) ← (

�
nV

i=1 ri mod q,
�

nV

i=1 vi mod q).
4. Return create-range-proof(y0, y1, r, v, (a, b,⊥),minV ,maxV).

A.4 Verifying a ballot

When a ballot is cast, the entity responsible for collecting ballots must check its
validity and publish it if found valid. This process must be publicly verifiable,
indeed anyone must be able to check ballot validity without access to any secret
information.

Ballot authentication is out of scope of this discussion, for simplicity we
may assume authentic channels from all voters to the ballot casting centre. We
explicitly include checks that all elements are in the required groups.

verify-ballot This algorithm takes a ballot and returns 1 if it is deemed to be
valid, otherwise 0.
Input: A claimed ballot of the form ((ei,πi,NY ,πi,R)

nV
i=1,πV).

Preconditions: None (we are checking if the input is valid, after all).
Output: 0 or 1.

Wherever “check” is written, the algorithm immediately aborts returning 0
if a check fails.

1. Check that the number of elements is correct.
2. For i ← 1 . . . nV

(a) Parse ei as (a, b, c). Check all three elements are in G.
(b) Check verify-NY(y0, y1, ei,πi,NY).
(c) Check verify-range(y0, y1, ei,πi,R).

3. (a�, b�) ← (
�

nV

i=1 ai,
�

nV

i=1 bi) mod p.
4. Check verify-range(y0, y1, (a�, b�,⊥),πV).

verify-NY This procedure verifies a Naor-Yung transformation proof that two
encryptions share the same message and randomness.
Input: Public key (y0, y1), encrypted vote e = (a, b, c), Naor-Yung proof π =
(β1,β2,β3, δ1, δ2).
Preconditions: a, b, c ∈ G.
Output: 0 or 1.

1. Check that β1 ∈ G,β2 ∈ G,β3 ∈ G, δ1 ∈ Zq, δ2 ∈ Zq or return 0 if this fails.

2. ∆1 ← gδ2 mod p, ∆2 ← gδ1yδ20 mod p, ∆3 ← gδ1yδ21 mod p.
3. γ ← H(β1�β2�β3).
4. Return 1 if the following checks pass, otherwise 0:

– ∆1
?
= β1 · aγ mod p.

– ∆2
?
= β2 · bγ mod p.

– ∆3
?
= β3 · cγ mod p.

verify-range This procedure verifies a zero-knowledge proof that an encrypted
vote lies within a given range.

Input: Public key (y0, y1), encrypted vote (a, b, c), disjunctive proof (βj,1,βj,2, γj , δj)max
j=min.

Preconditions: a, b, c ∈ G, encrypted vote NY-verified.
Output: 0 or 1.

1. For j ← min, . . . ,max:
(a) Check that βj,1 ∈ G,βj,2 ∈ G, γj ∈ Zq, δj ∈ Zq or return 0 if this fails.

(b) ∆j,1 ← gδj mod p, ∆j,2 ← y
δj

0 mod p.
(c) Return 0 if any of the following two checks fail:

– ∆j,1
?
= βj,1 · aγj mod p.

– ∆j,2
?
= βj,2 · (b/gj)γj mod p.

2. γ ← H(βmin,1�βmin,2�βmin+1,1�βmin+1,2� . . . �βmax,1�βmax,2).

3. Check that γ
?
=

�max
j=min γj . Return 1 if this succeeds, otherwise 0.

A.5 Computing a Tally

A group of trustees each hold a share of the decryption key. Once voting is over,
they must each verify all ballots and reject any that fail the checks. It is also
advisable that they check for duplicate proofs among all valid ballots. After this
stage, all zero-knowledge proofs and even the third elements of triples forming
encrypted votes can be discarded.

Each trustee should independently compute the sum of all votes. Specifically,
if the ballot of voter i contains the nV encryptions (ai,j , bi,j)

nV
j=1 then the trustees

should compute �
aj ←

n�

i=1

ai,j , bj ←
n�

i=1

bi,j

�nV

j=1

Although this must be publicly computable to verify the election, it is important
that each trustee does not apply his decryption key to anything until he is sure
it is the correct sum.

The trustees can each compute a partial decryption by applying their secret
key share: The trustee holding xk (which we can take to be x(k,0)) computes
(dj,k ← (aj)xk mod p)nV

j=1 and publishes this value along with a proof of knowl-
edge attesting to the fact that they decrypted correctly. Such a proof (to be
repeated for j ← 1 . . . nV) takes the form

PoK{(xk) : dj,k = axk
j

mod p ∧ yk = gxk mod p}

and is computed as follows.

1. α
R← Zq

2. (β1,β2) ← (aα
j
, gα) mod p.

3. γ ← H(β1�β2).
4. δ ← α+ γ · xk mod q.

The proof consists of the elements (β1,β2, δ) and verification involves check-
ing the following three conditions.

1. β1 and β2 are in G and δ in Zq.

2. (aj)δ = β1 · dH(β1�β2)
j,k

mod p.

3. gδ = β2 · yH(β1�β2)
k

mod p.

The decrypted tally is then (dj ← bj/
�

nK

k=1 dj,k)
nV

j=1 where nK is the number

of key shares. This will satisfy the equation (dj = gmj mod p) where mj is the
sum of all jth votes (for j ← 1 . . . nV). The actual result mj can be recovered
by computing powers of g modulo p until all values dj are found.

A.6 Simulating a Tally

In the ballot privacy game for b = 1, we need to simulate these proofs. The
values dj,k must be computed correctly and the proof simulated as follows.

1. γ
R← Zq, δ

R← Zq

2. β1 ← (aj)δ/(dj,k)γ mod p
3. β2 ← (g)δ/(yk)γ mod p
4. Patch H at input (β1�β2) to equal γ.

A.7 Verifying the Election

Anyone can publicly perform the following verification steps.

– Check each published ballot for validity.
– Check there are no duplicate proofs among published ballots.
– Compute the encryption of the tally from the ballots using the homomorphic

property of the ElGamal encryption.
– Check the proofs of correct partial decryption.
– Compute the tally from the partial decryptions.

B Ballot Privacy for the Mini–Voting Scheme

For the proof, we first consider a “mini-voting” scheme (in Theorem 4) that
removes all the extra zero-knowledge proofs concerning verifiability and show
that ballot privacy follows from IND-CCA2 security of the encryption scheme.
Then, we extend this proof to our construction (in Theorem 1).

We stress that we do not require any additional conditions on the zero-
knowledge proofs (for verifiability); in particular, they need not be non-malleable.

Theorem 4. Let (Gen,Enc,Dec) be an IND-CCA2 secure encryption scheme
for message space V. Then the mini-voting scheme in Algorithm 7 is a voting
scheme with ballot privacy.

Algorithm 7 Mini-Voting Scheme
Setup

(x, y) ← Gen
Z ← y
BB ← ()

Vote(v)

b ← Enc(v)

ProcessBallot(c, BB)

if b /∈ BB then
BB

+← b
return (“accept”, BB)

else
return (“reject”, BB)

end if

Tally(x,BB)

for all bj ∈ BB do v�j ← Dec(bj) end for

r ← ρ((v�j)
|BB|

j=1)

Proof (Theorem 4). SupposeA is an adversary that has non-negligible advantage
in winning the ballot privacy game.

Let n be an upper bound on the number of vote calls the adversary makes.
Let (Hk)nk=0 be the sequence of games where in game Hk, the first k calls to
vote are answered as if β = 0 and all from the k + 1st onwards are answered as
if β = 1. We note that H0 is equivalent to the ballot privacy game for β = 0 and
Hn for β = 1.

Using the triangular inequality, if any adversary can distinguish H0 from Hn

with non-negligible advantage then there is a value k such that the adversary
can distinguish the pair of hybrids (Hk, Hk+1) with non-negligible advantage.

Given such a k, we construct a reduction to IND-CCA2 of the underlying
scheme. We assume w.l.o.g. that in the k + 1st call to vote, the vote is not ε or
else the two hybrids would be identical. Let C be a challenger for IND-CCA2
of the encryption scheme. We construct an adpater B which will play against C
using A as follows.

Setup B receives a public key y from C, performs the setup of the voting scheme
and hands the public key and parameters to A.

vote
queries 1 . . . k: B processes these as in the ballot privacy game with β = 0.
query k + 1: Let v∗ be the input to this query. If it is ⊥, B does nothing. If

not, it stores v∗ and forwards the pair (v∗, ε) to C and gets a ciphertext c∗

back. It processes c∗ onto BB and creates a new ciphertext c� = Vote(v∗)
which it processes onto BB�. Finally, B returns the new state of BB to
A.

queries ≥ k + 2: B processes these as in the ballot privacy game with β = 1.

ballot
For all queries before the k + 1st vote query (when B obtains the IND-
CCA2 challenge), it passes the ballot to the decryption oracle and stores
the plaintext and ballot. B then handles the query like the ballot privacy
experiment.

Tallying As long as c∗ does not appear on BB�, B decrypts all ballots on BB�

(using the decryption oracle of C) to get the votes, evaluates ρ on these votes
and returns the result to A. We deal with the case that c∗ is on BB� below.

Guess B forwards the bit �β it receives from A to C.

As long as c∗ does not appear on BB�, the adversary’s view when interacting
with B will be identically distributed to that when he is interacting with Hk+β

where β is the bit chosen by C and therefore B wins against C with the same
advantage as A has in distinguishing the two hybrids.

Suppose c∗ appears on BB� and consider the following cases. In each case, we
show that B obtains the plaintext of c∗ and can therefore guess β with probability
1 as we assumed v∗ �= ε.

1. c∗ was added while processing a ballot command before the challenge query.
In this case, B has decrypted c∗ and stored the plaintext/ciphertext pair
while processing the command.

2. c∗ was added while processing a ballot command after the challenge query.
This is impossible as c∗ is definitely on BB after the challenge query and so
further calls to ballot(c∗) would reject before trying to process c∗ onto BB�.

3. c∗ was added while processing a vote query.
In this case, B knows the plaintext because it receives it as input.

Therefore, B has at least as high an advantage against C as A has of distin-
guishing Hk from Hk+1. ��

Proof (Theorem 1). We will prove the theorem by a sequence of “game hops”.
Starting with the mini-voting scheme, we modify the voting scheme in each hop
and argue how the proof needs to be adapted.

Let Scheme 2 be the mini-voting scheme where each voter may cast k votes.
Duplicate checking is performed as in our full voting scheme, i.e. we extract the
list of ciphertexts from each ballot and reject if any of them is a duplicate. For
n voters, this gives us a total of N := n · k encrypted votes and we simply run
the same hybrid argument (with N hybrids).

Next, we add the proofs of knowledge everywhere to obtain Scheme 3. In the
security reduction, we perform two hybrid arguments. The first one replaces the
zero-knowledge proofs by simulated ones, one step at a time. The second one
switches votes to ε as before. If the adversary can detect a difference between any
two consecutive hybrids, he can either attack the encryption (as argued earlier)
or distinguish a real from a simulated zero-knowledge proof.

Finally, we switch the tallying operation to perform checking, extraction,
homomorphic tallying and decryption of the result only to obtain our proposed
scheme. (If ρ is not homomorphically computable, we skip this step as our scheme

cannot tally homomorphically either.) We extend our sequence of games by 1,
where the first hop is switching from homomorphic decryption back to decrypting
all ballots. The adversary will not notice any difference between the two games
as he is not involved in the decryption and tallying process, so ballot privacy
still holds.

��

C Security proof of the Naor-Yung transformation

C.1 The Naor-Yung Transformation

We prove security of the Naor-Yung transformation [7].
Naor and Yung originally used zero-knowledge proofs of language member-

ship yet their technique and proof can easily be adapted to proofs of knowledge.
This adaptation also removes a substantial amount of the complexities they had
to deal with in their original paper.

Naor and Yung proved IND-CCA1 of their transformation. Sahai [18] realized
that this transformation even gives an IND-CCA2 secure encryption scheme if
the zero-knowledge proof system satisfies a few extra conditions. All of these
hold trivially for proofs of knowledge except the one he called uniquely applicable
proofs ; we will have to show that this holds for our proposed scheme.

We prove IND-CCA2 security of the Naor-Yung transformation two steps.
First, we prove Naor and Yung’s theorem [7] giving us IND-CCA1 security.
The original theorem concerned zero-knowledge proofs of language membership
and used specific definitions and propositions concerned with such proofs. Our
version omits all these as we deal with the simpler case of proofs of knowledge.
The main ideas in the proof remain unchanged although we use techniques from
[20] to simplify the presentation.

Proof (Naor-Yung). Let C be a challenger for the IND-CPA game of the original
encryption and A be an adversary for the IND-CCA1 game of the Naor-Yung
transformed scheme. We construct an algorithm B that attacks C using A.

When B is invoked by A, it acts as follows.

Setup
1. Receive a public key y from C.
2. Create a key pair (x�, y�) using Gen.

3. Pick a bit b�
R← {0, 1}.

4. If b� = 0, let (y1, y2) ← (y, y�). Otherwise, let (y1, y2) ← (y�, y) i.e. b�

determines the order of the keys.
5. Send (y1, y2) to A.

Dec(c) Parse c as (c0, c1,π). Check π is valid for c0, c1 and abort returning ⊥ if
this fails. Decrypt c1−b� with x� and return the result m.

Chal(m0,m1)
1. Pass (m0,m1) to the Chal interface of C and get a ciphertext c back.
2. Create a new ciphertext c� ← Enc(y�,mb�).

3. If b� = 0, let (c0, c1) ← (c, c�). If b� = 1, swap the order of ciphertexts:
(c0, c1) ← (c�, c).

4. Simulate a proof π ← Sim(c0, c1).
5. Return (c0, c1,π) to the adversary.

Result When A produces a result d ∈ {0, 1} forward this to C.

The public keys in Setup are distributed identically to those in the Naor-Yung
transformed encryption scheme. The decryption oracle will work correctly for A
as long as he does not manage to forge a proof and submit an invalid ciphertext;
the probability of this happening is negligible as we assume the proof system to
be sound.

Consider the distributions A sees based on the bits b of C and b� of B. For
x, y ∈ {0, 1} define the distribution

δ(x, y) := (Enc(y0,mx),Enc(y1,my))

over the random choices in both encryptions, assuming the public keys and
messages are fixed. A sees two elements (c0, c1) and a proof π in response to his
Chal query. The distribution of these ciphertexts will be

b = 0 b = 1

b� = 0 δ(0, 0) δ(1, 0)
b� = 1 δ(1, 0) δ(1, 1)

The advantage of A against IND-CCA1 security of the Naor-Yung trans-
formed scheme is his advantage in distinguishing δ(0, 0) from δ(1, 1). If this is
non-negligible, then by the triangular inequality his advantage between two suc-
cessive distributions in the sequence

δ(0, 0) − δ(1, 0) − δ(1, 1)

will also be non-negligible. In fact, as B chooses b� uniformly at random from
{0, 1} we can estimate

AdvCPA(B) ≥ 1

2
·AdvCCA1(A)−AdvP(A)

Where AdvP is the probability that A can attack the zero-knowledge proof,
either by forging a proof for an incorrect encryption or by distinguishing a real
proof from a simulated one (on a correct or incorrect encryption). Assuming the
proof system is sound and zero-knowledge, this quantity is negligible. ��

We now prove Sahai’s version of the theorem that gives us IND-CCA2 se-
curity. Sahai proved the theorem directly whereas we just need to extend from
IND-CCA1 to IND-CCA2 security. Sahai used proofs of language membership,
as we consider proofs of knowledge we can again omit many of the technicalities.
The central argument remains the same, namely showing that the adversary
cannot ask for a decryption of an invalid ciphertext.

Proof (Sahai). We claim that for any triple (c0, c1,π) submitted to the decryp-
tion oracle, if the proof verifies then with overwhelming probability both c0 and
c1 are encryptions of the same message.

There is only one case when the adversary sees a proof he has not created
himself (so we cannot use the extractor of the proof of knowledge to get a
contradiction) and that is the proof returned from the challenge query.

Uniquely applicable proofs give us that the adversary cannot create a triple
(c∗0, c

∗
1,π) distinct from the response of the challenge oracle, passing verification

using the same proof π. In the definition of IND-CCA2, the adversary is not
allowed to ask for a decryption of the triple he got from the challenge oracle
either.

For any triple with a proof π∗ �= π distinct from that we returned from
the challenge query, if the underlying statement is false then the adversary has
produced a forgery which we assume can happen with at most negligible prob-
ability. ��

(The property that the adversary may not prove a false statement even after
seeing a proof for a false statement is called simulation-soundness in the litera-
ture. For a proof of knowledge with uniquely applicable proofs, this is trivial.)

We can now prove our theorem that we get a voting-friendly scheme.

Proof (Theorem 3). IND-CCA2 follows from Sahai’s theorem. The ExtractKey
and Extract algorithms extract the first key pair and ciphertext respectively; this
yields the embedding property. EAdd is just the homomorphic addition algorithm
of the original scheme which clearly can still be applied.

D Reusing randomness

Recall that a homomorphic ElGamal ciphertext is a pair of the form (gr, gmyr)
mod p. For the Naor-Yung construction, we could simply use a 4-tuple of the
form

(gr1 , gmyr11 , gr2 , gmyr22) mod p

but in fact we can do better thanks to a theorem of Bellare, Boldyreva and
Staddon [20] which allows us to reuse the random value r.

We state the crucial condition for randomness reuse and the theorem infor-
mally and without proof, as it covers a much more general case than we require.

An encryption scheme is said to be reproducible if there is an efficient al-
gorithm Reproduce that, on input a public key and an encryption of some un-
known message under this public key together with a new message and a new
public/secret key pair, produces an encryption of the new message under the
new public key using the same randomness as the old encryption.

More formally, let Enc(pk,m; r) denote the deterministic encryption function,
where r is the randomness. Then we demand ∀(pk, sk),m, r, (pk�, sk�) where
(pk, sk) and (pk�, sk�) are valid key pairs

c = Enc(pk,m; r) → Reproduce(pk, c,m�, pk�, sk�) = Enc(pk�,m�; r)

ElGamal is reproducible: Given a ciphertext c = (a, b) we can reproduce one
for a new key as

Reproduce(pk, c,m�, pk�, sk�) := (a, gm
�
ask

�
)

Writing a = gr, b = gmpkr we find that the new element is gm
�
(gr)sk

�
=

gm
�
(pk�)r as required.
Informally, the relevant theorem in [20] states that if a public-key encryption

is reproducible and IND-CPA, CCA1 or CCA2 then it retains this security if
encryption is performed with the same randomness for multiple keys. Their
definition of multi-recipient IND-CPA/CCA also takes into account that the
adversary may be a legitimate participant in the system and know some of the
decryption keys too. We refer to the original paper for the precise definitions
and the full proof, we do not require these for our construction.

An encryption of message m with randomness r under keys y1, y2 will be the
triple

(gr, gmyr1, g
myr2) mod p

Apart from reducing bandwidth and computation required for the actual en-
cryption compared to two separate encryptions, this also allows us to construct
an easier zero-knowledge proof for the Naor-Yung transformation.

The proof of the Naor-Yung transformation is almost identical when reusing
randomness, the only change is that we use Randomize in the challenge oracle to
create the second ciphertext.

E Encryption

E.1 Public-Key Encryption

A public-key encryption scheme is a triple of probabilistic algorithms

(Gen,Enc,Dec)

satisfying the correctness condition for all messages m in the message space with
probability 1.

The algorithms and their input/output values are as follows.

Gen(1λ) The key-generation algorithm takes a security parameter λ and gener-
ates a secret key x and a public key y.

Enc(y,m) The encryption algorithm takes a public key y and a message m and
outputs a ciphertext c.

Dec(x, c) The decryption algorithm takes a secret key x and a ciphertext c and
outputs a decryption d.

The scheme is IND-CPA, IND-CCA1 or IND-CCA2 secure if no efficient
adversary can win the security game with non-negligible advantage, defined as

Adv(A) =

����Pr[A wins]− 1

2

����

Algorithm 8 Correctness of Public-Key Encryption
Parameters: m

(x, y) ← Gen
c ← Enc(y,m)
m� ← Dec(x, c)
return m = m�

The idea underlying all three is that the adversary may pick any two plaintexts
and submit them to a challenge oracle, receiving an encryption of one of the
two in return. He must then decide which of the two messages the encryption
represents. The difference between the three notions lies in when the adversary
may make decryption queries:

Game Before challenge call After challenge call
IND-CPA no no

IND-CCA1 yes no
IND-CCA2 yes yes (*)

(*) The adversary may not ask for a decryption of the ciphertext he got from
the challenge call.

Algorithm 9 Security of Public-Key Encryption
Adversary: A

(x, y) ← Gen
A ← y
if IND-CCA1 or IND-CCA2 then

while c ← A do A ← Dec(c) end while
end if
(m0,m1) ← A
b

R← {0, 1}
c∗ ← Enc(y,mb)
A ← c∗

if IND-CCA2 then
while c ← A do

if c = c∗ then A ← ⊥ else A ← Dec(c) end if
end while

end if
b� ← A
return b = b�

Security in any of these three models implies a probabilistic encryption func-
tion (and sufficient entropy), otherwise the adversary could just recompute en-
cryptions of the two messages he sent to the challenge oracle himself and compare
these with the ciphertext he received from it.

E.2 Homomorphic Encryption

A homomorphic public-key encryption scheme consists of four algorithms

(Gen,Enc,Dec,Add)

such that the message space is a group (denote the group operation by ⊕), the
first three algorithms are a public-key encryption scheme and the fourth takes
two ciphertexts and produces a ciphertext for the message corresponding to the
group operation evaluated on the original two plaintexts, without access to the
secret key. More formally, for any messages m0,m1 the additional correctness
property is satisfied with probability 1.

Algorithm 10 Correctness of Homomorphic Encryption
Parameters: m0,m1

(x, y) ← Gen
c0 ← Enc(y,m0)
c1 ← Enc(y,m1)
c ← Add(c0, c1)
m� ← Dec(x, c)
return m� = m0 ⊕m1

A homomorphic encryption scheme can never be IND-CCA2 secure. If the
adversary chooses m0,m1 as his two challenge messages and gets a ciphertext
c as a result, in a homomorphic scheme he can always pick any m� that is not
the unit of the group, create c� ← Enc(y,m�) and c�� ← Add(c, c�). He can then
send c�� to the decryption oracle (as the underlying plaintext differs from that
of c, so must the ciphertext) to get m�� back and check if m�� = m0 + m� or
m�� = m1 +m� holds.

E.3 Threshold Decryption

A public-key encryption scheme with threshold decryption for t out of n shares
consists of algorithms

(Setup,GenShare,CombineKey,Enc,DecShare,Combine)

for a given threshold t out of a number n of shares.

Setup The setup algorithm takes a security parameter as input and creates pub-
lic parameters params which are implicitly available to all further algo-
rithms.

GenShare This generates a pair (x, y) consisting of a secret key share and a public
key share.

CombineKey This algorithm takes a list of n public key shares (yi)ni=1 as input
and returns a public key y.

Enc The encryption algorithm is identical to normal public-key encryption.
DecShare The shared decryption algorithm takes a private key share xi and a

ciphertext c as input and produces a partial decryption di.
Combine This takes a ciphertext c and a list of t partial decryptions and produces

a plaintext.

The correctness game must return 1 with probability 1 for any message m
and any set T of exactly t indices to use for decryption.

Algorithm 11 Correctness of Threshold Public-Key Encryption
Parameters: m, T ⊆ {1, . . . , n} with |T | = t

params ← Setup
for i ← 1 . . . n do (xi, yi) ← GenShare end for
y ← combineKey((yi)ni=1)
c ← Enc(y,m)
for all i ∈ T do di ← DecShare(xi, c) end for
m� ← Combine(c, (di, i)i∈T)
return m = m�

For security, we allow the adversary to obtain any t−1 decryption key shares
and give him partial decryption oracles for the others. The security notions are
IND-TCPA, IND-TCCA1 and IND-TCCA2 where we demand that no efficient
adversary can gain a non-negligible advantage in the game.

Definition 10 (Threshold Homomorphic Embedding). A threshold scheme

(Setup,GenShare,CombineKey,Enc,DecShare,Combine)

has threshold homomorphic embedding

(ESetup,EGenShare,ECombineKey,EEnc,EDecShare,ECombine,EAdd)

if there are algorithms

(ExtractShare,ExtractKey,Extract,EDecShare,ECombine,EAdd)

such that

EGenShare = ExtractShare ◦ GenShare

ECombineKey = ExtractKey ◦ CombineKey

EEnc = Extract ◦ Enc

Dec = EDec ◦ Extract

Algorithm 12 Security of Threshold Public-Key Encryption
Adversary: A

params ← Setup
A ← params
for i ← 1 . . . n do (xi, yi) ← GenShare end for
y ← CombineKey((yi)ni=1)
A ← (y, (yi)

n
i=1)

for i ← 1 . . . t do
τ ← A
A ← xτ

end for
if IND-TCCA1 or IND-TCCA2 then

while (c, τ) ← A do A ← DecShare(xτ , c) end while
end if
(m0,m1) ← A
b

R← {0, 1}
c∗ ← Enc(y,mb)
A ← c∗

if IND-TCCA2 then
while (c, τ) ← A do

if c = c∗ then A ← ⊥ else A ← DecShare(xτ , c) end if
end while

end if
b� ← A
return b = b�

E.4 Homomorphic Threshold ElGamal

Given a cyclic group G with generator g, the following is the threshold homo-
morphic ElGamal encryption scheme.

Setup Create a cyclic group G of prime order q (where q is approximately the
size of the security parameter) and a generator g.

GenShare Pick x
R← Zq and compute y = gx in G.

CombineKey Given a list of public key shares (yi)i∈I , compute y =
�

i∈I
yi.

Enc Given a message m, pick a random r
R← Zq and compute a = gr and

b = gmyr. The ciphertext is c = (a, b).
DecShare Given c = (a, b) and x, compute d = ax.
Combine Given c = (a, b), (xi)i∈I compute h = b/(

�
i∈I

xi) which will be gm

if everything was done correctly. Use a discrete-logarithm finding algorithm
(for small m) to extract m.

Add Given a1 = gr1 , b1 = gm1yr1 and a2 = gr2 , b2 = gm2yr2 , compute a =
a1 · a2, b = b1 · b2.

Election verifiability in electronic voting protocols� ��

Steve Kremer1, Mark Ryan2, and Ben Smyth2,3

1 LSV, ENS Cachan & CNRS & INRIA, France
2 School of Computer Science, University of Birmingham, UK

3 École Normale Supérieure & CNRS & INRIA, France

Abstract. We present a formal, symbolic definition of election verifiability for
electronic voting protocols in the context of the applied pi calculus. Our def-
inition is given in terms of boolean tests which can be performed on the data
produced by an election. The definition distinguishes three aspects of verifiabil-
ity: individual, universal and eligibility verifiability. It also allows us to determine
precisely which aspects of the system’s hardware and software must be trusted for
the purpose of election verifiability. In contrast with earlier work our definition is
compatible with a large class of electronic voting schemes, including those based
on blind signatures, homomorphic encryption and mixnets. We demonstrate the
applicability of our formalism by analysing three protocols: FOO, Helios 2.0, and
Civitas (the latter two have been deployed).

1 Introduction

Electronic voting systems are being introduced, or trialled, in several countries to pro-
vide more efficient voting procedures. However, the security of electronic elections has
been seriously questioned [9, 20, 8, 24]. A major difference with traditional paper based
elections is the lack of transparency. In paper elections it is often possible to observe the
whole process from ballot casting to tallying, and to rely on robustness characteristics
of the physical world (such as the impossibility of altering the markings on a paper bal-
lot sealed inside a locked ballot box). By comparison, it is not possible to observe the
electronic operations performed on data. Computer systems may alter voting records in
a way that cannot be detected by either voters or election observers. A voting termi-
nal’s software might be infected by malware which could change the entered vote, or
even execute a completely different protocol than the one expected. The situation can
be described as voting on Satan’s computer, analogously with [5].

The concept of election or end-to-end verifiability that has emerged in the academic
literature, e.g., [17, 18, 10, 3, 21, 2], aims to address this problem. It should allow voters
and election observers to verify, independently of the hardware and software running
the election, that votes have been recorded, tallied and declared correctly. One generally
distinguishes two aspects of verifiability.

� This work has been partly supported by the EPSRC projects UbiVal (EP/D076625/2), Trustworthy Voting Systems
(EP/G02684X/1) and Verifying Interoperability Requirements in Pervasive Systems (EP/F033540/1); the ANR SeSur
AVOTÉ project; and the Direction Générale pour l’Armement (DGA).

�� A long version containing full proofs is available in [19].

– Individual verifiability: a voter can check that her own ballot is included in the
election’s bulletin board.

– Universal verifiability: anyone can check that the election outcome corresponds to
the ballots published on the bulletin board.

We identify another aspect that is sometimes included in universal verifiability.

– Eligibility verifiability: anyone can check that each vote in the election outcome
was cast by a registered voter and there is at most one vote per voter.

We explicitly distinguish eligibility verifiability as a distinct property.

Our contribution. We present a definition of election verifiability which captures the
three desirable aspects. We model voting protocols in the applied pi calculus and for-
malise verifiability as a triple of boolean tests ΦIV ,ΦUV ,ΦEV which are required to
satisfy several conditions on all possible executions of the protocol. ΦIV is intended to
be checked by the individual voter who instantiates the test with her private informa-
tion (e.g., her vote and data derived during the execution of the protocol) and the public
information available on the bulletin board. ΦUV and ΦEV can be checked by any ex-
ternal observer and only rely on public information, i.e., the contents of the bulletin
board.

The consideration of eligibility verifiability is particularly interesting as it provides
an assurance that the election outcome corresponds to votes legitimately cast and hence
provides a mechanism to detect ballot stuffing. We note that this property has been
largely neglected in previous work and our earlier work [22] only provided limited
scope for.

A further interesting aspect of our work is the clear identification of which parts of
the voting system need to be trusted to achieve verifiability. As it is not reasonable to
assume voting systems behave correctly we only model the parts of the protocol that
we need to trust for the purpose of verifiability; all the remaining parts of the system
will be controlled by the adversarial environment. Ideally, such a process would only
model the interaction between a voter and the voting terminal; that is, the messages
input by the voter. In particular, the voter should not need to trust the election hardware
or software. However, achieving absolute verifiability in this context is difficult and
protocols often need to trust some parts of the voting software or some administrators.
Such trust assumptions are motivated by the fact that parts of a protocol can be audited,
or can be executed in a distributed manner amongst several different election officials.
For instance, in Helios 2.0 [3], the ballot construction can be audited using a cast-or-
audit mechanism. Whether trust assumptions are reasonable depends on the context of
the given election, but our work makes them explicit.

Tests ΦIV ,ΦUV and ΦEV are assumed to be verified in a trusted environment (if a
test is checked by malicious software that always evaluates the test to hold, it is useless).
However, the verification of these tests, unlike the election, can be repeated on different
machines, using different software, provided by different stakeholders of the election.
Another possibility to avoid this issue would be to have tests which are human-verifiable
as discussed in [2, Chapter 5].

We apply our definition on three case studies: the protocol by Fujioka et al. [15];
the Helios 2.0 protocol [4] which was effectively used in recent university elections in
Belgium; and the protocol by Juels et al. [18], which has been implemented by Clarkson
et al. as Civitas [13, 12]. This demonstrates that our definition is suitable for a large
class of protocols; including schemes based on mixnets, homomorphic encryption and
blind signatures. (In contrast, our preliminary work presented in [22] only considers
blind signature schemes.) We also notice that Helios 2.0 does not guarantee eligibility
verifiability and is vulnerable to ballot stuffing by dishonest administrators.

Related work. Juels et al. [17, 18] present a definition of universal verifiability in
the provable security model. Their definition assumes voting protocols produce non-
interactive zero-knowledge proofs demonstrating the correctness of tallying. Here we
consider definitions in a symbolic model. Universal verifiability was also studied by
Chevallier-Mames et al. [11]. They show an incompatibility result: protocols cannot
satisfy verifiability and vote privacy in an unconditional way (without relying on com-
putational assumptions). But as witnessed by [17, 18], weaker versions of these prop-
erties can hold simultaneously. Our case studies demonstrate that our definition allows
privacy and verifiability to coexist (see [14, 6] for a study of privacy properties in the
applied pi calculus). Baskar et al. [7] and subsequently Talbi et al. [23] formalised
individual and universal verifiability for the protocol by Fujioka et al. [15]. Their defi-
nitions are tightly coupled to that particular protocol and cannot easily be generalised.
Moreover, their definitions characterise individual executions as verifiable or not; such
properties should be considered with respect to every execution.

In our earlier work [22] a preliminary definition of election verifiability was pre-
sented with support for automated reasoning. However, that definition is too strong to
hold on protocols such as [18, 4]. In particular, our earlier definition was only illus-
trated on a simplified version of [18] which did not satisfy coercion-resistance because
we omitted the mixnets. Hence, this is the first general, symbolic definition which can
be used to show verifiability for many important protocols, such as the ones studied in
this paper.

2 Applied pi calculus

The calculus assumes an infinite set of names a, b, c, k,m, n, s, t, . . ., an infinite set of
variables v, x, y, z, . . . and a finite signature Σ, that is, a finite set of function sym-
bols each with an associated arity. We also assume an infinite set of record variables
r, r1, A function symbol of arity 0 is a constant. We use metavariables u,w to range
over both names and variables. Terms L,M,N, T, U, V are built by applying function
symbols to names, variables and other terms. Tuples u1, . . . , ul and M1, . . . ,Ml are oc-
casionally abbreviated ũ and M̃ . We write {M1/x1, . . . ,Ml/xl} for substitutions that
replace variables x1, . . . , xl with terms M1, . . . ,Ml.

The applied pi calculus [1, ?] relies on a simple sort system. Terms can be of sort
Channel for channel names or Base for the payload sent out on these channels. Function
symbols can only be applied to, and return, terms of sort Base. A term is ground when
it does not contain variables.

The grammar for processes is shown in Figure 1 where u is either a name or variable
of channel sort. Plain processes are standard constructs, except for the record message
rec(r,M).P construct discussed below. Extended processes introduce active substitu-
tions which generalise the classical let construct: the process ν x.({M/x} | P) cor-
responds exactly to the process let x = M in P . As usual names and variables have
scopes which are delimited by restrictions and by inputs. All substitutions are assumed
to be cycle-free.

P,Q,R ::= processes
0 null process
P | Q parallel
!P replication
ν n.P name restriction
u(x).P message input
u�M�.P message output
rec(r,M).P record message
if M = N then P else Q conditional

A,B,C ::= extended processes
P plain process
A | B parallel composition
ν n.A name restriction
ν x.A variable restriction
{M/x} active substitution

Fig. 1. Applied pi calculus grammar

A frame ϕ is an extended process built from 0 and active substitutions {M/x};
which are composed by parallel composition and restriction. The domain of a frame ϕ
is the set of variables that ϕ exports. Every extended process A can be mapped to a
frame φ(A) by replacing every plain process in A with 0.

The record message construct rec(r,M).P introduces the possibility to enter special
entries in frames. We suppose that the sort system ensures that r is a variable of record
sort, which may only be used as a first argument of the rec construct or in the domain of
the frame. Moreover, we make the global assumption that a record variable has a unique
occurrence in each process. Intuitively, this construct will be used to allow a voter to
privately record some information which she may later use to verify the election.

The sets of free and bound names and variables in process A are denoted by fn(A),
bn(A), fv(A), bv(A). Similarly, we write fn(M), fv(M) for the names and variables in
term M and rv(A) and rv(M) for the set of record variables in a process and a term.
An extended process A is closed if fv(A) = ∅. A context C[] is an extended process
with a hole. An evaluation context is a context whose hole is not under a replication, a
conditional, an input, or an output.

The signature Σ is equipped with an equational theory E, that is, a finite set of
equations of the form M = N . We define =E as the smallest equivalence relation
on terms, that contains E and is closed under application of function symbols, sub-
stitution of terms for variables and bijective renaming of names. In this paper we tac-
itly assume that all signatures and equational theories contain the function symbols
pair(·, ·), fst(·), snd(·) and equations for pairing:

fst(pair(x, y)) = x snd(pair(x, y)) = y

as well as some constant ⊥. As a convenient shortcut we then write (T1, . . . Tn) for
pair(T1, pair(. . . , pair(Tn,⊥))) and πi(T) for fst(sndi−1(T)).

Semantics. The operational semantics of the applied pi calculus are defined with respect
to the three relations: structural equivalence (≡), internal reductions (−→) and labelled
reduction (α−→). These semantics are standard and defined in [19]. We only illustrate
them on an example (Figure 2). We write =⇒ for (→∗ α−→→∗)∗, that is, the reflexive
transitive closure of the labelled reduction.

Let P = νa, b.rec(r, a).c�(a, b)�.c(x).if x = a then c�f(a)�. Then we have that

P → νa, b.(c�(a, b)�.c(x).if x = a then c�f(a)� | {a/r})
≡ νa, b.(νy1.(c�y�.c(x).if x = a then c�f(a)� | {(a,b)/y1}) | {a/r})

νx.c�x�−−−−−→ νa, b.(c(x).if x = a then c�f(a)� | {(a,b)/y1} | {a/r})
νx.c(π1(y))−−−−−−−→ νa, b.(if a = a then c�f(a)� | {(a,b)/y1} | {a/r})

→ νa, b.(c�f(a)� | {| {(a,b)/y1} | {a/r})
νy2.c�y2�−−−−−−→ νa, b.(if a = a then c�f(a)� | {(a,b)/y1} | {f(a)/y2} | {a/r}

Observe that labelled outputs are done by reference and extend the domain of the process’s frame.

Fig. 2. A sequence of reductions in the applied pi semantics

3 Formalising voting protocols

As discussed in the introduction we want to explicitly specify the parts of the election
protocol which need to be trusted. Formally the trusted parts of the voting protocol can
be captured using a voting process specification.

Definition 1 (Voting process specification). A voting process specification is a tuple
�V,A� where V is a plain process without replication and A is a closed evaluation
context such that fv(V) = {v} and rv(V) = ∅.

For the purposes of individual verifiability the voter may rely on some data derived
during the protocol execution. We keep track of all such values using the record con-
struct (Definition 2).

Definition 2. Let rv be an infinite list of distinct record variables. We define the function
R on a finite process P without replication as R(P) = Rrv(P) and, for all lists rv:

Rrv(0) �= 0
Rrv(P | Q) �= Rodd(rv)(P) | Reven(rv)(Q)
Rrv(ν n.P) �= ν n.rec(head(rv), n).Rtail(rv)(P)
Rrv(u(x).P) �= u(x).rec(head(rv), x).Rtail(rv)(P)
Rrv(u�M�.P) �= u�M�.Rrv(P)
Rrv(if M = N then P else Q) �= if M = N then Rrv(P) else Rrv(Q)

where the functions head and tail are the usual ones for lists, and odd (resp. even)
returns the list of elements in odd (resp. even) position.

In the above definition odd and even are used as a convenient way to split an infinite list
into two infinite lists.

Given a sequence of record variables r̃, we denote by r̃i the sequence of variables
obtained by indexing each variable in r̃ with i. A voting process can now be constructed
such that the voter V records the values constructed and input during execution.

Definition 3. Given a voting process specification �V,A�, integer n ∈ N, and names
s1, . . . , sn, we build the augmented voting process VP+

n
(s1, . . . , sn) = A[V +

1 | · · · |
V +
n
] where V +

i
= R(V){si/v}{ri/r | r ∈ rv(R(V))}.

The process VP+
n
(s1, . . . , sn) models the voting protocol for n voters casting votes

s1, . . . , sn, who privately record the data that may be needed for verification using
record variables r̃i.

4 Election verifiability

We formalise election verifiability using three tests ΦIV , ΦUV , ΦEV . Formally, a test is
built from conjunctions and disjunctions of atomic tests of the form (M =E N) where
M,N are terms. Tests may contain variables and will need to hold on frames arising
from arbitrary protocol executions. We now recall the purpose of each test and assume
some naming conventions about variables.
Individual verifiability: The test ΦIV allows a voter to identify her ballot in the bulletin
board. The test has:

– a variable v referring to a voter’s vote.
– a variable w referring to a voter’s public credential.
– some variables x, x̄, x̂, . . . expected to refer to global public values pertaining to

the election, e.g., public keys belonging to election administrators.
– a variable y expected to refer to the voter’s ballot on the bulletin board.
– some record variables r1, . . . , rk referring to the voter’s private data.

Universal verifiability: The test ΦUV allows an observer to check that the election out-
come corresponds to the ballots in the bulletin board. The test has:

– a tuple of variables ṽ = (v1, . . . , vn) referring to the declared outcome.
– some variables x, x̄, x̂, . . . as above.
– a tuple ỹ = (y1, . . . , yn) expected to refer to all the voters’ ballots on the bulletin

board.
– some variables z, z̄, ẑ, . . . expected to refer to outputs generated during the protocol

used for the purposes of universal and eligibility verification.

Eligibility verifiability: The test ΦEV allows an observer to check that each ballot in the
bulletin board was cast by a unique registered voter. The test has:

– a tuple w̃ = (w1, . . . , wn) referring to public credentials of eligible voters.
– a tuple ỹ, variables x, x̄, x̂, . . . and variables z, z̄, ẑ, . . . as above.

The remainder of this section will focus on the individual and universal aspects of our
definition; eligibility verifiability will be discussed in Section 5.

4.1 Individual and universal verifiability

The tests suitable for the purposes of election verifiability have to satisfy certain condi-
tions: if the tests succeed, then the data output by the election is indeed valid (sound-
ness); and there is a behaviour of the election authority which produces election data sat-
isfying the tests (effectiveness). Formally these requirements are captured by the defini-
tion below. We write T̃ � T̃ � to denote that the tuples T̃ and T̃ � are a permutation of each
other modulo the equational theory, that is, we have T̃ = T1, . . . Tn, T̃ � = T �

1, . . . T
�
n

and there exists a permutation χ on {1, . . . , n} such that for all 1 ≤ i ≤ n we have
Ti =E T �

χ(i).

Definition 4 (Individual and universal verifiability). A voting specification �V,A�
satisfies individual and universal verifiability if for all n ∈ N there exist tests ΦIV ,ΦUV

such that fn(ΦIV) = fn(ΦUV) = rv(ΦUV) = ∅, rv(ΦIV) ⊆ rv(R(V)), and for all
names s̃ = (s1, . . . , sn) the conditions below hold. Let r̃ = rv(ΦIV) and ΦIV

i
=

ΦIV {si/v, r̃i/r̃}.

Soundness. For all contexts C and processes B such that C[VP+
n
(s1, . . . , sn)] =⇒ B

and φ(B) ≡ νñ.σ, we have:

∀i, j. ΦIV

i
σ ∧ ΦIV

j
σ ⇒ i = j (1)

ΦUV σ ∧ ΦUV {ṽ�
/ṽ}σ ⇒ ṽσ � ṽ�σ (2)

�

1≤i≤n

ΦIV

i
{yi/y}σ ∧ ΦUV σ ⇒ s̃ � ṽσ (3)

Effectiveness. There exists a context C and a process B, such that C[VP+
n
(s1, . . . , sn)]

=⇒ B, φ(B) ≡ νñ.σ and
�

1≤i≤n

ΦIV

i
{yi/y}σ ∧ ΦUV σ (4)

An individual voter should verify that the test ΦIV holds when instantiated with
her vote si, the information r̃i recorded during the execution of the protocol and some
bulletin board entry. Indeed, Condition (1) ensures that the test will hold for at most
one bulletin board entry. (Note that ΦIV

i
and ΦIV

j
are evaluated with the same ballot yσ

provided by C[].) The fact that her ballot is counted will be ensured by ΦUV which
should also be tested by the voter. An observer will instantiate the test ΦUV with the
bulletin board entries ỹ and the declared outcome ṽ. Condition (2) ensures the observer
that ΦUV only holds for a single outcome. Condition (3) ensures that if a bulletin board
contains the ballots of voters who voted s1, . . . , sn then ΦUV only holds if the declared
outcome is (a permutation of) these votes. Finally, Condition (4) ensures that there
exists an execution where the tests hold. In particular this allows us to verify whether
the protocol can satisfy the tests when executed as expected. This also avoids tests
which are always false and would make Conditions (1)-(3) vacuously hold.

4.2 Case study: FOO

The FOO protocol, by Fujioka, Okamoto & Ohta [15], is an early scheme based on
blind signatures and has been influential for the design of later protocols.

How FOO works. The voter first computes her ballot as a commitment to her vote m� =
commit(rnd, v) and sends the signed blinded ballot sign(skV , blind(rnd�,m�)) to the
registrar. The registrar checks that the signature belongs to an eligible voter and returns
sign(skR, blind(rnd�,m�)), the blind signed ballot. The voter verifies the registrar’s
signature and unblinds the message to recover her ballot signed by the registrar m =
sign(skR,m�). The voter then posts her signed ballot to the bulletin board. Once all
votes have been cast the tallier verifies all the entries and appends an identifier � to each
valid entry. The voter then checks the bulletin board for her entry, the triple (�,m�,m),
and appends the commitment factor rnd. Using rnd the tallier opens all of the ballots
and announces the declared outcome.

Equational theory. We model blind signatures and commitment as follows.

checksign(pk(x), sign(x, y)) = true getmsg(sign(x, y)) = y
unblind(y, sign(x, blind(y, z))) = sign(x, z) unblind(x, blind(x, y)) = y

open(x, commit(x, y)) = y

Model in applied pi. The parts of the protocol that need to be trusted for achieving ver-
ifiability are surprisingly simple (Definition 5). The name rnd models the randomness
that is supposed to be used to compute the commitment of the vote. All a voter needs to
ensure is that the randomness used for the commitment is fresh. To ensure verifiability,
all other operations such as computing the commitment, blinding and signing can be
performed by the untrusted terminal.

Definition 5. The voting process specification �Vfoo, Afoo� is defined as

Vfoo =̂ νrnd .c�v�.c�rnd� and Afoo[] =̂ .

Individual and universal verifiability. We define the tests

ΦIV =̂ y =E (r, commit(r, v)) ΦUV =̂
�

1≤i≤n

vi =E open(π1(y),π2(y))

Intuitively, a bulletin board entry y should correspond to the pair formed of the random
generated by voter i and commitment to her vote.

Theorem 1. �Vfoo, Afoo� satisfies individual and universal verifiability.

4.3 Case study: Helios 2.0

Helios 2.0 [4] is an open-source web-based election system, based on homomorphic
tallying of encrypted votes. It allows the secret election key to be distributed amongst
several trustees, and supports distributed decryption of the election result. It also allows
independent verification by voters and observers of election results. Helios 2.0 was
successfully used in March 2009 to elect the president of the Catholic University of
Louvain, an election that had 25,000 eligible voters.

How Helios works. An election is created by naming a set of trustees and running a
protocol that provides each of them with a share of the secret part of a public key pair.
The public part of the key is published. Each of the eligible voters is also provided with
a private pseudo-identity. The steps that participants take during a run of Helios are as
follows.

1. To cast a vote, the user runs a browser script that inputs her vote and creates a ballot
that is encrypted with the public key of the election. The ballot includes a ZKP that
the ballot represents an allowed vote (this is needed because the ballots are never
decrypted individually).

2. The user can audit the ballot to check if it really represents a vote for her chosen
candidate; if she elects to do this, the script provides her with the random data
used in the ballot creation. She can then independently verify that the ballot was
correctly constructed, but the ballot is now invalid and she has to create another
one.

3. When the voter has decided to cast her ballot, the voter’s browser submits it along
with her pseudo-identity to the server. The server checks the ZKPs of the ballots,
and publishes them on a bulletin board.

4. Individual voters can check that their ballots appear on the bulletin board. Any ob-
server can check that the ballots that appear on the bulletin board represent allowed
votes, by checking the ZKPs.

5. The server homomorphically combines the ballots, and publishes the encrypted
tally. Anyone can check that this tally is done correctly.

6. The server submits the encrypted tally to each of the trustees, and obtains their
share of the decryption key for that particular ciphertext, together with a proof that
the key share is well-formed. The server publishes these key shares along with the
proofs. Anyone can check the proofs.

7. The server decrypts the tally and publishes the result. Anyone can check this de-
cryption.

Equational theory. We use a signature in which penc(xpk, xrand, xtext) denotes the en-
cryption with key xpk and random xrand of the plaintext xtext, and xciph∗yciph denotes the
homomorphic combination of ciphertexts xciph and yciph (the corresponding operation
on plaintexts is written + and on randoms ◦). The term ballotPf(xpk, xrand, s, xballot)
represents a proof that the ballot xballot contains some name s and random xrand with
respect to key xpk; decKey(xsk, xciph) is a decryption key for xciph w.r.t. public key
pk(xsk); and decKeyPf(xsk, xciph, xdk) is a proof that xdk is a decryption key for xciph

w.r.t. public key pk(xsk). We use the equational theory that asserts that +, ∗, ◦ are com-
mutative and associative, and includes the equations:

dec(xsk, penc(pk(xsk), xrand, xtext)) = xtext

dec(decKey(xsk, ciph), ciph) = xplain

where ciph = penc(pk(xsk), xrand, xplain)

penc(xpk, yrand, ytext) ∗ penc(xpk, zrand, ztext) = penc(xpk, yrand ◦ zrand, ytext + ztext)

checkBallotPf(xpk, ballot, ballotPf(xpk, xrand, s, ballot)) = true
where ballot = penc(xpk, xrand, s)

checkDecKeyPf(pk(xsk), ciph, dk, decKeyPf(xsk, ciph, dk)) = true
where ciph = penc(pk(xsk), xrand, xplain)and dk = decKey(xsk, ciph)

Note that in the equation for checkBallotPf s is a name and not a variable. As the
equational theory is closed under bijective renaming of names this equation holds for
any name, but fails if one replaces the name by a term, e.g., s + s. We suppose that all
names are possible votes but give the possibility to check that a voter does not include
a term s+ s which would add a vote to the outcome.

Model in applied pi. The parts of the system that are not verifiable are:

– The script that constructs the ballot. Although the voter cannot verify it, the trust in
this script is motivated by the fact that she is able to audit it.

– The trustees. Although the trustees’ behaviour cannot be verified, voters and ob-
servers may want to trust them because trust is distributed among them.

Hence, we include these two components in the context Ahelios of our voting process
specification.

Definition 6. The voting process specification �Vhelios, Ahelios� is defined where

Vhelios =̂ d(xpid). d�v�. d(xballot). d(xballotpf).c�(w, xballot, xballotpf)�
Ahelios[] =̂ νsk, d.

�
c�pk(sk)� | (!νpid. d�pid�) | (!B) | T |

�

B =̂ νm. d(xvote).d�penc(pk(sk),m, xvote)�.
d�ballotPf(pk(sk),m, xvote, penc(pk(sk),m, xvote))�

T =̂ c(xtally). c�(decKey(sk, xtally), decKeyPf(sk, xtally, decKey(sk, xtally)))�

We suppose that the inputs of xpid, xballot and xballotpf are stored in record variables rpid,
rballot and rballotpf respectively. The voter Vhelios receives her voter id pid on a private
channel. She sends her vote on the channel to Ahelios, which creates the ballot for her.
She receives the ballot and sends it (paired with pid) to the server. Ahelios represents
the parts of the system that are required to be trusted. It publishes the election key and
issues voter ids. It includes the ballot creation script B, which receives a voter’s vote,
creates a random m and forms the ballot, along with its proof, and returns it to the
voter. Ahelios also contains the trustee T , which accepts a tally ciphertext and returns a
decryption key for it, along with the proof that the decryption key is correct. We assume
the trustee will decrypt any ciphertext (but only one).

The untrusted server is assumed to publish the election data. We expect the frame to
define the election public key as xpk and the individual pid’s and ballots as yi for each
voter i. It also contains the homomorphic tally ztally of the encrypted ballots, and the
decryption key zdecKey and its proof of correctness zdecKeyPf obtained from the trustees.
When the protocol is executed as expected the resulting frame should have substitution
σ such that

yiσ = (pidi, penc(pk(sk),mi, vi), ballotPf(pk(sk),mi, vi, penc(pk(sk),mi, vi)))
xpkσ = pk(sk) ztallyσ = π2(y1) ∗ · · · ∗ π2(yn)σ

zdecKeyσ = decKey(sk, ztally)σ zdecKeyPfσ = decKeyPf(sk, ztally, zdecKey)σ

Individual and universal verifiability. The tests ΦIV and ΦUV are introduced for veri-
fiability purposes. Accordingly, given n ∈ N we define:

ΦIV �= y =E (rpid, rballot, rballotpf)
ΦUV �= ztally =E π2(y1) ∗ · · · ∗ π2(yn)

∧
�

n

i=1(checkBallotPf(xpk,π2(yi),π3(yi)) =E true)
∧ checkDecKeyPf(xpk, ztally, zdecKey, zdecKeyPf) =E true
∧ v1 + · · ·+ vn =E dec(zdecKey, ztally)

Theorem 2. �Vhelios, Ahelios� satisfies individual and universal verifiability.

5 Eligibility verifiability

To fully capture election verifiability, the tests ΦIV and ΦUV must be supplemented
by a test ΦEV that checks eligibility of the voters whose votes have been counted. We
suppose that the public credentials of eligible voters appear on the bulletin board. ΦEV

allows an observer to check that only these individuals (that is, those in posession of
credentials) cast votes, and at most one vote each.

Definition 7 (Election verifiability). A voting specification �V,A� satisfies election
verifiability if for all n ∈ N there exist tests ΦIV ,ΦUV ,ΦEV such that fn(ΦIV) =
fn(ΦUV) = fn(ΦEV) = rv(ΦUV) = rv(ΦEV) = ∅, rv(ΦIV) ⊆ rv(R(V)), and for all
names s̃ = (s1, . . . , sn) we have:

1. The tests ΦIV and ΦUV satisfy each of the conditions of Definition 4;
2. The additional conditions 5, 6, 7 and 8 below hold.

Let r̃ = rv(ΦIV), ΦIV

i
= ΦIV {si/v, r̃i/r̃, yi/y}, X = fv(ΦEV)\dom(VP+

n (s1, . . . , sn))

Soundness. For all contexts C and processes B such that C[VP+
n (s1, . . . , sn)] =⇒ B

and φ(B) ≡ νñ.σ, we have:

ΦEV σ ∧ ΦEV {x�
/x | x ∈ X\ỹ}σ ⇒ w̃σ � w̃�σ (5)

�

1≤i≤n

ΦIV

i
σ ∧ ΦEV {w̃�

/w̃}σ ⇒ w̃σ � w̃�σ (6)

ΦEV σ ∧ ΦEV {x�
/x | x ∈ X\w̃}σ ⇒ ỹσ � ỹ�σ (7)

Effectiveness. There exists a context C and a process B such that C[VP+
n (s1, . . . , sn)]

=⇒ B, φ(B) ≡ νñ.σ and

�

1≤i≤n

ΦIV

i
σ ∧ ΦUV σ ∧ ΦEV σ (8)

The test ΦEV is instantiated by an observer with the bulletin board. Condition (5) en-
sures that, given a set of ballots ỹσ, provided by the environment, ΦEV succeeds only
for one list of voter public credentials. Condition (6) ensures that if a bulletin board
contains the ballots of voters with public credentials w̃σ then ΦEV only holds on a per-
mutation of these credentials. Condition (7) ensures that, given a set of credentials w̃,
only one set of bulletin board entries ỹ are accepted by ΦEV (observe that for such a
strong requirement to hold we expect the voting specification’s frame to contain a pub-
lic key, to root trust). Finally, the effectiveness condition is similar to Condition (4) of
the previous section.

5.1 Case study: JCJ-Civitas

The protocol due to Juels et al. [18] is based on mixnets and was implemented by
Clarkson et al. [13, 12] as an open-source voting system called Civitas.

How JCJ-Civitas works. An election is created by naming a set of registrars and talliers.
The protocol is divided into four phases: setup, registration, voting and tallying. We now
detail the steps of the protocol, starting with the setup phase.

1. The registrars (resp. talliers) run a protocol which constructs a public key pair and
distributes a share of the secret part amongst the registrars’ (resp. talliers’). The
public part pk(skT) (resp. pk(skR)) of the key is published. The registrars also
construct a distributed signing key pair sskR, pk(sskR).

The registration phase then proceeds as follows.

2. The registrars generate and distribute voter credentials: a private part d and a public
part penc(pk(skR),m��, d) (the probabilistic encryption of d under the registrars’
public key pk(skR)). This is done in a distributed manner, so that no individual
registrar learns the value of any private credential d.

3. The registrars publish the signed public voter credentials.
4. The registrars announce the candidate list t̃ = (t1, . . . , tl).

The protocol then enters the voting phase.

5. Each voter selects her vote s ∈ t̃ and computes two ciphertexts M = penc(
pk(skT),m, s) and M � = penc(pk(skR),m�, d) where m,m� are nonces. M con-
tains her vote and M � her credential. In addition, the voter constructs a non-interactive
zero-knowledge proof of knowledge demonstrating the correct construction of her
ciphertexts and validity of the candidate (s ∈ t̃). (The ZKP provides protection
against coercion resistance, by preventing forced abstention attacks via a write in,
and binds the two ciphertexts for eligibility verifiability.) The voter derives her bal-
lot as the triple consisting of her ciphertexts and zero-knowledge proof and posts it
to the bulletin board.

After some predefined deadline the tallying phase commences.

6. The talliers read the n� ballots posted to the bulletin board by voters (that is, the
triples consisting of the two ciphertexts and the zero-knowledge proof) and discards
any entries for which the zero-knowledge proof does not hold.

7. The elimination of re-votes is performed on the ballots using pairwise plaintext
equality tests (PET) on the ciphertexts containing private voter credentials. (A
PET [16] is a cryptographic predicate which allows a keyholder to provide a proof
that two ciphertexts contain the same plaintext.) Re-vote elimination is performed
in a verifiable manner with respect to some publicly defined policy, e.g., by the
order of ballots on the bulletin board.

8. The talliers perform a verifiable re-encryption mix on the ballots (ballots consist
of a vote ciphertext and a public credential ciphertext; the link between both is
preserved by the mix.) The mix ensures that a voter cannot trace her vote, allowing
the protocol to achieve coercion-resistance.

9. The talliers perform a verifiable re-encryption mix on the list of public credentials
published by the registrars. This mix anonymises public voter credentials, breaking
any link with the voter for privacy purposes.

10. Ballots based on invalid credentials are weeded using PETs between the mixed
ballots and the mixed public credentials. Both have been posted to the bulletin
board. (Using PETs the correctness of weeding is verifiable.)

11. Finally, the talliers perform a verifiable decryption and publish the result.

Equational theory. The protocol uses a variant of the ElGamal encryption scheme [18].
Accordingly we adopt the signature and associated equational theory from the Helios
case study. We model the ZK proof demonstrating correct construction of the voter’s
ciphertexts, re-encryption and PETs by the equations

checkBallot(ballotPf(xpk, xrand, xtext, x�
pk, x

�
rand, x

�
text),

penc(xpk, xrand, xtext), penc(x�
pk, x

�
rand, x

�
text)) = true

renc(yrand, penc(pk(xsk), xrand, xtext)) = penc(pk(xsk), f(xrand, yrand), xtext)
pet(petPf(xsk, ciph, ciph�), ciph, ciph�) = true

where ciph =̂ penc(pk(xsk), xrand, xtext) and ciph� =̂ penc(pk(xsk), x�
rand, xtext). In

addition we consider verifiable re-encryption mixnets and introduce for each permuta-
tion χ on {1, . . . , n} the equation:

checkMix(mixPf(xciph,1, . . . , xciph,n, ciph1, . . . , ciphn, zrand,1, . . . , zrand,n),

xciph,1, . . . , xciph,n, ciph1, . . . , ciphn) = true

where ciphi =̂ renc(zrand,i, xciph,χ(i)). We also define re-encryption of pairs of cipher-
texts and introduce for each permutation χ on {1, . . . , n} the equation

checkMixPair(mixPairPf((x1, x
�
1), . . . , (xn, x

�
n
), (c1, c

�
1), . . . , (cn, c

�
n
),

(z1, z
�
1), . . . , (zn, z

�
n
)), (x1, x

�
1), . . . , (xn, x

�
n
), (c1, c

�
1), . . . , (cn, c

�
n
)) = true

where ci =̂ renc(zi, xχ(i)) and c�
i
=̂ renc(z�

i
, x�

χ(i)).

Model in applied pi. We make the following trust assumptions for verifiability

– The voter is able to construct her ballot; that is, she is able to generate nonces
m,m�, construct her ciphertexts and generate a zero-knowledge proof.

– The registrars construct distinct credentials d for each voter and construct the voter’s
public credential correctly. (The latter assumption can be dropped if the registrars
provides a proof that the public credential is correctly formed [18].) The registrars
keep the private part of the signing key secret.

Although neither voters nor observers can verify that the registrars adhere to such ex-
pectations, they trust them because trust is distributed. The trusted components are mod-
elled by the voting process specification �Ajcj, Vjcj� (Definition 8). The context Ajcj dis-
tributes private keys on a private channel, launches an unbounded number of registrar
processes and publishes the public keys of both the registrars and talliers. The registrar
R constructs a fresh private credential d and sends the private credential along with
the signed public part (that is, sign(sskR, penc(xpkR ,m

��, d))) to the voter; the reg-
istrar also publishes the signed public credential on the bulletin board. The voter Vjcj

receives the private and public credentials from the registrar and constructs her ballot;
that is, the pair of ciphertexts and a zero-knowledge proof demonstrating their correct
construction.

Definition 8. The voting process specification Ajcj, Vjcj is defined where:

Ajcj =̂ ν a, sskR.(!R | {pk(skR)/xpkR
, pk(sskR)/xspkR

, pk(skT)/xpkT
} |)

Vjcj =̂ νm,m�.a(xcred).let ciph = penc(xpkT ,m, v) in
let ciph� = penc(xpkR ,m

�,π1(xcred)) in
let zkp = ballotPf(xpkT ,m, v, xpkR ,m

�,π1(xcred)) in
c�(ciph, ciph�, zkp)�

R =̂ ν d,m��. let sig = sign(sskR, penc(xpkR ,m
��, d)) in a�(d, sig)�.c�sig�

Election verifiability. We suppose the recording function uses record variables r̃ =
(rcred, rm, rm�) = rv(R(V)) (corresponding to the variable xcred and names m, m� in
the process V). Accordingly, given n ∈ N we define:

ΦIV �= y =E (penc(xpkT , rm, v), penc(xpkR , rm� ,π1(rcred)),
ballotPf(xpkT , rm, v, xpkR , rm� ,π1(rcred))) ∧ w = π2(rcred)

ΦUV �= checkMixPair(zmixPairPf , (π1(y1),π2(y1)), . . . , (π1(yn),π2(yn)),
zbal,1, . . . , zbal,n) =E true

∧
�

n

i=1 dec(zdecKey,i,π1(zbal,i)) =E vi
∧
�

n

i=1 checkDecKeyPf(xpkT ,π1(zbal,i), zdecKey,i, zdecPf,i) =E true
ΦEV �=

�
n

i=1 checkBallot(π3(yi),π1(yi),π2(yi))
∧ checkMixPair(zmixPairPf , (π1(y1),π2(y1)), . . . , (π1(yn),π2(yn)),

zbal,1, . . . , zbal,n) =E true
∧
�

n

i=1 pet(zpetPf,i,π2(zbal,i), ẑcred,i) =E true
∧ (zcred,1, . . . , zcred,n) � (ẑcred,1, . . . , ẑcred,n)
∧ checkMix(zmixPf , getmsg(w1), . . . , getmsg(wn), zcred,1, . . . , zcred,n)=Etrue
∧
�

n

i=1 checksign(xspkR , wi)

Theorem 3. �Ajcj, Vjcj� satisfies election verifiability.

6 Conclusion

We present a symbolic definition of election verifiability which allows us to precisely
identify which parts of a voting system need to be trusted for verifiability. The suitability
of systems can then be evaluated and compared on the basis of trust assumptions. We
also consider eligibility verifiability, an aspect of verifiability that is often neglected
and satisfied by only a few protocols, but nonetheless an essential mechanism to detect
ballot stuffing. We have applied our definition to three protocols: FOO, which uses blind
signatures; Helios 2.0, which is based on homomorphic encryption, and JCJ-Civitas,
which uses mixnets and anonymous credentials. For each of these protocols we discuss
the trust assumptions that a voter or an observer needs to make for the protocol to be
verifiable. Since Helios 2.0 and JCJ-Civitas have been implemented and deployed, we
believe our formalisation is suitable for analysing real world election systems.

Acknowledgements

We are particularly grateful to Michael Clarkson for careful reading of our preliminary
formal definition of election verifiability. His comments provided useful guidance for
the definition we present here.

References

1. M. Abadi and C. Fournet. Mobile values, new names, and secure communication. In
POPL’01: Proc. 28th ACM Symposium on Principles of Programming Languages, pages
104–115, New York, USA, 2001. ACM.

2. B. Adida. Advances in Cryptographic Voting Systems. PhD thesis, MIT, 2006.
3. B. Adida. Helios: Web-based open-audit voting. In Proc. 17th Usenix Security Symposium,

pages 335–348. USENIX Association, 2008.
4. B. Adida, O. de Marneffe, O. Pereira, and J.-J. Quisquater. Electing a university president

using open-audit voting: Analysis of real-world use of Helios. In Electronic Voting Technol-
ogy/Workshop on Trustworthy Elections (EVT/WOTE), 2009.

5. R. Anderson and R. Needham. Programming Satan’s Computer. In Jan van Leeuwen, editor,
Computer Science Today: Recent Trends and Developments, volume 1000 of LNCS, pages
426–440. Springer, 1995.

6. M. Backes, C. Hritcu, and M. Maffei. Automated verification of remote electronic voting
protocols in the applied pi-calculus. In CSF’08: Proc. 21st IEEE Computer Security Foun-
dations Symposium, pages 195–209, Washington, USA, 2008. IEEE.

7. A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based modelling of voting proto-
cols. In TARK’07: Proc. 11th International Conference on Theoretical Aspects of Rationality
and Knowledge, pages 62–71. ACM, 2007.

8. D. Bowen. Secretary of State Debra Bowen Moves to Strengthen Voter Confidence in Elec-
tion Security Following Top-to-Bottom Review of Voting Systems. California Secretary
of State, press release DB07:042 http://www.sos.ca.gov/elections/voting_
systems/ttbr/db07_042_ttbr_system_decisions_release.pdf, August
2007.

9. Bundesverfassungsgericht (Germany’s Federal Constitutional Court). Use of voting
computers in 2005 Bundestag election unconstitutional. Press release 19/2009 http:
//www.bundesverfassungsgericht.de/en/press/bvg09-019en.html,
March 2009.

10. D. Chaum, P. Y. A. Ryan, and S. Schneider. A practical, voter-verifiable election scheme. In
ESORICS’05: Proc. 10th European Symposium On Research In Computer Security, volume
3679 of LNCS, pages 118–139. Springer, 2005.

11. B. Chevallier-Mames, P.-A. Fouque, D. Pointcheval, J. Stern, and J. Traore. On Some In-
compatible Properties of Voting Schemes. In WOTE’06: Proc. Workshop on Trustworthy
Elections, 2006.

12. M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting sys-
tem. Technical Report 2007-2081, Cornell University, May 2007. Revised March 2008.
http://hdl.handle.net/1813/7875.

13. M. R. Clarkson, S. Chong, and A. C. Myers. Civitas: Toward a secure voting system. In
S&P’08: Proc. Symposium on Security and Privacy, pages 354–368. IEEE Computer Soci-
ety, 2008.

14. S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security, 17(4):435–487, July 2009.

15. A. Fujioka, T. Okamoto, and K. Ohta. A Practical Secret Voting Scheme for Large Scale
Elections. In ASIACRYPT’92: Proc. Workshop on the Theory and Application of Crypto-
graphic Techniques, pages 244–251. Springer, 1992.

16. M. Jakobsson and A. Juels. Mix and match: Secure function evaluation via ciphertexts.
In ASIACRYPT’00: Proc. 6th International Conference on the Theory and Application of
Cryptology and Information Security, pages 162–177. Springer, 2000.

17. A. Juels, D. Catalano, and M. Jakobsson. Coercion-Resistant Electronic Elections. Cryptol-
ogy ePrint Archive, Report 2002/165, 2002.

18. A. Juels, D. Catalano, and M. Jakobsson. Coercion-resistant electronic elections. In WPES
’05: Proc. workshop on Privacy in the electronic society, pages 61–70. ACM, 2005. See also
http://www.rsa.com/rsalabs/node.asp?id=2860.

19. S. Kremer, B. Smyth, and M. D. Ryan. Election verifiability in electronic voting proto-
cols. Technical Report CSR-10-06, University of Birmingham, School of Computer Sci-
ence, 2010. Available at http://www.bensmyth.com/publications/10tech/
CSR-10-06.pdf.

20. Ministerie van Binnenlandse Zaken en Koninkrijksrelaties (Netherland’s Ministry of the In-
terior and Kingdom Relations). Stemmen met potlood en papier (Voting with pencil and
paper). Press release http://www.minbzk.nl/onderwerpen/grondwet-en/
verkiezingen/nieuws--en/112441/stemmen-met-potlood, May 2008.

21. Participants of the Dagstuhl Conference on Frontiers of E-Voting. Dagstuhl accord. http:
//www.dagstuhlaccord.org/, 2007.

22. B. Smyth, M. D. Ryan, S. Kremer, and M. Kourjieh. Towards automatic analysis of election
verifiability properties. In Joint Workshop on Automated Reasoning for Security Protocol
Analysis and Issues in the Theory of Security (ARSPA-WITS’10), LNCS. Springer, 2010. To
appear.

23. M. Talbi, B. Morin, V. V. T. Tong, A. Bouhoula, and M. Mejri. Specification of Electronic
Voting Protocol Properties Using ADM Logic: FOO Case Study. In ICICS’08: Proc. 10th
International Conference on Information and Communications Security Conference, pages
403–418, London, 2008. Springer.

24. UK Electoral Commission. Key issues and conclusions: May 2007 electoral
pilot schemes. http://www.electoralcommission.org.uk/elections/
pilots/May2007.

